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Robotics is increasingly seen as a useful testbed for computational models of

the brain functional architecture underlying animal behaviour. Here we pro-

vide an overview of past and current work, focusing on probabilistic and dy-

namical models, including approaches premised on the free energy principle,

situating this endeavour in relation to evidence that the brain constitutes a lay-

ered control system. We argue that future neurobotic models should integrate

multiple neurobiological constraints and be hybrid in nature.

Introduction

Twenty-five years ago, Kenji Doya suggested that the functional architecture of the mammalian

brain is assembled around three specialized learning sub-systems (1, 2). Specifically, that mod-

ular circuits in the cerebellum implement supervised learning, those in the basal ganglia imple-

ment reinforcement learning, and those in the cerebral cortex implement unsupervised learning

(see Figure 1). Since then, many detailed descriptions of the computations performed by a wide

range of brain sub-systems have been developed and refined, together with theoretical propos-

als about how their biological substrates combine to generate adaptive behavior. This work, a

synergy of effort from experimental and computational neuroscientists, control theorists, and

cognitive scientists, has inspired a view of the brain as having a hybrid architecture in which

different, partially modular brain sub-systems contribute distinct and complementary function-

ality (e.g. (3–6)). Further, a wide range of evidence supports the view that this brain architecture

is also layered. That is, it is assembled from multiple, separable levels of control, where, at each

level, the sensory apparatus is interfaced with the motor system (7). Broadly speaking, these

controllers are arranged with fast but inflexible controllers at the bottom, and slow but flexible
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Figure 1: Major functional divisions of the vertebrate brain. ‘Flatmap’ of the rat brain, indicat-

ing the overall arrangement of several major functional regions. These have been the targets of

some of the computational and neurorobotic modelling works discussed in this article.

ones at the top (4, 7). As originally proposed by John Hughlings Jackson (8), this architecture

exhibits dissociations such that higher-level systems can be removed or damaged without fully

compromising lower ones but not vice versa. This feature distinguishes layered control schemes

from hierarchical ones and contributes to the robustness of the former (7, 9).

Neurorobotics, the effort to demonstrate the usefulness of brain-inspired control in embod-

ied physical systems (see Figure 2), has challenged these proposals to be better specified, and

to make their theoretical assumptions more visible. In so doing, it can provide a stringent test

of the completeness of the underlying theories, particularly in terms of the purported role of

target brain sub-systems in the real-time co-ordination of sensing with action (10–13). Robotic

models have, for instance, added to our understanding of the role of the spinal cord/brainstem in

motor pattern generation (14,15), cerebellum in predictive control (16–21), of the basal ganglia

as a key substrate for action selection and reinforcement learning (22–25), hippocampus as an

attractor network that supports memory storage and retrieval (26–30), and the cerebral cortex

as a locus for self-organising somatotopic maps (31), multisensory convergence (32), mental

imagery (33) and meta-cognitive control (34).

More broadly, a growing literature is also offering an understanding of neural computation
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Figure 2: Example neurobotic research platforms. A Salamandra Robotica, an amphibious

robot that can both swim and walk controlled by a model of oscillatory networks in the ver-

tebrate spinal cord (14, 15). Image from Kostas Karakasiliotis, Biorobotics Laboratory, EPFL

(with permission). B WhiskEye, a robot model of brain systems, including cerebellum, basal

ganglia, superior colliculus and hippocampus, underlying navigation and active sensing in the

mammalian vibrissal system (see (41–44)). Image from Martin Pearson, Bristol Robotics Lab-

oratory (with permission). C iCub, a humanoid robot widely used to model human perception,

cognition, motor control and social interaction (e.g. (13,29,31–33)). Image from the University

of Sheffield (with permission). D The design of a neurorobot involves interfacing computational

models of neural circuits with physical models of animal sensory and motor systems. Typically,

the control systems also include components, that are not neurally-inspired, that mediate this

interface (the “embedding architecture”, see (23)). In a well-designed robot, that is suitably

matched to its environment/niche, the morphology of the robot body can simplify some aspects

of control (known as “morphological computation” (11, 45). The resulting physical model of

the organism is able to operate in real-world environments serving as a strong test of the capac-

ity of embedded neural models to generate adaptive behavior.

in both vertebrate and invertebrate nervous systems via neurorobotics (11,35–37). These efforts

range from embedding models of specific neural circuits implemented as networks of ‘spiking’

(leaky integrate and fire) artificial neurons, to those more concerned with computational prin-

ciples implemented using more abstract network models. The latter are often formulated at a

purely algorithmic level, frequently with an emphasis on matching wider system dynamics and

behaviour. The approach, recently described with the phrase “cognitive neurorobotics” (38),

will be our main focus here. This growing importance of robotic modelling in neuroscience

evidences Rosenbleuth and Wiener’s dictum that a suitably designed physical model can pro-

vide a practical and useful means of investigating scientific theories of complex biological sys-

tems (39, 40). Such a device can, in itself, stand as the most complete expression of a theory

and as a tangible demonstration of its capacity to explain, predict and control (36).

