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Abstract
Due to fluctuations in past radiocarbon (14C) levels,
calibration is required to convert 14C determinations
Xi into calendar ages 𝜃i. In many studies, we wish
to calibrate a set of related samples taken from the
same site or context, which have calendar ages drawn
from the same shared, but unknown, density f (𝜃). Cal-
ibration of X1, … ,Xn can be improved significantly
by incorporating the knowledge that the samples are
related. Furthermore, summary estimates of the under-
lying shared f (𝜃) can provide valuable information on
changes in population size/activity over time. Most cur-
rent approaches require a parametric specification for
f (𝜃) which is often not appropriate. We develop a rigor-
ous non-parametric Bayesian approach using a Dirichlet
process mixture model, with slice sampling to address
the multi-modality typical within 14C calibration. Our
approach simultaneously calibrates the set of 14C deter-
minations and provides a predictive estimate for the
underlying calendar age of a future sample. We show,
in a simulation study, the improvement in calendar
age estimation when jointly calibrating related samples
using our approach, compared with calibration of each
14C determination independently. We also illustrate the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.
© 2022 The Author. Journal of the Royal Statistical Society: Series C (Applied Statistics) published by John Wiley & Sons Ltd on behalf of
Royal Statistical Society.

1918 wileyonlinelibrary.com/journal/rssc J R Stat Soc Series C. 2022;71:1918–1956.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/5/1918/7073284 by U

niversity of Bedfordshire user on 06 June 2023

https://orcid.org/0000-0002-9994-142X
http://creativecommons.org/licenses/by/4.0/
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use of the predictive calendar age estimate to provide
insight on activity levels over time using three real-life
case studies.

K E Y W O R D S

archaeology, Dirichlet mixture, density estimation, non-parametric
Bayes, radiocarbon calibration, radiocarbon dating, radiocarbon
summarisation, slice sampling

1 INTRODUCTION

Since its development by Willard Libby and colleagues (Anderson et al., 1947; Arnold &
Libby, 1949; Libby et al., 1949), radiocarbon (14C) dating has revolutionised archaeological and
environmental science. Radiocarbon dating relies on the simple idea that, while alive, organisms
take in carbon from their surroundings and so have a ratio of 14C to 12C that is in equilibrium with
their atmosphere. Once an organism dies it stops taking in new carbon, the stable 12C remains but
the level of 14C halves every 5730 years. Measurement of the ratio of 14C to 12C left within a sample
therefore enables a dating technique which can extend back 55,000 years — samples from further
back in time have so little 14C remaining that they cannot be reliably measured. If the concentra-
tion of atmospheric 14C had been constant over this time, 14C dating would be straightforward.
However, it has fluctuated significantly. To date samples precisely, scientists need to calibrate
their 14C determinations against a record of past 14C levels to transform them into calendar ages.
Without this calibration, 14C determinations are not directly interpretable.

In this paper, we consider the problem of calibrating and summarising a set of samples, with
radiocarbon determinations X1, … ,Xn, which are known to be related to one another (e.g., aris-
ing from a particular site, or set of sites, populated by a particular culture). Each sample has an
unknown calendar age 𝜃i but, since they are related, these calendar ages are assumed to arise
from the same unknown prior density f (𝜃). This unknown density f (𝜃)may be related to the size
of the population under study, or their activity level, at the site/sites. Specifically, we model,

𝜃1, … , 𝜃n ∼ f (𝜃)
and Xi ∼ N

(
𝜇(𝜃i), 𝜎2

i
)

for i = 1, … ,n.

Here 𝜇(𝜃) denotes what is known as the radiocarbon calibration curve and records the atmo-
spheric 14C level at time 𝜃 (Suess, 1968); and 𝜎i is the measurement uncertainty on our
14C determination Xi (Scott et al., 2007). Globally ratified estimates of 𝜇(𝜃) are provided by
the IntCal working group and, as is standard in 14C dating, are not updated during calibra-
tion of the determinations X1, … ,Xn. Figure 1 illustrates the typical calibration of a single
14C determination Xi using the IntCal20 calibration curve (Reimer et al., 2020). See Section 2.3
for more details on calibration.

Our aim is twofold. Firstly, we desire to calibrate the set of 14C determinations and provide a
posterior estimate of each calendar age 𝜃i|X1, … Xn. Here, we wish to use all the determinations
X1, … ,Xn as they provide information on the shared underlying density f (𝜃) from which the 𝜃i
are drawn. Typically we would expect incorporating such information would lead to improved
accuracy in our posterior estimates of the 𝜃i, as we explain further in Section 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/5/1918/7073284 by U

niversity of Bedfordshire user on 06 June 2023



1920 HEATON

R_Date(3000,30)
95.4% probability

1381 (9.5%) 1345 calBC

1305 (77.9%) 1153 calBC

1151 (8.1%) 1125 calBC

1400 1300 1200 1100 1000 900

Calibrated date (calBC)

2600

2800

3000

3200

R
a
d
io

c
a
rb

o
n
 d

e
te

rm
in

a
ti
o
n
 (

B
P

)

OxCal v4.4.2 Bronk Ramsey (2020); r:1; Atmospheric data from Reimer et al (2020)

F I G U R E 1 OxCal calibration of an object with a radiocarbon determination of 3000 ± 30 14C year before
present. The observed 14C determination was modelled by Xi ∼ N(𝜇(𝜃i), 302). The y-axis shows the radiocarbon
determination; the current IntCal20 (Reimer et al., 2020) calibration curve together with its 1-sigma (i.e., 68%)
probability intervals is shown in blue; and along the x-axis we show the posterior estimate for the object’s
calendar age 𝜃i (shown here as BC). The 95.4% highest probability density intervals for the sample’s calendar age
are given in the top right hand. Intuitively, the posterior calendar age estimate consists of those dates for which
the calibration curve is consistent with the observed Xi. [Colour figure can be viewed at wileyonlinelibrary.com]

Secondly, in addition to the calibration of individual samples, many users are interested in
summarising the calendar age information provided by a set of 14C determinations: to obtain a
proxy for population size or activity levels over time. In this context, one is more interested in esti-
mating the underlying density f (𝜃) given the 14C determinations we have observed. We therefore
also aim to provide such an estimate alongside the calibration of the individual samples. Since we
work in the Bayesian setting, this will be in the form of a predictive distribution for the calendar
age of a future hypothetical object from the same site/set of sites, that is, f (𝜃n+1|x1, … , xn). Peri-
ods of time when we predict a higher density of objects may relate to times when the underlying
culture had a higher level of activity or was more numerous; and conversely periods when there
are fewer objects may indicate times when the culture was less successful or smaller.

Significant recent increases in the availability and use of 14C determinations make these ques-
tions particularly timely. Advances in 14C measurement techniques (Suter et al., 1999; Synal
et al., 2007) have enabled much smaller samples to be dated. This has increased the number
of potentially dateable samples on any archaeological site into the thousands, all of which may
provide crucial historical understanding as to the use of that site over time (Bayliss, 2009).

The majority of previous methodological research into the calibration and summarisa-
tion of multiple related 14C determinations has been parametric. These phase models require
strong, a priori, assumptions as to the parametric form of the underlying calendar age density
f (𝜃)—for example, uniform (Buck et al., 1992), triangular (Bronk Ramsey, 2009) and trapezoidal
(Karlsberg, 2006; Lee & Bronk Ramsey, 2012). However, in many cases it is either not possi-
ble or not desirable to specify the form of the calendar age density so rigidly in advance and a
non-parametric approach is needed.

We are not aware of a statistically rigorous non-parametric approach to the joint calibration
and summarisation of multiple related 14C determinations. Currently, most users, if they do not
wish to specify a specific parametric phase model, calibrate multiple 14C determinations as though
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they were independent even when they know their samples are related, that is, they consider
only 𝜃i|Xi for each sample separately and without consideration of the shared underlying den-
sity f (𝜃). This is expected to give suboptimal calendar age estimation. Incorporating information
on f (𝜃), which can be obtained from the other 14C determinations, should improve calibration
accuracy.

Summarisation of the calendar ages of the multiple samples, that is, provision of an esti-
mate of f (𝜃), is typically done as a later and separate step with most users creating summed
probability distributions (SPDs, also called summed probability functions; summed calibrated
probability distribution; or cumulative probability density functions). These are simply created
by adding together the independent posterior density estimates for each 𝜃i|Xi. They are neither
statistically sound as a method of providing a predictive age estimate, nor provide an indication
of the uncertainties in the resultant estimate which makes their interpretation challenging—see
Williams (2012) and Contreras and Meadows (2014) for reviews. Equivalent approaches to SPDs
are also used for other dating methods, notably fission-track and optically stimulated lumines-
cence dating. In these fields, SPD equivalents have been significantly criticised as failing to
properly recover two components of a mixture distribution (Galbraith, 1988, 1998, 2010).

Bronk Ramsey (2017) has proposed an iterative approach to joint calibration and summarisa-
tion. Each determination is first calibrated individually and a value is drawn from the posterior
of 𝜃i|Xi for i = 1, … ,n. Next, a kernel density estimate is fitted to these n specific drawn values
to generate an initial estimate of the shared age density f (𝜃). This kernel estimate is then reused
as a prior for each 𝜃i to update the posterior 𝜃i|Xi. This process is repeated until convergence is
reached. While such a heuristic approach offers significant improvements over SPDs and inde-
pendent calibration, it lacks some elements of formal statistical underpinning being composed of
both frequentist and Bayesian elements.

Here, we present a fully Bayesian method, fitting within the Bayesian paradigm used univer-
sally for radiocarbon calibration, that aims to provide both improved calendar age estimation of
the individual samples, and a statistically rigorous predictive density estimate for a new object.
We employ a Bayesian non-parametric approach through an infinite Dirichlet Process Mixture
Model (DPMM, Neal, 2000; Walker, 2007) in combination with slice sampling (Neal, 2003) to per-
form the calibration. Intuitively, this DPMM assumes our sampled objects arise from an unknown
number of archaeological clusters. Calendar ages 𝜃i of the samples are estimated jointly at each
step recognising they arise from the unknown DPMM density f (𝜃) with the consequence that
their estimation will hopefully be improved. The predictive density of the calendar age of a new
object is also obtained, along with pointwise credible intervals, to allow practical interpretation
of potential changes in historical activity over time.

Through the incorporation of slice sampling, we are able to implement our approach almost
entirely via direct sampling from the conditionals within a Gibbs sampler, making estima-
tion fast. Furthermore, the slice sampling updates to the calendar ages 𝜃i|X1, … Xn are ideally
suited to address the multi-modality in these estimates which occurs as a result of the inher-
ent non-monotonicity in the calibration curve 𝜇(𝜃). To update our DPMM we investigate and
compare two different approaches—a Pólya urn approach (Neal, 2000) and a quicker approach
which also uses slice sampling (Walker, 2007). Comparisons of these two approaches to DPMM
sampling have previously been predominantly restricted to small and synthetic examples (Hastie
et al., 2015).

