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Abstract
A 𝑘-uniform hypergraph 𝑀 is set-homogeneous if it
is countable (possibly finite) and whenever two finite
induced subhypergraphs 𝑈, 𝑉 are isomorphic there is
g ∈ Aut(𝑀)with𝑈g = 𝑉; the hypergraph𝑀 is said to be
homogeneous if in addition every isomorphism between
finite induced subhypergraphs extends to an automor-
phism. We give four examples of countably infinite
set-homogeneous 𝑘-uniform hypergraphs that are not
homogeneous (two with 𝑘 = 3, one with 𝑘 = 4 and one
with 𝑘 = 6). Evidence is also given that these may be the
only ones, up to complementation. For example, for 𝑘 =

3 there is just one countably infinite 𝑘-uniform hyper-
graph whose automorphism group is not 2-transitive,
and there is none for 𝑘 = 4. We also give an example of
a finite set-homogeneous 3-uniform hypergraph that is
not homogeneous.
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1 INTRODUCTION

1.1 Background

A very rich theory has developed around the notions of Fraïssé amalgamation and homogeneous
structure in the sense of Fraïssé. At the most basic level, the notions concern countable structures
over finite relational languages, but the concepts make good sense for languages with function
and constant symbols, and there are category-theoretic versions, versions with inverse rather than
direct limits, and formulations of amalgamation with respect to a specified class of embeddings,
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SET-HOMOGENEOUS HYPERGRAPHS 1853

leading to ‘Hrushovski constructions’. The subject has important connections to permutation
group theory, model theory, combinatorial enumeration, Ramsey theory, topological dynamics
and constraint satisfaction. In certain specified binary contexts, there are classification theorems
of the homogeneous structures: for example, for partial orders [37], coloured partial orders [39],
graphs [30], digraphs [14], ‘finite-dimensional permutation structures’ (structures in a language
with finitely many total order symbols) [7], and metrically homogeneous graphs of diameter 3
[3]. However, there is currently very little (beyond [2]) in the way of classification theorems for
homogeneous structures where relation symbols have arity greater than two, and evidence from
binary classifications suggests such results will be very difficult.
In this paper, we focus on 𝑘-uniform hypergraphs (from now on, called just 𝑘-hypergraphs)

with 𝑘 ⩾ 3, and on a slight weakening of homogeneity. Let 𝐿 be a relational language, and let
𝑡 ∈ ℕ with 𝑡 ⩾ 1. A relational structure 𝑀 over 𝐿 is 𝑡-set-homogeneous if |𝑀| ⩽ ℵ0 (we assume
this throughout) and, whenever𝑈, 𝑉 ⊂ 𝑀 are of size 𝑡 and carry isomorphic substructures, there
is g ∈ Aut(𝑀) with 𝑈g = 𝑉; it is ⩽𝑡-set-homogeneous if it is 𝑠-set-homogeneous for all 𝑠 ⩽ 𝑡. The
structure𝑀 is set-homogeneous if it is 𝑡-set-homogeneous for all 𝑡 ∈ ℕwith 𝑡 > 0. We say a count-
able structure 𝑀 is 𝑡-homogeneous if any isomorphism between substructures of 𝑀 of size 𝑡

extends to an automorphism of 𝑀, and ⩽𝑡-homogeneous if it is 𝑠-homogeneous for all 𝑠 ⩽ 𝑡; the
structure𝑀 is homogeneous if it is 𝑡-homogeneous for all 𝑡 > 0. A 𝑡-set-homogeneous structure𝑀

is 𝑡-homogeneous if and only if, for each 𝐴 ⊂ 𝑀 of size 𝑡, the group induced on 𝐴 be the setwise
stabiliser of 𝐴 in Aut(𝑀) is precisely the full automorphism group of the structure induced on 𝐴.
We are not sure of the history of set-homogeneity, but there is some discussion of the notion in

[22, chapter 11, section 8].We remark that Hall’s universal locally finite group is often described as
the unique countably infinite locally finite group that embeds all finite groups and has the prop-
erty that any two finite isomorphic subgroups are conjugate. This is a set-homogeneity condition,
but in this specific group-theoretic context it implies the stronger homogeneity condition: any
isomorphism between finite subgroups of Hall’s group is induced by some inner automorphism;
see [27, Lemma 3].
Finite homogeneous graphs were classified independently by Gardiner [23] and by Golfand

and Klin [24]. It was shown by Ronse [36] that any finite set-homogeneous graph is homogeneous,
and Enomoto [20] gave a very short direct proof of this. Enomoto’s argument was shown in [26,
Lemma 3.1] to work for finite tournaments, but not for finite digraphs (a directed 5-cycle is set-
homogeneous but not homogeneous). Finite set-homogeneous directed graphs (allowing pairs
with an arc in each direction) were classified in [26], and [42] initiated an analysis of finite 3-set-
homogeneous graphs.
There is little literature so far on infinite set-homogeneous structures. Set-homogeneous graphs

are considered in [19], where a specific countably infinite graph 𝑅(3) related to a circular order is
shown to be set-homogeneous but not homogeneous, and it is shown that any countably infi-
nite graph that is ⩽8-set-homogeneous but not ⩽3-homogeneous is isomorphic to 𝑅(3) or its
complement. Likewise, in [26], a classification is given of countably infinite set-homogeneous
digraphs (not allowing pairs with arcs in both directions) that are not 2-homogeneous. Some
papers of Cameron on degrees of homogeneity of permutation groups [8–10] have similar flavour;
see Subsection 2.2 for more on this. The paper [18] contains several classification results for
countable partially ordered sets that are 𝑘-set-homogeneous (called 𝑘-transitive in [18]) but not
𝑘-homogeneous and do not contain the pentagon. In a similar spirit, [25] includes a classifica-
tion of locally finite graphs with more than one end that are 3-CS-transitive (whenever 𝑈, 𝑉 are
connected induced subgraphs of size at most 3 which are isomorphic, there is an automorphism g

with 𝑈g = 𝑉).

 14697750, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12796 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [14/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1854 ASSARI et al.

1.2 The main results

In this paper, we construct four specific infinite hypergraphs and prove they are set-homogeneous.
We then characterise some of these examples up to complementation by certain transitivity and
primitivity properties of their automorphism groups. Before stating our main results, we recall
that a permutation group 𝐺 on a set 𝑋 is 𝑘-homogeneous if it is transitive on the collection of
unordered 𝑘-subsets of 𝑋, and is 𝑘-transitive if it is transitive on the ordered 𝑘-subsets. (Note
a slight inconsistency that seems to be established in the literature; for structures, homogene-
ity is the stronger of the two conditions 𝑘-homogeneity/𝑘-set-homogeneity, but for permutation
groups, it is the weaker of the conditions 𝑘-homogeneity/𝑘-transitivity.) We say 𝐺 is 𝑘-primitive
on𝑋 if it is 𝑘-transitive and for any distinct 𝑥1, … , 𝑥𝑘−1 ∈ 𝑋 the stabiliser 𝐺𝑥1…𝑥𝑘−1

acts primitively
on 𝑋 ⧵ {𝑥1, … , 𝑥𝑘−1}, that is, preserves no proper non-trivial equivalence relation.
Our main theorems are the following. We stress the assumption throughout that set-

homogeneity conditions for us imply by definition that a structure is countable, so our structures
are throughout assumed to be countable.

Theorem A.

(i) There is an infinite set-homogeneous but not homogeneous 3-hypergraph 𝑀3 whose automor-
phism group is not 2-transitive, and any infinite ⩽4-set-homogeneous 3-hypergraph whose
automorphism group is not 2-transitive is isomorphic to 𝑀3.

(ii) There is an infinite set-homogeneous 3-hypergraph 𝑁3 which is 2-homogeneous (so has
2-transitive automorphism group) but is not 3-homogeneous.

Theorem B.

(i) Any infinite ⩽5-set-homogeneous 4-hypergraph has 2-transitive automorphism group.
(ii) There is an infinite set-homogeneous but not homogeneous 4-hypergraph 𝑀4 whose automor-

phism group is not 2-primitive.
(iii) If 𝑀 is an infinite ⩽5-set-homogeneous 4-hypergraph such that Aut(𝑀) is not 2-primitive then

either 𝑀 is isomorphic to 𝑀4 or its complement, or Aut(𝑀) preserves a linear betweenness
relation on 𝑀.

Theorem C.

(i) There is an infinite set-homogeneous but not homogeneous 6-hypergraph 𝑀6 whose automor-
phism group is 3-transitive but not 3-primitive.

(ii) If 𝑀 is an infinite ⩽5-set-homogeneous 6-hypergraph whose automorphism group is not 3-
primitive, then 𝑀 is isomorphic to 𝑀6 or its complement, or Aut(𝑀) preserves a separation
relation on 𝑀.

As noted in Subsection 5.2, the hypergraphs 𝑀3, 𝑀4 and 𝑀6 belong in a family; they live on
the same vertex set with Aut(𝑀3) < Aut(𝑀4) < Aut(𝑀6). We also note in Remark 3.3.3 that 𝑁3

is a two-graph, a 3-hypergraph such that any four vertices carry an even number of edges. The
hypergraph 𝑁3 is closely related to the set-homogeneous graph 𝑅(3) from [19] mentioned above.
The strategy for the construction of 𝑀3, 𝑁3, 𝑀4, 𝑀6 is the same in each case, and analogous

to the corresponding constructions in [19] (for graphs) and [26] (for digraphs). Let 𝑀 be one of
these 𝑘-hypergraphs, viewed as a structure in a language 𝐿 with a single 𝑘-ary relation symbol.
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SET-HOMOGENEOUS HYPERGRAPHS 1855

We first consider a suitable (in each case already known) homogeneous structure 𝑁 with the
same domain but different language 𝐿′, define 𝑀 from 𝑁, and prove that Aut(𝑀) = Aut(𝑁) by
showing they have the same ∅-definable relations. In the cases considered, it follows easily that
𝑀 is not homogeneous. We then consider an isomorphism 𝜎 ∶ 𝑈 → 𝑉 between finite substruc-
tures of 𝑀, and show that the 𝐿′-structures induced on 𝑈 and 𝑉 from 𝑁 are also isomorphic
(though not necessarily via 𝜎). It follows by homogeneity of 𝑁 that there is g ∈ Aut(𝑁) with
𝑈g = 𝑉, and as Aut(𝑀) = Aut(𝑁) we find g ∈ Aut(𝑀), as required. The structures 𝑁 that yield
hypergraphs in this way are chosen from a small family of constructions already known to have
interesting properties (see Subsection 2.1). It appears that other similar constructions do not yield
set-homogeneous hypergraphs.
The results characterising these examples mostly use known results characterising permu-

tation groups with a higher degree of homogeneity than transitivity; these are discussed in
Subsection 2.2. The characterisation of 𝑀3 uses a more direct bare-hands argument.
Lachlan and Tripp [33] classified finite homogeneous 3-hypergraphs, using the observation that

their automorphism groups are 2-transitive, together with the classification of finite 2-transitive
groups (so resting on the classification of finite simple groups). We also briefly consider finite set-
homogeneous hypergraphs. We do not carry out a classification (though this looks fully feasible),
but obtain the following result.

Theorem D.

