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Abstract

Wildfires are a common problem in many areas of the world with often catastrophic consequences. A number of systems

have been created to provide early warnings of wildfires, including those that use satellite data to detect fires. The increased

availability of small satellites, such as CubeSats, allows the wildfire detection response time to be reduced by deploying

constellations of multiple satellites over regions of interest. By using machine learned components on-board the satellites,

constraints which limit the amount of data that can be processed and sent back to ground stations can be overcome. There are

hazards associated with wildfire alert systems, such as failing to detect the presence of a wildfire, or detecting a wildfire in the

incorrect location. It is therefore necessary to be able to create a safety assurance case for the wildfire alert ML component

that demonstrates it is sufficiently safe for use. This paper describes in detail how a safety assurance case for an ML wildfire

alert system is created. This represents the first fully developed safety case for an ML component containing explicit argument

and evidence as to the safety of the machine learning.

Keywords Machine learning · Safety case · Safety assurance · Wildfire · Satellite

1 Introduction

Wildfires are a common and often catastrophic occurrence

in many parts of the world. In the 2019 and 2020 Australian

bushfire season, over 18 million hectares of forest and 10,000

buildings were destroyed and six people killed [1]. The Gang-

won wildfire in South Korea in 2019 burnt 500 hectares of

land and destroyed several hundred buildings [2]. 2020 and

2021 were the worst years for wildfires in the USA in at least

10 years with an average of 69,000 wildfires burning over

2.5 million hectares each year, based on data compiled by

the National Interagency Fire Center (NIFC). As well as loss
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to life, there is also an immense financial cost, as well as a

huge environmental impact from uncontrolled wildfires [3].

So effectively managing the prevention and response to wild-

fires is crucial. Early detection of emerging wildfires enables

them to be suppressed and managed, reducing the require-

ment for costly and dangerous firefighting.

There are three types of system used for wildfire detec-

tion: terrestrial, airborne, and spaceborne systems [4]. In this

paper we focus on spaceborne wildfire detection. Services

such as the Fire Information for Resource Management Sys-

tem (FIRMS) [5], the Global Wildfire Information System

(GWIS) [6] and the Copernicus Emergency Management

System (EMS) [7] have been created to provide early warn-

ings, statistical data and coverage maps for wildfires. Such

services rely heavily on satellite data to provide the per-

spective, spectral content and temporal frequency needed for

regular and accurate detection and reporting of wildfires. As

these services rely on existing satellite missions, however,

they are subject to the limitations of these missions in terms

of visit frequency, information latency and quality of data.

For example, FIRMS reports a lead time of 3 hours from

observation (not the fire actually starting or being observ-

able) to reporting on the ground [5], a geolocation precision

of 375 m [8] or 1 km [9] and a false positive error of 1.2%
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[10]. The source satellites used for FIRMS (Terra, Aqua,

Suomi NPP and NOAA-20) have a revisit time of between

14 hours and 2 days. This makes the worst-case scenario for

a detection response time around 51 hours, assuming a fire

becomes observable immediately following a satellite pass.

While emergency services do not rely exclusively on plat-

forms such as FIRMS, the ability to provide warnings even a

few hours earlier could make a huge difference to the preser-

vation of human, animal and plant life and infrastructure.

The detection response time on fire alerts can be reduced

by increasing the revisit frequency of the satellites or deploy-

ing a constellation that is intentionally sized and designed

to meet specific revisit and latency requirements. This has

become possible with the increased availability of space

assets, such as CubeSats (the most popular form factor for

small satellites). There are, however, constraints on resources

such as power and bandwidth when using CubeSats which

limit the amount of data that can be processed and sent back

to ground stations. In the case study we consider in this paper,

such bottlenecks are overcome by using machine learned

(ML) components on-board the satellites to detect wildfires

and generate timely and data-efficient alerts which are trans-

mitted to a ground station. Without on-board intelligence

such as that provided by the ML component, it would not be

possible to detect the presence of fire on-board, meaning that

images need to be sent to the ground for manual analysis.

The benefits to data latency can be quantified. Consider a 10

Mbit downlink and 50% probability of fire being present in

a captured image frame. The average file size for a multi-

spectral image frame is 20.4MB; for a text alert it is 5kB.

In an 8-minute ground station pass, assuming optimal condi-

tions and minimal connection overheads, 30 full images can

be downlinked in a traditional downlink scenario. This has

two major issues. Firstly, assuming all new on-board data is

downlinked and neglecting the timeliness of the acquisition

operations, images showing wildfires could have a downlink

latency of up to 8 minutes. Secondly, the assumption that all

new on-board data is downlinked may be incorrect, and more

recent data may need to wait for a subsequent ground station

passes before downlink. With ML on-board, the lightweight

fire alerts are prioritised and the bulky source data is moved

to the back of the downlink queue. The ML system can

downlink all 30 fire alerts in 0.12s. The remainder of the

downlink bandwidth can be used to retrieve richer data prod-

ucts for only the affected areas of the ROI for verification

and validation purposes. The response authority (such as the

fire service) will then consider the alerts and determines an

appropriate response based on a number of factors such as

the number of fires detected in a specific catchment area, the

distribution of the fires and distance from both each other

and the response team’s base.

There are potential hazards associated with a wildfire alert

system such as this. Failure to detect the presence of a wild-

fire or detecting a wildfire in the incorrect location could lead

to a delay in the response to the fire, a larger and less con-

trolled fire, and thus potentially increasing the risk of harm

to people and property or putting firefighting teams in dan-

ger. Conversely, raising an alert for a wildfire that doesn’t

actually exist could result in fire response resource being

mis-assigned and thus unavailable to respond to real wild-

fires in a timely manner. It is necessary therefore to be able

to provide confidence in the alerts generated by the satellite-

based fire detection system such that they can be trusted. To

do this, for the ML component that is used for wildfire detec-

tion and alerting, we need to create a safety assurance case

that presents a compelling argument that the component is

sufficiently safe, supported by rigorous evidence.

