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Abstract

The evaluation of recent embedding-based

evaluation metrics for text generation is pri-

marily based on measuring their correlation

with human evaluations on standard bench-

marks. However, these benchmarks are mostly

from similar domains to those used for pre-

training word embeddings. This raises con-

cerns about the (lack of) generalization of

embedding-based metrics to new and noisy do-

mains that contain a different vocabulary than

the pretraining data. In this paper, we examine

the robustness of BERTScore, one of the most

popular embedding-based metrics for text gen-

eration. We show that (a) an embedding-

based metric that has the highest correlation

with human evaluations on a standard bench-

mark can have the lowest correlation if the

amount of input noise or unknown tokens in-

creases, (b) taking embeddings from the first

layer of pretrained models improves the ro-

bustness of all metrics, and (c) the highest

robustness is achieved when using character-

level embeddings, instead of token-based em-

beddings, from the first layer of the pretrained

model.1

1 Introduction

Evaluating the quality of generated outputs by Nat-

ural Language Generation (NLG) models is a chal-

lenging and open problem. Human judgments

can directly assess the quality of generated texts

(Popović, 2020; Escribe, 2019). However, human

evaluation, either with experts or crowdsourcing,

is expensive and time-consuming. Therefore, auto-

matic evaluation metrics, which are fast and cheap,

are commonly used alternatives for the rapid de-

velopment of text generation systems (van der Lee

et al., 2019). Traditional metrics such as BLEU

(Papineni et al., 2002), METEOR (Banerjee and

1The code of our experiments is avail-
able at https://github.com/long21wt/

robust-bert-based-metrics

Lavie, 2005), and ROUGE (Lin, 2004) measure

n-gram overlap between generated and reference

texts. While these metrics are easy to use, they

cannot correctly assess generated texts that contain

novel words or a rephrasing of the reference text.

Recent metrics like BERTScore (Zhang et al.,

2020), MoverScore (Zhao et al., 2019), COMET

(Rei et al., 2020), BARTScore (Yuan et al., 2021),

and BLEURT (Sellam et al., 2020) adapt pretrained

contextualized word embeddings to tackle this is-

sue. These novel metrics have shown higher cor-

relations with human judgments on various tasks

and datasets (Ma et al., 2019; Mathur et al., 2020).

However, the correlations are measured on stan-

dard benchmarks containing text domains similar

to those used for pretraining the embeddings them-

selves. As a result, it is unclear how reliable these

metrics are on domains and datasets containing

words outside the vocabulary of the pretraining

data.

The goal of this paper is to investigate the robust-

ness of embedding-based evaluation metrics on

new and noisy domains that contain a higher ratio

of unknown tokens compared to standard text do-

mains.2 We examine the robustness of BERTScore,

one of the most popular recent metrics for text

generation.3 In order to perform a systematic eval-

uation on the robustness of BERTScore with regard

to the ratio of unknown tokens, we use character-

based adversarial attacks (Eger and Benz, 2020)

that introduce a controlled ratio of new unknown

tokens to the input texts. Our contributions are:

• We investigate whether the use of character-

based embeddings instead of token-based em-

beddings improves the robustness of embedding-

2We connect to recent research that investigates the behav-
ior of metrics in adversarial situations (Sai et al., 2021; Kaster
et al., 2021; Leiter et al., 2022; Zeidler et al., 2022).

3E.g., as of September 2022, BERTScore is cited ∼1200
times while it is ∼200 and 400 for MoverScore and BLEURT,
respectively.
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based generation metrics. Our results show that

the evaluations based on character-level embed-

dings are more robust.

• We examine the impact of the hidden layer used

for computing the embeddings in BERTScore.

We show that the choice of hidden layer affects

the robustness of the evaluation metric.

• We show that by using character-level embed-

dings from the first layer, we achieve the high-

est robustness, i.e., similar correlation with hu-

man evaluations for different ratios of unknown

tokens.