Our paper is laid out as follows. In Section 2 we provide a brief introduction to 14C dating
and calibration. Section 3 sets out our specific questions regarding the optimal calibration and
summarisation of multiple 14C determinations, and reviews approaches previously taken in
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the literature—both parametric and non-parametric. In particular, we explain why SPDs, cur-
rently the most popular non-parametric approach to summarising multiple 14C determinations,
are not a statistically rigorous or suitable method. In Section 4 we present our alternative
non-parametric Bayes approach, detailing how a DPMM and calibration can be combined.
Section 5 provides a simulation study demonstrating how our approach, with joint calibration of
the Xi

14C determinations, offers significant improvements in estimation of the calendar ages 𝜃i
compared to independent calibration. We also investigate the estimates of the underlying shared
density f (𝜃) obtained via our approach and SPDs; and compare the two approaches (Pólya Urn
and slice sampling) to the updating of the DPMM component in our model. Section 6 presents
three real-life examples of the summarisation of multiple 14C determinations and the insight, in
terms of the level of archaeological activity over time, which can be provided by estimation of
the underlying calendar age distribution f (𝜃). These practical examples consider the prevalence,
over time, of Irish mediaeval settlements known as raths (Kerr & McCormick, 2014); whether cli-
mate change may have caused a population decline in Ireland at the end of the European Bronze
Age (Armit et al., 2014); and changes in North American palaeoindian demography over the
Younger-Dryas and into the Holocene (Buchanan et al., 2008). We show the density estimates for
the underlying f (𝜃) provided by both SPDs and our non-parametric Bayes approach. Finally, in
Section 7 we summarise our work and provide suggestions for further study. The current develop-
ment version of R code, including all examples and the simulation study, is accessible via GitHub
(https://github.com/TJHeaton/NonparametricCalibration).

1.1 Notation

As standard in the radiocarbon literature, all ages in this paper are reported relative to mid-1950
AD (= 0 BP, before present). The pre-calibration 14C ages/determinations, Xi, are given in units
‘14C year BP’. Calendar (or calibrated) ages, 𝜃i, are denoted as ‘cal year BP’; or sometimes ‘AD’
when the estimated calendar ages are recent.

2 RADIOCARBON DATING AND THE NEED
FOR CALIBRATION

2.1 Radiocarbon dating

The original approach to radiocarbon dating (Libby et al., 1949) relied upon an assumption that
the ratio of 14C to 12C in the atmosphere had been constant throughout time. Under such an
assumption, after accounting for isotopic fractionation, all samples would have had the same
isotopic (14C to 12C) ratio at the point they stopped interacting with their local environment no
matter at what point in the past that was. Consequently, given any sample, one can determine
a radiocarbon age, Xi, according to radioactive decay on the basis it had begun with the specific
14C to 12C ratio of a standard (Stuiver & Polach, 1977).

However, it was soon discovered (de Vries, 1958; Willis et al., 1960) that the ratio of 14C to
12C had varied considerably over time and radiocarbon ages did not precisely correspond to the
calendar ages of the samples. These 14C variations are due to a range of factors such as fluctuations
in solar activity and geomagnetic field strengths that modify impinging cosmic radiation levels;
and changes to the carbon cycle which can release large stores of very old carbon deficient in 14C
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(Heaton et al., 2021). To improve the accuracy of radiocarbon dating we therefore need to adjust
or calibrate our radiocarbon ages/determinations Xi to provide calendar ages 𝜃i.

Determining the historic proportion of 14C in the atmosphere, and hence improving
radiocarbon dating, is done via the collection of reference historic objects in which we can
both directly measure 14C and obtain an independent estimate of their calendar age. Mea-
surement of tree-rings currently enable us to create a record of atmospheric 14C back to
about 13,900 years from the present. Further back in time, other objects are used such as
corals; stalagmites; and foraminifera and macrofossils found in ocean and lake sediments—all
of which contain atmospheric 14C and can be approximately dated using other means
(Reimer et al., 2020).

2.2 A calibration curve

Given a set of reference objects for which we have both 14C measurements and indepen-
dently known (or estimated) calendar ages, we can create what is known as a calibration
curve. This calibration curve 𝜇(𝜃) is a mapping providing, for an object of true calendar
age 𝜃, the corresponding radiocarbon age. Given a undated object for which we obtain a
14C determination, Xi, one can estimate its calendar age by inverting this mapping as described
in Section 2.3. Typically, 𝜇(𝜃) is highly non-monotonic due to the variations in past 14C levels,
see Figure 1. Multiple calendar ages could therefore correspond to the same radiocarbon
determination.

The first atmospheric calibration curve for the Northern Hemisphere was produced by
Suess (1968). Since then much work has been done on improving these curve estimates and
extending them further back in time. The modern, internationally ratified, standard for the radio-
carbon calibration curve is known as IntCal and is updated regularly as new datasets become
available. The first IntCal curve was generated in 1998 (IntCal98) and has been updated in 2004,
2009, 2013 and 2020. IntCal20 (Reimer et al., 2020) is the current version agreed for use by
the community—accompanying curves are also provided for the Southern Hemisphere (Hogg
et al., 2020) and the surface oceans (Heaton, Köhler, et al., 2020).

Since 2004, the IntCal curves have been estimated in a Bayesian framework (see Buck &
Blackwell, 2004; Blackwell & Buck, 2008; Heaton et al., 2009; Niu et al., 2013; Heaton, Blaauw,
et al., 2020, for details). Construction of the most recent IntCal20 curve (Heaton, Blaauw,
et al., 2020) is performed via Bayesian splines with errors-in-variables (Berry et al., 2002). Given
the reference calibration data, IntCal20 provides pointwise estimates of the posterior mean and
SD of 𝜇(𝜃), the radiocarbon age for an object of calendar age 𝜃, on a regular grid back to 55,000
cal year BP.

2.3 Calibration of an object of unknown age

To calibrate an object of unknown age, that is, provide an estimate of its calendar date 𝜃i, one
compares its observed radiocarbon determination Xi against the calibration curve. Since this esti-
mation of 𝜃i requires inversion of 𝜇(⋅), calibration is also performed using a Bayesian approach.
Specifically, we model

Xi = 𝜇(𝜃i) + 𝜖i,
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where 𝜃i is the unknown calendar age we wish to estimate; 𝜇(𝜃i) is the value of the calibration
curve at time 𝜃i; and 𝜖i ∼ N(0, 𝜎2

i ) the error in the measurement of the sample’s radiocarbon. To
complete the model we specify our prior on both 𝜇(⋅) and 𝜃i:

𝜇(𝜃)|𝜃 ∼ N(m(𝜃), 𝜌(𝜃)2), and
𝜃i ∼ f (𝜃),

where m(𝜃) and 𝜌(𝜃) are the pointwise calibration curve posterior mean and SD values provided
by IntCal—these values are treated as known during calibration; and f (𝜃) contains any prior
information we might have on the object’s calendar age. Note that we can marginalise over the
calibration curve so that, Xi|𝜃i ∼ N

(
m(𝜃i), 𝜌(𝜃i)2 + 𝜎

2
i

)
.

By far the most popular software used by the radiocarbon community to perform calibra-
tion is OxCal (Bronk Ramsey, 2009) which currently implements the above estimation of 𝜃i via
Metropolis-Hastings. In Figure 1 we present the calibration of a single radiocarbon determi-
nation of X1 = 3000 14C year BP (with 𝜎1 = 30) against the IntCal20 curve within the OxCal
software (version 4.3). The resultant posterior calendar age estimate 𝜃1 is shown along the
bottom. Note in particular the non-monotonic nature of the calibration curve 𝜇(𝜃), this is
typical and a result of the discussed historic fluctuations in 14C production. Multi-modal calen-
dar age estimates of individual determinations, 𝜃i, such as seen here, are therefore extremely
common in 14C calibration and can cause difficulty in mixing for more complex Bayesian
calibration problems. We aim to overcome this additional challenge through our use of slice
sampling.

3 CALIBRATING AND SUMMARISING RELATED
14C DETERMINATIONS

3.1 Statistical formulation

In this paper, we consider the calibration, and simultaneous calendar age summarisation, of mul-
tiple 14C determinations X1, … ,Xn arising from a set of objects that are believed to have calendar
ages which are related to one another. Such relations might occur when sampling objects that
arise from the same site, group of peoples, culture, or type of artefact. We wish to use the knowl-
edge that the underlying calendar ages 𝜃i are related to improve our calibration, and to provide
a useful summary of the combined (calibrated) calendar age information provided by the set of
objects. Specifically, we assume each unknown 𝜃i arises from the same underlying, but unknown,
calendar age distribution f (𝜃), so that

𝜃1, … , 𝜃n ∼ f (𝜃), and
Xi ∼ N

(
𝜇(𝜃i), 𝜎2

i
)

for i = 1, … ,n.

Knowledge that the unknown calendar ages of the objects are drawn from the same shared
distribution, even if that shared distribution is unknown, should mean that we can improve our
calibration by borrowing information from the other objects. It is well accepted that independent
calibration of multiple radiocarbon determinations, that is, 𝜃i|Xi, provides calendar age estimates
that are more spread out than their true calendar ages (see Bronk Ramsey, 2017; Buck et al., 1992).
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We expect to obtain better calendar age estimation by considering 𝜃i|X1, … ,Xn, which will tend
to shrink the posterior calendar age estimates towards one another.

In our Bayesian framework, this is done by considering the unknown calendar ages 𝜃1, … , 𝜃n
to be drawn from some larger population on which we place a prior f (𝜃). Given f (𝜃), each 𝜃i is
then conditionally independent of Xj for all i ≠ j. Even when the form of f (𝜃) is unknown, the
underlying shared distributional assumption should still be used for calibration.

Through our approach, we are able to estimate f (𝜃) using the information given by X1, … ,Xn
simultaneously to the calibration process. This significantly improves estimation of the indi-
vidual calendar ages as shown in Section 5. Furthermore, the resultant predictive distribution
for the calendar age of a future hypothetical object, that is, f (𝜃n+1|X1, … ,Xn) can also be
used as a proxy to provide practical archaeological insight into the varying use of the site,
activity of the peoples, culture, or type of artefact over time. Indeed it is often this sum-
mary calendar age distribution which is of most interest to 14C users, see Sections 5.2 and 6
for details.

3.2 Current methods to calibrate and summarise
14C determinations

3.2.1 Parametric approaches

If we are willing to select, a priori, a specific parametric form for the shared calendar age density
f (𝜃), for example 𝜃1, … , 𝜃n ∼ f (𝜃) = N(𝜙, 𝜏−1), then it is straightforward to provide both a pos-
terior for the underlying calendar age distribution’s parameters (e.g., the mean 𝜙 and precision
𝜏 in the case of the normal density above); and each individual 𝜃i (for more details see Naylor
& Smith, 1988; Buck et al., 1992). Implementations for various underlying families of calendar
age densities have been proposed, for example, a uniform density with unknown start and end
dates (Buck et al., 1992; Christen, 1994), normal, triangular (Bronk Ramsey, 2009) and trape-
zoidal (Bronk Ramsey & Lee, 2013; Karlsberg, 2006; Lee & Bronk Ramsey, 2012). Such parametric
approaches are called phase models as they assume the site has gone through a phase of use.
Estimation of f (𝜃) for fixed mixtures of normal phases, but without simultaneous calibration of
the 14C determinations, is also possible in BCHRON (Haslett & Parnell, 2008) and STAN (Price
et al., 2020).

However, in many cases it is not possible/desirable to specify the form of f (𝜃) in advance. It
may not be appropriate to model the usage of the site by a simple parametric form. Alternatively,
objects from the site may come from a mixture of different time periods with an unknown number
of phases of high activity interspersed with little/no activity as the site falls into/out of develop-
ment over time. Instead we may prefer a non-parametric approach, letting the data themselves
inform us as to the shape of the density or the number of distinct periods.