(i) For 𝑘 ⩾ 3, every finite set-homogeneous 𝑘-hypergraph has 2-transitive automorphism group.
(ii) There is a set-homogeneous 3-hypergraph on seven vertices which is not homogeneous.

Note that part (ii) shows Enomoto’s argument for graphs [20] does not work for 3-hypergraphs.
We also show that aspects of Lachlan’s theory of finite homogeneous structures over an arbi-

trary finite relational language hold when homogeneity is weakened to set-homogeneity; see
Theorem 5.3.
The paper is organised as follows. In the remainder of this introduction we briefly discuss the

model theory of set-homogeneity. In Section 2, we give some preliminaries on certain specific tree-
like homogeneous structures and on some results on permutation groups, mainly of Cameron,
that we use. We prove Theorem A in Section 3, and Theorems B and C in Section 4. We dis-
cuss finite set-homogeneous structures (in particular TheoremD) in Section 5, and consider some
further directions and open questions in Section 6.

1.3 Model theory of set-homogeneity

We briefly discuss model-theoretic properties of set-homogeneity. Most background can be found
in [12], and [38] can also be taken as a model-theoretic source.
A countably infinite first-order structure 𝑀 is 𝜔-categorical if it is determined up to isomor-

phism among countable structures by its first-order theory. By the Ryll–Nardzewski theorem, a
countably infinite structure 𝑀 is 𝜔-categorical if and only if its automorphism group is oligomor-
phic, that is, has finitely many orbits on 𝑀𝑛 for all 𝑛. It is immediate that any countably infinite
set-homogeneous structure over a finite relational language has oligomorphic automorphism
group, so is 𝜔-categorical.
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1856 ASSARI et al.

Recall that the ageAge(𝑀) of a countably infinite relational structure𝑀 over a finite relational
language 𝐿 is the collection of finite structures that embed in𝑀. Fraïssé’s amalgamation theorem
states that any two infinite homogeneous structures with the same age are isomorphic, and that
a collection of finite 𝐿-structures is the age of a homogeneous structure if and only if it is closed
under isomorphism, substructure, joint embedding property, and has the ‘amalgamation prop-
erty’. It was noted in [19, Theorem 1.2] that we may in Fraïssé’s theorem replace ‘homogeneous’
by ‘set-homogeneous’ and ‘amalgamation property’ by ‘twisted amalgamation property’ (TAP),
where a class  of finite structures has TAP if and only if for any 𝐴, 𝐵1, 𝐵2 ∈  and 𝑓𝑖 ∶ 𝐴 → 𝐵𝑖

(for 𝑖 = 1, 2) there are 𝐷 ∈ , embeddings g1 ∶ 𝐵1 → 𝐷, g2 ∶ 𝐵2 → 𝐷 and ℎ ∈ Aut(𝐴) such that
g1◦𝑓1 = g2◦𝑓2◦ℎ.
It is well-known that an 𝜔-categorical structure over a finite relational language is homoge-

neous if and only if its theory has quantifier-elimination. A natural weakening of quantifier-
elimination is model-completeness: a theory 𝑇 is model-complete if every formula is equivalent
modulo 𝑇 to an existential formula. It is shown in [22, chapter 11, section 8] with an attribution
to Pouzet (see also [19, pp. 90–91]) that any infinite set-homogeneous structure 𝑀 over a finite
relational language is uniformly prehomogeneous; that is, for any finite 𝐴 ⩽ 𝑀 there is finite 𝐵

with𝐴 ⩽ 𝐵 ⩽ 𝑀 and with |𝐵| bounded as a function of |𝐴|, such that for any partial isomorphism
𝑓 on 𝑀 with domain 𝐴, if 𝑓 extends to 𝐵 then 𝑓 extends to an automorphism of 𝑀. (Formally,
the setting in [22] is for languages with a single relation symbol, but the extension to a finite rela-
tional language is routine.) It is easily checked that any uniformly prehomogeneous structure is
model-complete, and hence that any set-homogeneous 𝐿-structure is model-complete.

1.4 Notation

If 𝐺 is a permutation group on a set 𝑋 (sometimes written as (𝐺, 𝑋)), we write 𝑥g for the image
of 𝑥 ∈ 𝑋 under g ∈ 𝐺. For 𝑈 ⊂ 𝑋 and g ∈ 𝐺, let 𝑈g = {𝑢g ∶ 𝑢 ∈ 𝑈}. For arbitrary functions, we
write the function to the left of the argument.
We view a 𝑘-hypergraph as a first-order structure (𝑀, 𝐸), where 𝐸 is a 𝑘-ary relation that is

assumed only to hold if all arguments are distinct, and to be invariant under permutations of
the arguments (i.e., to be irreflexive and symmetric). If (𝑀, 𝐸) is a 𝑘-hypergraph, we shall write
𝑥1 … 𝑥𝑘 rather than {𝑥1, … , 𝑥𝑘} for an edge. A complete 𝑘-hypergraph is a 𝑘-hypergraph all of
whose 𝑘-subsets are edges; it is null if it has no edges. The complement of the 𝑘-hypergraph (𝑀, 𝐸),
denoted (𝑀, 𝐸)𝑐 (or just 𝑀𝑐), has the same vertex set 𝑀, but a 𝑘-subset of 𝑀 is an edge of 𝑀𝑐 if
and only if it is a non-edge of𝑀. Whenwe use the word ‘subhypergraph’, we alwaysmean induced
subhypergraph, using the model-theoretic notion of substructure.
If < is a total order on 𝑋, and 𝐴, 𝐵 ⊂ 𝑋, we write 𝐴 < 𝐵 to denote that ∀𝑎 ∈ 𝐴∀𝑏 ∈ 𝐵(𝑎 < 𝑏).
If (𝑋, →) is a tournament (that is, a digraph such that for any distinct 𝑥, 𝑦 ∈ 𝑋 exactly one of

𝑥 → 𝑦 or 𝑦 → 𝑥 holds) and 𝑥 ∈ 𝑋, then 𝑥+ ∶= {𝑦 ∈ 𝑋 ∶ 𝑥 → 𝑦} and 𝑥− ∶= {𝑦 ∈ 𝑋 ∶ 𝑦 → 𝑥}. We
denote by 𝐶3 the tournament on {𝑎, 𝑏, 𝑐} such that 𝑎 → 𝑏 → 𝑐 → 𝑎.

2 PRELIMINARIES

Wereviewhere some constructions of homogeneous structures and results on permutation groups
that we use heavily.
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SET-HOMOGENEOUS HYPERGRAPHS 1857

2.1 Some homogeneous structures

As indicated in the Introduction, our strategy for finding set-homogeneous hypergraphs (𝑀, 𝐸)

is to find certain other very specific homogeneous structures on the same domain and with the
same automorphism group. We here give a brief review of the structures used.
First, we recall the linear betweenness relation, circular order and separation relation that are

derivable from a linear order. If (𝑋, ⩽) is a linear order, then a linear betweenness relation 𝐵(𝑥; 𝑦, 𝑧)

can be defined on 𝑋, putting

𝐵(𝑥; 𝑦, 𝑧) ⇔ ((𝑦 ⩽ 𝑥 ⩽ 𝑧) ∨ (𝑧 ⩽ 𝑥 ⩽ 𝑦)).

A circular ordering 𝐾(𝑥, 𝑦, 𝑧) is definable on 𝑋 with the rule

𝐾(𝑥, 𝑦, 𝑧) ⇔ ((𝑥 ⩽ 𝑦 ⩽ 𝑧) ∨ (𝑦 ⩽ 𝑧 ⩽ 𝑥) ∨ (𝑧 ⩽ 𝑥 ⩽ 𝑦)).

Given a circular order 𝐾 on 𝑋, a separation relation on 𝑋 is defined by

𝑆(𝑥, 𝑦; 𝑧, 𝑤) ⇔ [(𝐾(𝑥, 𝑦, 𝑧) ∧ 𝐾(𝑥, 𝑤, 𝑦)) ∨ (𝐾(𝑥, 𝑧, 𝑦) ∧ 𝐾(𝑥, 𝑦, 𝑤))].

Here, if 𝑥, 𝑦, 𝑧, 𝑤 are distinct, then 𝑆(𝑥, 𝑦; 𝑧, 𝑤) says that 𝑧, 𝑤 lie in distinct segments with respect
to 𝑥, 𝑦 of the circular order (and vice versa). Axioms for these can be found in [1, part I], and it
can be shown that any structure satisfying these axioms arises from a linear order in this way.
Next, we introduce 𝐶-relations. Following [1, section 10], a 𝐶-relation is a ternary relation 𝐶 on

a set𝑀 satisfying (C1)–(C4) of the following axioms (with free variables all universally quantified,
but we omit these quantifiers); it is proper if it also satisfies (C5) and (C6).

(C1) 𝐶(𝑥; 𝑦, 𝑧) → 𝐶(𝑥; 𝑧, 𝑦);
(C2) 𝐶(𝑥; 𝑦, 𝑧) → ¬𝐶(𝑦; 𝑥, 𝑧);
(C3) 𝐶(𝑥; 𝑦, 𝑧) → (𝐶(𝑥; 𝑤, 𝑧) ∨ 𝐶(𝑤; 𝑦, 𝑧));
(C4) 𝑥 ≠ 𝑦 → 𝐶(𝑥; 𝑦, 𝑦);
(C5) ∃𝑥𝐶(𝑥; 𝑦, 𝑧);
(C6) 𝑥 ≠ 𝑦 → ∃𝑧(𝑦 ≠ 𝑧 ∧ 𝐶(𝑥; 𝑦, 𝑧));

the relation 𝐶 on 𝑀 is dense if also

(C7) 𝐶(𝑥; 𝑦, 𝑧) → ∃𝑤(𝐶(𝑤; 𝑦, 𝑧) ∧ 𝐶(𝑥; 𝑦, 𝑤)).

The structure (𝑀, 𝐶), where 𝐶 is a 𝐶-relation on 𝑀, is called a 𝐶-set.
It is shown in [1, Theorem 11.2] that if (𝑋, ⪯) is a lower semilinearly ordered set (a partial order

such that for each 𝑎 the set {𝑥 ∶ 𝑥 ⪯ 𝑎} is totally ordered, and such that any two elements have a
common lower bound), then there is a natural 𝐶-relation on the set 𝑆 of maximal chains (totally
ordered subsets) of 𝑋; here, 𝐶(𝑥; 𝑦, 𝑧) holds if and only if 𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑦 or 𝑥, 𝑦, 𝑧 are distinct and
𝑥 ∩ 𝑦 ⊂ 𝑦 ∩ 𝑧 (where the chains 𝑥, 𝑦, 𝑧 are viewed as subsets of 𝑋). Furthermore, by [1, Theorem
12.4] any 𝐶-set (𝑀, 𝐶) arises in this way, with 𝑀 a ‘dense’ set of maximal chains of some lower
semilinear order (𝑋, ⪯), the density here means that any node 𝑎 ∈ 𝑋 will lie in some chain of
𝑀. The semilinear order (𝑋, ⪯) is canonically constructed from (𝑀, 𝐶), indeed it is first-order
interpretable without parameters in (𝑀, 𝐶), as a quotient of an equivalence relation on 𝑀2; we
shall view (𝑀, 𝐶) as coming from such (𝑋, ⪯). Configurations for a 𝐶-relation (and 𝐷-relation
below) are shown in Figure 1.
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1858 ASSARI et al.