In this paper we describe in detail how the safety assurance

case for an ML wildfire alert system was created. This is the

first detailed structured safety assurance case that has been

developed for any ML component. The paper is structured

as follows. Section 2 discusses safety cases for ML software

and how they can be created. Section 3 provides a descrip-

tion of the wildfire alert system. The safety case is presented

in Section 4. Section 5 provides conclusions and discusses

future work directions.

2 Safety Assurance Cases for Machine
Learning

In order to demonstrate that a system is acceptably safe to

operate, it is common to provide a safety case for that system.

A safety case comprises “a structured argument, supported by

a body of evidence, that provides a compelling, comprehensi-

ble and valid case that a system is safe for a given application

in a given environment” [11]. For systems that contain soft-

ware, the safety case must consider the contribution of the

software to the safety of the overall system. Creating a an

explicit safety case containing a structured argument and evi-

dence helps to provide explicit safety justification, making it

easier to understand, review and criticise the reasoning and

evidence presented. One approach that is commonly used

to present the safety arguments for a safety case is the Goal

Structuring Notation (GSN) [12]. The basic elements of GSN

are shown in Fig. 1.

These GSN elements can be used to construct a safety

argument by showing how safety claims are broken down

into sub-claims, until eventually they can be supported by evi-

dence. The strategies adopted, and the rationale (assumptions

and justifications) can be captured, along with the context in

which the goals are stated. Confidence arguments relating to

various aspects of the safety case can be provided. Assur-

ance claim points (ACPs) can be used to indicate where such

arguments are provided. In this paper GSN is used to present

the safety arguments.
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Fig. 1 Key to GSN notation

Previous work has been undertaken looking at how to

develop safety cases for safety-related software systems, such

as [13] and in a number of domains, standards require the

production of a safety case for software elements of a system

[11, 14]. However this previous work has focused on tradi-

tional software and not considered machine learning. These

existing software safety assurance approaches do not apply

well to ML software for a number of reasons including:

1. They assume a development process based around the

decomposition of requirements down to the level of imple-

mentation.

2. They assume the software generated can be understood

and analysed by humans.

3. They assume that defined test coverage metrics can be

used to judge the sufficiency of the testing undertaken.

None of these assumptions hold for ML software, where

a completely different development approach is adopted,

the resulting software algorithm is opaque to human inter-

pretabilty, and traditional coverage metrics are meaningless.

Although there is extensive existing research into the use

of machine learning for safety applications, as discussed in

[15], this work explicitly does not consider the safety of ML

systems. There has been a lot of work looking at approaches

for verification of neural networks including formal verifica-

tion techniques, as discussed in literature surveys such as [16]

and [17]. Verification is however just one part of the safety

assurance process. There has been some work that proposes

how safety approaches may be developed for the use of ML

in specific domains such as automotive [18] or healthcare

[19] and on assurance of the learning lifecycle more gener-

ally [20]. There has also been a limited amount of work on

safety case structures for ML components [21, 22]. There

has been no other work however that describes a detailed

safety assurance process for ML components and describes

how that process can be used to create an explicit safety case

for ML.

In response to this the authors, in previous work, devel-

oped an approach for safety assurance of machine learning

(AMLAS) [23]. AMLAS was developed with input from

industry experts from a range of sectors and issued as a

publicly accessible resource1 to influence industry practice

and regulation2. The scope of AMLAS is limited to the ML

component. As such, it is intended to be complimentary to

other standards and guidelines that specify best practices

in safety-critical systems (e.g. ARP4754A [24]), domain-

specific requirements (e.g. CONSORT-AI [25] or ISO/PAS

21448 [26]) or safe autonomy considerations (e.g. UL4000

[27] or SCSC-153A [28]). For example, the system-level

safety requirements, including acceptable risk targets, are

a fundamental input to the AMLAS process. These require-

ments are expected to be generated by domain experts or

derived from the relevant regulatory requirements.

AMLAS is a process that consists of 6 stages, as shown

in Fig. 2. For each stage the AMLAS process describes a set

of activities that can be followed, and the artefacts that are

generated. It then details how these artefacts may be used to

create a safety case for the ML component. In Section 4 we

apply each stage of the AMLAS process to a satellite-based

wildfire alert ML component to create a compelling safety

case.

1 https://www.york.ac.uk/assuring-autonomy/guidance/amlas/

2 The AMLAS guidance document has been downloaded over 1,000

times.
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Fig. 2 Overview of the AMLAS Process

3 Wild Fire Alert SystemDescription

The concept of operations for the detection system is shown

in Fig. 3. A satellite with a multi-spectral imager passes over

a region of interest that may contain wildfires. The imager

operates on a set frequency, capturing images of the sub-

satellite environment and classifying them using a neural

network trained on satellite images of fires in the spectrum

of the imager. The neural network detects the presence of

any fires in the image, and transmits a lightweight text alert

containing the location of the fire and time of detection to the

groundstation. The fire alerts are prioritised and downlinked

to the ground ahead of all other data. This alert is then passed

to the response authority.

In order to maximise the time during which a satellite is

available to obtain images of a particular area of interest,

multiple CubeSats are used for this application. 8 standard

6U platforms are employed, each hosting identical instru-

ment payloads and subsystems. The orbit of the satellites

and their instruments will reflect those of Sentinel-2 and

Landsat 8, which are the sources of the training data for

the ML component. The satellites are in a sun-synchronous

low Earth orbit (LEO) at 450km altitude and 97.2◦ inclina-

tion. They orbit the Earth approximately every 94 minutes

and are evenly distributed around the ascending node, such

that revisit times between satellites for a given location are

constant. The satellites use a generic 30x10 cm platform

with standard attitude determination and control components

including inertial sensors, coarse and fine sun sensors, reac-

tion wheels and magnetorquers. They are capable of fine

pointing at specific ground targets or along the satellite nadir

and velocity vectors.