3.2.2 Non-parametric approaches

Calibration of multiple determinations
When presented with a set of 14C determinations X1, … ,Xn for which a parametric phase model
is deemed inappropriate, the majority of 14C users will calibrate each Xi independently from the
others with an uninformative prior on 𝜃i, that is, calculate
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1926 HEATON

fi(𝜃i|Xi) ∝ f (Xi|𝜇(𝜃i))f (𝜇(𝜃i)|𝜃i) for i = 1, … ,n, (1)

even if they know the underlying 𝜃i calendar ages are related and are drawn from a shared den-
sity f (𝜃). Such an approach neither includes estimation of the joint f (𝜃), nor allows one to share
information across X1, … ,Xn. As explained in Section 3.1, and as we show in Section 5, this leads
to suboptimal calendar age estimation.

Summed probability distributions
The most common approach to summarise calendar age information of multiple
14C determinations is via SPDs (see Williams, 2012; Contreras & Meadows, 2014). Here, the
posterior calendar age density fi(𝜃i|xi) of each object is first calculated independently from
the others as in (1). These individual densities are then summed/averaged to give an SPD
estimate,

f (𝜃|x1, … , xn) =
1
n
∑

fi(𝜃i|xi).

SPDs are not statistically valid estimators of the calendar age of a potential future object. The
independence assumed in the separate calibration of each Xi, followed by subsequent sum-
marisation, generates a contradiction. Either each individual 𝜃i is differently distributed, in
which case separate calibration is legitimate, but it is not then appropriate to jointly sum-
marise the resultant calendar ages; or alternatively the objects are related and a summary
is appropriate, but in which case the objects should not be calibrated separately from one
another. Additionally, SPDs do not provide a predictive density, they simply give an estimate
of the calendar age were you to re-sample an object at random from the set of n objects on
which they are based. An SPD implicitly assumes this sample of n objects provides the exhaus-
tive set of possible calendar ages, that is, that there are no more possible objects one could
ever date. This is not what we desire. Our n observed objects (and their calendar ages) will
typically form a small sample drawn randomly from a much wider population of potential
objects (and calendar ages). In summarising, our aim is to make inference about this wider
population.

Furthermore, SPDs do not come with uncertainties on the summary estimate. These are
key if one wishes to make inference on activity levels over time. The non-monotonicity of
the calibration curve 𝜇(𝜃) means that each 𝜃i|Xi can be multi-modal, one must therefore be
careful in interpreting each peak in a summarised density as indicating a separate period
of activity. For example, in Figure 1, we see our single determination X1 results in a highly
multi-modal calibrated calendar age estimate. However, since we only have a single object
it would be false to infer that this is evidence for multiple distinct periods of activity (e.g.,
around BC 1360, 1230 and 1140) separated by periods of inactivity. We therefore need credi-
ble intervals on our summarised density estimate. To compound this problem, the independent
calibration of the objects within an SPD tends to create many small peaks within the resul-
tant summary. In particular, a single high-precision 14C determination can create a sharp peak
in the SPD and completely ruin the estimate of f (𝜃). Our proposed Bayesian approach pro-
vides credible intervals for the summary estimate f (𝜃); while also reducing the number of
spurious small peaks and troughs due to minor calibration curve inversions, as shown in
Section 6.
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Several alternatives and adjustments to SPDs have been suggested, however, all those of which
we are aware still suffer from some of the weaknesses above. Kerr and McCormick (2014) pro-
pose that the risk of over-interpreting SPDs due to calibration curve artefacts can be reduced if the
initial SPD is binned to provide coarse histograms. However this appears an ad hoc approach lack-
ing a theoretical justification. Furthermore, they provide no guidance on how coarse a binning to
apply. Too wide a bin would lead to the loss of significant real information, too narrow would not
remove the curve artefacts. An equivalent problem to summarisation has also been considered by
Dye (2016) through tempo-plots. A tempo-plot aims to provide, given a set of radiocarbon deter-
minations X1, … ,Xn, an estimate N(𝜃) of the number of those observations occurring before a
time 𝜃 with the intention this can be interpreted as a proxy for overall historical activity. In our
context of density estimation, the tempo-plot’s construction make it mathematically identical to
the distribution function one would obtain by integrating the SPD formed from the underlying
determinations. The tempo-plot’s credible intervals for N(𝜃) are then the confidence intervals
of the sum

∑n
i=1Ber(pi) of independent Bernoulli random variables with probabilities set to the

individual values of each object’s age distribution functions pi = Fi(𝜃). Approaches to perform
hypothesis testing of, for example, H0 ∶ f (𝜃) = f0(𝜃) using Monte Carlo methods on the SPD have
also been suggested (Edinborough et al., 2017; Shennan et al., 2013) although these are incongru-
ous, following a Bayesian calibration step, and incoherent SPD summarisation, with a classical
hypothesis test.

Alternative approaches to multiple calibration and summarisation
Bronk Ramsey (2017) recently proposed a method combining the joint calibration of multiple
14C determinations, under the assumption their calendar ages arise from a shared non-parametric
distribution f (𝜃), with kernel density estimation to estimate f (𝜃). This iterative approach alter-
nates between a step which calibrates each determination conditional on the current estimate
for f (𝜃), that is, 𝜃i|Xi, f ; and a step updating the estimate of f (𝜃) given 𝜃1, … , 𝜃n. This latter step
is performed by sampling from 𝜃i|Xi, f for i = 1, … ,n and then fitting a kernel density estimate
to the sampled values. The process of calibration under the current estimate for the prior f (𝜃),
and then kernel density updating of f (𝜃) is repeated until convergence is obtained. This method
of Bronk Ramsey (2017) is similar in principle to our proposed approach, except that the ker-
nel density update introduces a frequentist element to an otherwise Bayesian method, making
the overall method somewhat of a hybrid. Our DPMM approach adds statistical consistency and
rigour to provide a fully Bayesian approach to the non-parametric calibration and summarisation
of multiple 14C determinations.

3.3 Other considerations when summarising 14C data sets

It is necessary to consider several potentially complicating effects in interpreting the estimated
summary density f (𝜃) as a proxy for overall activity, see Williams (2012) and Contreras and
Meadows (2014). Taphonomic loss (i.e., a reduction in sampling of older objects at a site due
to increased likelihood of site destruction through time) and non-random sampling (e.g., where
archaeologists tend to concentrate excavations on time periods of particular historic interest and
are more likely to have sampled objects from these periods) are common in archaeological stud-
ies. We do not specifically address these issues in this work. Taphonomic loss might be accounted
for through the introduction of a (known) function g(𝜃) giving the probability that a sample
of calendar age 𝜃 will be preserved for the modern day. Using this taphonomic preservation
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probability g(𝜃), we might then either adjust our observational model to account for the fact sam-
ples are lost; or, more simply, consider a post-estimation transformation of the predictive density
subject to taphonomic loss to one without. Non-random sampling is significantly more difficult
to address without knowledge of its structure. In cases where this is likely we therefore urge cau-
tion in interpretation. Note that these issues are only of concern when interpreting the summary
density estimate. They do not affect the validity, or benefit, of using the multiple samples jointly to
improve calibration of the samples. When improving estimation of the calendar ages of the indi-
vidual objects, we are concerned with the specific population of objects one might sample—this
does not need to be representative of wider activity.

The non-monotonic nature of the calibration curve 𝜇(𝜃) can also raise identifiability issues
in calendar age estimation and summarisation that are partly intractable. In particular, when
the range of calendar ages of a set of objects is narrow and corresponds to a significant wiggle
in the calibration curve, there may be multiple calendar periods which could equally gener-
ate the given 14C determinations. Here, the summarised density estimate f̂ (𝜃) is likely to place
some mass on each time period generating multiple peaks even if the samples only arose from
one. This is discussed in detail in Section 5.2. We recommend all 14C determinations (and
the summarised calendar age estimates) are initially plotted alongside the calibration curve to
assess this possibility and amend the intepretation accordingly. Such plots are provided for all
our examples in Sections 5 and 6. The credible intervals we provide for f̂ (𝜃) should also help
assessment.

4 BAYESIAN NON-PARAMETRIC CALIBRATION
AND SUMMARISATION

Our approach alternates between updates of the calendar ages 𝜃i, given Xi and f (𝜃); and
updates to f (𝜃), given 𝜃i for i = 1, … ,n. These two steps are combined within a Gibbs MCMC
scheme. The sampler proceeds by direct sampling from the relevant conditionals in almost all
its updates. Consequently, the overall MCMC mixes rapidly and the overall method is quick to
implement.

We create a non-parametric prior on the underlying calendar age distribution f (𝜃) via a
DPMM (e.g., Neal, 2000). Given the calendar ages 𝜃i, this DPMM can be updated by direct
sampling (with the exception of a single hyperparameter updated by Metropolis–Hastings). We
consider two different approaches to this updating of the DPMM component. The first uses
a Pólya urn approach as proposed by Neal (2000) where the mixture weights are integrated
out. Each calendar age is specifically labelled (allocated) as belonging to a particular compo-
nent of the infinite mixture. These allocations are then updated, one-at-a-time and conditional
upon all the other allocations, within the sampler. This approach to label updating potentially
makes mixing more difficult and slows convergence. The second approach uses a slice sampling
approach suggested by Walker (2007). This approach retains the allocations but does not inte-
grate out the mixture weights and is able to sample directly from the full conditionals of the
stick-breaking DPMM via a Gibbs sampler. We compare the two approaches to DPMM updating in
Section 5.

To update the calendar ages 𝜃i for each object, given the current estimate for f (𝜃), we perform
calibration of the observed Xi using the DPMM as the prior on 𝜃i. The specifics of our DPMM
updating, whereby each object is allocated to a specific component of the infinite mixture, mean
that in this calibration step we do not need to work with the full prior f (𝜃). Conditional on the
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allocation, the prior on 𝜃i is reduced to a simpler 𝜃i ∼ N
(
𝜙ci , 𝜏

−1
ci

)
, where ci is the component to

which object i belongs, see Section 4.2 for details. This calibration is done using a different slice
sampling approach (Neal, 2003) which allows direct sampling of 𝜃i|Xi, f (𝜃). This conditional will
typically be multi-modal due to the non-monotonicity of the radiocarbon calibration curve—as
discussed in Section 2, and illustrated in Figure 1. The slice sampling aims to permit easier sam-
pling from this 𝜃i|Xi, f (𝜃), which feeds back into the DPMM, and hence should improve mixing
of the overall MCMC.

4.1 Intuitive explanation of the model

We model our unknown calendar age density f (𝜃) as an infinite mixture of individual compo-
nents, or clusters. In our case, these individual calendar age components will be normal densities
that can have different locations and spreads. In some cases, this mix of normal densities may
represent true and distinct underlying normal archaeological phases, in which case additional
practical inference may be possible. However this is not required for the method to provide good
estimation.

Each object is then considered to be drawn from one of the (infinite) clusters which constitute
the overall f (𝜃). The probability that it is drawn from a particular cluster will depend upon the
relative weight given to that specific cluster. It will be more likely than an object will come from
some clusters than others. Given an object belongs to a particular cluster, its prior calendar age
will be normally distributed with the mean and variance of that cluster. The mean and variance
of each individual normal cluster that constitutes the overall f (𝜃), together with the weightings
associated to each cluster, will be estimated based upon the set of 14C determinations X1, … ,Xn
we observe. Our model is thus built as follows:

• Each object has a 14C determination Xi ∼ N
(
𝜇(𝜃i), 𝜎2

i

)
. Here, 𝜃i is the unknown calendar age

of the object we wish to estimate; 𝜇(⋅) is the calibration curve, provided as pointwise means
and variances by the IntCal curves (Reimer et al., 2020); and 𝜎i is the measurement uncertainty
reported by the laboratory performing the measurement

• Each object belongs to a specific (calendar age) cluster of objects identified by ci, that is, object
i belongs to cluster ci.