The early history of AI and cognitive science was marked by a strong interest in unifying

3



theories of cognition, such as Soar (46) and ACT (Adaptive Control of Thought) (47), instanti-

ated as working models of goal-oriented cognition known as cognitive architectures (for review

see (48)). These theories sought to characterise the function of the mind/brain in terms of a rel-

atively small number of core mechanisms. For instance, the Soar architecture cast the challenge

of cognition as that of search in a problem space through recursive application of a limited set of

operators (46). The quest for a unified theory has been re-ignited in recent decades by the iden-

tification of a single key principle – minimisation of free energy (49) – and its instantiation as a

cognitive architecture through the framework of predictive processing (50, 51). The intriguing

proposal is that what has appeared to be a hybrid brain architecture to a generation of theo-

rists, may, after all, be explainable by a single underlying mechanism, recursively applied (50).

Robotics is increasingly emerging as an important means for evaluating this hypothesis, and for

determining whether it can fulfil its promise (52).

In this article, we review the foundations for this new framework in earlier theories of robot

control, and look at their subsequent development through the incorporation of recurrent neural

networks. A key observation is the convergence of approaches resulting in state-of-the-art bio-

plausible robotic control systems that combine elements of predictive processing and network

attractor dynamics (38, 53, 54). We identify some promising insights that the framework has

uncovered through robotic investigations. In doing so, we attempt to situate this endeavour,

and wider research in neurorobotics, in relation to the evidence that the brain implements a

form of layered control (7). From this perspective, we will also consider the view of living

organisms as self-producing networks of processes that maintain themselves through constraint

closure (55–57), and the implications of this view for the generality of the free energy principle

(FEP). We conclude by considering what future theories of brain functional architecture, as

instantiated in robotics, might look like.

Selecting between control modules

The foundations for the current state-of-the-art trace back at least as far as the work of Doya’s

collaborators, and their now classic Mosaic model (MOSAIC; modular selection and identifi-

cation for control) (58), which we examine first (see Figure 3).

The basic approach behind the Mosaic model (58) involves tuning pairs of forward and

inverse models (e.g., artificial neural nets) based on how well their outputs match the future

states (e.g., positions and velocities) of the robot. In each pair, the forward model registers the

current state of the system and the current motor command and predicts its future state, and the

inverse model registers desired changes in state and computes a motor command that should

be appropriate to effect that change. As suggested by Wolpert & Kawato ( (58); see also (60)),

the probability that each forward model best predicts the future state can be represented using a

decreasing (Gaussian) function of the discrepancy between its prediction and the next measured

state of the system — the prediction error — before being normalised to give a probability

density over all forward/inverse pairs.
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Figure 3: Selecting between control modules. Architecture diagram for the Mosaic model (58).

Pairs of forward and inverse models are tuned according to how well their outputs match the

future states of the robot. Proprioceptive prediction errors generated by each forward model

are weighted by contextual signals from other sensors and then normalized across modules to

create a distribution of ‘responsibilities’, which in turn weight the contribution of corresponding

inverse models to the overall motor command. Prediction errors, responsibility predictors, and

the normalized responsibilities can be considered as likelihood estimations, priors, and poste-

riors, and as such the model implements a form of the Bayesian belief updating that is used

extensively in current predictive processing systems. Based on Haruno et al. (59), Figure 1.,

omitting notation and an additional feedback controller loop for clarity. ‘Judy the Robot’ draw-

ing by Pippa Wilson.
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The resulting distribution of ‘responsibilities’ then determines the proportion of the overall

error to be allocated when tuning each model pair, as well as the contribution that a given inverse

model should make to the overall motor command. The result is a (soft) selection amongst

the actions requested by each inverse model, which should be appropriate for attaining more

desirable future states. If a prediction of each responsibility, cued by contextual information

from other sensors (visual, audio, etc.), is similarly tuned, the system can also be expected to

bias requests for action in a contextually appropriate manner. For example, in a world where

blue objects are heaviest, blue regions in a camera image should come to bias the selection of

inverse models applying greater lifting forces.

Allowing such a control system to calibrate itself in this way can be seen as a form of

Bayesian belief updating, i.e., the iterative application of Bayes’ rule to compute the next (pos-

terior) distribution of responsibilities, using that computed on the previous iteration as the cur-

rent prior. This process minimises the KL (Kullback–Leibler ; see (61)) divergence between the

distribution of context-dependent predicted responsibilities (the prior), and that which maps ap-

propriate motor commands to desirable states in the particular environment in which the robot

learns. This minimisation process, we will see later on, is a key feature of approaches to con-

trol within the modern predictive processing framework. An important idea is that the acquired

distribution of responsibilities constitutes a statistical model for effective motor control in the

robot’s particular environment (16).

