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Abstract 

In this paper the Theory of Critical Distances (TCD) is reformulated to be employed to 

estimate random vibration fatigue lifetime of notched components. Using the Point Method 

argument, the response stress at the critical distance from the notch root is taken as the 

damage parameter and then used to perform the vibration fatigue life analysis in the presence 

of geometrical features. First, the finite element simulation is conducted to obtain the response 

Mises stress power spectrum at the critical distance under the load excitation being 

investigated. Subsequently, the probability density distribution of the stress amplitude at this 

position is calculated. Finally, fatigue lifetime is predicted via the parent material S-N curve. 

In order to check the accuracy of the proposed reformulation of the TCD, a series of random 

vibration fatigue results were generated by testing notched aluminum alloy specimens under 

load spectra covering the 1st, 2nd and 3rd order natural frequencies. The results from the 

vibration fatigue tests being performed are seen to be in sound agreement with the predicted 

lifetimes. This strongly support the idea that the TCD is successful also in predicting random 

vibration fatigue lifetime of notched components. 
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1. INTRODUCTION 

Vibration fatigue is a common failure mode of engineering structures. Stress 
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concentrations introduced by holes or connections are inevitable in engineering. Therefore, it 

is of great significance to study the impact of notched stress concentration under vibration 

fatigue conditions. 

Generally, there are two ways to estimate the structural vibration fatigue life: time 

domain method and frequency domain method. The time domain method refers to obtaining 

the time history of the response stress or strain at the dangerous point of the structure, and 

then the cycle counting method is used for cycle counting processing. Finally, the fatigue life 

is estimated according to the S-N curve and the fatigue cumulative damage theory. The 

frequency domain method expresses the amplitude by using response stress/strain spectral 

parameters, and then combines the S-N curve of materials and the fatigue cumulative damage 

theory to estimate the life. 

For conventional fatigue, the commonly used fatigue life analysis methods for notched 

specimens include, amongst other, the nominal stress method [1], the stress field intensity 

method [2-4], and the Theory of Critical Distances (TCD) [5,6]. 

The differences between vibration fatigue and conventional fatigue lie in the stress/strain 

analysis and life estimation methods. Vibration fatigue belongs to dynamic response analysis, 

and the response stress of the structure depends on the amplitude of external loads and the 

dynamic characteristics of the structures. However, conventional fatigue analysis rarely 

involves the acceleration of loads. In terms of life estimation methods, vibration fatigue 

requires the statistical information of the stress/strain to estimate fatigue life, which is not 

considered in conventional fatigue. 

Despite all these, the material fatigue failure mechanisms of both are consistent, and the 

initiation and propagation process of fatigue cracks are also identical. Therefore, conventional 

fatigue life analysis methods can be used as reference for vibration fatigue life analysis. The 

keys to vibration fatigue analysis are response stress spectrum and stress possibility density 

function at dangerous point or nominal stress point. Using the nominal stress method or the 

local stress strain method, the vibration fatigue life analysis of smooth or notched parts can be 

achieved by introducing a mean square stress concentration factor, which is well described in 

[1]. 

To solve the problem of vibration fatigue, scholars have carried out relevant research on 



the basis of the above methods.Wirsching PH et al [7] used rain-flow method to conduct 

random vibration fatigue analysis of the cantilever beam. Braccesi.C [8]et al uses frequency 

domain approach of bimodal stress process to estimate the vibration fatigue life of 

clamped-clamped beam.Wang et al [9,10] proposed a sample method for estimating the 

random vibration fatigue life of structures and a frequency method for random vibration 

fatigue analysis of notched specimen.Li et al [11] proposed a nominal stress method for 

vibration fatigue life analysis of notched specimens and gave the definition and calculation 

formulas of the stress mean square concentration factor of notched specimens under dynamic 

load excitation. Lou [12] devised a prediction model for the vibration fatigue life of blades in 

combination with the stress field intensity method. Luo et al [13,14] combined the Modified 

Wӧhler Curve Method with the Critical Distance theory, and proposed a fatigue life 

calculation method for notched structures under random load and also formulated a damage 

gradient model for life prediction. 

It is well accepted that the fatigue strength of components depends not only on the 

maximum stress at the dangerous spots, but also on the stress field distribution in the critical 

regions. Neuber [15] proposed to take the effective stress as the average value of elastic stress 

within a certain distance from the notch root. Along the same lines, Peterson [16] took as the 

effective stress at a certain point within a certain distance from the notch root. Taylor 

formulated a unified critical distance theory (known as the TCD) based on the above ideas. 