• If an object belongs to cluster j, that is, if ci = j, then we have a prior on its calendar age
𝜃i| ci = j ∼ N

(
𝜙j, 𝜏

−1
j

)
. The mean 𝜙j and precision 𝜏j of each cluster are unknown.

• The probability that an object belongs to cluster j, that is, P(ci = j), will depend upon j. We place
a stick-breaking prior on the weight of each cluster (i.e., the probability an observation belongs
to cluster j) which we then adaptively update within our DPMM.

• The mean 𝜙j and precision 𝜏j of each individual calendar age cluster vary according to the
cluster j. Their values are themselves drawn from a prior distribution.

4.2 A Dirichlet process mixture model

The above is formalised using a latent DPMM to model f (𝜃) (see Neal, 2000; Walker, 2007, for
further details). To facilitate interpretation and sampling, we introduce the latent allocation
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variable ci to denote the cluster within the infinite Dirichlet process (DP) mixture to which the ith
object belongs. Also, let 𝜻 = (𝜁1, 𝜁2, …), with 𝜁j = (𝜙j, 𝜏j) the mean and precision of the jth cluster
within the DPMM. Our model then becomes:

Xi|𝜃i ∼ N
(
𝜇(𝜃i), 𝜎2

i
)

for i = 1, … ,n,
𝜃i|ci, 𝜻 ∼ N

(
𝜙ci , 𝜏

−1
ci

)
for i = 1, … ,n and

𝜁j ∼ G0 for j = 1, 2, … ,

P(ci = j) = wj for j = 1, 2, … and i = 1, … ,n.

We place a stick breaking prior on the mixture weights, so w1 = v1 and wj = vj
∏

l<j(1 − vl) for
j > 1, with vj ∼ Beta(1, 𝛼) for j = 1, 2, … . In the case of the Pólya urn updating of the DPMM
(Neal, 2000), these mixing weights are integrated out; while in the slice sampling approach
(Walker, 2007) they remain as explicit variables describing the current state of the model. Finally,
to enable conjugacy in our updating, G0 is such that

(𝜙j, 𝜏j)|𝜇𝜙 ∼ NormalGamma(𝜇𝜙, 𝜆, 𝜈1, 𝜈2).

4.2.1 Hyperparameters and hyperpriors

We also place hyperpriors on 𝜇𝜙 (the overall cluster centering) and the DP concentration
parameter 𝛼 (determining the number of clusters we expect to observe among our n sampled
objects):

𝜇𝜙 ∼ N(𝜉, 𝜓−1),
𝛼 ∼ Gamma(𝜂1, 𝜂2).

The values of 𝜉, 𝜓 , 𝜂1 and 𝜂2; along with those of 𝜆, 𝜈1 and 𝜈2 used in our prior on the mean and
precision of the calendar ages in each cluster are fixed, but set at levels that adapt to the initial
14C observations X1, … ,Xn. See Section 4.5 for further details.

4.2.2 Notation definition

Observed/known variables

Xn = (X1, … ,Xn)—observed 14C determinations of objects,
𝜎1, … , 𝜎n—SD on 14C determinations,
m(𝜃)—mean of radiocarbon calibration curve at calendar age 𝜃,

𝜌(𝜃)—SD of radiocarbon calibration curve at calendar age 𝜃.

Unobserved variables of immediate interest

𝜽 = (𝜃1, … , 𝜃n)—underlying calendar ages of objects.
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Unobserved latent variables—corresponding to f (𝜃)

c = (c1, … , cn)—cluster identifier for each object,
𝝓 = (𝜙1, …)—mean of each normal cluster,
𝝉 = (𝜏1, …)—precision of each normal cluster,
w = (w1, …)—mixing weights of each cluster (not used in Pólya urn updating approach),
𝛼—DP concentration prior parameter,
𝜇𝜙—overall centre of clusters.

The ingenuity of the two approaches to DPMM updating means that, while it may appear we have
to sample the entire set of 𝝓, 𝝉 and w, we are in fact required to store only a finite set of values at
any step dependent upon the current number of clusters explicitly modelled in the DPMM.

Hyperparameters—fixed

(𝜆, 𝜈1, 𝜈2)—influence cluster means and precisions, (𝜙j, 𝜏j)|𝜇𝜙 ∼ NormalGamma(𝜇𝜙, 𝜆, 𝜈1, 𝜈2),
(𝜉, 𝜓)—mean and precision on overall centering, 𝜇𝜙 ∼ N(𝜉, 𝜓−1),
(𝜂1, 𝜂2)—shape and rate on prior for DP concentration, 𝛼 ∼ Γ(𝜂1, 𝜂2).

These hyperparameters are set at levels informed by our observed 14C determinations X1, … ,Xn,
but are then considered fixed within the MCMC sampler.

4.3 Gibbs sampling

The current state of our sampler is specified by (𝜽, c,𝝓, 𝝉 ,w, 𝛼, 𝜇𝜙)1. Updating is performed within
an overall Gibbs MCMC scheme by sampling in turn from:

1. Update 𝜃i|Xi, f (𝜃):

𝜃i|Xi, ci, 𝜙ci
𝜏ci

for i = 1, … ,n.

2. Update DPMM f (𝜃)|𝜽, 𝛼, 𝜇𝜙:

Either Pólya Urn Or Slice Sampling

ci|𝜃i,𝝓, 𝝉 , c−i for i = 1, … ,n w|c, 𝛼

(𝝓, 𝝉)|𝜽, c, 𝜇𝜙 ci|𝜃i,𝝓, 𝝉 ,w for i = 1, … ,n

(𝝓, 𝝉)|𝜽, c, 𝜇𝜙

3. Update DPMM hyperparameters:

𝛼|c

𝜇𝜙|𝝓, 𝝉 .

1or without w in the case of the Pólya Urn DPMM approach where the mixing weights are integrated out.
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Note how the introduction of the allocation variable ci in the DPMM greatly simplifies the
conditional calibration of each object, that is, 𝜃i|Xi, f (𝜃), in step 1. We do not need to consider
the complete prior 𝜃i ∼ f (𝜃) since, conditional on the allocation ci of the object, we know which
specific cluster/component of the infinite mixture it arises from, that is, 𝜃i ∼ N(𝜙ci , 𝜏

−1
ci
). All the

conditionals in this Gibbs scheme, except 𝛼|c which is updated by Metropolis–Hastings, are
directly sampled. This makes the algorithm quick and hopefully improves mixing:

Step 1: Updating 𝜃i|Xi, ci, 𝜙ci𝜏ci Given ci, 𝜃i belongs to the cith component of our infinite
mixture, that is, our prior reduces to 𝜃i|ci ∼ N(𝜙ci , 𝜏

−1
ci
). We therefore wish to sample from the

posterior distribution with density

f (𝜃i|Xi, 𝜙ci , 𝜏ci) ∝ f (Xi|𝜃i)f
(
𝜃i|ci, 𝜙ci , 𝜏ci

)

= 𝜑
(

Xi;m(𝜃i), 𝜌(𝜃i)2 + 𝜎
2
i
)
𝜑
(
𝜃i;𝜙ci , 𝜏

−1
ci

)
,

where𝜑(x;𝜇, 𝜎2) is the pdf of a normal with mean𝜇 and variance 𝜎2. Due to the non-monotonicity
of the calibration curve mean m(𝜃), this conditional is a non-standard distribution and likely
multi-modal, meaning that a Metropolis-Hastings step may introduce mixing difficulties. We aim
to overcome this using a slice sampling approach (Neal, 2003). To update 𝜃i, we proceed via a
three-step procedure:

1. Sample an auxiliary variable z = log p(𝜃i) − e where e ∼ Exp(1). This defines a horizontal slice
S = {𝜃 ∶ z < log(p(𝜃))}.

2. Find an interval I = [L,R] around 𝜃i that contains all, or most of this slice S
3. Draw a new 𝜃

⋆

i from the part of the slice in this interval

There are multiple ways to find, and sample, from the interval I. Our implementation uses the
‘stepping-out and shrinkage’ procedure (see Neal, 2003, for details). Here an initial interval of
width w is randomly positioned around 𝜃i, and then expanded in steps of size w until both
ends are outside the slice. Then 𝜃

⋆

i is found by picking uniformly from the ‘stepped-out’ inter-
val until a point in the slice is found. Points picked outside the slice are used to ‘shrink’ the
interval.

Step 2: Updating DPMM (Either by Pólya Urn or Slice Sampling) As explained in
Section 4.3, we consider two different schemes to update the latent DPMM—a Pólya Urn
approach (Neal, 2000) which integrates out the mixing weights w; and a slice sampling approach
in which they are explicitly retained (Walker, 2007). The specific details can be found in
Neal (2000) and Walker (2007).

Step 3a: Updating 𝛼|c This update is performed using Metropolis-Hastings. Given the allo-
cations c, the Chinese restaurant process analogy for a DP, and its exchangeability, provide a
likelihood,

L(𝛼; c) ∝
𝛼

nc
∏nc

j=1(nc,j − 1)!
(𝛼+n−1)!
(𝛼−1)!

,

where nc is the total number of clusters and nc,j is the number of elements in cluster j. We therefore
add an update step:
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• Sample 𝛼
⋆ ∼ N+ (

𝛼, 𝜎
2
prop

)
where N+() is a truncated normal restricted to (0,∞).

• Accept with probability (adjusted due to non-symmetric proposal)

min
{

1, 𝜋(𝛼
⋆)

𝜋(𝛼)
Φ(𝛼∕𝜎prop)
Φ(𝛼⋆∕𝜎prop)

L(𝛼⋆; c)
L(𝛼; c)

}

where 𝜋(⋅) is the density of the Gamma prior and Φ the cdf of a standard normal.

Step 3b: Updating 𝜇𝜙|𝝓, 𝝉We have (𝜙c|𝜇𝜙, 𝝉) ∼ N(𝜇𝜙, 1∕(𝜆𝜏c)) and so, with our conjugate
prior 𝜇𝜙 ∼ N(𝜉, 𝜓−1), we can sample directly from:

𝜇𝜙|𝝓, 𝝉2 ∼ N
(
𝜉𝜓 +

∑
c 𝜏c𝜙c

𝜓 +
∑

c 𝜏c
,

1
𝜓 +

∑
c 𝜏c

)
.

4.4 Outputs

Our sampler provides three outputs of particular interest:

4.4.1 Calendar ages

We obtain, for each object, the posterior distributions of its calendar age, that is, 𝜃i|X1, … ,Xn.
These estimates use the joint information provided by all the 14C determinations (as opposed to
solely the 14C determination, Xi, of the single object) on the understanding the calendar ages of
the objects are related. Incorporating this joint information, done without the need to specify a
parametric phase model, should improve calendar age estimation.