F IGURE 1 Diagrams depicting the 𝐶 and 𝐷 relations.

With (𝑋, ⪯) and (𝑀, 𝐶) as above, for 𝑎 ∈ 𝑋, let 𝑆𝑎 be the set of chains in 𝑀 that contain 𝑎.
There is a natural equivalence relation 𝐸𝑎 on the set 𝑆𝑎: we put 𝐸𝑎𝑥𝑦 if and only if there is
𝑏 ∈ 𝑋 with 𝑎 ≺ 𝑏 such that 𝑥, 𝑦 both contain 𝑏. We call the 𝐸𝑎-classes cones of (𝑀, 𝐶), and say
that (𝑀, 𝐶) is regular if the number of cones at 𝑎 does not depend on 𝑎, and is 𝑘-regular if this
number is 𝑘; in this case, following [1, section 10], the branching number of (𝑀, 𝐶) is 𝑘 + 1. It is
well-known (see, e.g., [11, pp. 159, 161], or [1, Theorem 12.6]) that for each 𝑘 ∈ ℕ⩾2 ∪ {∞} there is
up to isomorphism a unique countably infinite dense 𝑘-regular proper 𝐶-set, and this structure
is homogeneous.
Next, we briefly introduce 𝐷-relations, as axiomatised in [1, part V]. An arity 4 relation 𝐷 on

a set 𝑀 is a proper dense 𝐷-relation (and (𝑀, 𝐷) is a 𝐷-set) if axioms (D1)–(D4) hold, again with
universal quantifiers omitted; it is proper if also (D5) holds, and dense if (D6) holds.

(D1) 𝐷(𝑥, 𝑦; 𝑧, 𝑤) → (𝐷(𝑦, 𝑥; 𝑧, 𝑤) ∧ 𝐷(𝑥, 𝑦; 𝑤, 𝑧) ∧ 𝐷(𝑧, 𝑤; 𝑥, 𝑦)).
(D2) 𝐷(𝑥, 𝑦; 𝑧, 𝑤) → ¬𝐷(𝑥, 𝑧; 𝑦, 𝑤).
(D3) 𝐷(𝑥, 𝑦; 𝑧, 𝑤) → (𝐷(𝑢, 𝑦; 𝑧, 𝑤) ∨ 𝐷(𝑥, 𝑦; 𝑧, 𝑢)).
(D4) (𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧) → 𝐷(𝑥, 𝑦; 𝑧, 𝑧).
(D5) (Properness) (𝑥, 𝑦, 𝑧 distinct → ∃𝑤(𝑤 ≠ 𝑧 ∧ 𝐷(𝑥, 𝑦; 𝑧, 𝑤))).
(D6) (Density) 𝐷(𝑥, 𝑦; 𝑧, 𝑤) → ∃𝑢(𝐷(𝑢, 𝑦; 𝑧, 𝑤) ∧ 𝐷(𝑥, 𝑢; 𝑧, 𝑤) ∧ 𝐷(𝑥, 𝑦; 𝑢, 𝑤) ∧ 𝐷(𝑥, 𝑦; 𝑧, 𝑢)).

If (𝑀, 𝐶) is a 𝐶-set, we may define a 𝐷-relation on 𝑀, where, for 𝑥, 𝑦, 𝑧, 𝑤 distinct we put
𝐷(𝑥, 𝑦; 𝑧, 𝑤) if

(𝐶(𝑥; 𝑧, 𝑤) ∧ 𝐶(𝑦; 𝑧, 𝑤)) ∨ (𝐶(𝑧; 𝑥, 𝑦) ∧ 𝐶(𝑤; 𝑥, 𝑦)),

(for non-distinct 𝑥, 𝑦, 𝑧, 𝑤 we put 𝐷(𝑥, 𝑦; 𝑧, 𝑤) if and only if {𝑥, 𝑦} ∩ {𝑧, 𝑤} = ∅). We tend to think
of a 𝐷-relation as holding on the set of ‘directions’ of a general betweenness relation (as defined
in [1, part V]); in fact, by [1, Theorem 26.4] any 𝐷-relation arises in essentially this way. If (𝑀, 𝐸)

is a graph-theoretic unrooted tree whose vertices have degree at least three, then there is a 𝐷-
relation (not satisfying (D6)) on the set of ends; for distinct ends 𝑥̂, 𝑦̂, 𝑧̂, 𝑤̂ we put 𝐷(𝑥̂, 𝑦̂; 𝑧̂, 𝑤̂) if
and only if there are 𝑥 ∈ 𝑥̂, 𝑦 ∈ 𝑦̂, 𝑧 ∈ 𝑧̂ and 𝑤 ∈ 𝑤̂ such that 𝑥 ∪ 𝑦 and 𝑧 ∪ 𝑤 are vertex-disjoint
two-way infinite paths. Observe that if (𝑀, 𝐷) is a 𝐷-set and 𝑎 ∈ 𝑀, then there is an induced
𝐶-relation 𝐶𝑎 on 𝑀 ⧵ {𝑎} with ‘downwards direction 𝑎’, define 𝐶𝑎(𝑥; 𝑦, 𝑧) to hold if and only if
𝐷(𝑎, 𝑥; 𝑦, 𝑧) holds. We shall say that the 𝐷-set (𝑀, 𝐷) is 𝑘-branching or has branching number 𝑘

if the corresponding 𝐶-set (𝑀 ⧵ {𝑎}, 𝐶𝑎) is 𝑘-branching. Again, for each 𝑘 ∈ ℕ⩾3 ∪ {∞} there is
a unique countably infinite dense proper 𝑘-branching 𝐷-set, and this structure is homogeneous
(existence and uniqueness follow from [1, Theorems 12.6 and 22.1], and homogeneity from the
‘First Variation’ in [11, p. 159]).
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SET-HOMOGENEOUS HYPERGRAPHS 1859

There is a natural notion of a 𝐶-relation 𝐶 on 𝑀 being compatible with a total order
on 𝑀; this is introduced and exploited in Subsection 3.1. There is likewise a notion of a
𝐷-relation being compatible with a circular order, but this appears not to lead to further
set-homogeneous hypergraphs.
We mention one further construction, the dense local order of [9], which is one of the three

countably infinite homogeneous tournaments classified by Lachlan in [32]. Following [9], a local
order is a tournament such that all out-neighbourhoods 𝑥+ and in-neighbourhoods 𝑥− are totally
ordered by →. The dense local order is easiest to describe as the unique countably infinite tour-
nament 𝑇 = (𝑍, →) obtained by distributing a countably infinite set 𝑍 of points densely on the
unit circle, no two antipodal, and putting 𝑥 → 𝑦 if the clockwise distance from 𝑥 to 𝑦 on the circle
is less than the anticlockwise distance. It is the countable homogeneous tournament obtained as
the Fraïssé limit of the collection of all finite local orders; by [9, Theorem 6.2] it is the unique (up
to isomorphism) countable tournament on at least four vertices containing 𝐶3 and such that each
set (𝑥+, →) and (𝑥−, →) is a dense linear order without endpoints. As noted by Cameron in [9, pp.
57–58] this tournament is isomorphic to its complement, and if 𝛾 is such an isomorphism, then
the group 𝐻 ∶= ⟨Aut(𝑇), 𝛾⟩ has Aut(𝑇) as a subgroup of index 2. In particular, 𝐻 is 2-transitive,
not 2-primitive and preserves a separation relation on 𝑍.
The examples described in this subsection have been heavily explored in the literature, from

various points of view. For example, they are among the few known examples of countably infi-
nite structures 𝑀 whose automorphism groups Aut(𝑀) are oligomorphic, primitive and have
the property that if 𝑓(𝑘) denotes the number of orbits of Aut(𝑀) on 𝑘-element subsets of 𝑀,
then 𝑓(𝑘) is bounded above exponentially. This viewpoint is developed in [11]. Among homo-
geneous structures, these structures each have the rare property that their age is well-ordered
under embeddability. For recent work in this direction, see, for example, [6, Conjecture 1] that for
a homogeneous 𝜔-categorical relational structure these conditions are equivalent, and coincide
also with ‘monadic NIP’ (see also their Theorem 1.2 as evidence for the conjecture). The automor-
phism groups of homogeneous 𝐶 and 𝐷-sets are Jordan groups, and this was a motivating theme
of [1].
Many of our arguments with 𝐶 and 𝐷-relations and local orders are very pictorial. We include

some diagrams to indicate the intended configurations, but encourage the reader to draw others.

2.2 Homogeneity in permutation groups

Our results on set-homogeneity use and mimic several earlier results on homogeneity of
permutation groups. First, recall the following result of Cameron which lies in the background.

Theorem 2.2.1 [8]. Let (𝐺, 𝑋) be an infinite permutation group that is 𝑘-homogeneous for all 𝑘 but
not 𝑘-transitive for some 𝑘. Then 𝐺 preserves on 𝑋 a linear order, circular order, linear betweenness
relation, or separation relation.

We use a number of refinements of this result, listed together below.

Theorem 2.2.2. Let 𝐺 be a permutation group on an infinite set 𝑋. Then the following hold.

(i) (Bercov and Hobby [4], Wielandt [40]) If 𝑘 ⩾ 1 and (𝐺, 𝑋) is (𝑘 + 1)-homogeneous, then it is
𝑘-homogeneous.
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1860 ASSARI et al.

(ii) (J. MacDermott; see [12, (3.11), p. 63]) Suppose that (𝐺, 𝑋) is 3-homogeneous but not 2-transitive.
Then 𝐺 preserves a linear order on 𝑋.

(iii) (Cameron [10, Theorem 3.3]) Let (𝐺, 𝑋) be 3-homogeneous, 2-transitive not 2-primitive. Then𝐺

preserves on 𝑋 a dense linear betweenness relation or a structure elementarily equivalent to the
universal homogeneous 2-regular 𝐶-set.

(iv) (Cameron [8, Theorem 5.1]) Suppose that 𝐺 is 4-homogeneous but not 3-transitive. Then 𝐺

preserves a circular order or linear betweenness relation on 𝑋.
(v) (Cameron [10, Remark, p. 245]; see [34, Proposition 1.3] for proof) If 𝐺 is 5-homogeneous, 3-

transitive but not 3-primitive, then either 𝐺 preserves a separation relation on 𝑋 or 𝐺 preserves
on 𝑋 a structure elementarily equivalent to the universal homogeneous 3-branching 𝐷-set.

(vi) ([34, Theorem 1.1]) Suppose that 𝑘 ⩾ 5 and 𝐺 is (𝑘 − 1)-transitive but not 𝑘-transitive. Then 𝐺

is not (𝑘 + 3)-homogeneous.

The link between these results and set-homogeneous hypergraphs comes from the following
immediate observation, often used below without explicit reference.

Lemma 2.2.3. Let 𝑀 be a ⩽ 𝑘-set-homogeneous 𝑘-hypergraph. Then Aut(𝑀) is (𝑘 − 1)-
homogeneous, and has at most two orbits on the collection of 𝑘-subsets of 𝑀.