Susmel et al. have carried out systematic theoretical exploration and experimental verification 

involving the simplest formalizations of the TCD, i.e. the Line Method (LM) and Point 

Method (PM). Further, the TCD has been applied successfully to: the life analysis of torsional 

load fatigue [17], variable loading fatigue [18] and multiaxial loading fatigue [19-21], 

prediction of static failure [22], determination of critical distance related parameters [23] and 

influence of mean stress effect [24]. Thanks to its accuracy and reliability, the TCD has 

become an important theory for fatigue and fracture analysis [25]. 

In this paper, the TCD is reformulated to make it suitable for calculating the random 

vibration fatigue life of notched components. In particular, this approach is formalized so that 

it can be used to assess those situations involving random vibration load spectra with different 

orders of load magnitude and different bandwidths. In order to assess the accuracy of this 



alternative formulation of the TCD, a systematic experimental investigation was carried out 

under random vibration fatigue loading by testing edge notched specimens of 2A12, central 

circular hole notched specimens of 2A12 and elliptical hole notched specimens of 2024-T3. 

The obtained results were seen to be promising, confirming that the TCD can be used 

successfully also to predict vibration fatigue lifetime of notched components. 

 

2. TCD METHOD FOR RANDOM VIBRATION FATIGUE LIFE ANALYSIS OF 

NOTCHED SPECIMENS 

According to the TCD, the parameter controlling the fatigue life in the presence of a 

stress concentrator is the equivalent stress eff
  at a distance equal to DPM from the notch root 

(see Figure 1): 

 

FIGURE 1 Schematic diagram of critical distance method - point method 

eff PM( )r D           (1) 

In Figure 1 and Eq. (1) ( )r  is the stress distribution function characterizing the notch under 

investigation, r is the distance from the notch root, and DPM is the critical distance value 

calculated as [26,27]: 
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In Eq. (2) thK  is the threshold value of the stress intensity factor of the material and 0  

is the fatigue limit of the material. 

According to Miner's linear cumulative damage theory, fatigue damage in notched 

specimens under variable amplitude load can be estimated as [28]: 
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where ni represents the number of load cycles at i-th stress level, Si,whreas Ni is the fatigue 

life of the structure when the stress level is Si and can be obtained from the corresponding S-N 

curve - Ni can be denoted also as N(Si). For continuously distributed stress states, the number 

of load cycles within the stress range (Si , Si+ΔSi) is as follows, 
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where v is the number of stress cycles per unit time, p(Si) is the probability density function of 

the stress amplitude. Substituting Eq. (4) into Eq. (3)，it can be obtained 
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where the probability density function, p(S), of stress amplitude can be calculated by Dirlik 

model [29]. 

Here gives the process of Dirlik method: 

For random processes, statistical moments mi can be used to describe the digital 

characteristics of probability density distribution function (PDF) of random processes, and 

spectral moments can be used to describe the digital characteristics of power spectral density. 

The expression of the spectral moment mi of a stationary process X(t) is: 
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where ω is the angular frequency in rad/s and the unit of f is Hz,G(ω) is the bilateral power 

spectral density of X(t). 

The spectral moment mi can be used to calculate the irregular factor  : 
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Dirlik proposed a mixture distribution containing an exponential distribution, two 

Rayleigh distributions: 
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Since the aluminum alloy used belongs to the engineering elastic-plastic materials and it 

is common to use the Mises criterion as the failure criterion, it is appropriate to use Mises 

stress to express the complex stress state. Under random vibration load, the fatigue damage 

control parameter of notched specimen is the response Mises stress at the critical distance of 

DPM. Accordingly, the life T can be obtained from Eq. (5), 
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where PM is the response Mises stress at the critical distance. 

3. EXPERIMENT 

DC-300-3 electric vibration equipment was used for vibration loading. Vibration data 

processing system RC-2000 was used for the output of spectral response curve of sinusoidal 

frequency sweep test. The excitation signals of the electric vibration table were detected by 

the YMC2106C acceleration sensor, which was mounted on the base of the vibration table. 