To test these ideas, Haruno et al. (59) trained such a network to control a (simulated) robot

arm to follow desired trajectories while holding objects with different physical properties paired

with information (e.g., visual) about object identity. The network learnt to effectively switch

between modules (forward/inverse pairs) appropriate for the control of each object substituted

into the task. It was also able to adapt its control effectively for objects with novel physical

parameters. Moreover, it generated sharp motor errors when objects were paired with incon-

gruent object identity information. A notable feature of this study is the (optional) inclusion of

an adaptable variance for each Gaussian function mapping prediction errors to responsibilities,

resembling the idea of ‘precision weighting’ that features in later, more explicitly Bayesian,

approaches to control (62).

The substrate for learning ‘internal models’ was identified initially with microcircuits of the

cerebellum (16), in line with the anatomical decomposition of control by Doya (1). However,

Doya and Kawato later worked together to extend the Mosaic framework to include respon-

sibilities that are weighted by Sutton & Barto’s classic temporal difference error signal (63).

This work showed that reinforcement learning tasks, including learning the upswing phase in a

cart-pole simulation, could be solved using the basic ingredients of modular decomposition and

soft selection (64).

An approximation to the temporal-difference learning algorithm was later shown to be im-

plementable within this framework, using a two-layered architecture broadly compatible with

the anatomical structure of the basal ganglia (3). Here, one set of responsibility signals selects

between forward models, a second selects amongst models driven to predict future levels of

a reward signal, and a third learns to select amongst modules that combine the (responsibility
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weighted) outputs of the first two using the temporal-difference learning formula. Accordingly,

the outputs from the forward and reward models are interpreted in the reinforcement learning

framework as estimates of the local value function and temporal difference errors, respectively.

The output following selection at the top level is a control signal that, after adjustment of the

responsibilities via Bayesian updating throughout, generates movements to maximise reward.

To summarise, the main ingredients for robot control under the Mosaic model are i) a sepa-

ration of control into modules that compete for selection by minimising sensor-motor prediction

errors, ii) a soft selection between modules based on responsibility weightings that are recon-

figured through Bayesian updating, iii) incorporation of additional signals into responsibility

weightings to generate context-dependent motor responses, iv) the potential to combine and re-

configure several such systems, e.g., to maximise reward signals during reinforcement learning

tasks.

These ingredients have been re-used and elaborated in more general neurorobotic systems

since; notably via the ‘Hammer’ model (65), as a theory of imitation learning inspired by the

primate mirror neuron system. In this case, the approach involves selecting controllers based

on the error each forward model would make if predicting the state of a demonstrator (e.g., a

human) based on the command generated by its associated inverse model. A novel contribution

is to suggest how the weighting of each controller (akin to its responsibility) may bias selection

towards image features associated with successful predictions. This elaborates the basic op-

eration of the responsibility predictors through a saliency map, into which the representations

of multiple stimulus features (visual motion, colour etc.) may be projected, analogous to how

activity patterns in multiple cortical feature maps may bias visual attention via interactions with

the midbrain superior colliculus (57).

The Mosaic model thus provides a means of investigating how cerebellar and midbrain cir-

cuits might realise supervised and reinforcement learning, respectively, and how cortical learn-

ing may allow for the context-dependent elaboration of such computations. Next we will see

that a parallel strand of robotics work from a different group shows how very similar ingredients

might be combined for perceptual processing.

Representing actions via attractor dynamics

At the same time as Wolpert and Kawato (58) were thinking about the role of cerebellar process-

ing in controlling action, Tani and Nolfi (66) were thinking about the role of thalamo-cortical

loops in perception along similar lines. They independently arrived at a similar method for

weighting learning updates and control signals from an array of competing modules, via the

more explicitly Bayesian formalism of the ‘mixture of experts’ learning algorithm developed

by Jacobs et al. (67). An important difference is that the modules competing to respond to

sensory-motor inputs were composed of neural networks with recurrent loops. These nets were

of the kind shown by Elman (68) to be capable of extracting the statistical structure behind

sequences of inputs using error backpropagation to refine predictions of the next input in the
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sequence, i.e., to minimise prediction errors. A second key point is that the (responsibility

weighted) outputs from each module were sampled at a slower timescale (every tenth itera-

tion), before being presented as inputs to a second set of recurrent networks, at which the same

responsibility-weighted soft-selection mechanism was applied. The second system was trained

to predict the outputs of the first at the next timestep, i.e., to move the distribution of its out-

puts towards that of its inputs, and thus implicitly to approximate the dynamics achieved by

Bayesian updating in the Mosaic model.

To test these ideas, a virtual robot was moved independently through a 2D environment

consisting of two rooms, each containing a different set of obstacles (internal walls). After

learning, the lower-level system was observed to abruptly select between its recurrent nets in

lockstep with changes in sensory events that corresponded to specific movement patterns rela-

tive to the obstacle features, e.g., following walls or turning corners. Importantly, the second

system learnt to select from its recurrent nets, that which produced the lowest prediction errors

when the robot was in a given room, at the point when the robot moved between those rooms.