4.4.2 Density estimate to summarise objects

We also obtain the predictive distribution for the calendar age of a new, as yet undiscovered,
object, that is, 𝜃n+1|X1, … ,Xn. This density estimate summarises the calendar ages of all
n objects. It is generated using the posterior sampled values (c⋆,𝝓⋆

, 𝝉⋆,w⋆
, 𝛼

⋆
, 𝜇

⋆

𝜙
) of the

DPMM component of our MCMC sampler. Let f (𝜃n+1|Xn) denote the predictive density for
the calendar age 𝜃n+1 conditioned on the observed 14C determinations Xn = (X1, … ,Xn),
and |Xn be our posterior for the DP given Xn. Then, for a probability measure G drawn
from |Xn

f (𝜃n+1|Xn) =
∫

𝜑(𝜃n+1|𝜁n+1)𝜋(d𝜁n+1|Xn)

=
∫ ∫

𝜑(𝜃n+1|𝜁n+1)G(d𝜁n+1)(dG|Xn).

Given a set of sampled values from the posterior (c⋆,𝝓⋆
, 𝝉⋆,w⋆

, 𝛼
⋆
, 𝜇

⋆

𝜙
), then 𝜁n+1 is drawn from

either:
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• One of the current clusters modelled in the DPMM—with probabilities according to the current
truncated, finite-length, vector of explicitly calculated mixture weights w⋆ (or, for the Pólya
Urn, dependent upon the current allocations c⋆ using the Chinese restaurant process anal-
ogy). The means and precisions (𝝓⋆

, 𝝉⋆) for these clusters are known. After integration, this
contributes a finite mixture of normals (with known probabilities) to the predictive for 𝜃n+1.

• A currently unmodelled cluster in the DPMM—with a probability dependent upon the sum
of the truncated mixing weights, 1 −

∑
w⋆ (or, for the Pólya Urn, dependent upon the cur-

rent allocations c⋆). In such a case, we draw from the base distribution, that is, 𝜁n+1 ∼
NormalGamma(𝜇⋆

𝜙
, 𝜆, 𝜈1, 𝜈2). After integration, this contributes a scaled t-distribution to the

predictive for 𝜃n+1.

Hence, for an individual realisation of measure G ∼ |Xn and specified by
(c⋆,𝝓⋆

, 𝝉⋆,w⋆
, 𝛼

⋆
, 𝜇

⋆

𝜙
), the predictive ∫ 𝜑(𝜃n+1|𝜁n+1)G(d𝜁n+1) is a finite mixture of normals

(parameterised by the current clusters in that realisation) and a single t-distribution correspond-
ing to the possibility of a new cluster. The predictive density estimate f (𝜃n+1|Xn) is found by
computing this finite mixture averaged over multiple posterior samples (c⋆,𝝓⋆

, 𝝉⋆,w⋆
, 𝛼

⋆
, 𝜇

⋆

𝜙
).

4.4.3 Number of clusters and object allocation

Finally, we obtain the allocation c of the n sampled objects to clusters within the DPMM. If we
believe the underlying individual clusters in the DPMM to have inherent meaning in terms of
representing genuine and distinct periods of site usage, as opposed to simply providing a tool to
enable a non-parametric density estimate, this information may be archaeologically useful. In
particular, the posterior for c allows an estimate of the potential number of, in our case normally
distributed, phases observed.

4.5 Choice of parameters and hyperpriors

Our hyperparameters play an important role in determining the location and spread of the indi-
vidual clusters in the DP mixture used to construct our estimate of f (𝜃), as well as the level
of clustering seen in the objects. Selection of these hyperparameters could be done by a user
based upon their personal beliefs regarding the set of samples they are studying. However we
see a benefit in suggesting default values. These are set out below and are based upon discussion
with archaeological experts. The proposed values intend to reflect their experience, yet remain
relatively uninformative and scale invariant. These defaults were the values used in our simula-
tion study, and for all three of our real-life examples in Section 6.

4.5.1 Choice of prior on mean and precision of a given DP cluster

We place a normal-gamma prior on the mean and precision of any individual calendar age clus-
ter, that is, (𝜇j, 𝜏j) ∼ NG(𝜇𝜙, 𝜆, 𝜈1, 𝜈2). This requires specification of four parameters: 𝜇𝜙 denotes
the global central tendency of all the data, that is, the expected mean age of a cluster; 𝜆 influ-
ences how far the centre of an individual cluster can lie from this global centre; and 𝜈1 and 𝜈2
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affect the length/spread of any individual cluster. Any particular cluster will have calendar ages
𝜃i ∼ N

(
𝜇ci , 𝜏

−1
ci

)
, hence if we can specify our prior beliefs about the lengths and locations of

calendar age clusters in an archaeological setting this can be used to guide suitable parameter
choices.

To select our proposed default and scale invariant hyperparameter values, we first per-
form a fast and approximate calibration of each 14C determination X1, … ,Xn indepen-
dently against a coarse sampling of the calibration curve. We calculate, on a rough cal-
endar age grid, the likelihood fi(𝜃i|Xi) ∝ 𝜑(Xi;m(𝜃), 𝜎2

i + 𝜌
2(𝜃i)), where 𝜑(⋅;𝜇, 𝜎2) denotes

the normal density with mean 𝜇 and variance 𝜎
2. This allows us to approximately deter-

mine 𝜃i, the most likely independent (MAP) calendar age for each object. From these
𝜃i, we calculate the overall range of calendar ages, range(𝜃) = (maxi 𝜃i −mini 𝜃i) which we
will use to restrict the centres of each component our DPMM. We also calculate the
maximum absolute deviation, mad(𝜃), to obtain a robust estimate of the overall spread
of calendar ages which we will use to restrict the maximum spread of any individual
cluster.

4.5.2 The spread of a cluster—selecting 𝜈1 and 𝜈2

The parameters 𝜈1 and 𝜈2 specify our prior on the spread, 𝜎cluster,j, of any individual cluster. Within
any cluster, the prior variance on the calendar ages 𝜃 drawn from that component is,

𝜎
2
cluster,j = 𝜏

−1
j ∼ Γ−1(𝜈1, 𝜈2).

We wish to permit a broad range of clusters with calendar age spreads that capture the poten-
tial for both short lived, intense periods of activity; and longer periods of more steady use. We
select 𝜈1 = 0.25 and 𝜈2 = mad(𝜃)2 × 𝜈1∕100, corresponding to a very positively skewed prior, with
heavy right hand tails, on the variance of the calendar ages in any cluster. This gives a prior
for the spread 𝜎cluster,j of any individual cluster that has an upper 75% percentile of approxi-
mately mad(𝜃) cal years—a sensible upper bound considering the extreme case where the samples
arise from a single cluster. This prior still allows narrow cluster spreads, in the case where
mad(𝜃) = 1000 cal years, the lower 5% quantile for the prior spread of a cluster is approximately
45 cal years.

4.5.3 The location of a cluster—selecting 𝜆 and 𝜇𝜙

Conditional on the value of 𝜏j, our choice of conjugate Normal-Gamma prior results in the mean
calendar age of an individual cluster,

𝜇j|𝜏j ∼ N
(
𝜇𝜙,

1
𝜆𝜏j

)
.

Hence wider (lower precision) clusters can be located further from the central 𝜇𝜙 than narrower
(higher precision) clusters. Here, 𝜆 influences how far an individual cluster can be located from
the central 𝜇𝜙, the smaller its value the further away that clusters may lie. We select an uninfor-
mative prior by setting 𝜆 = (100∕range(𝜃))2, so that a cluster with spread 𝜎cluster,j = 50 cal years
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should, according to our prior with 95% probability, lie within approximately range(𝜃) calendar
years either side of the central 𝜇𝜙. We also place a hierarchical prior on 𝜇𝜙,

𝜇𝜙 ∼ N(𝜉, 𝜓−1).

We set 𝜉 to be the median of the preliminary 𝜃i calendar age estimates; and, to provide a
conservative estimate of the overall range of the calendar ages, we set 𝜓−1 = range(𝜃)2.

Note that, if a user believes that the spread of a cluster should not be related to its distance
from the central 𝜇𝜙 they might, instead of our joint Normal-Gamma prior, wish to place inde-
pendent Normal and Gamma priors on the mean 𝜙j and precision 𝜏j of a cluster, respectively.
This alternative should not substantially affect implementation, simply requiring the cluster
means and precisions to be updated in separate and independent steps, as well as the appropriate
modification to step 3b updating 𝜇𝜙|𝝓.

4.5.4 Choice of prior on 𝛼

The parameter 𝛼 used to determine the mixing weights in our DPMM affects the clustering of
the objects. A small value of 𝛼 means that the DP is concentrated and the method will have a
preference to group the objects into fewer, but larger, distinct clusters; conversely a large value
of 𝛼 means the DP is less concentrated resulting in a greater number of separate clusters. Given
a particular value of 𝛼 and a number of observations n, the expected number of distinct clusters
kn =

∑n
i=1𝛼∕(𝛼 + i − 1). If archaeological prior information on the number of clusters in our set

of 14C determinations exists, this relationship could be used to select a suitable value for 𝛼.
In the absence of specific information on the number of clusters, and to allow greater adap-

tation to the data under consideration, we suggest placing a hyperprior on 𝛼 ∼ Γ(𝜂1, 𝜂2). Our
examples set 𝜂1 = 1 and 𝜂2 = 1 to provide a relatively uninformative prior. In Figure 2, we show
the marginal prior this induces on k100 and k500—the expected number of distinct clusters for
100 and 500 14C determinations respectively. This hyperprior provides an approximate 95% prior
probability that k100 ∈ [1, 13] and k500 ∈ [1, 19]. We also investigated use of a log-normal hyper-
prior for 𝛼 but, on some of our examples, its very heavy tails did not penalise extreme 𝛼 values
sufficiently leading to implausible numbers of clusters.
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F I G U R E 2 Induced marginal prior on k100 and k500, the expected number of distinct clusters observed in
100 and 500 sampled objects respectively, with our suggested hyperprior 𝛼 ∼ Γ(1, 1).
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5 SIMULATION STUDY

5.1 Improving calibration

We performed a simulation study to investigate the improvement in calendar age estimation
possible with our non-parametric joint 14C calibration approach, compared with independent
calibration of each 14C determination where no information is shared between samples. We
considered three families for the underlying calendar age distribution f (𝜃)—a single normal
distribution/phase, a mixture of three underlying normal distributions/phases, and a uni-
form phase. Given our chosen f (𝜃), we sampled calendar ages 𝜃i, for i = 1, … ,n; and corre-
sponding 14C determinations Xi ∼ N

(
𝜇(𝜃i), 𝜎2

obs

)
using the IntCal20 calibration curve (Reimer

et al., 2020) and a typical laboratory uncertainty 𝜎obs = 25 cal years. We then aimed to esti-
mate each 𝜃i given the set of radiocarbon determinations x = (x1, … , xn) and the chosen
uncertainty 𝜎obs.

We tested three calibration approaches: our proposed non-parametric Bayes method, using
both the Pólya urn and slice sampling DPMM updates, where joint information is shared
between the related objects to obtain calendar age estimates �̂�i|x1, … , xn; and calibration of each
14C determination xi independently of the others using an uninformative prior on its calendar age
and where no information is shared between the samples, that is, �̂�i|xi. This latter method is the
approach of most current 14C users when they do not wish to select a specific parametric phase
model. For our simulation study, our MCMC sampler was run for 10,000 iterations, with the first
5000 iterations discarded as burn-in, before being thinned to every fifth iteration. This relatively
small number of MCMC iterations is only used for this simulation study on calibration losses
where computational speed is needed. For real-life use of the method for either calibration or
density estimation, we recommend a longer MCMC run and a greater number of posterior sam-
ples to ensure stability in our estimates. All our later individual work is based on MCMC runs of
50,000 iterations and posterior samples of size 5000. As recommended by Hastie et al. (2015) we
have initiated our sampler with a greater number of clusters than in the underlying f (𝜃)—in our
studies we initiated the DP samplers with 10 clusters.