The response signal near the mass was treated as the output and gathered by another 

YMC2106C acceleration sensor. A camera was used to take pictures of the notch root of test 

specimens every 5 minutes to record and observe the crack initiation process. The testing 

set-up is shown in Figure 2. In the experiments being run, the time needed to grow (from the 

notch root) a crack having length equal to 1 mm was taken as the vibration fatigue crack 

initiation life of the tested specimen. 



 

FIGURE 2 Vibration testing site 

3.1 Test specimen 

The test materials were aluminum alloys 2A12 and 2024-T3. The test specimens were as 

follows: edge notched specimens of 2A12, center circular hole notched specimens of 2A12 

and elliptical hole notched test specimens of 2024-T3. Figure 3 shows the specific dimensions, 

fixed parts and mass positions of various test specimens being employed. 

 

(A) 



 

(B) 

 

(C) 

FIGURE 3 Test notched specimens(A) Central circular hole notched specimen. (B) Edge 

notched specimen. (C) Elliptical hole notched specimen 

From the geometric dimension diagram of the test piece, it can be known that the notch 

radii of the above three types of test specimens are 2mm, 4mm and 2.5 mm respectively 

3.2 Load spectrum test process 

During fatigue testing, one end of the test specimen was clamped and the other end was 

fitted with a mass stack of 200g. Figure 4 shows the installation sketch of a specimen (taking 

the central circular hole notched test specimen as an example) 



 

FIGURE 4 The installation diagram of the central circular hole notched test specimen 

Sinusoidal frequency sweep test was carried out for test specimens according to the 

various testing requirements. The sweep frequency band of central circular hole notched test 

specimen and edge notched test specimen was in the range 10~1000Hz. In contrast, the sweep 

frequency band of the elliptical hole notched specimen was in the range 5~200Hz. For all the 

tests, the sweep frequency acceleration magnitude was 0.1g and the sweep frequency was 

1oct/min. The frequency response curve and the first three natural frequencies of the 

sinusoidal frequency sweep are shown in Figure 5 

 

 

(A) 



 

(B) 

 

(C) 

FIGURE 5 Sinusoidal frequency sweep response curve and the first three natural frequencies 

of the central circular hole notched test specimen(A),edge notched test specimen(B) and 

elliptical hole notched test specimen(C). 

According to the natural frequencies obtained from the sinusoidal frequency sweep 

curves of the notched test specimens, the load excitation spectra were assembled. As shown in 

Figure 6, the load spectra used for the three geometrical configurations being investigated 



were straight. This is mainly because this shape of vibration fatigue load spectrum can best 

reflect the most typical situation of random vibration. 

 The relevant parameters of the load spectrum are listed in Table 1. The load spectra of 

the central circular hole notched specimen and the edge notched specimen had the same 

bandwidth, which contained the first order natural frequency and different acceleration levels. 

The load spectra of the elliptical hole notched specimens were characterised by the same 

magnitude, the associated bandwidth being different (covering the first, second, and third 

order natural frequencies respectively). 

 

FIGURE 6 Load spectrum of vibration fatigue test 

TABLE 1 Load spectrum parameters of vibration fatigue test 

Type 

Excitation 

spectrum 

number  

Start 

frequency 

f1/Hz 

End 

frequency 

f2/Hz 

Power spectral density 

magnitude 

m/ 2(g /Hz)  

Edge notched 

SS-1 10 100 0.045 

SS-2 10 100 0.050 

SS-3 10 100 0.060 

Central 

circular hole 

notched 

SC-1 10 100 0.080 

SC-2 10 100 0.090 

SC-3 10 100 0.10 

Elliptical hole 

notched 

SE-A 8 25 0.10 

SE-B 8 90 0.10 

SE-C 8 160 0.10 



3.3 Test results 

The random vibration fatigue tests were conducted as described in the previous section 

and the test results are listed in Table 2 . 