Tani & Nolfi thus concluded that the system had learnt to simultaneously represent concepts

corresponding to the sensor-motor ‘flow’ induced by obstacle features in the first layer, and the

higher-order concepts of ‘room A’ or ‘room B’ in the second. The representation of these con-

cepts manifest at each level as the selection of recurrent nets whose intrinsic attractor dynamics

were evoked in the presence of the corresponding sensory-motor patterns. These self-organised

dynamics provide a remarkable demonstration of how discrete symbols (selected attractors)

for meaningful temporally extended sensor-motor events can emerge within a continuous-time

system.

An important follow-up study by Yamashita & Tani (69) demonstrated the usefulness of

attractor dynamics for representing aspects of motor control, and specifically the sequencing of

actions across multiple timescales. They critiqued models based on the Mosaic architecture in

terms of the conflict between segmentation and generalizability inherent in its modular design.

As a more biologically motivated alternative they investigated the properties of highly recurrent

networks comprising units with different intrinsic dynamical timescales. In Yamashita & Tani’s

model, a population of input/output units receiving robot state information (proprioception, and

exteroception for object localisation) projected to the fast units (only), and the fast and slow

units were otherwise similarly connected (see Figure 4).

Networks were trained by an experimenter moving the arms of a humanoid robot through

sequences of actions, e.g., touch an object several times, move it left and right or up and down

several times, clap the hands several times etc.. Transitions between these actions could take

different paths with various lengths before the robot was to return to its initial pose. During

training, the slow units were initialised to particular states at the beginning of each sequence,

such that the potential for specific action sequences to be learnt could be investigated by re-

setting the initial state of the slow units accordingly. The network was trained offline, using

a backpropagation algorithm to predict the next sensor-motor state. After training, the net-

work was successful in reproducing the sequences of actions by controlling the robot via the

input/output units.
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Figure 4: Representing actions via attractor dynamics. Architecture of the model by Yamashita

& Tani (2008), in which distinct attractor dynamics in the fast units of a continuous time recur-

rent neural network come to represent distinct actions performed by a robot, and the dynamics

of slower units come to represent configurations of actions. Inputs to the system are propriocep-

tive signals and visual information about the position of an object to be manipulated. Slow and

fast context units are point neuron models with different intrinsic integration time constants.

Every unit is connected to every other, including itself, with the exception of input units which

do not have a direct connection to the slow context units (an illustrative subset of units and con-

nections is shown for clarity). Activations of the output units are considered to be predictions

about future proprioceptive states, and prediction errors are used to adjust the network connec-

tion weights using a backpropagation algorithm. Adapted from (69), Figure 3A.

9



During repetitive movements, similar activation dynamics were observed to repeat in the fast

units, while activity patterns of the slow units were invariant except at the transitions between

sub-tasks, complementing the findings of Tani & Nolfi for perception (66). Novel sequences

of those sub-tasks could later be learnt when the weights of the fast units were frozen and only

the units of the slow population were able to continue adapting. This suggests that modular

segmentation of control can be achieved by the intrinsic self-organising properties of networks

with multi-timescale dynamics, and hence that separation and selection between modules need

not otherwise be prescribed by architectural constraints.

Nevertheless, the fundamental similarities between networks for robot perception (66) and

control (58, 69) can be seen as early indications that perception and action may be two sides

of the same coin, a key principle in the modern context of ‘predictive processing’, which we

introduce next.

Generating actions to avoid surprise

The ‘predictive processing’ framework (50, 51), also termed ‘active inference’, and the emerg-

ing ‘physics of sentience’ developed by Karl Friston (70), stems from a description of living

systems in thermodynamic terms. Accordingly, an organism can be thought of as a particle,

bouncing around an energy landscape, maintaining low entropy in defiance of the second law of

thermodynamics. To persist in doing so – to self-organise – is to occupy a set of internal states

that is separate from the set of external states of the environment, and to maintain a boundary

between the two. This boundary, called a Markov blanket, consists of the states of the organ-

ism’s sensors and effectors, and mediates the exchange of information between the organism

and the environment. In these terms, perception is the flow of information from external to

internal states via the states of the sensors, and action is the opposite flow, from internal to

external states via the effectors.

From thermodynamic principles it follows, somewhat teleologically, that to self-organise is

to maintain – by perception and action – a flow of information that, in both directions, reduces

uncertainty about the underlying causes of external states. This uncertainty is bounded by a

thermodynamic quantity called free energy, which is a measure of the inaccuracy of predictions

about future sensory states, now and in the longer term ( (49, 70); see also (61)). Organisms

thus defy the second law by minimising free energy, and in turn their uncertainty about future

sensory states, by choosing actions least likely to have surprising consequences, and by ad-

justing predictions to make future sensory states less surprising. By doing so, internal states

become implicit models for the causes of sensory states, insofar as the physiology of a fish or

a bird may be considered a model of hydrodynamics or aerodynamics (see (56)). As actions in

turn constrain (reduce the degrees of freedom of) sensory states, organisms implicitly construct

models of their own dynamics, while modifying those dynamics to reinforce the model, in a

cycle referred to as ‘self evidencing’ (see also (71)).