3 COUNTABLY INFINITE SET-HOMOGENEOUS 3-HYPERGRAPHS

In this section, we prove the existence part of Theorem A(i). We prove the uniqueness in
Subsection 3.2, and part (ii) in Subsection 3.3.

3.1 Construction of an example

We shall construct from a totally ordered 𝐶-set a countably infinite set-homogeneous 3-
hypergraph (𝑀, 𝐸) whose automorphism group 𝐺 is not 2-transitive. The ordered 𝐶-set has
appeared previously, in various guises, see, for example, the structure 𝜕𝑃𝑇3 on [11, p. 162], or the
structure2 in [28, section 3], or (𝕃, 𝐶, ≺) of [5, Proposition 3.14].
Let ≤ be a total order and 𝐶 be a 𝐶-relation on the set 𝑀. We say that the relations 𝐶 and ≤

are compatible, and that (𝑀, 𝐶, ⩽) is a (𝐶, ⩽)-set if all cones and all sets 𝑆𝑎 (see Subsection 2.1) are
convex with respect to ≤. However, we only consider the notion when (𝑀, 𝐶) is a 2-regular 𝐶-set,
and under this condition compatibility is equivalent to the condition that whenever 𝑥 < 𝑦 < 𝑧 we
have 𝐶(𝑥; 𝑦, 𝑧) ∨ 𝐶(𝑧; 𝑥, 𝑦) (cf. [5, section 3.5]); we use the definition of compatibility in this latter
form. Informally, if we draw a lower semilinear order (𝑋, ⪯) in the plane in the natural way, with
maximal chains never ‘crossing’, then the natural left-to-right total order on the set of maximal
chains is compatible with the 𝐶-relation defined above. We shall say that the (𝐶, ⩽)-set (𝑀, 𝐶, ⩽)

is 2-regular if (𝑀, 𝐶) is 2-regular, and is strongly dense if (𝑀, 𝐶) is proper as a 𝐶-set, (𝑀, ⩽) is a
dense linear order without endpoints and in addition

(C8) 𝐶(𝑥; 𝑦, 𝑧) → ∃𝑤1, 𝑤2[(𝐶(𝑤1; 𝑦, 𝑧) ∧ 𝐶(𝑥; 𝑦, 𝑤1) ∧ 𝑤1 < Min⩽{𝑦, 𝑧}) ∧ (𝐶(𝑤2; 𝑦, 𝑧) ∧

𝐶(𝑥; 𝑦, 𝑤2) ∧ Max⩽{𝑦, 𝑧} < 𝑤2)].

One configuration witnessing (C8) is shown in Figure 2. Note that (C8) implies the density
condition (C7).

 14697750, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12796 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [14/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SET-HOMOGENEOUS HYPERGRAPHS 1861

F IGURE 2 A configuration witnessing Condition (C8).

The following result has been long known and attribution is difficult.

Theorem 3.1.1. There is up to isomorphism a unique countably infinite strongly dense 2-regular
(𝐶, ⩽)-set (𝑀, 𝐶, ⩽), and (𝑀, 𝐶, ⩽) is homogeneous.

Proof. We omit the details. For existence, the existence of the corresponding semilinear order is
well-known (it is the countable ‘2-homogeneous tree’ of ‘positive type’ and ‘ramification order 2’
from [17]). We may take any countable dense set of maximal chains from this semilinear order,
with the natural induced (𝐶, ⩽)-set structure. The structure so obtained is denoted 𝜕𝑃𝑇3 in [11,
p. 162]. Uniqueness (and the homogeneity assertion) can be proved by a routine back-and-forth
argument. This is done explicitly in [28, Theorem 4.6], though some translation to the language of
that paper is necessary. See also [5, Proposition 3.14] (where, as discussed with one of the authors,
the condition ‘strongly dense’ was inadvertently omitted). □

For the rest of this section, (𝑀, 𝐶, ⩽) denotes the structure identified in Theorem 3.1.1.
We now define the edge relation 𝐸 to hold of a triple 𝑥𝑦𝑧 of distinct elements of 𝑀 if

(𝑥 < {𝑦, 𝑧} ∧ 𝐶(𝑥; 𝑦, 𝑧)) ∨ (𝑦 < {𝑥, 𝑧} ∧ 𝐶(𝑦; 𝑥, 𝑧)) ∨ (𝑧 < {𝑥, 𝑦} ∧ 𝐶(𝑧; 𝑥, 𝑦)).

(Here 𝑥 < {𝑦, 𝑧} means 𝑥 < 𝑦 ∧ 𝑥 < 𝑧.) Thus, in Figure 2 𝑥𝑦𝑧 is an edge but 𝑤2𝑦𝑧 is not. Let 𝑀3

be the hypergraph (𝑀, 𝐸), and put 𝐺 = Aut(𝑀3).

Proposition 3.1.2. The hypergraph 𝑀3 = (𝑀, 𝐸) is set-homogeneous, but 𝐺 is not 2-transitive on
𝑀. In particular 𝑀 is not homogeneous.

Proof. For convenience, observe that the pictures in Figure 3 correspond to 4-sets carrying 0,1,2,3,4
hypergraph edges, respectively.
First, we observe that the ordering< on𝑀 is ∅-definable in (𝑀, 𝐸) and hence𝐺-invariant, as for

all distinct 𝑦, 𝑧 ∈ 𝑀 we have 𝑦 < 𝑧 if and only if there are distinct 𝑢, 𝑣 ∈ 𝑀 ⧵ {𝑦, 𝑧} such that the
only edges on {𝑢, 𝑣, 𝑦, 𝑧} are 𝑢𝑣𝑧 and 𝑦𝑣𝑧. Thus, 𝐺 is not 2-transitive, so 𝑀 is not homogeneous.
Also, the relation 𝐶 is definable from 𝐸: we have 𝐶(𝑥; 𝑦, 𝑧) if and only if

(𝑦 = 𝑧 ≠ 𝑥) ∨ ((𝑥 < Min{𝑦, 𝑧}) ∧ 𝐸(𝑥, 𝑦, 𝑧)) ∨ ((Max{𝑦, 𝑧} < 𝑥) ∧ (𝑦 ≠ 𝑧) ∧ ¬𝐸(𝑥, 𝑦, 𝑧)).

Thus, Aut(𝑀, 𝐸) = Aut(𝑀, 𝐶, ⩽).
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1862 ASSARI et al.

F IGURE 3 Diagrams depicting structures on 4 vertices.

F IGURE 4 Diagrams depicting the sets 𝑆 and 𝑇.

We next show that 𝑀3 is set-homogeneous. We prove by induction on |𝑈| that if 𝑈, 𝑉 are
isomorphic finite substructures of (𝑀, 𝐸) then they are isomorphic as (𝐶, ⩽)-sets (possibly with a
different isomorphism) and hence by homogeneity of (𝑀, 𝐶, ⩽) there is g ∈ 𝐺 with 𝑈g = 𝑉. This
is immediate by inspection if |𝑈| ⩽ 3.
So, suppose that 𝑈, 𝑉 are isomorphic finite substructures of (𝑀, 𝐸) with |𝑈| = |𝑉| ⩾ 4, and let

𝜎 ∶ 𝑈 → 𝑉 be an isomorphism. Define

𝑆 = {𝑥 ∈ 𝑈 ∶ ∀𝑦, 𝑧 ∈ 𝑈 ⧵ {𝑥}(𝑦 ≠ 𝑧 → 𝐸(𝑥, 𝑦, 𝑧))}

𝑆′ = {𝑥 ∈ 𝑉 ∶ ∀𝑦, 𝑧 ∈ 𝑉 ⧵ {𝑥}(𝑦 ≠ 𝑧 → 𝐸(𝑥, 𝑦, 𝑧))}

𝑇 = {𝑥 ∈ 𝑈 ∶ ∀𝑦, 𝑧 ∈ 𝑈 ⧵ {𝑥}(𝑦 ≠ 𝑧 → ¬𝐸(𝑥, 𝑦, 𝑧))}

𝑇′ = {𝑥 ∈ 𝑉 ∶ ∀𝑦, 𝑧 ∈ 𝑉 ⧵ {𝑥}(𝑦 ≠ 𝑧 → ¬𝐸(𝑥, 𝑦, 𝑧))}.

Pictorially, 𝑆 and 𝑇 are as in Figure 4. As (𝑈, 𝐸) ≅ (𝑉, 𝐸), we have |𝑆| = |𝑆′| and |𝑇| = |𝑇′|, and
also 𝜎(𝑆) = 𝑆′ and 𝜎(𝑇) = 𝑇′.
Suppose first that 𝑆 ≠ ∅. Let 𝑆 = {𝑎1, … , 𝑎𝑟} with 𝑎1 < … < 𝑎𝑟. Then 𝑎𝑖 < 𝑏 for any 𝑖 ∈ {1, … , 𝑟}

and 𝑏 ∈ 𝑈 ⧵ 𝑆 and 𝐶(𝑎𝑖; 𝑎𝑗, 𝑎𝑘) whenever 𝑖 < 𝑗 < 𝑘 ⩽ 𝑟, and 𝐶(𝑎𝑖; 𝑎𝑗, 𝑏) whenever 𝑖 < 𝑗 ⩽ 𝑟 and
𝑏 ∈ 𝑈 ⧵ 𝑆; also𝐶(𝑎𝑖; 𝑏, 𝑐) for any 𝑖 ∈ {1, … , 𝑟} and 𝑏, 𝑐 ∈ 𝑈 ⧵ 𝑆. The corresponding assertions hold
for 𝑆′ and 𝑉. As 𝜎(𝑆) = 𝑆′ we have 𝜎(𝑈 ⧵ 𝑆) = 𝑉 ⧵ 𝑆′. Thus, 𝑈 ⧵ 𝑆 and 𝑉 ⧵ 𝑆′ carry isomorphic
hypergraphs of size smaller than |𝑈|, so by induction carry isomorphic (𝐶, ⩽)-sets. It follows that
𝑈 and 𝑉 carry isomorphic (𝐶, ⩽)-sets, so by homogeneity of (𝑀, 𝐶, ⩽) there is ℎ ∈ Aut(𝑀, 𝐶, ⩽)

with 𝑈ℎ = 𝑉. Such ℎ also preserves 𝐸 (as 𝐸 is definable in terms of 𝐶,≤), so ℎ ∈ 𝐺.
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SET-HOMOGENEOUS HYPERGRAPHS 1863

Thus, we may suppose 𝑆 = ∅, and similarly 𝑇 = ∅. There is a partition of𝑈 into two parts 𝑃, 𝑄,
with the following property:

(*) |𝑃| ⩾ 2, |𝑄| ⩾ 2, and for all 𝑝 ∈ 𝑃 and distinct 𝑞, 𝑞′ ∈ 𝑄 we have 𝐸(𝑝, 𝑞, 𝑞′), and for all 𝑞 ∈ 𝑄

and distinct 𝑝, 𝑝′ ∈ 𝑃 we have ¬𝐸(𝑝, 𝑝′, 𝑞).