2 BERTScore

BERTScore (Zhang et al., 2020) computes the

pairwise cosine similarity between the reference

and hypothesis using contextual embeddings. It

forward-passes sentences through a pretrained

model, i.e., BERT (Devlin et al., 2019), and ex-

tracts the embedding information from a specific

hidden layer. To select the best hidden layer,

BERTScore uses average Pearson correlation with

human scores on WMT16 (Bojar et al., 2016) over

five language pairs. For instance, the best layer is

the ninth layer for BERTbase−uncased.

BERTScore with character-level embeddings.

Existing embedding-based metrics, including

BERTScore, use token-based embeddings that are

taken from pretrained models like BERT (Devlin

et al., 2019). In this paper, we investigate the im-

pact of using character-level embeddings instead

of token-level embeddings in BERTScore (Zhang

et al., 2020). We use ByT5 (Xue et al., 2021),

which encodes the input at the byte level. It tok-

enizes a word into a set of single characters or con-

verts it directly to UTF-8 characters before forward-

ing the input sequence into the model. Xue et al.

(2021) show that ByT5 is more robust to noise com-

pared to word-level embeddings. For computing

BERTScore using character-level embeddings, we

use ByT5 instead of BERT in BERTScore computa-

tions. We adapt three variants of ByT5 (small, base,

large) in BERTScore. Table 1 presents the best

layer of ByT5 models for computing BERTScore.

3 Experimental settings

3.1 Evaluation on a standard benchmark

We report the results on the WMT19 dataset (Ma

et al., 2019) that contains seven to-English lan-

Model Best Layer Score

ByT5-small 1 0.510
ByT5-base 17 0.581
ByT5-large 30 0.615

Table 1: Best layers with different ByT5 variants and

their average Pearson correlation score on WMT16.

Language Pairs No. Segment Sample (DARR)

de-en (German-English) 85365
fi-en (Finnish-English) 38307
gu-en (Gujarati-English) 31139
kk-en (Kazakh-English) 27094
lt-en (Lithuanian-English) 21862
ru-en (Russian-English) 46172
zh-en (Chinese-English) 31070

Table 2: To-English language pairs of WMT19. DARR

denotes Direct Assessment Relative Ranks, in which

all available sentence pairs of DA (Direct Assessment)

scores are taken into account.

guage pairs. Each language pair has 2800 sen-

tences, each corresponding to one reference, plus

the systems’ output sentences. Totally, the hu-

man evaluation in WMT19 has 281k segment sam-

ple scores for each of the output translation in to-

English language pairs. Table 2 shows the language

pairs considered, as well as the number of segments

per language pair.

3.2 Evaluating Robustness

Evaluation on different ratios of unknown to-

kens. To evaluate the robustness of evaluation

metrics on new domains, we use character-level

attacks to introduce a controlled ratio of unknown

tokens in the corresponding reference texts of the

evaluation sets.4 We examine five different attacks

from Eger and Benz (2020): (a) intruders: in-

serting a character—e.g., ‘.’, ‘/’, ‘:’—in between

characters of a word, (b) disemvoweling: remov-

ing vowels—e.g., ‘a’, ‘e’, ‘i’—from the word, (c)

keyboard typos: randomly replacing letters of a

word with characters that are nearby the original

characters on an English keyboard, (d) phonetic:

changing a word’s spelling in such a way that its

pronunciation stays the same, and (e) visual: re-

placing characters with a symbol that is its visually

nearest neighbor (Eger et al., 2019). We can control

4We need human annotations for evaluating the correla-
tion of evaluation metrics with human judgments, and such
annotations are available for standard domains like WMT
datasets. As a result, we introduce unknown tokens by using
character-level attacks to artificially introduce more unknown
tokens.



Setting Sentence

no-attack Now they have come to an agreement.
intrude Now they have c/o/me t+o a>n agreement.
disemvowel Nw thy have come to an grmnt.
keyboard-typo No3 they have come to xn agrrement.
phonetic Nau they have cohm to an agrimand.
visual Now thẸỸ hẲve come to aᷠ aᵹᴚḕḘmḔnƫ.