Implementations of robot control systems based on the FEP have recently been reviewed
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by (62). These include applications for visually guided reaching (72,73) and active vision (74),

robot navigation (75), and self versus other discrimination ( (76); see also (38, 77)).

In the context of motor control, an interesting model was recently developed by Ahmadi and

Tani (53). A key feature of their approach is to connect units of a recurrent network (comprising

non-linear point neurons) with stochastic ‘latent’ units, whose activations are drawn, for exam-

ple, from a Gaussian distribution with an adaptable mean and variance. This allows each latent

unit to represent a prior distribution whose mean and variance is determined from activations of

the recurrent units at the previous timestep, and a posterior distribution whose mean and vari-

ance are similarly determined by an adaptable parameter. As such, the (variational) free energy

can be expressed at each latent unit as a sum of the KL divergence between the prior and poste-

rior and the (negative log) prediction errors, potentially after backpropagation through several

layers. The network weights, and the adaptable parameter, could then be adjusted to minimise

the free energy using a stochastic gradient descent method. Importantly, this network can on

one hand be used as an inference model by propagating state information from recurrent units

to latent units. It can also be used as a generative model by projecting latent unit activations –

i.e., samples from the distribution set by the adaptable parameter – to recurrent units and then,

for example, to a PID controller.

Crucially, latent units allow signals to be generated from within a neural network and pro-

vide a simple interface between continuous-time and probability-based formalisms. This per-

mits direct calculation and manipulation of statistical quantities, such as the free-energy, and

therefore allows generative processes to be incorporated into potentially complex network ar-

chitectures.

Ahmadi and Tani (53) set up two populations, one comprising neurons with fast dynamics,

which projected to a second with slower dynamics, each with its own latent units. The model

was interfaced with a humanoid robot and the fast units were presented with state information

from its joint angles, and information about the hand location of a second robot through which

identical movement patterns were generated by human manipulation. Movement patterns were

sequences of actions, each containing repetitive elements similar to (69). The robot then regis-

tered prediction errors by comparison only with its ‘view’ of the other robot’s hand movements.

Calibrating the generative model by minimising its free energy enabled the robot to imitate the

movements of the other, and even to generate anticipatory movements.

An interesting follow-up by Idei et al. (54) incorporated latent units into recurrent networks

composed of neurons with multiple timescales as the basic description of a cortical ‘area’. In

this study, joint angles (proprioception) and hand coordinates (exteroception) of a robot arm

were interfaced with a control architecture comprising two corresponding ‘sensory areas’, an

‘association area’, and an ‘executive area’, configured in a hierarchy from sensory to associative

to executive. See Figure 5 for details.

During an initial learning phase the adaptive parameters for the posterior distribution of

each latent unit, and the recurrent network weights that determine the corresponding priors,

were adjusted to minimise free energy using a stochastic gradient descent method. The network

was trained in this way while observing sequences of sensory states obtained from the robot as
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Figure 5: Generating actions to avoid surprise. Architecture diagram based on the study of Idei

et al. (54), which demonstrates the emergence of different free energy regimes when proprio-

ceptive and exteroceptive signals provide congrunent or incongruent information. The executive

area consists of a single latent unit (large blue circle), the association area contains 15 recurrent

units (eight fast, blue, and seven slow, red) and three latent units (large green circle, one shown),

and the two sensory areas each contain 15 recurrent units and one latent unit. Each recurrent

unit in the association area receives weighted inputs from the latent unit in the executive area,

from the three latent units in the association area, and from the activation of all recurrent units

in the association area at the previous timestep. In a given sensory area, each recurrent unit

receives weighted inputs from the three latent units in the association area, from the latent unit

in the corresponding sensory area, and from the activation of all recurrent units in that sensory

area at the previous timestep. A subset of the recurrent units in each sensory area are assigned

as output units and a weighted sum of their activations for each sensor value is interpreted as a

prediction of its future state. The predicted proprioceptive states are used as the target values for

a PID controller to determine the robot’s movements, and the proprioceptive and exteroceptive

predictions are continually compared to the actual future states to produce prediction errors.

Inset graphs indicate shifts in the latent variables (pink) to minimize free energy.
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it was manually moved by a human. During testing the weights were fixed and only the latent

(posterior) distributions were updated, and the robot generated movement patterns resembling

those from the training set.

Interestingly, half way through testing, the exteroceptive inputs were substituted for novel

examples from the training set, making the two sensory modalities uncorrelated. At this point

the network consistently transitioned from one dynamically stable regime to another. Initially,

the prior distribution in the sensory areas had a high precision (small variance relative to that of

the posterior) causing large shifts in the posterior that attenuated responses to prediction errors

in the sensory areas. However, when the inputs were uncorrelated the posterior distribution

in the executive area shifted, rendering the prior distribution in the sensory and association

areas relatively low in precision. This caused smaller shifts in the sensory posteriors and an

amplification of sensory responses to prediction errors.

The authors interpret these two regimes, which were associated with distinct levels of free

energy, in terms of an ability to discriminate between causal structures attributable to the self

versus others (54). They see the emergent amplification versus attenuation of sensory responses

in either dynamical regime as a potential explanation for the observation that we cannot tickle

(i.e., surprise) ourselves (see also (78)).