Indeed, in the underlying tree structure induced from (𝑀, 𝐶, ⩽), 𝑃 will be the left-hand cone at
the root, and 𝑄 the right-hand cone. In particular, 𝑃 < 𝑄.
We claim that this is the unique two-part partition of 𝑈 satisfying (*). Indeed, suppose that

𝑈 = 𝑃′ ∪ 𝑄′ is another such partition, and that 𝑃′ contains 𝑝, 𝑝′ where 𝑝 lies in the left-hand cone
𝑃 and𝑝′ in the right-hand cone𝑄. Now𝑄 ⊆ 𝑃′; for if 𝑞 ∈ 𝑄 ∩ 𝑄′ then𝐸(𝑝, 𝑞, 𝑝′) contradicting that
𝑞 ∈ 𝑄′ and 𝑝, 𝑝′ ∈ 𝑃′. Thus, if 𝑝′′ ∈ 𝑄 ⧵ {𝑝′} and 𝑞 ∈ 𝑄′ then 𝑝′′ ∈ 𝑃′ and 𝑞 ∈ 𝑃, so 𝐸(𝑞, 𝑝′, 𝑝′′)

by (*) applied to (𝑃, 𝑄). This however contradicts (*) for 𝑃′, 𝑄′.
It follows that 𝜎 maps 𝑃 to the left-hand cone 𝑃∗ of 𝑉 and 𝑄 to the right-hand cone 𝑄∗ of 𝑉.

In particular the hypergraphs induced on 𝑃 and 𝑃∗ are isomorphic, as are those on 𝑄 and 𝑄∗.
As |𝑃| < |𝑈| and |𝑄| < |𝑈|, by induction the structures induced on 𝑃 and 𝑃∗ are isomorphic as
(𝐶, ⩽)-sets, as are those on 𝑄 and 𝑄∗. It follows that the (𝐶, ⩽)-structures induced on𝑈 and 𝑉 are
isomorphic, so again by homogeneity of (𝑀, 𝐶, ⩽) there is ℎ ∈ Aut(𝑀, 𝐶, ⩽) with 𝑈ℎ = 𝑉, and
such ℎ lies in 𝐺.

3.2 Classification in the not-2-transitive case

The goal of this subsection is to show that 𝑀3 is the unique countable set-homogeneous 3-
hypergraph whose automorphism group is not 2-transitive. The idea is to recover from 𝐸 the
relations 𝐶 and ≤, show that (𝑀, 𝐶, ⩽) is a strongly dense 2-regular (𝐶, ⩽)-set, and apply Theo-
rem 3.1.1. The first three lemmas below hold for finite as well as countably infinite structures.
First, we record the following easy lemma, used throughout the paper.

Lemma 3.2.1. Let (𝑁, 𝐸) be a (𝑘 + 1)-set-homogeneous 𝑘-hypergraph. Then if𝑈, 𝑉 ⊂ 𝑁 with |𝑈| =

|𝑉| = 𝑘 + 1 and 𝑈 and 𝑉 carry the same number of edges of (𝑁, 𝐸), there is g ∈ Aut(𝑁, 𝐸) with
𝑈g = 𝑉.

Proof. Suppose that 𝑈 and 𝑉 each have 𝑚 > 0 edges. Each edge of 𝑈 omits one element of 𝑈, so
the intersection of the edges of 𝑈 is a subset 𝑆𝑈 of size 𝑘 + 1 − 𝑚, and similarly the intersection
𝑆𝑉 of the edges of 𝑉 has size 𝑘 + 1 − 𝑚. It follows that any bijection 𝜎 ∶ 𝑈 → 𝑉 with 𝜎(𝑆𝑈) = 𝑆𝑉

gives an isomorphism (𝑈, 𝐸) → (𝑉, 𝐸), and by (𝑘 + 1)-set-homogeneity some such 𝜎 lifts to g ∈

Aut(𝑁, 𝐸). □

The following combinatorial lemma is probably well-known.

Lemma 3.2.2. Let (𝑇, →) be a ⩽2-homogeneous tournament such that for each vertex 𝑥, the 3-cycle
𝐶3 embeds in the subtournament 𝑥+. Then 𝐶3 embeds in each 𝑥−.

Proof. We assume for a contradiction that𝐶3 does not embed in some (equivalently, any) 𝑥−. First,
(𝑇, →) has a substructure {1, 2, 3, 4}where 2, 3, 4 ∈ 1+ and 2 → 3 → 4 → 2. By 2-homogeneity the
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1864 ASSARI et al.

arc 1 → 3 lies in a copy of 𝐶3 so there is an element 5 ∈ 𝑇 with 3 → 5 → 1. Clearly 5 ∉ {1, 2, 3, 4}.
We have 4 → 5 (otherwise 135 is a 𝐶3 in 4−) and 5 → 2 (as otherwise 234 is a 𝐶3 in 5−).
Similarly, the arc 1 → 2 lies in a 𝐶3, say 1 → 2 → 6 → 1. Again, clearly 6 ∉ {1, … , 5}. We have

3 → 6 as otherwise the 𝐶3 126 lies in 3−. Similarly, 6 → 4 as otherwise 234 is a 𝐶3 in 6−.
Observe that the arc 2 → 3 lies on at least two copies of 𝐶3, namely 234 and 235. It follows by

2-homogeneity of Aut(𝑇, →) on 𝑇 that every arc lies on at least two copies of 𝐶3.
Next, the arc 1 → 4 lies in a 𝐶3, say 4 → 7 → 1 → 4. By the last paragraph, we may suppose

7 ≠ 5, so 7 ∉ {1, 2, … , 6}. We have 2 → 7 as otherwise 147 is a 𝐶3 in 2−, and 7 → 3 as otherwise 234
is a 𝐶3 in 7−.
Next, we determine the orientation of the arcs among 5,6,7. We have 7 → 6 as otherwise 426 is

a 𝐶3 in 7−. Also 5 → 7 as otherwise 347 is a 𝐶3 in 5−. And 6 → 5 as otherwise 235 is a 𝐶3 in 6−.
Thus, 7 → 6 → 5 → 7 is a 𝐶3. This lies in 1−, which is the final contradiction. □

Lemma 3.2.3. Let (𝑁, 𝐸) be a ⩽4-set-homogeneous 3-hypergraph such that 𝐾 = Aut(𝑁, 𝐸) is not
2-transitive. Then 𝐾 preserves a linear order on 𝑁.

Proof. By set-homogeneity, 𝐾 is 2-homogeneous on 𝑁. As 𝐾 is not 2-transitive it preserves a tour-
nament relation → on 𝑁; here the set of pairs (𝑎, 𝑏) with 𝑎 → 𝑏 is one of the two 𝐾-orbits on
ordered pairs of distinct elements. We assume → is not a total order, so (𝑁, →) embeds a copy of
𝐶3. Now |𝑁| ⩾ 4, as otherwise (𝑁, →) ≅ 𝐶3 andAut(𝑁, 𝐸) = 𝑆3 which is 2-transitive. Thus, (𝑁, →)

embeds paths of length 3 as well as 𝐶3. By 3-set-homogeneity of (𝑁, 𝐸),𝐾 has two orbits on 3-sets,
and replacing (𝑁, 𝐸) by its complement if necessary we may suppose that the copies of 𝐶3 are the
edges of (𝑁, 𝐸). By transitivity of 𝐾 on 𝑁, if for some 𝑎 ∈ 𝑋 we have that 𝑎+ (respectively, 𝑎−)
embeds a copy of 𝐶3, then this holds for all 𝑥 ∈ 𝑁.
If neither 𝑎+ nor 𝑎− embeds a copy of 𝐶3, then (𝑁, →) is a local order (see Subsection 2.1).

Easily, if |𝑎+| = 1 for all 𝑎 then |𝑎−| = 1 for all 𝑎 and we have (𝑁, →) ≅ 𝐶3, a contradiction as
above. Thus, using rigidity of finite total orders we may assume that each 𝑎+ and 𝑎− is infinite.
By 3-set-homogeneity each set 𝑎+ and 𝑎− is densely ordered, so by [9, Theorem 6.2] (𝑁, →) is
isomorphic to the dense local order (𝑆, →) (one of the three homogeneous tournaments classified
by Lachlan in [32]). Now as noted in Subsection 2.1, there is a permutation 𝛾 of𝑁 (of order 2) that
induces an isomorphism from (𝑁, →) to its reverse. Now 𝛾 preserves 𝐸, so 𝛾 ∈ 𝐾, contradicting
that → is 𝐾-invariant.
Thus, we may suppose that each 𝑥+ embeds 𝐶3. It follows by Lemma 3.2.2 that each 𝑥− also

embeds 𝐶3. This however means that (𝑁, →) contains two non-isomorphic 4-vertex tournaments
each giving a hypergraph with exactly one edge (a copy of 𝐶3 dominated by a vertex, and a copy
of 𝐶3 dominating a vertex). This is impossible by Lemma 3.2.1. □

We aim to show that any countably infinite set-homogeneous but not 2-homogeneous 3-
hypergraph (𝑁, 𝐸) is isomorphic to 𝑀3. Consider such (𝑁, 𝐸), and let 𝐾 = Aut(𝑁, 𝐸). By
Lemma 3.2.3,𝐾 preserves a linear order≤ on𝑁, and by 2-homogeneity, this order is densewithout
endpoints. Our goal is to reconstruct the 𝐶-relation on 𝑁.
Let 𝑈 = {𝑥, 𝑦, 𝑧, 𝑤} be a 4-vertex substructure of the structure (𝑀, 𝐸, ⩽) from Subsection 3.1,

with 𝑥 < 𝑦 < 𝑧 < 𝑤. Figure 3 lists all isomorphism types of 4-vertex substructures of (𝑀, 𝐶, ⩽)

and indicates the corresponsing number of edges. It follows by inspection of Figure 3 that if𝑈 has
one edge then this is 𝑥𝑦𝑧, if𝑈 has two edges then these are 𝑥𝑧𝑤 and 𝑦𝑧𝑤, and if𝑈 has three edges
then these are all except 𝑦𝑧𝑤. Also, again by inspection of Figure 3, all of these cases are realised.
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SET-HOMOGENEOUS HYPERGRAPHS 1865

We first aim to recover this behaviour on (𝑁, 𝐸) (of course, up to reversal of the ordering). Note
that in 𝑁, by Lemma 3.2.1 any two 4-vertex substructures with the same number of edges are in
the same 𝐾-orbit, so the edges must be distributed in the same way with respect to the order, that
is, the structures are isomorphic as (𝐸, ⩽)-structures.
We observe first that (𝑁, 𝐸) contains both edges and non-edges, as otherwise 𝐾 = Sym(𝑁) and

so is 2-transitive.We shall amalgamate edges and non-edges in all possible ways over 2-sets. As we
use similar arguments for 4-hypergraphs in the next section, and the argumentsmay be applicable
for 𝑘-hypergraphs for larger 𝑘, we set them up in greater generality in the next two lemmas.

Lemma 3.2.4. Let 𝑘 ⩾ 4 and let (𝐻, 𝐸) be a ⩽(𝑘 + 1)-set-homogeneous countably infinite
𝑘-hypergraph whose automorphism group preserves a total order < on 𝐻.

(i) Let 𝑖, 𝑗 ∈ {1, … , 𝑘 + 1} such that |𝑖 − 𝑗| ⩾ 2. Then there are 𝑢1 < … < 𝑢𝑘+1 in 𝐻 such that
{𝑢1, … , 𝑢𝑘+1} ⧵ {𝑢𝑖} is an edge and {𝑢1, … , 𝑢𝑘+1} ⧵ {𝑢𝑗} is a non-edge.