The satellite payload comprises a generic multispectral

instrument (MSI) which is similar to the MSIs used on

Fig. 3 Concept of Operations

for Wildfire Alert System
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Fig. 4 Spectral bands for Sentinel-2 and Landsat-8 MSIs

Sentinel-2 and Landsat-8. The bands of the instrument are

also common to both Sentinel-2 and Landsat-8, shown in

Fig. 4.

The MSI has the following properties:

• Ground footprint: 32.5 x 19.6 km

• Max ground resolution: 10 m/px

A single ground station is used, which will be located at

the far end of the region of interest (RoI) with respect to the

direction of travel of the satellite as shown in Fig. 5. This

ensures that fire alerts in the RoI are downlinked as soon

as possible after identification. Although the model that has

been created has been developed to be deployed globally in

diverse ROIs, in this paper the ROI to which the deployment

was considered is Oregon in the US.

Figure 3 also indicates how the satellite can be used

for other commercial applications by providing larger data

products to commercial customers such as burnt area identifi-

cation and asset damage information as well as more detailed

fire mapping. This may include sending full images to the

groundstation. These applications require more data pro-

cessing and transmission and therefore take longer than the

prioritised fire alerts, however since these are commercial

use cases that have no direct safety impact they are not time-

Fig. 5 Ground station location in region of interest

critical in the same way as the fire alerts. These commercial

applications are not considered in this paper.

Figure 3 also indicates that verification of the on-board

fire detection can be performed on the ground during opera-

tion through (non-real-time) verification against groundtruth

data from other fire detection sources. Where necessary this

verification could lead to software updates to improve the

operational performance of the ML component.

4 The Safety Case for theWild Fire Alert ML
Component

4.1 ML Assurance Scoping

The objectives at this first stage are to define the scope of the

safety case and of the safety assurance process for the wild-

fire alert ML component. This stage establishes the top-level

safety assurance claim of the safety case and specifies the

relevant contextual information for the ML safety argument.

Since the safety of the ML component cannot be assured in

isolation from the broader wildfire alert system, this stage

ensures the assurance of the ML component takes account of

the overall system and the system-level safety process.

There are a number of key artefacts that are required for

this stage of the safety case. This includes the documented

descriptions of the system and the operating environment as

summarised above. In addition, the system safety require-

ments for the wildfire alert system must be specified. These

safety requirements were generated from following a system

safety assessment process, the details of which are outside of

the scope of this paper. The system safety assessment process

identified 2 hazards for the wildfire alert system as shown

below. Against each hazard a number of safety requirements

were defined in order to manage those hazards as detailed in

Table 1.

The responsibility for satisfying each of these system level

safety requirements lies with multiple elements of the overall

system such as the satellite itself and its sensing and hard-

ware components, the ground station and its components, the

communication links between the elements, and so on. The

safety case for the overall system considers the assurance of

all of these elements, including their integration and inter-
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Table 1 System safety requirements for wildfire alert system

Hazard 1 - Services Miss

an Emergency

REQ-SAFE-ER-1 The Emergency Response Service shall

determine the location of an active wildfire

within 200 m of its true location.

REQ-SAFE-ER-2 The Emergency Response Service shall

inform emergency services of an active

wildfire with 3 hours of it starting.

REQ-SAFE-ER-3 The Emergency Response Service shall

positively identify 95% of all active wild-

fires acquired by the satellite instrument

within the area of interest.

Hazard 2 - Services are Directed to a False Emergency

REQ-SAFE-ER-4 The Emergency Response Service shall

falsely indicate active wildfires in the area

of interest at a rate not exceeding current

fire alert service (avergae for FIRMS of 52

per month).

action. This overall system safety case for the wildfire alert

system is outside of the scope of this paper.

Some of the responsibility for assuring that the system

safety requirements are met can also however be seen to lie

with the ML component onboard the satellite. Specifically,

requirements 1, 3 and 4 above can be partly allocated to the

ML component3. It is important to note here however that at

this stage there is nothing in these safety requirements that

relates in particular to ML. These safety requirements rep-

resent what the component is required to do in order to be

safe, and the requirements could equally apply to a tradi-

tional (non-ML) component if that was being used instead.

These system safety requirements were turned into specific

ML requirements later in the AMLAS process.

As for all stages of the AMLAS methodology, the arte-

facts discussed above were then used to create the relevant

part of the safety argument for the wildfire alert ML com-

ponent as shown in Fig. 6. The argument explicitly lays out

the system safety requirements that the ML component must

satisfy (C1.2), as well as clearly scoping both the system and

operating context for which the safety case is valid (C1.1).

The safety argument also explicitly states the assumption

upon which the safety case for the ML component relies

(A1.1), which is that the system safety process has correctly

identified the system safety requirements. The validity of

this assumption is demonstrated as part of the overall system

safety case (not shown here).

It can be seen in Fig. 6 that this top-level safety claim

for the ML component is supported by further argument and

3 Satisfaction of safety requirement 2 is dominated by factors such as

the re-visit time of the satellites and communication times. As such it

does not need to be allocated to the ML component

evidence from the other stages of the AMLAS process (the

ML safety requirements argument and the ML deployment

argument) discussed in the Sections 4.2 and 4.6.

4.2 ML Requirements Assurance

The next stage of the process takes the system safety require-

ments that relate to the ML fire alert component that were

defined at the previous stage and from those, derives a set

of specific ML safety requirements. This requires that the

informal, technology-agnostic safety requirements that have

already been identified are translated into a format, and a

level of detail that is amenable to ML implementation and

verification. The definition of the ML safety requirements

must take account of the concept of operations of the wild-

fire alert system and the overall system and operating context

described at the previous stage.

The ML safety requirements include requirements for per-

formance and robustness of the ML model. We present in

Table 2 each of the ML safety requirements that was spec-

ified for the wildfire alert ML component. In this case the

robustness requirement is defined with respect to a set of

classes. Table 3 provides each of these classes. Any values

for each class that were determined not to be in scope for the

ML component in this particular application are indicated in

the table with an ‘x’ in the final column.