Table 3: Examples for the character-level attacks (Eger

and Benz, 2020; Keller et al., 2021) at perturbation

level p = 0.3, i.e., the probability that each letter in

a sentence is attacked is 0.3.
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Figure 1: The number of average unknown tokens

per segment across seven to-English language pairs in

WMT19 given different attacks and perturbation levels.

the ratio of tokens that are affected by the adversar-

ial attack by the perturbation level (p), e.g., p = 0

denotes no attack and p = 0.3 indicates that each

letter in the sentence is attacked by the probability

of 0.3. Table 3 shows an example of each of these

attacks at p = 0.3.

Figure 1 shows the average number of un-

known tokens, as determined based on BERT’s

tokenizer, per segment across seven to-English lan-

guage pairs given different attacks and perturba-

tion levels. We count a token as an unknown to-

ken if (1) BERT represents it as [UNK], or (2)

BERT splits it into subwords, e.g., ‘pre-trained’ to

‘pre’,‘##train’,‘##ed’.5 As we see from the figure,

the number of unknown tokens increases as we ap-

ply these character-level attacks with higher pertur-

bation levels. In our experiments in Section 4, we

report the results using visual attacks. The results

using other attacks are also reported in Appendix

B, and they follow the same patterns as those using

the visual attack.

Evaluation on low-resource language pairs.

Apart from the experiments on WMT19, we also

perform the evaluations on the (Xhosa, Zulu) and

5Please refer to the detailed algorithm in Appendix A.

Language pair No. unknown tokens

bn-hi (Bengali-Hindi) 19.235

hi-bn (Hindi-Bengali) 23.478

xh-zu (Xhosa-Zulu) 28.930

zu-xh (Zulu-Xhosa) 28.743

Table 4: The number of average unknown tokens per

segment for each language pair in our low-resource

datasets.

(Bengali, Hindi) language pairs from WMT21 (Fre-

itag et al., 2021). BERTScore uses multilingual

BERT for evaluating non-English languages. Mul-

tilingual models contain a higher ratio of unknown

tokens for low-resource languages, and therefore,

evaluating the correlation of embedding-based met-

rics with human judgments on low-resource lan-

guages is also an indicator of their robustness. Ta-

ble 4 shows the number of unknowns tokens per

segment to multilingual BERT in four different low-

resources language pairs in WMT21 dataset. We

refer to the number of segments of low-resources

dataset in Table 7 in Appendix C.

4 Experiments

4.1 Impact of Character-level Embeddings

Table 5 shows the results of BERTScore using dif-

ferent embeddings on WMT19’s to-English lan-

guage pairs (using p = 0). Figure 2 shows the

average correlation score over all seven to-English

language pairs given different perturbation level

from p = 0 to p = 0.3 using the visual attack.

We observe that computing BERTScore using

the ByT5-small models results in a slightly lower

average correlation with human scores over the

seven to-English pairs at p = 0 compared to

BERTScore using BERT and larger ByT5 models.

However, the average correlation using ByT5-

small remains around the same value given dif-

ferent ratio of unknown tokens, indicating higher

robustness of the metrics using ByT5-small. On the

other hand, while using BERT-large embeddings re-

sults in the highest average correlation with human

scores in Table 5, its correlation drops consider-

ably in the presence of more unknown tokens in

Figure 2.

For Hindi-Bengali and Zulu-Xhosa, we com-

pare the results against using the BERT-base-

multilingual model in Table 6. We observe that the

BERTScore metric that uses ByT5-small achieves



de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

BERT-base 0.180 0.339 0.288 0.438 0.364 0.209 0.410 0.318
BERT-large 0.194 0.346 0.292 0.442 0.375 0.208 0.418 0.325
ByT5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
ByT5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
ByT5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

Table 5: Segment-level Kendall correlation results for to-English language pairs in WMT19 without any attack, i.e.

p = 0. The correlation of BERTScore with human are reported using different embeddings including bert-base-

uncased, bert-large-uncased, ByT5-small, ByT5-base, and ByT5-large.
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Figure 2: Average Kendall correlation of 7 to-English

language pairs in WMT19 given different perturbation

level from p = 0.0 to p = 0.3 using the visual attack.