TABLE 2 Test results of vibration fatigue life 

Type 

Excitation 

spectrum 

number  

Test results of vibration fatigue life /min 

Test specimen life Texp 
Average 

Tave 

Coefficient of 

variation/% 

Edge notched 
SS-1 81.7、69.1、129.3、84.6 91.2 25.00 

SS-2 72.1、65.4、85.0、71.9 73.6 9.74 

SS-3 60.2、39.9、49.7、42.1 48.0 16.54 

Central 

circular hole 

SC-1 115.2、98.4、66.6、70.8 87.8 22.79 

SC-2 44.9、71.2、54.2、75.7 61.5 20.32 

SC-3 32.9、45.5、39.9、60.2 44.6 22.51 

Elliptical hole 

notched 

SE-A 124.6、124.5、93.7、89.5、85.1、92.6 103.5 16.83 

SE-B 91.4、93.5、84.9、89.0、103.4 92.4 6.69 

SE-C 73.9、55.2、41.5、90.6、90.4、65.0 69.4 27.99 

The failure photos of the three types of notched test specimens are presented in Figure 7. 

 

(A)                        (B)                        (C) 

Figure 7 Images of broken notched specimens:(A) edge notched specimen. (B) central 

circular hole notched specimen. (C) elliptical hole notched specimen 

From Figure 7, it can be seen that the crack basically propagates from the notch root, and 

at the initial stage of crack propagation, the crack propagation direction basically follows the 

angular bisector of the notch root. 

4. VIBRATION FATIGUE LIFE ANALYSIS 

4.1 Material properties  

This paper assumes that the average stress is 0. The reason is that the stress value of the 

test specimens used in this paper caused by the gravity of the counterweight is very small 

compared with the excitation load. For the response stress, although there are non-zero mean 



stress cycles, through strain collection and time domain simulation in test, we found that the  

numbers of cycles of positive mean stress basically corresponds to that of negative mean 

stress, so we gave the assumption. 

The mechanical properties(mean stress=0) for aluminum alloys 2A12 and 2024-T3 are 

listed in Table 3 [30, 31]. 

TABLE 3 Mechanical parameters of the two materials 

Material 
Density 

3/ (g cm )   

Threshold value of 

stress intensity factor 

th / (MPa m)K 
 

Material 

fatigue limit 

0 / MPa  

Young's 

modulus 

/ GPaE  

2A12 2.78 4.74 105 70 

2024-T3 2.73 6.98 114 72 

The S-N curves associated with the two investigated materials are as follows： 

20 7.14

13.8 4.0

2A12 aluminium alloy 6.95 10
     

2024-T3 aluminium alloy =10 ( -74)

N S

N S





  


   (10) 

According to Eq (2), the material critical distances (DPM) for 2A12 and 2024-T3 

aluminum alloys were 0.324 and 0.596 mm, respectively. 

4.2 Finite Element analysis 

By using Patran, 2D finite element modeling was carried out for the three geometrical 

configurations being investigated(see Fig 9). 

The reason for using 2D element is that the thickness of the vibration test specimens used 

is very small compared with other geometric dimensions of specimens, the test specimen can 

be considered as a thin plate, and the plane stress assumption is used for FEM. In addition, in 

the process of vibration test, the crack occurs on the surface of specimens, and then extends to 

the neutral plane along the thickness direction and the failure criterion is the observation of 1 

mm crack initiating in the surface, therefore, the 2D element is appropriate for analysis. 

 

(A) 



 

(B) 

 

(C) 

FIGURE 8 Local finite element mesh generation of edge notched test specimen (A),central 

circular hole notched test specimen (B), and elliptical hole notched test specimen (C). 

Combined with Nastran, the frequency response analysis can be carried out and the   

response stress nephogram of the notched specimens at different frequencies can be obtained. 

Then the RMS distributions of response stress around the notch root under different load 

spectra can be obtained, which are shown in Figure 9.  

 

 



 

FIGURE 9 RMS distribution of response stress around the notch root under different load 

spectra. (A)~(C):central circular hole notched specimen;(D)~(F):edge notched 

specimen;(G)~(I):elliptical hole notched specimen. 

The maximum RMS stress line around the notch root is drawn, which is shown in Figure 

10. 

 

(A)        (B)         (C) 

FIGURE 10 Maximum RMS stress line around the notch root (A)central circular hole 

notched specimen;(B) elliptical hole notched specimen;(C) edge notched specimen. 

From Figure.10 it can be seen that the maximum RMS stress line in the range of critical 

distance basically coincides with the angular bisector of the notch root. Comparing Figure 10 

with Figure 7, it can be concluded that the crack propagation directions of the three kinds of 

test specimens also follow the angular bisector of the notch root at the initial stage, which is 

chosen as the critical distance direction. 

Therefore, according to TCD theory, the critical-distance point is taken with the value of 

DPM along the bisector direction of the notch root. 