4.2.1 Rationale for ML Safety Requirements

In this section the rationale for how each of the ML

safety requirements was derived is provided. The ML safety

requirements were derived based on an input image frame

being processed every 5 seconds. This is necessary for the

component to successfully process each image received as

the satellite passes over the ROI at a rate of 7.14 kilome-

tres per second. Each input frame is of size 2100 x 1575

pixels. Note that there were no ML safety requirements spec-

ified relating to system safety requirement REQ-SAFE-ER-2

since this requirement relates to the revisit rate of the satellite

and the communication time of the generated fire alert to the

emergency services. As such the ML component does not

contribute to the satisfaction of this requirement.

MLSR1 - This requirement is derived from system safety

requirement REQ-SAFE-ER-1. For the images used on these

type of CubeSat satellites, 6 pixels represents 180m, so this

requirement will ensure that the actual fire is never more than

180m from a reported position.

MLSR2 - This requirement is derived from system safety

requirement REQ-SAFE-ER-3. The current standard for

image-based fire detection is that provided by the Fire
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Fig. 6 ML Assurance Scoping Argument for wildfire alert component

Information for Resource Management System (FIRMS)45.

FIRMS achieves an omission error rate of 5% [30], which

the on-board fire alert system must match. The Schroeder

conditions represent an accepted threshold for labelling of

active fires in satellite data [29].

MLSR3 - This requirement is derived from system safety

requirement REQ-SAFE-ER-4. The key consideration for

this requirement was that false alerts shouldn’t happen so

frequently that they become hazardous. This could happen

either through diverting fire response resource to a region

of no fire and away from areas where the fire response is

required. Or it could become hazardous through becoming a

nuisance to operators who then start to ignore genuine alerts

or even turning the system off. It should be noted that the fire

alerts provided by the satellite would not be the only source

of information available to responders, who may have the

opportunity to corroborate with more local ground-based fire

observation. Again FIRMS was taken as the current standard

for false positive performance in fire detection in the ROI

(Oregon). We use the detections for the US as indicative of

the required performance in Oregon. In an average month,

FIRMS detects around 5,000 wildfires in the US, approxi-

mately 52 of which, on average, are false positives.

4 https://earthdata.nasa.gov/earth-observation-data/near-real-time/

firms

5 FIRMS provides active fire data from NASA’s Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging

Radiometer Suite (VIIRS) instruments

MLSR4 The performance of fire detection algorithms can

vary substantially depending on a number of key factors [29].

Table 3 captures features of the image data that represent the

variation in these factors that must be considered in the data

sets in order to provide coverage of the operating domain of

the system.

4.2.2 ML Requirements Assurance Argument

Figure 7 shows the part of the ML component argument relat-

ing to the ML safety requirements. The argument splits into

two safety claims:

Table 2 ML safety requirements for wildfire alert system ML compo-

nent

Performance

MLSR1 All points of the mask generated by the ML com-

ponent shall be less than 6 pixels outside the

boundary of the area of the real fire.

MLSR2 The ML component shall correctly identify the

presence of a fire that satisfies the Schroeder [29]

conditions in a frame for 95% of real fires.

MLSR3 The ML component shall not identify the presence

of a fire in a frame where there is not a real active

fire more than 52 times per month.

Robustness

MLSR4 ML performance requirements shall be satisfied

for all data across the range of classes identified in

Table 3.
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Table 3 Relevant Robustness Classes for Wildfire Alert Model

Element Value In-context?

Land type Temperate rainforest

Agricultural

Urban

Industrial

Grassland

Desert x

Sea x

Fire size Small <30x30m x

30x30m<=Small-

medium<60x60m

60x60m<=Medium-

large<90x90m

Large >=90x90m

Fire intensity Low <Schroeder condi-

tions1

x

Medium >Schroeder condi-

tions

High >>Schroeder condi-

tions1

Clouds None

Low coverage<25% of tile

25% of tile<=Low-medium

coverage<50% of tile

50% of tile<=Medium-high

coverage<80% of tile

High coverage >80% of tile

Time of day Early morning 7-9 am

midday 12-14

late afternoon 4-6

Night x

Time of Year Winter

Spring

Summer

Autumn

• A claim that the ML safety requirements are correctly

defined (G2.3). This is supported by evidence regarding

the rationale for the requirement definition (Sn2.1).

• A claim that the ML model satisfies the defined ML

requirements (G2.2). Here the argument is split to sepa-

rately consider the performance and robustness require-

ments. For each of these safety claims, verification will

be used to generate evidence to demonstrate that the ML

safety requirements are satisfied. This is discussed further

when describing the verification argument in Section 4.5.

The ML requirements satisfaction claim (G2.2) can be

seen to be presented in the context of the ML model and the

ML data. Arguments regarding the sufficiency of the data and

the learned model have been developed, and are presented in

Sections 4.4 and 4.3. These argument connect to Fig. 7 at

the assurance claim points (ACPs) indicated by the black

squares.

4.3 Data Management Assurance

Data plays a particularly important role in machine learning

since data encodes the requirements which will be embodied

in the resulting ML model. It is therefore crucial as part of

the safety case for the ML component to demonstrate that the

data is sufficient to ensure that the learned model will satisfy

the ML safety requirements. At this stage we therefore carried

out the following activities:

1. Defined data requirements against which the data sets pro-

duced could be assessed.

2. Generated data sets that satisfied the specified data

requirements.

4.3.1 Data Requirements

The ML data requirements relating to the wildfire detection

ML component are described below. ML data requirements

have been specified for relevance, completeness, accuracy

and balance of the data. Requirements relating to relevance

specify the extent to which the data must match the intended

operating domain into which the model is to be deployed.