(ii) Let 𝑖 ∈ {1, … , 𝑘}. Then there are 𝑢1 < … < 𝑢𝑘+1 in𝐻 such that exactly one of {𝑢1, … , 𝑢𝑘+1} ⧵ {𝑢𝑖}

and {𝑢1, … , 𝑢𝑘+1} ⧵ {𝑢𝑖+1} is an edge.

Proof.

(i) First choose a non-edge 𝑤1 … 𝑤𝑘 of 𝐻 with 𝑤1 < … < 𝑤𝑘. Suppose first 𝑖 < 𝑗. We claim that
there is 𝑣 such that𝑤𝑗−1 < 𝑣 < 𝑤𝑗 and {𝑣, 𝑤1, … , 𝑤𝑘} ⧵ {𝑤𝑖} is an edge; indeed, there is an edge
𝑧1 … 𝑧𝑘 with 𝑧1 < … < 𝑧𝑘 and by (𝑘 − 1)-homogeneity there is order-preserving g ∈ Aut(𝐻, 𝐸)

with {𝑧1, … , 𝑧𝑘} ⧵ {𝑧𝑗−1}g = {𝑤1, … , 𝑤𝑘} ⧵ {𝑤𝑖}, and we may put 𝑣 = 𝑧
g

𝑗−1
. In the case when

𝑗 < 𝑖, choose 𝑣 with 𝑤𝑗−1 < 𝑣 < 𝑤𝑗 such that {𝑣, 𝑤1, … , 𝑤𝑘} ⧵ {𝑤𝑖−1} is an edge. In both cases
put 𝑢𝑚 = 𝑤𝑚 for 𝑚 < 𝑗, 𝑢𝑗 = 𝑣 and 𝑢𝑚 = 𝑤𝑚−1 for 𝑚 > 𝑗 to obtain the required set.

(ii) Again choose a non-edge 𝑤1 … 𝑤𝑘 with 𝑤1 < … < 𝑤𝑘. Choose 𝑣 with 𝑤𝑖−1 < 𝑣 < 𝑤𝑖+1 such
that {𝑤1, … , 𝑤𝑘, 𝑣} ⧵ {𝑤𝑖} is an edge, and list 𝑤1, … , 𝑤𝑘, 𝑣 in increasing order as 𝑢1, … , 𝑢𝑘+1.
Note that whether or not 𝑣 < 𝑤𝑖 is undetermined. □

We continue to consider a countably infinite ⩽(𝑘 + 1)-set homogeneous 𝑘-hypergraph (𝐻, 𝐸)

whose automorphism group is not 2-transitive and so preserves a total order < on 𝐻. For 𝑖, 𝑗 ∈

{1, … , 𝑘 + 1} with |𝑖 − 𝑗| ⩾ 2, let 𝑆𝑖𝑗(𝑥1, … , 𝑥𝑘+1) be a formula (in the language with < and 𝐸)
expressing

(𝑥1 < … < 𝑥𝑘+1) ∧ ({𝑥1, … , 𝑥𝑘+1} ⧵ {𝑥𝑖} is an edge)

∧({𝑥1, … , 𝑥𝑘+1} ⧵ {𝑥𝑗} is a non-edge).

Also for 𝑖 = 1, … , 𝑘 let 𝑇𝑖(𝑥1, … , 𝑥𝑘+1) express

(𝑥1 < … < 𝑥𝑘+1)

∧(exactly one of {𝑥1, … , 𝑥𝑘+1} ⧵ {𝑥𝑖} and {𝑥1, … , 𝑥𝑘+1} ⧵ {𝑥𝑖+1} is an edge).

The conclusion of Lemma 3.2.4 is that the formula 𝑆𝑖𝑗 is realised in (𝐻, 𝐸) for all 𝑖, 𝑗 ∈ {1, … , 𝑘 + 1}

with |𝑖 − 𝑗| ⩾ 2 and 𝑇𝑖 is realised for each 𝑖 = 1, … , 𝑘.
If a (𝑘 + 1)-set has 𝑚 edges, then these edges intersect in 𝑘 + 1 − 𝑚 elements, and under an

assumption of (𝑘 + 1)-set-homogeneity of (𝐻, 𝐸) and the invariance of <, these 𝑘 + 1 − 𝑚 ele-
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1866 ASSARI et al.

ments are determined by 𝑚; see Lemma 3.2.1 and its proof. For each 𝑚 = 1, … , 𝑘 we say that 𝐻

satisfies 𝑃𝑚
𝐽
where 𝐽 is a (𝑘 + 1 − 𝑚)-subset of {1, … , 𝑘 + 1}, if 𝐻 has a (𝑘 + 1)-set {𝑢1, … , 𝑢𝑘+1}

(with 𝑢1 < … < 𝑢𝑘+1) with exactly 𝑚 hypergraph edges, which intersect in the elements indexed
by 𝐽. (In the case where𝑚 = 𝑘 and so |𝐽| = 1, we write 𝑃𝑘

𝑗
rather than 𝑃𝑘

{𝑗}
.) We say𝐻 satisfies 𝑃𝑚

∗

if 𝐻 has no (𝑘 + 1)-set with 𝑚 edges. Thus, for each 𝑚 = 1, … , 𝑘 either 𝑃𝑚
𝐽
holds for exactly one

(𝑘 + 1 − 𝑚)-subset 𝐽 of {1, … , 𝑘 + 1}, or it holds for no 𝐽 and 𝑃𝑚
∗ holds. Furthermore, by Ramsey’s

theorem either there is a (𝑘 + 1)-vertex set with 𝑘 + 1 edges, or there is a (𝑘 + 1)-vertex set with
no edges (possibly both).

Lemma 3.2.5. Assume the conditions of Lemma 3.2.4. Suppose that 1 ⩽ 𝑚 ⩽ 𝑘 and 𝑃𝑚
𝐽
holds.

Then

(i) all formulae 𝑆𝑖𝑗 are realised in (𝐻, 𝐸), where 𝑖 ∉ 𝐽, 𝑗 ∈ 𝐽 and |𝑖 − 𝑗| ⩾ 2, and
(ii) for 𝑖 = 1, … , 𝑘, (𝐻, 𝐸) realises 𝑇𝑖 if and only if just one of 𝑖, 𝑖 + 1 lies in 𝐽.

Proof. If 𝑃𝑚
𝐽
holds, then any 𝑢1 < … < 𝑢𝑘+1 carrying 𝑚 edges has the edge omitting 𝑢𝑖 for each

𝑖 ∈ {1, … , 𝑘 + 1} ⧵ 𝐽, and has the non-edge omitting 𝑢𝑗 for each 𝑗 ∈ 𝐽. Both parts follow. □

We now revert to our context where (𝑁, 𝐸) is a ⩽4-set-homogeneous 3-hypergraph whose auto-
morphism group 𝐾 preserves a total order ≤ on 𝑁. For each 𝑚 = 1, 2, 3 either 𝑃𝑚

𝐽
holds for some

𝐽 ⊂ {1, 2, 3, 4} with |𝐽| = 4 − 𝑚, or 𝑃𝑚
∗ holds.

Lemma 3.2.6. Under the above assumptions, one of the following holds.

(i) 𝑃2
{1,2}

, 𝑃1
{2,3,4}

, 𝑃3
{4}
.

(ii) 𝑃2
{3,4}

, 𝑃1
{1,2,3}

, 𝑃3
{1}
.

Proof. By Lemma 3.2.4, all of the formulae 𝑆31, 𝑆41, 𝑆42, 𝑆13, 𝑆14, 𝑆24 must be realised, and it is rou-
tine by Lemma 3.2.5 and Table 1 to verify that (i) and (ii) are the only ways to realise all these 𝑆𝑖𝑗 .
Conditions 𝑃2

{1,2}
and 𝑃2

{3,4}
each realise three such formulae (namely 𝑆31, 𝑆41, 𝑆42, and 𝑆13, 𝑆14, 𝑆24,

respectively), while 𝑃2
{1,3}

and 𝑃2
{2,4}

each realise just one such formula (namely 𝑆41 and 𝑆14, respec-
tively). Conditions 𝑃1

{2,3,4}
and 𝑃1

{1,2,3}
each realise two formulae 𝑆𝑖𝑗 , and 𝑃1

{1,2,4}
and 𝑃1

{1,3,4}
each

realise one. Likewise 𝑃3
{1}
and 𝑃3

{4}
each realise two formulae, and 𝑃3

{2}
and 𝑃3

{3}
each realise one.

Thus, to realise all six 𝑆𝑖𝑗 formulae wemust have 𝑃2
{1,2}

or 𝑃2
{3,4}

. By examining the possibilities, we
easily see that the first case gives (i) and the second case gives (ii). □

We shall assume that Case (ii) holds; this is justified because (i) is obtained from (ii) by revers-
ing the order (in fact, if (i) holds, we obtain the complement of 𝑀3, which as a hypergraph is
isomorphic to 𝑀3).

Lemma 3.2.7. For each𝑚 ∈ ℕwith 0 ⩽ 𝑚 ⩽ 4 there is a 4-vertex substructure of (𝑁, 𝐸)with exactly
𝑚 edges.

Proof. For 𝑚 = 1, 2, 3 this follows from our Case (ii) assumption. For the case 𝑚 = 0, fix a non-
edge 𝑢𝑣𝑤 of (𝑁, 𝐸) with 𝑢 < 𝑣 < 𝑤. There is 𝑎 < 𝑢 with 𝑎𝑢𝑣 a non-edge, and by inspecting the
possibilities in our Case (ii) assumption, {𝑎, 𝑢, 𝑣, 𝑤} has 0 edges. For the case 𝑚 = 4 consider an
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SET-HOMOGENEOUS HYPERGRAPHS 1867

TABLE 1 A table showing how the conditions 𝑃𝑚
𝐽
can ensure that the formulas 𝑆𝑖𝑗 are realised. 0 in the

(𝑃𝑚
𝐽

, 𝑆𝑖𝑗)-entry means that if 𝐻 satisfies 𝑃𝑚
𝐽
then it realises 𝑆𝑖𝑗 .

𝑺𝟏𝟑 𝑺𝟑𝟏 𝑺𝟏𝟒 𝑺𝟒𝟏 𝑺𝟐𝟒 𝑺𝟒𝟐

𝑃1
123

0 0
𝑃1

124
0

𝑃1
134

0
𝑃1

234
0 0

𝑃2
12

0 0 0
𝑃2

13
0

𝑃2
14

0 0
𝑃2

23
0 0

𝑃2
24

0
𝑃2

34
0 0 0

𝑃3
1

0 0
𝑃3

2
0

𝑃3
3

0
𝑃3

4
0 0

edge 𝑝𝑞𝑟 with 𝑝 < 𝑞 < 𝑟, and some 𝑑 < 𝑝 with 𝑑𝑝𝑞 an edge; the set {𝑑, 𝑝, 𝑞, 𝑟} must have four
edges. □

Next, we define a ternary relation 𝐶 on 𝑁 as follows. For 𝑥, 𝑦, 𝑧 ∈ 𝑁, we put 𝐶(𝑥; 𝑦, 𝑧) if and
only if one of the following holds.