Next, we can obtain the response Mises stress spectra at the critical-distance point under 

different load spectra by using Patran’s random analysis function: stress spectra are shown in 

Figure 11 and some detailed parameters of the spectra are included in Table 4. 

 



 

(A) 

 

(B) 

 

 



 

(C) 

 

(D) 



 

(E) 

FIGURE 11 (A) Response Mises stress spectra of edge notched test specimen at critical 

distance under different load spectra. (B) Response Mises stress spectra of central circular 

hole notched test specimen at critical distance under different load spectra. (C) Response 

Mises stress spectra of elliptical hole notched test specimen at critical distance under SE-1 

load spectrum. (D) Response Mises stress spectra of elliptical hole notched test specimen at 

critical distance under SE-2 load spectrum.(E) Response Mises stress spectra of elliptical hole 

notched test specimen at critical distance under SE-3 load spectrum 

TABLE 4 Response stress spectra under different excitation spectra 

Type 

Excitation 

spectrum 

number  

Peak of stress 

PSD 

(MPa2.Hz-1) 

RMS value of 

stress/MPa 

Edge notched 

SS-1 1.83e+3 76.5  

SS-2 2.03e+3 80.6  

SS-3 2.44e+3 88.3  

Central circular 

hole notched 

SC-1 1.34e+3 76.3  

SC-2 1.51e+3 80.9  

SC-3 1.68e+3 85.2  

Elliptical hole 

notched 

SE-A 8.28e+3 90.3  

SE-B 8.28e+3 92.1  

SE-C 8.28e+3 96.9  



It can be seen from Table 4 that with the increase of the magnitude of the power 

spectrum density of the excitation load spectrum, the root mean square value RMS and the 

peak value of the response stress spectrum increase. With the increase of the band width of the 

excitation load spectrum, the root mean square value RMS of the response stress spectrum 

increases and the peak value basically remains unchanged. 

As seen in Figure 12, the probability distribution of the stress amplitude was determined 

by substituting the response Mises stress spectra of the three notch configurations under the 

investigated load spectra into the Dirlik model.The whole process is carried out in Matlab. 

 

(A) 

 

(B) 



 

(C) 

FIGURE 12 Probability density function of stress amplitude of notched test specimen under 

different load spectra:(A) edge notched test specimen. (B) central circular hole notched test 

specimen. (C) elliptical hole notched test specimen 

4.3 TCD method of life prediction 

Combined with the finite element simulation model, the response Mises stress spectrum 

at the critical distance was obtained. Then the Dirlik model was used to fit the probability 

distribution of the stress amplitude, p(S). Subsequently, the p(S) and the S-N curve denoted in 

Eq. (8) (10) were substituted into the Eq. (9) to calculate the random vibration fatigue life. 

The calculation results are shown in Table 5 below. The error factor, η, listed in the Table 4 

was calculated as follows: 

 

Calculat

exp

cal
ed life 

Experimental life  
Error factor 

T

T
          (11) 

It can be seen from the formula that the error factor reflects the error magnitude and the 

conservative degree of prediction. It should be noted that when the error factor is >1, the 

calculated life is conservative. In contrast, when the error factor is<1, the calculated life is 

non-conservative. 

TABLE 5 Test results of vibration fatigue life and prediction error 

Type Excitation Vibration fatigue life/min Error factor 



spectrum 

number  
Experiment Texp Calculation Tcal 

η 

Edge 

notched 

SS-1 91.2 92.8 0.98 

SS-2 73.6 64.5 1.14 

SS-3 48.0 34.5 1.39 

Central 

circular 

SC-1 87.8 85.3 1.03 

SC-2 61.5 56.9 1.08 

SC-3 44.6 39.8 1.12 

Elliptica

l hole 

SE-A 101.6 81.4 1.25 

SE-B 92.4 60.5 1.53 

SE-C 69.4 31.3 2.20 

 

It can be seen from Table 5 that the error factor increases with the increase of the 

acceleration excitation level and the broadening of the frequency band of load spectra. This is 

mainly because, with the increase of the loading level, the proportion of large load in the load 

cycles increases, and the widening of the frequency band causes superposition of multiple 

modal vibration shapes of notched specimens, which will exacerbate the nonlinearity of 

vibration while the finite element analysis is based on the linear hypothesis. Hence, the error 

factor shows a gradual increase trend. 