Echoing earlier findings by (66) and (69), a key insight from this work is that while discrete

changes in the activity of the top-level executive area correspond to higher-order changes in

control strategy, they emerge spontaneously from the overall network dynamics. That is, under

the general requirement to avoid surprise. This has important implications for understanding

the emergence of ‘executive’ function in the brain, i.e., as a network-level effect that requires

no implicit homunculus to be ‘behind the wheel’.

The success of these two uses of multi-timescale dynamics, either between neurons (53) or

within neurons (54) grouped by a latent variable, raises the intriguing possibility for a control

scheme in which free energy minimization may be implemented at multiple levels of network

‘embedment’. More generally, the work of Tani and colleagues since the 1990s, using predic-

tive processing techniques to orchestrate the dynamics of multi-scale recurrent nets for robotic

control, has illuminated several promising points of contact between predictive processing and

enactionist views of control and cognition. We will consider some of this work further below,

following a brief consideration of some architectural properties of vertebrate brains.

The brain as a layered hourglass

Current formulations of the FEP most readily permit the engineering of control architectures

within a hierarchical design based on homogenous processing elements and (bi-directional)

message passing. These algorithmic accounts, when related to the brain, have been most closely

matched to intra-cortical and thalamocortical circuitry (51, 79, 80). However, it is not clear

whether the models we have reviewed so far have specifically utilised, or at least particularly

benefited from, the incorporation of such strict hierarchical constraints into the design of their
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architectures. Indeed, some of the works considered here have demonstrated that the emergence

of functional hierarchies in control systems need not be isomorphic with the strict hierarchical

constraints that might otherwise be used to engineer control architectures (e.g. (69)). An im-

portant alternative to hierarchical control is heterarchical control. Bechtel and Bich (81) argue

that strict hierarchies, wherein many low-level controllers are combined by fewer at a higher

level and potentially by one at the top of a pyramid, are seldom, if ever, realised in biolog-

ical systems. Instead, biological control is realised through heterarchies, often involving an

inverted pyramid structure, with a smaller number of lower-level controllers being reused and

repurposed by many more higher-level controllers.

The evolutionary neurobiology of the vertebrate brain indicates a highly-conserved architec-

ture at the macro-level, in which all major sub-systems, including the cortex/pallium are present

in all vertebrate classes including ancestral jawless fish (82). As previously noted, this archi-

tecture has a layered design (illustrated in Figure 6a), incorporating elements of both hierarchy

and heterarchy (7, 57), whilst providing a robustness against damage and extremes (through

dissociation) that is also a requirement for many modern engineered systems (9). Layered con-

trol is also a characteristic of several brain-inspired robot control systems such as Distributed

Adaptive Control (4, 13), and the ArmarX architecture (83).

Not only is the overall layered architecture of the brain conserved, but also that of core

systems along the midline of the brain involved in functional integration, specifically, the basal

ganglia and medial reticular formation (7, 84, 86). The nuclei that compose the basal gan-

glia connect brain sub-systems that can command behaviour with sensorimotor sub-systems

that implement real-time control. Collectively the basal ganglia hold a veto over all voluntary

movement, acting to ensure that the animal does not simultaneously attempt incompatible ac-

tions (86). This design constrains the manner in which sensorimotor systems can be accessed

while increasing the flexibility of the system to add new behavioral capabilities and to control

diverse sensory and musculoskeletal systems in different animal forms. A similar principle of

“constraints that deconstrain” has been described for engineered systems that implement such

an ‘hourglass’ architecture (see (9) and Figure 6b). The presence of an hourglass architecture

for action selection within an overall layered control system provides a robust but flexible way

of assembling a brain-inspired control architecture which we have demonstrated in a variety of

animal-like robot platforms (11, 41, 87) and in a robotic model of human gaze control (85).

Cognition through constraint closure in self-producing systems

For Bechtel and Bich (81), even very simple biological systems may be considered to embody

cognition. They suggest that, to some extent, an allosteric enzyme ‘decides’ the rate of a

chemical reaction based on sensing the presence of a particular molecule, and in doing so helps

maintain the functional identity of the organism in return for the matter and energy required for

its construction and repair. Accordingly, control mechanisms are special kinds of constraints,

whose effect on the system (to reduce its degrees of freedom) is not permanent, and even the
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Figure 6: Layered and hourglass architectures. A Layered architectures exhibit dissociations,

such that the lower levels still operate, and exhibit some sort of behavioural competence, in the

absence through damage (or removal) of the higher layers but not vice versa. Layers may im-

plement different solutions to similar problems, typically these solutions are fast but inflexible

in lower layers, and slower but more flexible in higher layers. Layered control systems are not

strict control hierarchies. The interface between layers may lead to information encapsulation,

that is processing in lower layers may not be fully accessible at higher levels. This can be de-

scribed as giving rise to an abstraction layer, in computer science terms, and can be related to

the idea of a Markov Blanket (see text). B In an hourglass (or bowtie) architecture conserved

processes and protocols at the interfaces between layers can operate as “constraints that decon-

strain” (9). For example, the highly conserved intrinsic circuitry of the vertebrate basal ganglia

(BG) (22,84), which holds a veto over all voluntary movement, and connects brain sub-systems

that can command behaviour with sensorimotor sub-systems that implement real-time control,

may operate as a form of hourglass architecture, constraining the manner in which sensorimo-

tor systems can be accessed but increasing flexibility in the capacity of the system to add new

behavioral capabilities. C Layered and hourglass control in the mammalian oculomotor system.