(a) 𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑦;
(b) 𝑥, 𝑦, 𝑧 are distinct, and 𝑥 < Min{𝑦, 𝑧} ∧ 𝐸𝑥𝑦𝑧;
(c) 𝑥, 𝑦, 𝑧 are distinct, and Max{𝑦, 𝑧} < 𝑥 ∧ ¬𝐸𝑥𝑦𝑧.

Lemma 3.2.8. The structure (𝑁, 𝐶) is a 2-regular proper 𝐶-set.

Proof. Axioms (C1) and (C4) of Subsection 2.1 follow immediately from the above definition.
(C2) is immediate if 𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑦, so suppose that 𝐶(𝑥; 𝑦, 𝑧) holds and 𝑥, 𝑦, 𝑧 are distinct. Either
𝑥 < Min{𝑦, 𝑧} and𝐸𝑥𝑦𝑧, orMax{𝑦, 𝑧} < 𝑥 ∧ ¬𝐸𝑥𝑦𝑧. In the first case, we do not have 𝑦 < Min{𝑥, 𝑧}

so 𝐶(𝑦; 𝑥, 𝑧) cannot hold through (b), and as 𝐸𝑥𝑦𝑧 holds, 𝐶(𝑦; 𝑥, 𝑧) cannot hold through (c). The
argument is similar in the second case. Thus, (C2) holds.
To prove (C3), suppose 𝐶(𝑥; 𝑦, 𝑧) holds, and 𝑤 ∈ 𝑁. In case (a), where 𝑦 = 𝑧 ≠ 𝑥, either 𝑤 =

𝑦 = 𝑧 and 𝐶(𝑥; 𝑤, 𝑧) holds, or 𝑤 ≠ 𝑦 and 𝐶(𝑤; 𝑦, 𝑧) holds, as required.
Suppose case (b) holds. If 𝑤 = 𝑥 then 𝐶(𝑤; 𝑦, 𝑧) holds, if 𝑤 = 𝑦 then 𝐶(𝑥; 𝑤, 𝑧) holds, and if

𝑤 = 𝑧 then 𝐶(𝑥; 𝑤, 𝑧) via (a). Thus, we may suppose 𝑥, 𝑦, 𝑧, 𝑤 are distinct. Now as 𝐸𝑥𝑦𝑧 holds,
{𝑥, 𝑦, 𝑧, 𝑤} has 1, 2, 3 or 4 edges. If there is just one edge, then 𝑃1

{1,2,3}
(from Lemma 3.2.6(ii)) yields

that Max{𝑥, 𝑦, 𝑧} < 𝑤 and 𝑦𝑧𝑤 is a non-edge, so 𝐶(𝑤; 𝑦, 𝑧) by (c). If there are two edges, then
as 𝑃2

{3,4}
holds and as 𝐶(𝑥; 𝑦, 𝑧) arises from (b), we must have that 𝑤 < Min{𝑦, 𝑧} and 𝐸𝑤𝑦𝑧, so

𝐶(𝑤; 𝑦, 𝑧) holds by (b). If there are three edges then by 𝑃3
{1}

as 𝐸𝑥𝑦𝑧 we must have 𝑥 < 𝑤. As
all the triples of {𝑥, 𝑦, 𝑧, 𝑤} with element 𝑥 are edges, we must have 𝐸𝑥𝑤𝑧, so 𝐶(𝑥; 𝑤, 𝑧) holds
by (b). Finally, if there are four edges, then if 𝑤 < Min{𝑦, 𝑧} then 𝐶(𝑤; 𝑦, 𝑧) holds, and otherwise
𝐶(𝑥; 𝑤, 𝑧) holds, in each case by (b).
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1868 ASSARI et al.

The proof when 𝐶(𝑥; 𝑦, 𝑧) holds through case (c) is similar. Thus, we have established (C3).
For axiom (C5), if 𝑦 = 𝑧 then any 𝑥 ≠ 𝑦 satisfies 𝐶(𝑥; 𝑦, 𝑧). And if 𝑦 ≠ 𝑧 then using 2-

homogeneity of 𝐾 and the existence of edges we find 𝑥 < Min{𝑦, 𝑧} with 𝐸𝑥𝑦𝑧, and then
𝐶(𝑥; 𝑦, 𝑧) holds.
Finally, for (C6), suppose 𝑥 ≠ 𝑦. Suppose first 𝑥 < 𝑦. Again using 2-homogeneity and existence

of edges, there is 𝑧 > 𝑦 with 𝐸𝑥𝑦𝑧, and then 𝑦 ≠ 𝑧 ∧ 𝐶(𝑥; 𝑦, 𝑧) holds. Similarly, if 𝑦 < 𝑥, there is
𝑧 < 𝑦 with ¬𝐸𝑥𝑦𝑧, and again 𝑦 ≠ 𝑧 ∧ 𝐶(𝑥; 𝑦, 𝑧), the latter by (c).
For 2-regularity, suppose for a contradiction that there are distinct 𝑥, 𝑦, 𝑧 such that¬𝐶(𝑥; 𝑦, 𝑧) ∧

¬𝐶(𝑦; 𝑥, 𝑧) ∧ ¬𝐶(𝑧; 𝑥, 𝑦). Wemay suppose 𝑥 < 𝑦 < 𝑧. Then 𝑥𝑦𝑧 is a non-edge by (b) as ¬𝐶(𝑥; 𝑦, 𝑧),
but 𝑥𝑦𝑧 is an edge by (c) as ¬𝐶(𝑧; 𝑥, 𝑦), a contradiction. □

Lemma 3.2.9. The order ≤ on 𝑁 is compatible with 𝐶, and (𝑁, 𝐶, ⩽) is a strongly dense (𝐶, ⩽)-set.

Proof. In this 2-regular context, for compatibility wemust show that if 𝑥 < 𝑦 < 𝑧 then𝐶(𝑥; 𝑦, 𝑧) ∨

𝐶(𝑧; 𝑥, 𝑦). This is immediate, if 𝑥𝑦𝑧 is an edge then 𝐶(𝑥; 𝑦, 𝑧) holds, and if 𝑥𝑦𝑧 is a non-edge, then
𝐶(𝑧; 𝑥, 𝑦) holds.
It remains to prove strong density, that is, that (C8) holds. So, suppose that 𝐶(𝑥; 𝑦, 𝑧) holds.

Again, we may suppose 𝑥 < Min{𝑦, 𝑧}, the case when Max{𝑦, 𝑧} < 𝑥 being handled similarly.
We suppose first 𝑦 = 𝑧. Then there is 𝑤1 with 𝑥 < 𝑤1 < 𝑦 and 𝑥𝑤1𝑦 an edge, and for such 𝑤1

we have 𝐶(𝑤1; 𝑦, 𝑦) ∧ 𝐶(𝑥; 𝑦, 𝑤1), and likewise there is 𝑤2 > 𝑦 with 𝑥𝑦𝑤2 an edge, again yielding
𝐶(𝑤2; 𝑦, 𝑦) ∧ 𝐶(𝑥; 𝑦, 𝑤2).
Suppose now 𝑦 ≠ 𝑧. Wemay suppose 𝑦 < 𝑧. By Lemma 3.2.7, there are 𝑝 < 𝑞 < 𝑟 < 𝑠 in𝑁 such

that {𝑝, 𝑞, 𝑟, 𝑠} has four edges. As 𝑥𝑦𝑧 is an edge, by 3-set-homogeneity of (𝑁, 𝐸) we may choose
g ∈ 𝐾 with {𝑝, 𝑟, 𝑠}g = {𝑥, 𝑦, 𝑧} and put 𝑤1 = 𝑞g . By 𝐾-invariance of < we have 𝑥 < 𝑤1 < 𝑦 and
𝑥𝑦𝑤1 and 𝑤1𝑦𝑧 are edges, so 𝐶(𝑤1; 𝑦, 𝑧) ∧ 𝐶(𝑥; 𝑦, 𝑤1) holds. Likewise there is 𝑤2 > 𝑧 such that
{𝑥, 𝑦, 𝑧, 𝑤2} has three edges, yielding again 𝐶(𝑤2; 𝑦, 𝑧) ∧ 𝐶(𝑥; 𝑦, 𝑤2). □

Proof of Theorem A(i). The existence assertion follows from Proposition 3.1.2. For the uniqueness
characterisation, suppose that (𝑁, 𝐸) is a ⩽4-set-homogeneous countably infinite 3-hypergraph
whose automorphism group 𝐾 is not 2-transitive. By Lemma 3.2.3 and Lemmas 3.2.8 and 3.2.9,
there are a 𝐾-invariant total order ≤ on 𝑁 and compatible 𝐾-invariant 2-regular 𝐶-relation 𝐶 on
𝑁 so that (𝑁, 𝐶, ⩽) is strongly dense. It follows from Theorem 3.1.1 that (𝑁, 𝐶, ⩽) ≅ (𝑀, 𝐶, ⩽).
By our assumption that Case (ii) of Lemma 3.2.6 holds, it follows that 𝐸 is defined from 𝐶 and
≤ in 𝑁 in the same way as in 𝑀, and hence that (𝑁, 𝐸) ≅ 𝑀3. If instead we had assumed that
any 4-vertex set in 𝑁 with two edges has the edges intersecting in the first two elements, then
(𝑁, 𝐸) would be isomorphic to the hypergraph complement 𝑀𝑐

3
of 𝑀3. However, as 𝑀3 ≅ 𝑀𝑐

3
(as

(𝑀, 𝐶, ⩽) ≅ (𝑀, 𝐶, ⩾)), it again follows that (𝑁, 𝐸) ≅ 𝑀3. □

3.3 A further set-homogeneous 3-hypergraph

We consider a further set-homogeneous 3-hypergraph associated with the countably homoge-
neous local order 𝑇 = (𝑍, →) described in Subsection 2.1. Let 𝐻 be the group of automorphisms
and anti-automorphisms of 𝑇, which has Aut(𝑇) as a subgroup of index 2. Our arguments below
heavily appeal to the description of (𝑍, →) as consisting of points on the unit circle (see Subsec-
tion 2.1). We frequently use that in this representation of 𝑇, Aut(𝑇) preserves the natural circular
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SET-HOMOGENEOUS HYPERGRAPHS 1869

ordering on 𝑍, and 𝐻 preserves the induced separation relation 𝑆; this is easily verified. There is
a natural notion of a subset𝑈 of 𝑍 being convexwith respect to the circular order; this means that
for any distinct 𝑥, 𝑦 ∈ 𝑈 and distinct 𝑧, 𝑤 ∈ 𝑍 ⧵ 𝑈, ¬𝑆(𝑥, 𝑦; 𝑧, 𝑤) holds.
We define a ternary relation 𝑅 on 𝑍, putting 𝑅(𝑥; 𝑦, 𝑧) if and only if

(𝑦 → 𝑥 ∧ 𝑦 → 𝑧 ∧ 𝑥 → 𝑧) ∨ (𝑧 → 𝑥 ∧ 𝑧 → 𝑦 ∧ 𝑥 → 𝑦).

Clearly 𝐻 ⩽ Aut(𝑍, 𝑅). When discussing (𝑍, 𝑅) (and (𝑍, 𝐸) below) we often refer to the underly-
ing tournament from which they are defined, even though these structures do not determine the
tournament relation →.
The lemma below is useful to us andmay have independent interest: the group𝐻 is significant,

as among primitive oligomorphic groups that are not 𝑘-homogeneous for all 𝑘,𝐻 has the slowest
known growth for the function 𝑓(𝑘) mentioned in Subsection 2.1.