 

 

FIGURE 13 Comparative analysis of test value and predicted value 

https://fanyi.baidu.com/?aldtype=16047###


It can be seen from Figure 13 that almost all the data show conservative predictions and 

most of the predicted values fall within the 20% error band. Therefore, the TCD has been 

validated as an effective method for predicting the random vibration fatigue life of notched 

specimens. 

5. DISCUSSION 

(1) Compared to the other two test pieces, the estimated vibration fatigue life of the 

elliptical hole test specimen is more conservative. This is because the load spectra (SE-B, 

SE-C) of the elliptical hole specimens span the first two or three natural frequencies of the test 

specimens and the load spectral bandwidth are larger than that of the other two kinds of 

specimens.  

The widening of the load spectrum bandwidth increases the number of load cycles per 

unit time. Due to the thin plate structure of the test specimens, there is a certain degree of 

decrease in stiffness following under high frequency vibration, which will make the number 

of response stress cycles per unit time slightly less than that of excitation load cycles. In this 

case, the fatigue damage of the test is overestimated, which makes the calculation value more 

conservative. This is also the reason why the life of the load spectrum SE-C shows relatively 

large error. 

(2) Most fatigue lives estimated by the paper’s method based on TCD are conservative, 

which is practical to engineering because the estimated non-conservative value is dangerous. 

It also proves the effectiveness of the method in this paper. 

(3) It needs to be noted that although theoretically speaking, the radius of notch or defect 

has some influence on fatigue life analysis, the TCD model used for vibration fatigue analysis 

has little or no relationship with the radius or defect of notch. This is mainly because the TCD 

model used in this paper initially uses the equivalent stress at the critical distance from the 

notch root to characterize the damage of material and the critical distance has little 

relationship with the radius or defect of notch, therefore the method is independent of the 

radius or defect of notch, which is also one of the advantages. 

 



6. CONCLUSIONS 

(1) In this paper, the TCD method for random vibration fatigue life analysis of notched 

specimens is proposed. The response Mises stress spectrum at the critical distance is used as 

the characterization parameter of stress distribution and stress magnitude near the notch root 

under random vibration excitation. The idea is clear and the calculation efficiency is high. 

(2) The method proposed in this paper takes into account the random vibration load 

spectrum of different orders of magnitude and different bandwidths, and has a wide range of 

applicability. Comparing the life prediction results with the test results, the prediction 

accuracy is high. 

(3) The method introduces structural dynamic characteristics by using response stress 

spectra and considers the stress distribution around the notch root by applying TCD. It is 

proved that the application of TCD to vibration fatigue is reasonable. 

ACKNOWLEDGEMENT 

The National Natural Science Foundation of China (Grant No. 52075244) is 

acknowledged for supporting the present research. 

CONFLICT OF INTEREST 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

 

REFERENCES 

[1] Yao WX. Fatigue Life Estimation of Structures. Science Press; 2019. (in Chinese) 

[2] Yao WX, Ye B, Zheng L-C. A verification of the assumption of anti-fatigue design. Int. J. 

Fatigue 2001; 23(1):271-277. 

[3] Yao WX, Xia KQ, Gu Y. On the fatigue notch factor Kf. Int. J. Fatigue 1995; 

17(4):245-251. 

[4] Yao WX. The description for fatigue behaviours of metals by stress field intensity 

approach. Acta mech. solida sin. 1997;8(1):38-48. (in Chinese) 



[5] Taylor D. Geometrical effects in fatigue：A unifying theoretical model. Int. J. Fatigue 

1999;21：413-420. 

[6] Taylor D. The Theory of Critical Distances: a new perspective in fracture mechanics. 

Elsevier 2007. 

[7] Wirsching PH, Light MC. Fatigue under wide band random loading. J Struct Div, ASCE 

1980;106(7):1593-1607 

[8] Braccesi C, Cianetti F, Lori G, et al. Fatigue behaviour analysis of mechanichal 

components subject to random bimodal stress process:frequency domain approach. Int. J. 

Fatigue 2005;27:335-345. 

[9] Wang MZ, Yao WX, Sun W. Sample approach for fatigue life prediction of structures 

under random vibration. Chinese Journal of Construction Machinery.2008;19(8):972:975. 