We investigated the performance for n = 50,100, 200 and 500 14C determinations. For a given
n, we performed 50 runs, each sampling a new and different f (𝜃) from the chosen family. Each
approach to calibration provided a posterior distribution �̂�i|x for the calendar age of the ith
determination. We quantified the quality of calibration for a particular method using the sample
average posterior expected losses:

Absolute (l1) loss: 1
n

n∑

i=1
E||[�̂�i|x] − 𝜃i||;

Mean-squared (l2) loss: 1
n

n∑

i=1
E
(
[�̂�i|x] − 𝜃i

)2
.

To assess the potential improvement in calibration accuracy offered by our non-parametric joint
approach we compared, for each simulation run, the posterior losses of these methods against
those obtained when calibrating each object independently:

Non-parametric improvement = 100 ×
(

1 −
Loss with non-parametric Bayes
Loss if calibrate independently

)
%.
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(a)

(b)

(c)

F I G U R E 3 Box-plot of percentage improvements in calendar age estimation of 𝜃i achieved when using our
joint non-parametric approach, compared to independent calibration of each 14C determination, if the calendar
ages of the samples are known to be related. The horizontal blue line corresponds to zero improvement. Runs
lying above this indicate the Dirichlet process mixture model approach reduced the overall loss, and hence
improved calibration. [Colour figure can be viewed at wileyonlinelibrary.com]

We present, in Figure 3, box-plots of the improvements in the joint calendar age estimation loss
for each of our 50 simulation runs obtained using our non-parametric approach compared with
independent calibration of each 14C sample. In Table A1 we also provide the percentage of times
(out of the 50 runs) where our non-parametric approaches offered an improvement over indepen-
dent calibration; the mean improvement they offered over the 50 runs; and the maximum and
minimum improvement.
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5.1.1 Underlying distributions f (𝜃)

Calendar age distribution 1: Single normal phase
For each n = 50,100, 200,500, and each run k = 1, … , 50, we sample underlying calendar ages
from a single normal phase and their corresponding 14C determinations:

𝜏 ∼ Gamma(1, 10,000), 𝜙 ∼ N
(

10,000, 100
𝜏2

)
;

𝜃i ∼ N
(
𝜙,

1
𝜏

)
and Xi ∼ N

(
m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2
)

for i = 1, … ,n.

We set 𝜎obs, the laboratory measurement uncertainty to be 25 14C years, a typical level of accuracy
a laboratory might provide; while m(𝜃) and 𝜌(𝜃) are the published posterior mean and SD on the
IntCal20 calibration curve at calendar age 𝜃.

Calendar age distribution 2: Mixture of three normal phases during last 15,000 cal years
For each n, and run k, we sample underlying calendar ages from three normal phases and their
corresponding 14C determinations:

𝜏j ∼ Gamma(1, 10,000) and 𝜙j ∼ N

(

3000, 100
𝜏

2
j

)

for j = 1, 2, 3; w1, … ,w3 ∼ Dir(1, 1, 1);

𝜃i ∼
3∑

j=1
wj𝜑

(
𝜃;𝜙j,

1
𝜏j

)
and Xi ∼ N

(
m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2
)

for i = 1, … ,n.

Here, we also restrict the calendar ages 𝜃i to lie within the last 15,000 cal years. In this
time period the calibration curve is based on densely sampled and high-precision tree-ring
14C determinations. The additional detail that these high-precision, frequently annually sampled,
measurements provide on past 14C levels results in a highly non-monotonic calibration curve (see
Section 5.2.1) which should particularly test our calendar age estimation. This more recent period,
which includes the Holocene, is also the most highly interrogated by the radiocarbon community,
and where they desire utmost precision in 14C calibration. If the above sampling creates any 𝜃i >

15,000 cal years, the entire sample is rejected and cluster creation restarted.

Calendar age distribution 3: Single uniform phase during last 15,000 cal years
For each n, and each run k, we sample underlying calendar ages from a single uniform phase and
their corresponding 14C determinations:

S ∼ U[100, 14000], R ∼ U[50, 1000];
𝜃i ∼ U[S, S + R] and Xi ∼ N(m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2) for i = 1, … ,n.

This also restricts the calendar ages 𝜃i to lie within the last 15,000 calendar years where the cal-
ibration curve is most non-monotonic and needs for 14C dating are typically greatest. The use of
a uniform distribution should, at least when estimating the summarised predictive calendar age
density, provide the most challenging test of our approach as we model our DP as mixtures of,
light-tailed, normal distributions. It is particularly difficult to accurately approximate a uniform
distribution with a mixture of normals.
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5.1.2 Improvements in calendar age estimation

The results of our simulation study are shown in Figure 3 and Table A1. Joint calibration to
estimate 𝜃i|x1, … , xn using the entire set of 14C determinations almost universally improves the
accuracy of calendar age estimation when compared with independent calibration 𝜃i|xi. Across
all three families of underlying calendar age distributions, over 95% of the simulation runs show
improved calendar age estimation using our proposed non-parametric approach incorporating
the information that the 14C determinations arise from a shared, but unknown, calendar age dis-
tribution. This rises to nearer 100% when the underlying calendar age distribution is a mixture of
normals (hence matching the components in the latent DPMM). Even when the joint approach
does not offer an improvement in calendar age estimation, the loss is only very slightly worse
than independent calibration. The benefit of joint calibration does not seem to be particularly
affected by the number of 14C determinations. Even with just 50 14C determinations, calendar age
estimation is very significantly improved by joint calibration.

For our single normal phase, our proposed joint calibration methods showed an improvement
in calendar age estimation for almost all simulation study runs. The mean improvement
in absolute error over independent calibration is in the order of 20% for all n, while the
maximum improvement offered is between 50% and 60%. The mean improvement in squared
error is between 30% and 40%, with a maximum of approximately 90%. While this is perhaps the
simplest test of our methods, since the underlying calendar age distributions are of a form which
is easily approximated by our DPMM, they still need to recognise that the samples all arise from
a single cluster.

In the case of our mixture of three normals, we again see that joint calibration almost univer-
sally offers an improvement in the calendar age estimation. The mean improvement in calendar
age estimation by jointly estimating 𝜃i|x1, … , xn is less than in the case of a single normal phase
but still highly significant compared with independent calibration 𝜃i|xi. Such a reduction is to be
expected since, for this mixture family, the non-parametric methods need to recognise both that
the samples arise from three distinct clusters and also estimate the mean and variance of each
such cluster. Even if the DPMM assigns all the samples to their clusters correctly, there remain
fewer 14C determinations in each cluster from which to precisely estimate its mean and variance.
For both the Pólya Urn and slice sampling approach to DPMM updating, the mean improvement
in absolute error using non-parametric Bayes is in the order of 10%; and the mean improvement
in squared error is approximately 20%.

Interestingly, when the underlying calendar age is uniform, joint calibration still offers large
benefits in calendar age estimation. Non-parametric Bayes offered improvements in over 90%
of our simulation runs, with a mean reduction in absolute error of between 15% and 20%, and
squared error of 25% and 35%, compared with independent calibration of the 14C determinations.
These improvements are seen despite the uniform distribution being very difficult to esti-
mate with a mixture of normals as chosen for the components in the latent DPMM. Our
normal-distribution-based DPMM is not particularly successful at estimating f (𝜃) when this
underlying calendar age density is uniform, see Appendix B. When it comes to calibration how-
ever, even with a normal clusters in our DPMM, the method will still tend to shrink the individual
calendar ages towards their mean. This typically provides improved age estimation.

For the uniform, there were some individual runs where non-parametric Bayes performed
poorly—after investigation, these were found to be runs where the calibration curve is flat for a
prolonged period of time, and where the underlying calendar age density f (𝜃) covered only a short
portion of this longer flat period. All the calibration methods perform poorly in such an instance

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/5/1918/7073284 by U

niversity of Bedfordshire user on 06 June 2023



HEATON 1941

as, given only the 14C determinations X1, … ,Xn, identifiability of the underlying f (𝜃) and the
individual 𝜃i is low due to the flatness of the calibration curve. However the non-parametric meth-
ods were particularly penalised since they shrunk the 𝜃i towards the middle of the flat period even
when the true f (𝜃) lay towards one end. Joint calibration will always have this inherent danger.
Fortunately, due to the underlying geoscience, there are not too many prolonged time periods
where the calibration curve remains flat; and this risk can easily be identified by comparison of
the 14C determinations against the calibration curve through plots of the type we demonstrate in
Figures 4–9.

5.2 Estimating the underlying calendar age density f (𝜽)

As well as calibration, the DPMM methods simultaneously provide a prediction for the calendar
age of a future object based upon the observed 14C determinations. Many users will wish to use
this f̂ (𝜃) as a proxy for the population density/activity. Whether the DPMM’s f̂ (𝜃) is able to identify
the specific calendar age density behind the 14C samples will require careful consideration by
any user. The DPMM summarisation method only has access to the observed 14C determinations
and, intuitively, aims to provide an estimate f̂ (𝜃) of a calendar age distribution which could have
generated these X1, … ,Xn. Since the calibration curve is non-monotonic, there may be multiple
calendar age densities which could generate the same X1, … ,Xn. In such instances, the DPMM
estimates of f (𝜃) would ideally cover the range of potential calendar age densities. Among these
multiple possibilities, the true calendar age density may be unidentifiable. The predictive calendar
age estimates should not therefore be considered a black-box.

Users will need to consider the nature of the underlying calibration curve in the period of
interest if they wish to use f̂ (𝜃) as a proxy for population density/activity. In many instances, such
inference may be reasonable but, in others, more care is required in interpretation of f̂ (𝜃). The
probability intervals on f̂ (𝜃) provided by the DPMM method, which are not available with an
SPD, should offer further guidance. Users should also note that, with a DPMM model that uses
normally distributed clusters, the estimator f̂ (𝜃)will likely work better for densities which can be
well approximated by such a mixture of normals—for example, repeated colonisation (as perhaps
caused by past climate variation) or the rise and fall of a civilisation/culture.

We provide examples of the estimates f̂ (𝜃) obtained by our DPMM, and SPDs, for an artificial
calendar age density and a real-life example. Our MCMC samplers were run for 50,000 iterations
with the first half discarded as burn-in. The samples were then thinned to every fifth iteration so
that the predictive estimates f̂ (𝜃) and their probability intervals were based on a final sample of
size 5000. As with all our examples, we initiated our samplers with 10 initial clusters.