Requirements relating to completeness specify the extent

to which the data must be complete with respect to a set

of measurable dimensions of the operating domain. This is

done by considering the dimensions of variation that were

identified in Table 3 as part of the ML safety requirements.

Requirements relating to accuracy specify how the accuracy

of the information in the data sets will be judged. Require-

ments relating to balance specify the required distribution of

samples in the data sets. A balanced data set is one with an

appropriate number of samples for each class or feature of

interest. Note that this does not necessarily mean that an equal

number of samples is required for each class; rare classes

may require fewer samples in order to be balanced. Table 4

presents the ML data requirements specified for each of these

properties for the wildfire alert ML component.

Rationale for ML Data requirements

Here we describe the rationale for each of the data require-

ments.

DSR1 - The wildfire alert system is not expected to operate

over all areas. Images that represent areas out of the defined

intended scope of operation should not be included in the

data sets.

DSR2 - The satellite will provide images to the ML compo-

nent with a particular format. Therefore only images of that

format should be used in the development of the model.
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Fig. 7 ML Safety Requirements Assurance Argument for wildfire alert component

DSR3 - The satellite will provide images to the ML compo-

nent that are taken from a particular position and orientation.

Therefore only images that exhibit equivalent characteristics

should be used in the development of the model.

DSR4 - The operating domain of the satellite is defined by

the features in the table. We must ensure that the data sets

include data items for each combination of these features.

DSR5 - The satellite needs to avoid false positives so the data

sets must include examples of images without a fire present.
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Table 4 ML data requirements for wildfire alert system ML component

Relevance

DR1 Only data samples of areas of the specified land

type shall be included in the data sets.

DR2 The format of each data sample shall be represen-

tative of images captured using sensors deployed

on the target satellite. This shall include a repre-

sentative resolution, spectral band and image size.

DR3 Each data sample shall represent a sensor position

which is representative of that to be used on the

target satellite. This shall include consideration of

the angle, height and field of view of the deployed

sensor.

Completeness

DR4 The data sets shall include samples representing

combinations of each of the in-context element

classes defined in Table 3.

DR5 The data sets shall include samples containing fires

and no fires.

Accuracy

DR6 All masks generated shall be sufficiently large to

include the entirety of the fire

DR7 All masks generated shall be no more than 6 pixels

larger in any dimension than the minimum sized

mask capable of including the entirety of the fire

DR8 All data sample with fires present in the data sam-

ples must be correctly labelled

DR9 The labels for the position of fires within each

image must be no more than 6 pixels outside the

boundary of the area of the real fire.

Balance

DR10 The data sets shall include a suitable distribution of

samples for each combination of element classes

defined in Table 1 of ML safety requirements doc-

ument.

DSR6 - The mask must be big enough that none of the fire

is missed.

DSR7 - The mask must not be so big that any positions iden-

tified by the mask are too far from the actual position of the

fire.

DSR8 - If fires are present but not labelled then the data will

be incorrect.

DSR9 - The data must be labelled with sufficient accuracy,

see rationale for MLSR1

DSR10 - No element class should be under or over repre-

sented as this will result in inconsistent and biased perfor-

mance. The number of data items required of each class may

not be equal. The distribution across the classes in each data

set should be justified as part of data management.

4.3.2 Data Generation

Three separate datasets were created development data, inter-

nal test data and verification data. The first two of these sets

are for use as part of the development of the model (see

Section 4.4). The verification set is used in model verifica-

tion. The focus of this data set is therefore not on creating

a model (as for the other two sets) but instead on finding

realistic ways in which the model may fail when used in an

operational system. It is crucial therefore that the verifica-

tion data is generated independently from the development

process. The verification data is discussed in more detail in

Section 4.5.

The development and internal testing data was generated

from the large Landsat-8 data set [31]. This was felt to be an

appropriate source of data for this application for a number of

reasons. Truth masks are available for the data which enables

pixel level classification of active fire. The truth masks are

arrays, which allows for configuration of image tile size. The

dataset is large in size and contains imagery covering all of

South America with a variety of land types and land uses.

It provides coverage of various fire sizes, distributions and

intensities. The imagery contains 10 spectral bands of data for

each capture. The Landsat-8 sensor has 30 metres of spatial

resolution, meaning one pixel is equivalent to 30m2 in ground

area. Labels on the image data are created using a complex set

of conditions, based on information contained in 7 bands of

the satellite data, plus associated meta-data. There were also

some limitations to this data that had to also be considered.

Firstly, the data set contains images captured in the year 2018

only and covers only South America. Also, the labels on the

data have not been manually corrected and will therefore

be expected to include a small level of error. In particular,

instances of intense heat in urban settings may be falsely

labelled as active fire.

Some pre-processing was carried out on the data before

creating the data sets. Firstly, of the 10 spectral bands

available 3 were chosen: Blue, SWI-1 and SWI-2. This com-

bination, including both short wave infrared channels, has

previously been shown to be successful for creating models

for active fire detection [32]. Secondly, the dataset contained

image tiles of 128 x 128 pixels. The learned model needs to

perform on continuous data on the satellite which is cropped

into tiles of 48 x 48 pixels. The selected image data was

therefore cropped from 128 x 128 to 48 x 48 image tiles.

Two sets of internal test data were created. Set 1 is a sub-

set of the same dataset from which the development data

was generated [31]. Set 2 is a collection of unlabelled data

captured by Landsat-8 over the US state of Oregon (a target

area of interest for the application), downloaded via Sentinel
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Hub6. Set 2 was used to carry out initial, internal testing of

the model performance on data from the area of interest, and

to introduce some edge cases.

4.3.3 Data Evaluation

The development and internal testing data sets were evaluated

against the defined data requirements (Table 4). Below we

summarise the results of the data evaluation.

Relevance A subset of the Landsat-8 data was selected cov-

ering areas of South America including Chile and Argentina

as well as Oregon. These areas were chosen in particular

since they contain large areas of temperate rainforest ensur-

ing images relevant to the application domain are provided.