Model bn-hi hi-bn xh-zu zu-xh

BERT-multi 0.073 0.364 0.266 0.488
ByT5-small 0.096 0.411 0.311 0.523

Table 6: Kendall correlation scores of BERTScore for

WMT21 low-resource language pairs Hindi-Bengali

and Zulu-Xhosa using BERT-base-multilingual and

ByT5-small embeddings.

higher correlations with humans throughout. Given

that low resources languages contain more out-

of-vocabulary words for pretrained models, this

observation confirms our previous results using

character-level attacks on the WTM19 dataset.

4.2 Impact of the Selected Hidden Layer

Our results in Section 4.1 show the robustness of

BERTScore when using the ByT5-small model for

computing the embeddings. However, as Table 1

shows, the selected hidden layer for getting em-

beddings varies when using different pretrained

models. For instance, when using ByT5-small em-

beddings, the model uses the embeddings of the

first layer while it uses the embeddings of the 30th

layer for ByT5-large. Zhang et al. (2020) show

that BERTScore correlation scores with humans

drop as they select the last few layers of BERT

for getting the embeddings. Therefore, the robust-

ness of examined metrics may also depend on their

corresponding selected layers for computing em-

beddings.

In this section, we evaluate the impact of the se-

lected hidden layer on the robustness of the metric.

We evaluate three settings where we use: (a) the

embeddings of the first layer for all models, (b) the

embeddings of the best layer for each model (cf.

Table 3), and (c) the mean of aggregated embed-

dings over all layers. We perform the robustness

evaluations using the visual attack at p = 0.3. Fig-

ure 3 shows the average results of this experiment6.

We make the following observations.

First, using the embeddings of the first layer

closes the gap between the correlations of different

variations of the ByT5 model, i.e., small, base, and

large, in the presence of more unknown tokens, i.e.,

p = 0.3.

Second, using the embeddings of the first layer

improves the robustness of BERTScore using

BERT embeddings, i.e., improving the correla-

tion from 0.033 to 0.174 for BERT-base given

p = 0.3. However, the correlation of the result-

ing BERTScore is still considerably lower than us-

ing ByT5 embeddings at the presence of more un-

known tokens. This indicates that both the choices

of the hidden layer as well as the pretrained model

play an important role in the robustness of the re-

sulting embedding-based metric. A reason why

the first layer may be more effective in our setup

is that, in the presence of input noise or unknown

tokens, embeddings of higher layers may become

less and less meaningful, as the noise may propa-

gate and accumulate along layers. We provide an

example from the similarity matrix of the resulting

embeddings for different layers in Figure 5 in the

Appendix E.

Overall, our results indicate that optimizing the

layer on a standard data set such as WMT16 may

6In Table 8 and 9 in Appendix D, we report scores for each
language pair.
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Figure 3: Average segment-level Kendall correlation results for seven to-non-English language pairs in WMT19

to fist layer, default layer, and mean of aggregated embeddings setting in BERTScore.

be suboptimal in terms of the generalization of

the resulting metrics. Concerning efficiency of the

resulting metrics (a core aspect of modern NLP

(Moosavi et al., 2020)), BERT-base has 110 mil-

lion parameters, while ByT5-small has 300 million

parameters. With the default BERTScore setting,

passing the input through 9 layers results in a longer

inference time. However, using the embeddings of

the first layer results in a very fast inference for

both models.

5 Conclusion

Embedding-based evaluation metrics will be used

across different tasks and datasets that may contain

data from very different domains. However, such

metrics are only evaluated on standard datasets that

contain similar domains as those used for pretrain-

ing embeddings. As a result, it is not clear how

reliable the results of such evaluation metrics will

be on new domains. In this work, we investigate

the robustness of embedding-based metrics in the

presence of different ratios of unknown tokens. We

show that (a) the results of the BERTScore using

BERT-based embeddings is not robust, and its cor-

relation with human evaluations drops significantly

as the ratio of unknown tokens increases, and (b) us-

ing character-level embeddings from the first layer

of ByT5 significantly improves the robustness of

BERTScore and results in reliable results given dif-

ferent ratios of unknown tokens. We encourage the

community to use this setting for their embedding-

based evaluations, especially when applying the

metrics to less standard domains.