5.2.1 Artificial example—mixture of normal phases

Figure 4 shows an illustrative DPMM estimate for the summarised calendar age density f̂ (𝜃) based
upon 100 14C determinations for which the underlying calendar ages were drawn from a mixture
of three normals. We compare the true underlying calendar age density (shown in red) against
the estimates obtained via our non-parametric Bayes, blue (Pólya Urn DP updating) and purple
(slice sampling); and the (orange) standard SPD estimate used in the 14C community. This SPD
is created by initial calibration of each sample independently, 𝜃i|xi, without sharing any informa-
tion across the 14C determinations, and then simply summing the individual and independent
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F I G U R E 4 Estimates of f̂ (𝜃), based upon summarising a set of 100 14C observations, when underlying
samples have calendar ages drawn from a mixture of three normals: 𝜃i ∼ f (𝜃) = 0.1N(3500, 2002) +
0.4N(4200, 1002) + 0.5N(5000, 3002) cal years, for i = 1, … , 100; and corresponding 14C determinations
Xi ∼ N

(
m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2
) 14C year BP . Panel (a) shows the 100 sampled 14C determinations as a ticked rug

along the y-axis and the IntCal20 radiocarbon calibration curve (with shaded 95% probability intervals) needed to
convert them to calendar ages. Along the x-axis we plot the true underlying calendar density (red solid line) and
the estimates f̂ (𝜃) obtained by calibrating and summarising the 14C determinations. The non-parametric Bayes
estimate with Pólya Urn DPMM updating is shown in blue (solid line, predictive mean; dashed line, 95%
predictive interval); and the slice sampling Dirichlet process mixture model updating version in purple. The
summed probability distribution estimate is plotted in orange. Panels (b) and (c) show the number of clusters in
the DP mixture used to model the 100 14C determinations in the Pólya Urn and slice sampling versions,
respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

posterior calendar age densities, see Section 3.2.2 for details. The pointwise mean for the predic-
tive density is shown with a solid line; 95% pointwise credible intervals, based upon the individual
realisations, are shown with dashed lines.

For this mixture of normals, the non-parametric Bayesian DPMM summarisation approaches
accurately reconstruct the underlying calendar age density f (𝜃). Both approaches to DPMM
updating identify the three distinct peaks and have credible intervals which encompass the true
mixture density. The reconstruction of the central peak is somewhat sharper, and appears to
be more heavily weighted, than the true density but still predominantly covers it within the
credible intervals. We also see, in panels (b) and (c), that the non-parametric Bayes approaches
have posteriors which place most probability on the 14C observations arising from three or
four distinct calendar age clusters. The SPD estimate on the other hand is highly variable
and fluctuates rapidly, due to the fine-scale wiggles and features of the calibration curve. It is
challenging to identify the three distinct peaks in the underlying true density from this SPD
estimate.
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5.2.2 Real example—population change in the Basin of Mexico

To illustrate the care required in interpreting the predictive density f̂ (𝜃) we also consider an
example of Contreras and Meadows (2014) on the impact of European diseases on the indigenous
population of the Basin of Mexico from circa AD 1000–1900 (McCaa, 2000). From around AD
1428, this population grew rapidly as a result of the triple alliance of city states under the Aztec
Empire and consequent regional population aggregation. The population peaked at around 1.2
million in AD 1520 just before the arrival of the Spanish conquistadors. These Europeans brought
with them many diseases which decimated the indigenous population causing it to drop to around
170,000 by AD 1640, from which it began to slowly grow again.

To test the ability of 14C summarisation to reconstruct demographic changes, Contreras and
Meadows (2014) sampled calendar dates 𝜃1, … , 𝜃n from AD 1000 to 1900 with a density propor-
tional to the population in that year. Figure 5 shows this implied calendar age density in red. The
peak at AD 1520 corresponds to the maximum population of 1.2 million. For each 𝜃i, they sam-
pled a 14C determination Xi using the IntCal calibration curve. They then aimed to test whether
summarising the resultant 14C determinations X1, … ,Xn returned the known population density.
For our recreation, we sampled 500 calendar ages, and 14C determinations, from the underlying
population-based density to reduce the effect of sampling variation on the estimates f̂ (𝜃).

This case study provides a somewhat pathological example for 14C summarisation but is help-
ful to show the care needed in interpretation and the benefits that the probability intervals on our
DPMM estimate of f̂ (𝜃) provide compared to SPDs. As can be seen in Figure 5, it is unfortunately
not possible to recreate the underlying population density of the Basin of Mexico based upon our
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F I G U R E 5 Estimates of f̂ (𝜃), based upon summarising 500 14C observations, when the underlying samples
have calendar ages 𝜃i that are drawn from a distribution proportional to the estimated population of the Basin of
Mexico (McCaa, 2000). For each sample, the uncertainty in the 14C measurement 𝜎obs ∼ U[20, 40] 14C years, and
Xi ∼ N(m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2). Individual panels as for Figure 4. [Colour figure can be viewed at
wileyonlinelibrary.com]
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14C observations. However, this is due to the nature of the calibration curve in this period rather
than a failing of the DPMM method. Importantly the intervals on the DPMM’s f̂ (𝜃) help to flag
this non-identifiability. The SPD estimate provides no such means to assess identifiability while
still failing to reconstruct the underlying population changes.

There are a range of reasons for this failure to reproduce the Basin of Mexico demography.
Firstly, the later rise in the population (from AD 1650) contains the Suess effect (Suess, 1955),
the increase in atmospheric 12C due to the burning of fossil fuels since the industrial revolution
around AD 1750. This effect results in a flat calibration curve from AD 1750 to 1950 meaning
that the calendar ages of 14C determinations from this period are fairly unidentifiable. Secondly,
the example fails to consider edge effects. Contreras and Meadows (2014) simply cut off calen-
dar ages outside a certain time range (including when the population is increasing significantly
around AD 1880). Our normal clusters do not permit for such a hard cut-off and so estima-
tion at these age boundaries will likely not be accurate. This is compounded because for 14C we
cannot have calendar ages beyond AD 1950. Both these effects can be seen in our DPMM esti-
mate. The 14C determinations from the later population rise could be equally likely to arise any
time from AD 1800 onwards, or during the dip in the calibration curve around AD 1700. This
unidentifiability is shown by the wide intervals on the DPMM’s predictive f̂ (𝜃) in this time period,
and the peak around AD 1700. Thirdly, the main peak in the Mexican population leading up to
AD 1520 is extremely narrow (ca, 50 cal years) and coincides with an inversion in the calibra-
tion curve. There are again two potential time periods which would create exactly the same set of
14C ages, AD 1520 and AD 1580. Again these two possibilities are shown by the intervals on the
DPMM’s f̂ (𝜃). Any user seeing such wide, and variable, intervals should proceed with extreme
caution in using the pointwise estimate for f̂ (𝜃) as a proxy for population/activity.

5.2.3 A modified real example—shifted population change
in the Basin of Mexico

To demonstrate that the non-identifiability of the Basin of Mexico population is a consequence
of the calibration curve in the time period rather than a failing of the method, and that in other
time periods we can accurately reconstruct real-life demography from 14C summarisation, we
provide a further example in Figure 6. Here, to ensure we still have an underlying calendar age
density based on real-life, we continue to use the same Basin of Mexico demographic changes
(shown in red, McCaa, 2000) but have shifted the calendar ages back by 6500 cal years to a
different section of the calibration curve. This calendar age shift means we avoid calibrating
during the Suess effect and the unfortunate co-incidence of the narrow population peak with a
curve inversion. We can see that here, the DPMM estimates of f̂ (𝜃) are accurately able to recon-
struct the underlying demographic changes, albeit with a minor edge effect due to the artificial
cutoff in the underlying calendar age density (ca, 6600 cal year BP). The SPD however still fails
to reproduce the underlying f (𝜃) and, without intervals, is very hard to usefully interpret.

5.3 Comparison of Pólya Urn and slice sampling DP updates

The simulation study results of Figure 3 and Table A1, in addition to the sample reconstructions
of f (𝜃) in Figures 4,5 and 6, indicate that the performance of our non-parametric approach is sim-
ilar whether we use the Pólya Urn or slice sampling to update the DPMM. The number of distinct
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F I G U R E 6 Estimates of f̂ (𝜃), based upon summarising 500 14C observations, when the underlying samples
have calendar ages 𝜃i that are drawn from a distribution proportional to the estimated population of the Basin of
Mexico (McCaa, 2000) but in a different (older) section of the calibration curve without the Suess effect.
Individual panels as for Figure 4 [Colour figure can be viewed at wileyonlinelibrary.com]

clusters to which the n observations are allocated also remains similar between the samplers sug-
gesting that mixing of the Pólya Urn is still satisfactory. In our implementation, the slice sampling
DP updating is considerably faster than the Pólya Urn. This, in combination with the theoretical
improvements that the slice sampling DPMM updates offer to mixing, mean that for our practi-
cal examples we only present the estimates using slice sampling DPMM updates. We suggest that
the more important application of slice sampling lies in the conditional 14C calibration 𝜃i|xi, f (𝜃)
given the current cluster allocation.

6 PRACTICAL EXAMPLES OF 14C SUMMARISATION

We re-analyse three pieces of work where multiple, related, 14C samples have been calibrated and
the resultant set of calendar ages summarised and interpreted. All these summaries were origi-
nally obtained using SPDs. In all plots, time progresses as we move from left to right, that is, the
older times are shown on the left-hand side. Calibration has been performed using IntCal20, the
most recent radiocarbon calibration curve (Reimer et al., 2020). In all these examples, the sam-
pler has been run for 50,000 iterations (with the first half discarded) and 5000 samples used for
our density estimates and intervals. Since the 14C data in these examples extend over reasonable
periods of time, and there are no extremely narrow peaks in our f̂ (𝜃) estimates with wide prob-
ability intervals that coincide with inversions in the curve, we believe the DPMM estimates do
enable identifiable inference on the underlying calendar age density. Some edge effects may how-
ever remain if 14C determinations outside certain ranges were removed from the underlying data
sets, see Section 5.2.
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6.1 Irish raths

Raths, classic Irish mediaeval farmsteads consisting of a living area surrounded by a bank and
ditch, were not used evenly during the mediaeval period. To investigate their prevalence over time,
Kerr and McCormick (2014) collated 255 14C determinations relating to their building and use
during the early-mediaeval period (ca. AD 400–1150). Figure 7 presents the SPD obtained from
these 14C determinations and our non-parametric Bayes summary estimate. For this 14C data, we
had range(𝜃) = 927 and mad(𝜃) = 132, giving a lower 5% quantile of 6 cal years for 𝜎cluster,j, the
prior spread of a cluster in our DPMM.

The SPD is highly multi-modal, in particular showing two peaks—initially around AD 660
followed by a decline before a second peak around AD 775. Kerr and McCormick (2014) warned
against interpreting these two peaks with the intervening trough as evidence for a significant
underlying change in rath prevalence, believing the trough was a result of the sampling and the
structure in the calibration curve. Our Bayesian DPMM summarised density estimate agrees with
this view providing a single mode around AD 680. It supports an interpretation that the use of
raths increased steadily over time from around AD 400 to its peak around AD 680, before decreas-
ing more slowly as we progressed further into the mediaeval period. The SPD peak around AD
775 is likely an artefact of the sharp drop in the calibration curve, due to a massive solar proton
event (Heaton et al., 2021; Miyake et al., 2012), rather than a demographic change.
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F I G U R E 7 Prevalence of raths in mediaeval Ireland based upon 255 14C determinations (Kerr &
McCormick, 2014). Panel (a) non-parametric Bayesian Dirichlet process mixture model (DPMM) estimate
(purple, with dashed pointwise 95% credible intervals) and SPD estimate (shaded grey); Panel (b) the number of
distinct DPMM clusters used to model the 255 determinations, the multiple clusters provide the slight positive
skew and heavy tails in the predictive density. [Colour figure can be viewed at wileyonlinelibrary.com]
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6.2 Irish population decline at the end of the European Iron age

Forecasting societal response and resilience to potential climate change is a pressing global
challenge. Crucial insight can be gained by studying our past, which is characterised by rapid envi-
ronmental changes similar to those we predict for our future. Towards the end of the European
Iron Age, we experienced a large deterioration in climate across North-Western Europe. It has
been suggested that this led to socio-economic collapses and culture changes across the region.
This downturn in climate is proposed to have preceded by a rapid decrease in solar activity around
2800 cal year BP with a less favourable climate seen across Europe at circa 2700–2750 cal year
BP. In Ireland, this manifested in a much wetter environment approximately 2700 cal year BP
(Swindles et al., 2007). To investigate if the onset of this wetter environment led to a population
collapse in Ireland, Armit et al. (2014) collated all available 14C determinations from archaeolog-
ical groups operating within the country. Summarising the calendar age information provided
by these 2021 samples (two are removed due to missing 14C measurement uncertainty) provides,
through estimation of f (𝜃), a proxy for population size over time.