The size and spectral range of the images is equivalent to the

operational images generated on-board the satellite.

Completeness As well as providing large areas of temperate

rainforest, the chosen regions is are sufficiently geograph-

ically diverse to provide image samples of urban land,

agricultural and grazing land. While the data was captured

across a single year, it has a temporal resolution of 16 days

and so contains samples taken at the same locations at dif-

ferent times throughout the year.Various cloud level samples

were gathered for both non fire and fire instances. Samples

containing large reflective surfaces were included to test for

false positive detection. Samples containing fire of various

size and spread were gathered.

Accuracy

The labelling conditions used to generate the truth masks in

the Landsat-8 data set are complex and well documented [32].

To provide validation for the truth masks, visual comparisons

were made between the truth masks and the images viewed

in the visual range. While a small level of error was seen

within the subset, this is a common and acceptable limitation

of large, labelled datasets.

Balance

A review showed that a good balance of the various features

and locations was achieved across the data sets. There are

far greater instances of non-fire pixels than of fire pixels in

the available images. The development data sets therefore

included more images featuring some fire pixels to ensure

better balance.

4.3.4 ML Data Assurance Argument

Figure 8 shows the part of the ML component argument relat-

ing to the data. The argument presents a claim that the data

used to develop the ML model is sufficient from a safety

assurance perspective (G3.1). The context for this claim is the

6 https://www.sentinel-hub.com/

three datasets that were generated. The argument to support

the claim considers the data requirements. Two claims are

made. Firstly, that those data requirements are good enough

to ensure that the ML safety requirements are satisfied (G3.2);

this is demonstrated using the documented rationale for the

data requirements (Sn3.1). Secondly, that the specified data

requirements are satisfied by the generated data (G3.3); this

is demonstrated through the results of the data evaluation

(Sn3.2).

4.4 Model Learning Assurance

At this stage of the process the development data created

at the previous stage was used to create candidate models

that were able to satisfy the defined ML safety requirements.

The candidate models that were created were tested using the

internal test data in order to select the best model to use.

4.4.1 Model Creation

Tensorflow7 was selected as the tool for developing the

wildfire alert model, since it is a well-established and well

documented tool. Tensorflow also comes with a visualisation

tool, Tensorboard8, which enables monitoring of different

metrics during the training process and allows easy com-

parison of differences between training runs with alternative

parameter settings.

The Unet architecture was used as it is a popular CNN

model for pixel classification (semantic segmentation) which

has been shown to be successful in performing active fire

detection on a large dataset [32]. The network consists of a

contracting path and an expansive path, which gives it a u-

shaped architecture. Two variations of Unet were developed:

Unet-128 and Unet-48. Initially the Unet 128 was selected

for training using data of size 128 x 128. It was found during

development however that significant pixel areas of active

fire were classified as false negative by the model. Data pro-

cessing was therefore carried out to split the 128 x 128 images

into 48x48 samples, to address the lack of ‘clipped’ fire areas

in the labelled data and make it more representative of the

kind of real-world data the model will be applied to. To adapt

the model to work well with 48 x 48 input, the layer values

throughout the model were reduced incrementally to find the

optimal combination.

Binary Cross Entropy Loss is a popular and successful

loss function for binary classification problems. The pre-

dicted class probability is compared to the actual class, and

the resulting score considers how far apart these values are.

The Dice Coefficient represents the size of the overlap of the

segmentation class in each mask, divided by the total size of

7 https://www.tensorflow.org/

8 https://www.tensorflow.org/tensorboard
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Fig. 8 ML Data Assurance Argument for wildfire alert component

the two images. The sum of the Binary Cross Entropy Loss

and Dice Coefficient Loss was used as a custom loss func-

tion during training and was found to gain better results than

either metric used alone, or alternative loss metrics.

Both Stochastic Gradient Descent (SGD) and Adam were

used as methods for optimising the objective function during

model learning. Adam differs from SGD in that the learning

rate is not static throughout training. With the Adam opti-

miser, a learning rate is maintained for each model parameter

and adapted as training progresses. It is an easily config-

urable optimiser, where the default parameters perform well

on most problems [33]. It is a popular optimiser for deep

learning with large datasets, as good results can be reached

quickly, and it was found to achieve the best performance

during development of the wildfire alert model.

The learning rate for the model was initialised at 0.1 and

incrementally decreased to find the best performing value. A

learning rate of 0.01 was found to yield the best performance

during training.

4.4.2 Internal Testing Approach

The performance of the candidate models created was mea-

sured using the Mean Intersection over Union (Mean IoU)

value between the label mask and the model output mask.

Intersection over Union (IoU) is the area of overlap, divided

by the area of union between the label and output masks. The

metric ranges from 0 to 1 with 0 signifying no overlap and 1

signifying perfectly overlap-ping masks. The Mean IoU for

the classification is calculated by taking the IoU of each class

(fire and non-fire) and averaging them. Mean IoU is a very

useful metric for semantic segmentation problems where

there is class imbalance, providing a much more meaningful
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representation of how well the model output mask matched

the truth mask than a simple pixel accuracy score.

4.4.3 Internal Test Results

Two internal test data sets were used. The first was a set of

1000 image tiles with corresponding truth masks. The Mean

IoU scores of the fire class and the non-fire class were calcu-

lated for the entire set. The average Mean IoU score on the

test set was 0.93. Figure 9 visualises the distribution of scores

across the set as a whole. Figure 10 shows a comparison of the

model output mask and the truth mask for randomly selected

sample of images from the data set along with a visual com-

parison of the difference. The Mean IoU score for each of

these samples is displayed.

To asses the performance of the models against the ML

safety requirements it was necessary to use the IoU scores to

quantify the false positives and the false negative detections

of active fires in the data samples. A threshold on the IoU

scores for both the active fire and non fire class was used

to generate false positive and false negative values for the

model performance. The values were calculated as follows:

• False Negative: model mask and truth mask have an IoU

score below threshold (calculated for active fire class).