A forebrain system involving the frontal eye fields and the midbrain superior colliculus (SC) are

both capable of generating signals that direct eye movements. The forebrain system operates,

in part, by modifying the behaviour of the SC, but the SC is able to generate eye movements

in the absence of cortex (blindsight). The overall system can therefore be described as a lay-

ered architecture. Both systems project into the basal ganglia (striatum) and receive inhibitory

output from the basal ganglia (substantia nigra). The basal ganglia thus instantiates a form of

hourglass architecture gating the capacity of both systems to access motor outputs (see (85)).
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simplest organisms embody multiple such mechanisms. Moreover, “control mechanisms in

living organisms are not the product of such [hierarchical] design; they have arisen through

evolutionary processes in which variants that improve, or at least do not significantly diminish,

the ability of organisms to maintain themselves and leave offspring become fixed as a result of

selection or drift. In such an evolutionary process, one should expect new control mechanisms to

be added independently of one another in an opportunistic manner” (81) (p5). The sub-systems

underlying mammalian thermoregulation show this characteristic – a layered architecture of

parallel and partially independent sub-systems that are not fully integrated within the brain,

but interact through feedback loops involving the body and the environment (57). Rather than

directly co-operating to maintain temperature at a set-point, in the classic manner of feedback

control, they operate synergistically to maintain a dynamic ‘balance point’ within the organism’s

adaptive range.

Here the physics of sentience meets an alternative thermodynamic treatment of living sys-

tems, according to which a prerequisite for the emergence of a biological whole is ‘constraint

closure’ (55, 57, 81, 88–90). Processes that constrain a system become integral to its dynamics

if, for each in a set of such constraints, the constraint both depends on another (its dynamics

are slower) and is generative for another (its dynamics are faster). For the theoretical biologist

Stuart Kauffman, constraint closure systems meet the criteria for evolvable life (91). Each new

constraint that is incorporated into the dynamics of the system can be identified with a new

biological function, insofar as it also becomes necessary for maintaining the system dynamics,

and each yields further opportunities for more thermodynamic work to be done and new func-

tionality to arise. The role of a given constraint in maintaining the system is then, by definition,

its function – e.g., the function of a heart is to pump blood only insofar as pumping blood is a

necessary condition for maintaining the whole. So when new opportunities for maintaining the

whole arise, new constraints can be incorporated and new functionality can emerge. We have

recently explored this principle in the context of the functional architecture of the mammalian

brain, emphasising how control loops can extend beyond the body and operate across multiple

– evolutionary, developmental, and behavioural – timescales (see (57)).

A prerequisite for constraint closure is that a path must exist through which all constraints

can affect all others (operational closure), as has been claimed for collectively free-energy min-

imising systems (56). According to this interpretation of the FEP, as developed by Kirchhoff

et al. (56), organisms are better thought of as systems of interacting particles, each wrapped

up in its own Markov blanket, interacting with the others so as to collectively maintain a ‘su-

perordinate’ blanket that partitions the dynamics of the collective system from that of the en-

vironment (56). Cells maintain blankets around interacting molecular processes, tissues blan-

ket interacting cells, organs blanket interacting tissues, organisms blanket interacting organs,

and indeed ecosystems maintain blankets around interacting organisms. From this viewpoint,

an important concept is that to maintain a superordinate Markov blanket, and thus to be self-

evidencing at the level of the organism (or ecosystem), the component parts of the system must

be coupled and their internal states must be conditionally independent — a condition that is met

when the characteristic timescales of the internal dynamical processes are distinct (56).
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Whilst Kirchhoff et al. (56) see the potential for convergence between the frameworks de-

rived from free energy and constraint closure principles, via Maturana and Varela’s notion of

autopoesis (92), this supposed point of connection has been challenged from the perspective of

enaction. As we have seen, the FEP follows from a description of organisms as self-organising

systems, which maintain their structural integrity and persist over time, i.e., they maintain,

under ergodic assumptions, a (non-equilibrium) steady state. But crystals have this property.

Enaction instead describes living systems as networks of processes that maintain themselves

(self-distinction) by continually regenerating the networks of processes that they maintain (self-

production): Crystals do not have this property. From the enactionist view, a key feature of

living systems is that instead of avoiding phase transitions (i.e., by minimizing surprise) they

undergo discrete, often irreversible phase transitions, on evolutionary, developmental, and be-

havioural timescales, triggered by interactions with the environment (93). As such, this view

emphasises the historical nature of living systems. Crucial to understanding the qualitative

changes in states available to living systems, which occur through changes to the body and via

adaptations to the environment etc., is to understand the sequence of phase transitions that the

system may undergo. Put simply, the brains of humans and mice, of infants and adults, of ex-

perts and novices, may all minimise free energy, but the FEP does not illuminate the differences

between them.