Figure 8 shows the SPD and our non-parametric DPMM estimate for f (𝜃). For this 14C data,
we had range(𝜃) = 3450 and mad(𝜃) = 525, giving a lower 5% quantile of 24 cal years for 𝜎cluster,j,
the prior spread of a cluster in our DPMM. While the SPD identifies several main features, a large
peak in samples from around 3000 cal year BP and a smaller peak around 2100 cal year BP, it is
difficult to determine whether the finer scale variations are artefacts of the SPD method or real
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F I G U R E 8 Irish population change over time based on summarisation of 2021 14C determinations (Armit
et al., 2014). Panel (a) Non-parametric Bayesian DPMM estimate (purple, with dashed pointwise 95% credible
intervals) and SPD estimate (shaded grey). The red shaded time period shows the range of calendar ages,
2650–2740 cal year BP, for the believed onset of wetter environment in Ireland. Panel (b) the number of distinct
DPMM clusters used to model the 2021 14C determinations. [Colour figure can be viewed at
wileyonlinelibrary.com]
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features of the underlying density f (𝜃). In particular, it is unclear precisely when the SPD peak
around 3000 cal year BP begins to drop; and whether the later features around 1550 cal year BP,
are genuine. The DPMM estimate, with credible intervals, provides a clearer interpretation. The
density starts to rise from 3400 cal year BP to a peak at around 2990 cal year BP after which the
density begins to decline. On the decline there appears to be a small secondary peak around 2750
cal year BP after which the decline is more rapid. Around 2500 cal year BP the density is low, in
agreement with the low volume of evidence for Irish settlements in this period (the early Irish
Bronze Age). The density then slowly rises again to suggest increased activity around 2100 cal
year BP before dropping to another low at circa 1670 cal year BP. This low corresponds to the Irish
Dark Ages (Charles-Edwards, 2000). A sharp recovery is then indicated by the peak circa 1540 cal
year BP.

Critically, using the DPMM estimate as a proxy for population size, we find that the decline
in population (beginning around 2990 cal year BP) precedes the climate change in Ireland at
circa 2700 cal year BP. We note however the small temporary increase in the predictive den-
sity at 2750 cal year BP which corresponds to a decrease in solar activity. Unlike the SPD, we
see that the rise in activity during the 2600–1540 cal year BP period is smooth; and also that
the final peak around 1550 cal year BP is not an artefact but evidence in support of the sharp
recovery in activity corresponding to the end of the Irish Dark Ages as previously identified by
Charles-Edwards (2000).

6.3 Palaeo-Indian demography

The extra-terrestrial (ET) impact hypothesis is a highly controversial theory for the cause of the
Younger–Dryas (YD), a significant climatic cooling event which lasted from circa 12,800–11,700
cal year BP. Firestone et al. (2007) proposed that around 12,900 cal year BP one or more large
ET objects impacted (or exploded) over northern North America with catastrophic consequences
including the destabilisation of the Laurentide Ice Sheet leading to the abrupt onset of the YD;
the destruction of Pleistocene megafauna; and the collapse of the Palaeoindian Clovis population
across the North American continent. The hypothesis is significantly disputed, see for example,
Kennett et al. (2009a, 2009b) for suggested evidence in favour versus Pinter et al. (2011) for a
summary of the argument against.

One approach taken to assess the plausibility of the ET hypothesis has been to investigate if a
collapse in the Palaeoindian population is seen directly after the time of the supposed ET impact.
Buchanan et al. (2008) collated 628 14C determinations representing the ages of distinct archaeo-
logical sites found across Canada and North America during the time of the Palaeoindians. They
summarised the calibrated dates of these 14C determinations using SPDs to infer potential changes
in population size, concluding that no significant population bottleneck was observed.

In our DPMM reanalysis, we do not intend to argue for, or against, the ET hypothesis. Instead
our interest lies in investigating possible broader changes to Palaeoindian demography over time.
Figure 9 presents the SPD of the 628 14C determinations of Buchanan et al. (2008) together with
our non-parametric DPMM density estimate f̂ (𝜃). For this 14C data, we had range(𝜃) = 6485 and
mad(𝜃) = 1480, giving a lower 5% quantile of 67 cal years for the prior spread of a cluster in our
DPMM. We see five/six distinct peaks in our DPMM density estimate . Since these are well sepa-
rated in time we can be confident these are not artefacts due to inversions in the calibration curve.
The sharp drop at the end of our density on the right hand side around 9000 cal year BP is a result
of Buchanan’s site selection criteria—archaeological sites with 14C determinations younger than
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F I G U R E 9 Palaeoindian demography based on summarisation of 628 14C determinations from distinct N.
American archaeological sites (Buchanan et al., 2008). Panel (a) non-parametric Bayesian Dirichlet Process
Mixture Model (DPMM) estimate (purple, with dashed pointwise 95% credible intervals) and summed
probability distribution estimate (shaded grey). The red shaded time period shows the Younger–Dryas
(Rasmussen et al., 2014; Reinig et al., 2021). Panel (b) the number of distinct DPMM clusters used to model the
628 14C determinations. [Colour figure can be viewed at wileyonlinelibrary.com]

8000 14C year BP were not collated. Moving from oldest to youngest, there appears to be a peak
in the number of archaeological sites at 12,800 cal year BP around the start of the YD. This is fol-
lowed by a rapid decline in the probability of a site during the YD, except for a potential small peak
around 11,800 cal year BP. We then see a sharp and short-lived peak in the calendar age density
at 11,250 cal year BP. This peak corresponds to a few hundred years after the believed end of the
YD when average global temperatures would have been rapidly increasing to levels comparable
with the present day. The prevalence of sites then appears to decrease again before a more steady
increase around 10,250 cal year BP. There are then two final peaks around 9500 and 9100 cal year
BP. Conversely, the SPD approach provides a less clear picture identifying only four clear peaks
but a much greater amount of noise.

The clear structure in our DPMM density estimate, especially the very sharp peaks, suggest
several further questions—are these sudden peaks of population; do they correspond to potential
mass migrations due to climate change; or do they rather relate to the specific archaeological
sampling of the collated sites?

7 CONCLUSION

Bayesian analyses are now standard in the radiocarbon community, both to create the essen-
tial IntCal calibration curve recording the varying proportion of 12C to 14C over time (Reimer
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et al., 2020); and in the subsequent calibration to convert a 14C determination xi to a calendar age
𝜃i. When considering multiple related 14C determinations, where the samples have calendar ages
that have been drawn from a underlying, but unknown, wider population 𝜃i ∼ f (𝜃), we obtain
better calendar age estimation by calibrating the multiple 14C determinations jointly 𝜃i|x1, … , xn
rather than independently 𝜃i|xi. By estimating the underlying shared calendar age density f (𝜃),
we can also summarise the calendar age information provided by the samples and obtain a useful
summary of population size or activity over time.

Standard approaches to joint calibration in the 14C community have required a fixed paramet-
ric form for f (𝜃). However, in many cases the underlying calendar age distribution from which the
samples have been drawn is neither simple nor known in advance and so parametric approaches
are not appropriate. Current non-parametric approaches such as SPDs (Williams, 2012) lack
statistical rigour and a theoretical underpinning in keeping with the Bayesian calibration frame-
work.

In this paper, we develop a non-parametric latent DPMM approach which is rigorous and
provides a fully Bayesian scheme. We simultaneously estimate both the individual calendar ages
𝜃i|x1, … , xn, for i = 1, … ,n; and the underlying shared calendar age density f (𝜃). We present a
simulation study indicating that our joint DPMM-based approach to calibration offers 15%–30%
improvements in estimation of the calendar ages 𝜃i compared with independent calibration. We
also show how the DPMM provides useful estimates of the underlying shared calendar age density
f̂ (𝜃), both in our simulation examples and in practical settings.

Future work could consider alternative distributions, beyond the normals used here, as the
components in the infinite mixture used to model the underlying f (𝜃). Distributions designed
to match beliefs about the true mixture of phases in a study could provide additional insight
into the number of distinct activity periods over time; and further improve both the accu-
racy of the calibration and the estimation of f (𝜃). Further valuable extensions might ensure
the approach is robust to potential outliers in the 14C determinations xi, or non-normal mea-
surement uncertainty; and incorporate the covariance information present in the calibration
curve.

Finally, we remind users that taphonomic loss often occurs in archaeological and radiocarbon
contexts, whereby we are more likely to radiocarbon date objects from certain time periods due to
differences in both sampling and survival (Contreras & Meadows, 2014). Where we believe tapho-
nomic loss to be significant, or sampling to be non-random, caution should be exercised in directly
interpreting our summarised calendar age density estimates as representative of underlying
population activity.
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APPENDIX B. RECONSTRUCTING A UNIFORM CALENDAR AGE DENSITY

Figures B1 show an illustrative DPMM estimate f̂ (𝜃) for the summarised calendar age density
based upon 100 14C determinations for which the underlying calendar ages were drawn from a
uniform distribution. We compare the true underlying calendar age density (shown in red) against
the estimates obtained via our non-parametric Bayes, blue (Pólya Urn DP updating) and purple
(slice sampling); and the (orange) standard SPD estimate. The pointwise mean for the predictive
density is shown with a solid line; 95% pointwise credible intervals, based upon the individual
realisations, are shown with dashed lines.

None of the methods perform well in reconstructing f (𝜃). Both the Pólya Urn and slice sam-
pling DPMM updates locate the shared density correctly but the use of normal distributions as the
components in the DPMM result in estimates that do not have the sharp drop outside the support
of the underlying uniform and generate spurious peaks in the centre of the density reconstruction.
Note however that the pointwise credible intervals are wide suggesting the model is struggling
to fit properly. This is to be expected since reconstructing a uniform using a mixture of normal
distributions is extremely challenging. Interestingly, both DPMM approaches tend to model the
100 14C determinations as belonging to a relatively small number of clusters, see panels (b) and
(c). Here the independent SPD approach perhaps offers better reconstruction of f (𝜃) although, as
shown in Section 5.1.2, the estimation of the individual 𝜃i remains significantly worse since the
SPD approach does not use the estimate f̂ (𝜃) in calibrating each determination xi. Importantly,
we would expect DPMM performance to be much improved should we use mixture components
in our DPMM that better resemble the underlying f (𝜃).
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(c)

F I G U R E B1 Estimates of f̂ (𝜃), based upon summarising 100 14C observations, when the underlying
samples have calendar ages drawn from a uniform distribution: 𝜃i ∼ f (𝜃) = U[6000, 6500] cal years, and
corresponding 14C determinations Xi ∼ N

(
m(𝜃i), 𝜎2

obs + 𝜌(𝜃i)2
) 14C year BP. Individual panels as for Figure 4.

[Colour figure can be viewed at wileyonlinelibrary.com]
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