• False Positive: model mask and truth mask have an IoU

score below threshold (calculated for non fire class).

The following threshold values were selected by analysing

the IoU scores for each class to define meaningful false pos-

itive and false negative values:

• False Negatives: where the IoU score for the fire class is

less than 0.3

• False Positives: where the IoU score for the non-fire class

is less than 0.99

For internal test set 1 (containing 1000 samples), 0 false

positives were found, and 8 false negatives were found, which

translates to 0.8% of the set.

A second set of internal test data was generated to verify

the model performance against continuous data. Continuous

data is also more relevant to the way the model will be exe-

cuted in operation. This was done by downloading a selection

of large images of size 2000 x 1600 pixels. The images were

split into 1428 tiles, of size 48 x 48 pixels, suitable for the

model. The model produced 1428 output masks which were

assembled to create a large output mask. A visual compar-

ison was then made between the large image and the large

model output mask with no false negatives identified.

The results obtained from internal testing were compared

to the defined ML saftey requirements in order to assess the

sufficiency of the model. Below we discuss each of the ML

safety requirements in turn.

• MLSR1 - From analysis of IoU and Mean IoU scores

between the model output masks and the truth masks, the

model is therefore seen to satisfy the requirement since

the recorded error was always less than 6 pixels in any

direction when executing the model against the internal

test data.

• MLSR2 - Across the internal test data, a false negative

rate of 0.8% was found. The model is therefore seen to

satisfy the requirement as it positively identified 99.2%

of all visible active fires across the test data.

• MLSR3 - The model was seen not to make any false

positive detections across the internal test data.

Fig. 9 Mean IoU score

frequency across internal data

set 1
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Fig. 10 Randomly sampled images from internal data set 1

4.4.4 ML Learning Assurance Argument

Figure 11 shows the part of the ML component argument

relating to the model learning. The argument presents a claim

that the way in which the ML model was developed is suffi-

cient given the constraints that are imposed by the platform

to which the model is being deployed (G4.1). An argument is

made to support this by showing that the selected model sat-

isfies the defined ML safety requirements (G4.2). The results

that are observed from executing the model with the inter-

nal test data are used as evidence for this, and a justification

is also provided as to how the observed results indicate that

the ML safety requirements are satisfied (J4.1). In addition a

claim is made that the development approach itself that was

used to create the model is sufficient (G4.3) This claim is

supported by consideration of the type of model used model

parameters, as well as the nature of the learning process

itself that was adopted. All of these ML development deci-

sions were recorded and justified in a model development

log.

4.5 Model Verification Assurance

4.5.1 Verification Data

Verification data was collected by a team of people who were

not involved in the development of the ML model. The ver-

ification data provided images for the ML model with the

following characteristics:
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Fig. 11 ML Learning

Assurance Argument for

wildfire alert component
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• Representative of images that may be observed by the

satellite during operation in locations and conditions

within the scope defined for the safety case of the ML

component in Section 4.1

• Provide examples across the range of the key features

relevant to the use of the ML component as identified in

Table 3

• Represent interesting or challenging cases within the

scope of use (i.e. edge cases)

With these criteria in mind, below we discuss the key fea-

tures considered in generating the verification data.

Land Type

The appearance of fire may be different if the fire occurs on

different types of terrain. To check that the model is gener-

alisable, a range of images of the different land types were

included in the verification data. Image samples of each land

type captured by the Landsat-8 satellite were downloaded via

Sentinel Hub. The areas from which images were chosen to

represent each land type were:

• Temperate rainforest - New Zealand, where all areas are

classed as temperate rainforest.

• Agricultural - North Dakota, where 90% of the land that

makes up North Dakota is used for farms and ranches.

• Urban - Greater Tokyo Area, which is the most populous

metropolitan area in the world

• Industrial - Southern New England, which has extensive

areas of diversified industrial growth

• Grassland - Canada Prairie, where large areas of Alberta,

Saskatchewan, and Manitoba are temperate grassland and

shrubland.

By referring to information on the locations of active fires

in the FIRMS database it was possible to download images

within each of these geographical regions that were known

to contain wildfires.

Fire Size

In order to check whether the size of the fire affected the

performance of the learned model, images with fires of dif-

ferent sizes within each of the chosen regions were selected.

For the purposes of verification data we selected images that

had either small (<30m longest dimension) or large (>100m

longest dimension) fires. In addition, images were included

in the verification data set that did not contain active fires.

This was to provide verification of the false-positive perfor-

mance of the ML component. The development team were

not aware which of the images in the verification data set

contained fires.

Cloud Cover

In order to check whether the presence of cloud cover in the

image affected model performance, images containing dif-

ferent levels of cloud were selected. Images with no clouds,

with low cloud cover (<10% of image) and high cloud cover

(>50% of image) were selected.

Verification Test Cases

The images used as verification test cases were chosen by

considering combinations of the features discussed above in

order to provide sufficient coverage. Where relevant, in each

case the specific images chosen were assessed as containing

interesting or unusual features. Figure 12 identifies each of

the cases for which a verification image was obtained.

4.5.2 Verification Results

The results are presented in Fig. 12 for each of the verification

images. The results column shows colours to indicate the

result. Green indicates that all the MSRs were satisfied for

that image. The other colours indicate that one of the MSRs

was not satisfied as defined in the key.

Examples of the outputs for three of the verification

images are shown in Fig. 13. These show, for each case, the

test image, the output mask generated by the ML component,

and the mask overlayed over the image.

Verification Findings

It can be seen from the results presented in Fig. 12 that none of

the verification images obtained from an urban area satisfied

the MSRs. In all cases there were a large number of false

detections observed in the output. These results indicate that

the model is not suitable for detecting active fires in urban

areas and this should be explicitly documented as a limitation

of use within the safety case.

Of the remaining cases there was just one image that didn’t

satisfy the MSRs. This was case ID 4 where the position of

the output mask was not sufficiently aligned with the true

fire position. The reasons for this anomaly are unclear and

are the subject of further investigation.