The future of neurorobotics

An important aspect of the FEP, evidenced by some of the robotics work reviewed in this paper,

is that it provides a specific formal methodology for calibrating a given control network (to

minimise surprise), which has led to impressive demonstrations of robot control and provided

new insights into how perception and action can interact in cognitive systems (62). The work of

Tani and colleagues (38, 53), using predictive processing techniques to orchestrate the dynam-

ics of multi-scale recurrent nets for robotic control, has further illuminated promising points

of contact between the FEP and enactionist views. This work has demonstrated that recurrent

networks of processing units with distinct intrinsic timescales, and with generative properties

derived from the incorporation of latent variables, can be coordinated by free energy minimi-

sation to yield functional systems within which distinct processing levels become identifiable

(e.g., (54)).

As a guiding principle, it is important to recognise the distinction between a formal model

of a physical system and the system itself (94). Whilst it can be tempting to see the physical

system as isomorphic to the formal model, i.e., as embedding some version of it, in reality

organisms as well as robots are faced with many constraints that are not fully captured by gen-

eral formal models. These include efficiency, evolvability, learnability, and the capacity of the

system to self-assemble (see (95) and comments about historicity above). Whilst theorists may

seek unifying principles, the biologist is also required to understand at the level of mechanism

and to respect constraints deriving from development. Similarly, the roboticist is required to
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design at the level of implementation, and to respect constraints deriving from the process of

construction. In this context it is notable that the FEP, and the predictive processing approach

more broadly, is not prescriptive in terms of specifying architectural and design constraints for

robust and efficient control and cognition a priori. Indeed, leading proponents assert that pre-

dictive processing is not realised exclusively within the brain but within the whole organism

and its environment (96, 97).

For instance, Clark (96) considers a brain-centric version of the predictive processing ap-

proach that builds “a kind of neuronally-encoded rich inner recapitulation of an observer-

independent reality” (p. 12). He constrasts this with a version better aligned with embodied

cognition (and his own ‘extended mind’) approaches, which is considerably more frugal in its

use of internal models. Generative models, in this view, should be as simple as possible to get

the job done and should make use of approximations and heuristics. These can include tun-

ing of body morphology to the environment or task (45) and outsourcing some of the work of

tracking causal relationships to the cognitive niche as restructured by the organism and its con-

specifics (97). Clark also emphasises how predictive models constructed over slow timescales,

can modify and co-ordinate “fast, knowledge-sparse modes of response” (p. 14). This account

again tallies with notions of layered control, which typically feature fast but relatively inflexible

sub-systems at lower levels, and of constraint closure across different time-scales. For instance,

in (57) we review evidence that the primate superior colliculus instantiates simple visual filters,

present at birth, that can detect species-relevant stimuli such as the faces of conspecifics. These

can be viewed as a form of hardwired prior that provides cortical systems with a rich supply

of useful data and scaffolds learning of critical cortically-centered skills such as face recogni-

tion. The collicular filters themselves are shaped over evolutionary time-scales adapting with

the changing needs and capabilities of cortical processing (98).

This instrumental view of FEP (see also (99,100)) suggests that homogeneity of processing

units is not a prerequisite for cognitive architectures consistent with this general principle. In-

deed, the concept of Markov blankets also permits a considerable degree of flexibility in terms

of realising the implementation of a predictive processing framework. Specifically, the core

property of a Markov blanket is to relax constraints on what forms of processing occur on the

other side of the boundary, as long as appropriate signals are provided at the interface. A similar

notion in computer science is that of the abstraction boundary which conceals some of the in-

trinsic processing of a sub-system from external influence, and is also a characteristic of layered

architectures in animals and robots (see Figure 6a).

As noted in the introduction, the functionality of various brain sub-systems has been suc-

cessfully captured within a variety of formalisms. These include formalisms derived from re-

inforcement learning, adaptive control, and dynamical systems, consistent with Doya’s pro-

posal (1) that different parts of the brain realise different kinds of learning device. By extending

earlier insights, such as those of the Mosaic model (58), predictive processing has galvanised re-

cent neurorobotics research, highlighting, from the top-down, formal relationships between dif-

ferent approaches to control. Nevertheless, in our view, predictive processing should not be seen

as a singular pathway to exploring natural design principles via robotics. A broader grounding
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in biological principles, including those arising from constraint closure and enactivism, and in

the history of the emergence of biological intelligence, will be needed (see also (36)). As a

route to understanding the brain through physical modelling, we consider that a hybrid, layered

architecture, including components that minimize free energy, may provide the most promis-

ing path. This approach could lead to neurorobotic platforms capable of generating complex

life-like behaviours that surprise us. . . and possibly even themselves!
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