In future work, we aim to address other aspects

of robustness of evaluation metrics beyond an in-

creased amount of unknown tokens as a result of

spelling variation, such as how metrics cope with

varying factuality (Chen and Eger, 2022) or with

fluency and grammatical acceptability issues (Rony

et al., 2022). We also plan to investigate the impact

of pixel-based representations (Rust et al., 2022)

(which are even more lower-level) for enhancing

the robustness of evaluation metrics.
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Maja Popović. 2020. Informative manual evalua-
tion of machine translation output. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5059–5069, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Associa-
tion for Computational Linguistics.

Md Rashad Al Hasan Rony, Liubov Kovriguina,
Debanjan Chaudhuri, Ricardo Usbeck, and Jens
Lehmann. 2022. RoMe: A robust metric for eval-
uating natural language generation. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5645–5657, Dublin, Ireland. Association for
Computational Linguistics.



Phillip Rust, J.F. Lotz, Emanuele Bugliarello, Eliza-
beth Salesky, Miryam de Lhoneux, and Desmond El-
liott. 2022. Language modelling with pixels. ArXiv,
abs/2207.06991.

Ananya B. Sai, Tanay Dixit, Dev Yashpal Sheth, Sreyas
Mohan, and Mitesh M. Khapra. 2021. Perturbation
CheckLists for evaluating NLG evaluation metrics.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7219–7234, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881–7892, Online. Association for Computa-
tional Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34.

Laura Zeidler, Juri Opitz, and Anette Frank. 2022.
A dynamic, interpreted CheckList for meaning-
oriented NLG metric evaluation – through the lens
of semantic similarity rating. In Proceedings of
the 11th Joint Conference on Lexical and Computa-
tional Semantics, pages 157–172, Seattle, Washing-
ton. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.



Algorithm 1: Count UNK token in a BERT

tokenized sentence

1 def count UNK:
Data: sentence: a tokenized sentence as

a list of string

output :count: number of UNK token

of input tokenized sentence

2 count←− 0

3 buffer←− empty list

4 for token in sentence do

5 if [UNK] in token then

6 count←− count +1

7 else if ## in token then

8 Add token to buffer

9 else

10 if len(buffer) != 0 then

11 count←− count +1

12 Empty buffer

13 end

14 end

15 end

16 if len(sentence) ≥ 2 then

17 if ## in last token of sentence then

18 count←− count +1

19 end

20 end

21 return count

A Counting UNK token

Algorithm 1 shows how we count UNK tokens

that the BERT tokenizer creates from a sentence.

In BERT, [UNK] represents the UNK tokens that

are not in their given vocabulary. Besides [UNK],

BERT use WordPiece tokenizer concept, which

breaks the unknown word into sub-words using a

greedy longest-match-first algorithm, such as splits

“bassing” into ‘bass’ and ‘##ing’ where ‘##’ de-

notes the join of sub-words. Thus, the UNK word

becomes two known words. ‘##’ is the indication

for the starting of a UNK word if the previous to-

ken does not contain ‘##’. In case the next token

still contains ‘##’, it indicates that the token still

belongs to a word and does not count as a UNK

token, e.g., “verständlich” to ‘vers’, ‘##tä’, ‘##nd’,

‘##lich’ and count it as one UNK token. It lasted

until we finally found non contain ‘##’ token. With

a word-piece tokenizer, the beginning token of a to-

kenized sentence is either [UNK] or known word,

and we also consider the case where the last token

Language Pair No. Segment

bn-hi (Bengali→ Hindi) 4,461

hi-bn (Hindi→ Bengali) 4,512

xh-zu (Xhosa→ Zulu) 2,952

zu-xh (Zulu→ Xhosa) 2,502

Table 7: Amount of segments in WMT21 for Hindi

←→ Bengali and Zulu←→ Xhosa.

contains “##”.

B WMT19

The results of other attacks are illustrated in Fig-

ure 4.

C FLORES

Table 7 shows the number of provided human an-

notations in FLORES.

D Impact of layer choice in BERTScore

Table 8 and 9 show the particular results of each

language pair with different settings in BERTScore

without attack and with visual attack at p = 0.3

respectively.