[10] Wang MZ, Yao WX. Frequency domain method for fatigue life analysis on notched 

specimens under random vibration loading 

[11] Li DY, Yao WX. Nominal stress approach for life prediction of notched specimen under 

vibration loading. Acta Aeronautica et Astronautica Sinica 2011;32(11):2036-2041. (in 

Chinese) 

[12] Lou GK. Research on probability life prediction of blade vibration fatigue. Nanjing 

University of Aeronautics and Astronautics, 2020. (in Chinese) 

[13] Luo ZB, Chen HH, Wang J, et al. Fatigue life calculation of notched specimens by 

modified Wӧhler curve method and theory of critical distance under multiaxial random 

loading. Fatigue Fract. Eng. Mater. Struct. 2020;43(9):2101-2115. 

[14] Luo ZB, Chen HH, Zheng RH , et al. A damage gradient model for life prediction of 

notched metallic structures under multiaxial random vibrations. Fatigue Fract. Eng. 

Mater. Struct.2021;45(2):514-529. 

[15] Neuber H. Theory of notch stresses: principles for exact calculation of strength with 

reference to structural form and material. 2nd ed. Berlin: Springer, 1958.  

[16] Peterson RE. Notch sensitivity. Metal fatigue, 1959:293-306 

[17] Susmel L, Taylor D. A simplified approach to apply the theory of critical distances to 

notched components under torsional fatigue loading. Int. J. Fatigue 2006;28:417-430. 



[18] Susmel L, Taylor D. The Theory of Critical Distances to estimate lifetime of notched 

components subjected to variable amplitude uniaxial fatigue loading. Int. J. Fatigue 

2011;33(7):900-911. 

[19] Susmel L, Taylor D. Non-propagating cracks and high-cycle fatigue failures in sharply 

notched specimens under in-phase Mode I and II loading. Eng. Fail. Anal. 2007;14: 

861–876. 

[20] Susmel L. Modified Wӧhler curve method, theory of critical distances and Eurocode 3: A 

novel engineering procedure to predict the lifetime of steel welded joints subjected to 

both uniaxial and multiaxial fatigue loading. Int. J. Fatigue 2008;30: 888–907. 

[21] Susmel L. The Modified Wöhler Curve Method calibrated by using standard fatigue 

curves and applied in conjunction with the Theory of Critical Distances to estimate 

fatigue lifetime of aluminium weldments. Int. J. Fatigue 2009;31:197–212. 

[22] Susmel L, Taylor D. On the use of the Theory of Critical Distances to predict static 

failures in ductile metallic materials containing different geometrical features. Eng. Fract. 

Mech. 2008;75:4410–4421. 

[23] Susmel L, Taylor D. The Theory of Critical Distances as an alternative experimental 

strategy for the determination of ΔKIC and ΔKth. Eng. Fract. Mech. 2010;77:1492–1501. 

[24] Susmel L, Atzori B, Meneghetti G, Taylor D. Notch and mean stress effect in fatigue as 

phenomena of elasto-plastic inherent multiaxiality. Eng. Fract. Mech. 

2011;78:1628–1643. 

[25] Susmel L. The theory of critical distances: a review of its applications in fatigue. Eng. 

Fract. Mech. 2008;75:1706-1724.  

[26] Frost NE. Significance of Non-propagating Cracks in the Interpretation of Notched 

Fatigue Data. J. Mech. Eng. Science 1961;3(4):299-302. 

[27] El Haddad MH, Smith KN, Topper TH. Fatigue crack propagation of short cracks. ASME. 

J. Eng. Mater. Technol. 1979;101(1):42-46.  

[28] Tovo R. Cycle distribution and fatigue damage under broad-band random loading. Int. J. 

Fatigue 2002;24:1137-1147. 

[29] Dirlik T. Application of computers in fatigue analysis. Engineering University of 

Warwick Coventry, England.1985,1. 

http://sage.cnpereading.com/search/search?advancedValues=N.%20E.%20Frost&advancedTypes=Author&searchType=clicklink


[30] Ding CF, Yu H, Wu XR. Investigation of threshold and wide range fatigue crack 

propagation rates in LY12CZ alloy. J. Aeronautical Mater. 2000;20(1):12-17. (in 

Chinese) 

[31] Liu JZ, Lou RX. Data sheet on mechanical properties of key Metal Materials for aircraft 

design.Beijing. Aviation Industry Press.2015. (in Chinese) 