4.5.3 Verification Argument

Figure 14 shows the part of the ML component argument

relating to the model verification. There are two main claims

that are made as part of the verification argument. Firstly

it is demonstrated that the verification of the ML model is

independent from the development of the model (G5.2). In

this case it can be shown that the verification data used was

collected by a team from another organisation that did not

develop the ML model. Secondly, a claim is presented that

when this data is provided to the ML model, the ML safety

requirements are satisfied (G5.3). This claim is supported by

providing the verification test results themselves, along with

an explanation as to how those results show satisfaction of the
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Fig. 12 Verification results

obtained for wildfire alert model

safety requirements. This also requires that the sufficiency of

the verification data that was used is demonstrated (G5.9).

4.6 Model Deployment Assurance

The aim of this stage of the process is to demonstrate that the

system safety requirements for which the model has been

developed continue to be satisfied when the model is inte-

grated into the overall satellite system and operates in the

real environment. Since the wildfire alert component has not

yet been deployed to the satellite, this stage of the process

has been limited to integration testing using hardware-in-

the-loop (HIL) simulation to recreate, as closely as possible

the deployment environment for the wildfire alert compo-

nent. The simulation employed real multi-spectral optical

data captured over the deployment region (Oregon) by the

Landsat-8 satellite and sourced from Sentinel Hub.

The simulations were performed using a number of dif-

ferent operational scenarios representing satellite passes over

Oregon at locations and times with different numbers of visi-

ble active fires. It is expected that the wildfire alert component

detects the fires and generates an alert indicating the size and

locations of the fires.

4.6.1 Integration Test Results

It was necessary to assess whether the integration tests indi-

cate that the system safety requirements were satisfied. The

preferred strategy was to undertake a comparison with NASA

FIRMS fire detections for the same date and location to
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Fig. 13 Example verification outputs

validate the geolocation accuracy of the processing chain.

However, the FIRMS detections were determined not to be

a reliable ground truth because there is a significant time

difference between the capture made by the VIIRS sensor

from which the FIRMS detections were made, and the cap-

ture made by the Landsat sensor which has been used as test

data. Instead, a visual inspection of the detections was made.

The masks were analysed along with the fire detection bands

of the data. When these fire detection bands are displayed,

active fire pixels appear as a bright blue colour. During analy-

sis, ambiguous cases were found. Three different approaches

were taken in order to try to eliminate subjectivity of such

cases when defining false negatives and false positives.

• Approach 1: Generous

– Pixels of a darker and/or duller blue which have not

been classified as containing active fire, are consid-

ered to be true negatives.

– Areas where the mask has union with but does not

cover the entirety of visible active fire, are considered

to be complete detections. Pixels not covered by the
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Fig. 14 ML Verification Argument for wildfire alert component

mask in these cases are not considered to be false

negatives.

– Pixels of a bright or middle shade blue that are

small in area and distant from other detections or

ambiguous/non-active fires are considered to be true

positives.

• Approach 2: Moderate

– Pixels of a darker and/or duller blue which have not

been classified as containing active fire, may be con-

sidered to be false negatives. This distinction depends

mainly on the brightness of the blue colour.

– Areas of pixels of a middle shade blue colour are

counted as discrete active fires if they are distant

or moderately close to another detection, or another

ambiguous fire.

– Pixels of a darker and/or duller blue may be consid-

ered a false detection if area is small and distant from

other detections. Small pixel areas that are bright blue

are considered as false positives if the general loca-

tion appears to be built up.

• Approach 3: Critical

– Pixels of a darker and/or duller blue which have not

been classified as containing active fire, may be con-

sidered to be false negatives. This distinction depends

mainly on the brightness of the blue colour, and in this

approach even a very dark/dull blue is considered a

false negative.

– Areas of pixels of a middle and dark shade blue colour

are counted as discrete active fires if they are distant

or close to another detection, or another ambiguous

fire.

– Pixels of a middle shade blue may be considered a

false detection if the area is small and distant from

other detections.
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Table 5 Integration test results

Approach False - False + % False - % False +

Generous 0 0 0 0

Moderate 4 27 0.43 2.85

Critical 7 96 0.76 9.44

For each of the three approaches, an absolute value for

false positives and false negatives was calculated. To calcu-

late the false positives as a percentage of all detections, their

number was divided by all the discrete detections made dur-

ing the pass, which was 921. To calculate the false negatives

as a percentage of all detections, the number of false neg-

atives was divided by the sum of all the discrete detections

made during the pass and the false negatives. The results are

summarised in Table 5

The results indicate that false negatives are calculated to

be a maximum of 0.76% from the integration tests. This sat-

isfies the safety requirement to identify 95% of all active

wildfires in the area of deployment. The safety requirement

for a maximum of 52 false positive detections per month was

marginally missed using critical validation approach but was

met using the moderate and generous approaches.

5 Conclusions and FutureWork

In this paper we have described the application of a safety

assurance process to a machine learned satellite-based wild-

fire detection and alert component and shown how a com-

pelling safety case for the component was created as the

output of that process. The process applied was the AMLAS

approach [23] consisting of 6 steps, each of which generated

part of the safety argument for the ML component. Each of

these fragments of safety argument presented in this paper

are connected together to provide the complete safety argu-

ment and evidence for the ML safety case. This ML safety

case is then integrated as part of the overall safety case for

wildfire alert system. This overall safety case also considers

the assurance of other elements of the wildfire alert system

such as the satellite, the communications and the fire service

response.

As far as we are aware, the work presented in this paper

represents the first fully developed safety case for an ML

component containing explicit argument and evidence as to

the safety of the ML. We intend to develop further the deploy-

ment aspects of the safety case, once the development of the

system moves further into the deployment phase. In addition,

we will extend this work to consider operational changes and

updates and the impact that these have on the validity of the

safety case during operation.
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right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.
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