E Effectiveness of the first layer

In Figure 5, we show four different settings

and their cosine similarity matrix computed by

BERTScore using bert-base-uncased. In both nor-

mal reference with 1st or 9th setups, matched to-

kens get higher similarity score. 9th layer setting

gathers information for relevant tokens, which re-

sults in higher similarity score across the matrix.

As in the case with attacked reference, 1st layer

setting penalizes the unmatched tokens and the

magnitude of matched tokens are as high as using

normal reference with 1st layer setup. However,

by using 9th layer for attacked reference, we can

observe the hue color of matched tokens with low

score. Thus, we conclude the accumulated noise to

higher layer cause the problem with effectiveness

in our previous setup with WMT19 dataset.
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Figure 4: Average Kendall correlation of seven to-English language pairs in WMT19 under attack with perturbation

level from p = 0.0 to p = 0.3

Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased 0.18 0.339 0.288 0.438 0.364 0.209 0.41 0.318
BERTScore-byt5-small 0.172 0.286 0.278 0.422 0.307 0.194 0.373 0.290
BERTScore-byt5-base 0.197 0.326 0.297 0.419 0.358 0.215 0.418 0.319
BERTScore-byt5-large 0.193 0.333 0.304 0.427 0.354 0.208 0.415 0.319

First

BERTScore-bert-base-uncased 0.147 0.295 0.263 0.421 0.318 0.183 0.361 0.284
BERTScore-byt5-small 0.171 0.285 0.279 0.422 0.307 0.194 0.370 0.290
BERTScore-byt5-base 0.164 0.276 0.280 0.414 0.307 0.191 0.362 0.285
BERTScore-byt5-large 0.161 0.277 0.280 0.416 0.308 0.189 0.361 0.285

BERTScore-bert-base-uncased 0.17 0.326 0.289 0.437 0.351 0.206 0.397 0.311
Mean of BERTScore-byt5-small 0.170 0.292 0.284 0.420 0.313 0.202 0.372 0.293
aggregation BERTScore-byt5-base 0.188 0.324 0.305 0.427 0.347 0.207 0.408 0.315

BERTScore-byt5-large 0.185 0.322 0.311 0.431 0.343 0.208 0.411 0.316

Table 8: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with

respect to fist layer, default layer and mean of aggregated embeddings setting without any attack i.e. p = 0.



Setting Metric de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

Default

BERTScore-bert-base-uncased -0.003 -0.014 -0.027 0.149 -0.022 0.024 0.126 0.033
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.014 -0.009 0.026 0.147 0.052 0.042 0.155 0.061
BERTScore-byt5-large 0.011 -0.055 -0.018 0.141 -0.015 0.032 0.155 0.036

First

BERTScore-bert-base-uncased 0.074 0.215 0.082 0.215 0.234 0.120 0.278 0.174
BERTScore-byt5-small 0.155 0.266 0.239 0.392 0.264 0.175 0.360 0.264
BERTScore-byt5-base 0.147 0.256 0.262 0.403 0.264 0.166 0.348 0.264
BERTScore-byt5-large 0.138 0.258 0.259 0.394 0.262 0.170 0.352 0.262

BERTScore-bert-base-uncased 0.053 0.144 0.052 0.214 0.149 0.082 0.240 0.133
Mean of BERTScore-byt5-small 0.070 0.089 0.094 0.244 0.109 0.107 0.273 0.141
aggregation BERTScore-byt5-base 0.025 -0.029 0.022 0.263 -0.019 0.056 0.123 0.063

BERTScore-byt5-large 0.054 0.005 0.020 0.255 0.013 0.095 0.156 0.085

Table 9: Segment-level correlation metric results Kendall for seven to-non-English language pairs in WMT19 with

respect to fist layer, default layer and mean of aggregated embeddings setting under visual attack at 0.3 perturbation

level.



(a) 9th layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e. ”

(b) 9th layer, normal reference:
“This could possibly be the cause of the fire.”

(c) 1st layer, attacked reference:
“Tḣis was the ₚos⦞ible caṲse of the fิ⒭e.”

(d) 1th layer, normal reference:
“ This could possibly be the cause of the fire.”

Figure 5: Similarity Matrix using BERTScore with bert-base-uncased for candidate: “ This could possibly be the

cause of the fire.” in different setups.