Lemma 3.3.1.

(i) 𝐻 = Aut(𝑍, 𝑅).
(ii) The structure (𝑍, 𝑅) is homogeneous.

Proof.

(i) As𝐻 ⩽ Aut(𝑍, 𝑅), it suffices to showAut(𝑍, 𝑅) ⩽ 𝐻. Suppose that g ∈ Aut(𝑍, 𝑅). Using that
𝐻 is transitive on 𝑍 and on 𝑅, there is ℎ ∈ 𝐻 and 𝑎, 𝑏, 𝑐 ∈ 𝑍 with 𝑅(𝑏; 𝑎, 𝑐) such that gℎ fixes
𝑎, 𝑏, 𝑐. We may suppose (adjusting ℎ if necessary) that 𝑏 → 𝑎. Now for any 𝑢 ∈ 𝑍 ⧵ {𝑎, 𝑏, 𝑐} we
have (𝑏 → 𝑢) ⇔ (𝑅(𝑎; 𝑏, 𝑢) ∨ 𝑅(𝑢; 𝑏, 𝑎)), and for distinct such 𝑢, 𝑢′ we have 𝑢 → 𝑢′ ⇔ 𝑅(𝑢; 𝑏, 𝑢′).
Also if 𝑏 → 𝑢 and 𝑢′ → 𝑏, then 𝑢 → 𝑢′ ⇔ ¬𝑅(𝑏; 𝑢, 𝑢′). Orientations of pairs 𝑢, 𝑢′ with 𝑢 → 𝑏 and
𝑢′ → 𝑏 and pairs involving 𝑎, 𝑐 are likewise easily recoverable. Thus, as gℎ ∈ Aut(𝑍, 𝑅), also gℎ ∈

Aut(𝑍, →) < 𝐻, so g ∈ 𝐻.
(ii) Let 𝛼 ∶ (𝑈, 𝑅) → (𝑉, 𝑅) be an isomorphism between finite substructures of (𝑍, 𝑅), and let

𝑎 ∈ 𝑍 ⧵ 𝑈. We must extend 𝛼 to 𝑈 ∪ {𝑎} (for then a back-and-forth argument suffices). Using the
action of 𝐻, (𝑍, 𝑅) is ⩽ 3-homogeneous, so we may assume |𝑈| ⩾ 4.

We shall say finite𝑋 ⊂ 𝑍 is linear if there is an enumeration𝑋 = {𝑥1, … , 𝑥𝑡} such that 𝑅(𝑥𝑗; 𝑥𝑖, 𝑥𝑘)

holds whenever 𝑖 < 𝑗 < 𝑘 or 𝑘 < 𝑗 < 𝑖. We call (𝑥1, … , 𝑥𝑡) a linear enumeration of 𝑋, and note
that a linear set of size greater than one has two linear enumerations. (In the presentation of 𝑇 as
consisting of points on the unit circle, a linear set is one contained in a segment making an angle
less than 𝜋 at the centre.)
First suppose that 𝑈 is linear, with linear enumeration (𝑢1, … , 𝑢𝑡). Let 𝑣𝑖 = 𝛼(𝑢𝑖) for each 𝑖.

Then as the linearity is determined by 𝑅 which is 𝛼-invariant, (𝑣1, … , 𝑣𝑡) is a linear enumeration
of 𝑉. By considering the representation in the unit circle, there are two possibilities:

(a) There is 𝑝 such that (𝑢1, … , 𝑢𝑝, 𝑎, 𝑢𝑝+1, … , 𝑢𝑡) is a linear enumeration of 𝑈 ∪ {𝑎} (we allow
here (𝑎, 𝑢1, … , 𝑢𝑡) and (𝑢1, … , 𝑢𝑡, 𝑎)).

(b) There is 𝑝 with 1 ⩽ 𝑝 < 𝑡 such that 𝑅(𝑢𝑖; 𝑎, 𝑢𝑗)whenever 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑝, 𝑅(𝑢𝑗; 𝑢𝑖, 𝑎)whenever
𝑝 + 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑡, and 𝑅 does not hold among 𝑎, 𝑢𝑖, 𝑢𝑗 for 1 ⩽ 𝑖 ⩽ 𝑝 < 𝑗 ⩽ 𝑡.

In case (a), it is clear that there is 𝑏 ∈ 𝑍 ⧵ 𝑉 such that (𝑣1, … , 𝑣𝑝, 𝑏, 𝑣𝑝+1, … , 𝑣𝑡) is linear, and
we extend 𝛼 by putting 𝛼(𝑎) = 𝑏. If (b) holds, choose 𝑏 ∈ 𝑍 ⧵ 𝑉 such that 𝑅 does not hold on
{𝑏, 𝑣𝑝, 𝑣𝑝+1}. Again, we may put 𝛼(𝑎) = 𝑏.
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1870 ASSARI et al.

F IGURE 5 Figures depicting the points 𝑎, 𝑐𝑖, 𝑑𝑖 , 𝑐′
𝑖
, 𝑑′

𝑖
.

Thus, wemay suppose that𝑈 is not linear. Let 𝐶 be a subset of𝑈 of maximal size such that 𝐶 =

{𝑐1, … , 𝑐𝑟} and (𝑎, 𝑐1, … , 𝑐𝑟) is a linear enumeration of 𝐶 ∪ {𝑎}. Put 𝐷 = 𝑈 ⧵ 𝐶. Then 𝐷 ∪ {𝑎} has a
linear enumeration (𝑎, 𝑑1, … , 𝑑𝑠). By maximality of 𝐶 we have 𝑠 ⩽ 𝑟, and as |𝑈| ⩾ 4we have 𝑟 ⩾ 2.
Note that if 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑟 and 1 ⩽ 𝑘 ⩽ 𝑠 then 𝑅(𝑎; 𝑐𝑗, 𝑑𝑘) → 𝑅(𝑎; 𝑐𝑖, 𝑑𝑘), and if 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑠 and
1 ⩽ 𝑘 ⩽ 𝑟 then 𝑅(𝑎; 𝑐𝑘, 𝑑𝑗) → 𝑅(𝑎; 𝑐𝑘, 𝑑𝑖). Also, no ordering of {𝑎, 𝑐𝑟, 𝑑𝑠} satisfies 𝑅, as otherwise
𝑈 ∪ {𝑎} is linear with linear enumeration (𝑑𝑠, … , 𝑑1, 𝑎, 𝑐1, … , 𝑐𝑟), contradicting non-linearity of𝑈.
Non-linearity of 𝑈 likewise ensures 𝑅(𝑎; 𝑐1, 𝑑1). See Figure 5.
Let 𝑐′

𝑖
= 𝛼(𝑐𝑖) and 𝑑′

𝑗
= 𝛼(𝑑𝑗) for each 1 ⩽ 𝑖 ⩽ 𝑟 and 1 ⩽ 𝑗 ⩽ 𝑠. The natural linear order induced

from the listing (𝑐1, … , 𝑐𝑟, 𝑑𝑠, … , 𝑑1) induces a separation relation (i.e., a circular order up to
reversal; see Subsection 2.1) that agrees with the separation relation induced from the one on
𝑍 determined by →. This separation relation on 𝑈 is determined by 𝑅 that is 𝛼-invariant, and
hence (𝑐′

1
, … , 𝑐′

𝑟, 𝑑′
𝑠 … , 𝑑′

1
)has the same separation relation. For convenience,we suppose that both

(𝑐1, … , 𝑐𝑟, 𝑑𝑠, … , 𝑑1) and (𝑐′
1
, … , 𝑐′

𝑟, 𝑑′
𝑠, … , 𝑑′

1
) are cyclically ordered clockwise around the unit cir-

cle as in Figure 5, and therefore may refer to the underlying tournament (𝑍, →) as a convenient
way of indicating angles at the centre.
Now for any 1 ⩽ 𝑖 ⩽ 𝑟 and 1 ⩽ 𝑗 ⩽ 𝑠, suppose (𝑖, 𝑗) ≠ (𝑟, 𝑠), say 𝑖 ≠ 𝑟. Then 𝑅(𝑎; 𝑐𝑖, 𝑑𝑗) ↔

¬𝑅(𝑐𝑟; 𝑐𝑖, 𝑑𝑗). As 𝑅(𝑐𝑟; 𝑐𝑖, 𝑑𝑗) ↔ 𝑅(𝑐′
𝑟; 𝑐′

𝑖
, 𝑑′

𝑗
), it suffices to show there is 𝑏 ∈ 𝑍 ⧵ 𝑉 such that

𝑅(𝑏; 𝑐′
1
, 𝑑′

1
) and both (𝑏, 𝑐′

1
, … , 𝑐′

𝑟) and (𝑏, 𝑑′
1
, … , 𝑑′

𝑠) are linear enumerations. Now as ¬𝑅(𝑐𝑟; 𝑐1, 𝑑1)

(as 𝑈 is not linear), we have ¬𝑅(𝑐′
𝑟; 𝑐′

1
, 𝑑′

1
), so the clockwise angle from 𝑑′

1
to 𝑐′

1
at the centre is

less than 𝜋, that is, 𝑑′
1

→ 𝑐′
1
. Also, by considering angles at the centre, we have 𝑐′

𝑟
+

∪ 𝑑′
𝑠
−
≠ 𝑇, and

as 𝑐′
1

→ 𝑐′
𝑟 we have 𝑐′

1
∉ 𝑐′

𝑟
+. Likewise 𝑑′

1
∉ 𝑑′

𝑠
− (we allow 1 = 𝑠). It follows that we may choose

𝑏 ∈ 𝑍 ⧵ 𝑉 with 𝑅(𝑏; 𝑑′
1
, 𝑐′

1
) and 𝑏 ∈ 𝑑′

𝑠
+

∩ 𝑐′
𝑟
−, and for such 𝑏 the extension of 𝛼 with 𝛼(𝑎) = 𝑏 has

the required properties. □

Let 𝐿𝑅 be the language with just the relation symbol 𝑅. Define a 3-hypergraph 𝑁3 = (𝑍, 𝐸)

whose edges are the 3-sets of (𝑍, 𝑅) that satisfy 𝑅 under some ordering, that is, lie in a segment
making an angle less than 𝜋 at the centre.

Proposition 3.3.2. The hypergraph 𝑁3 is set-homogeneous, but not 3-homogeneous. In particular
its automorphism group is not 2-primitive, and does not act as the full symmetric group on triples
satisfying 𝐸.

Proof. We first show that𝐺 = Aut(𝑁3) preserves 𝑅, and hence equals𝐻. Indeed, if 𝑥𝑦𝑧 is an edge,
then we have

𝑅(𝑦; 𝑥, 𝑧) ↔ [∃𝑢∃𝑣(𝑢𝑥𝑦, 𝑣𝑦𝑧 are edges and 𝑢𝑥𝑧, 𝑣𝑥𝑧 are non-edges)].
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SET-HOMOGENEOUS HYPERGRAPHS 1871

In particular, as𝑅(𝑥; 𝑦, 𝑧) → ¬𝑅(𝑦; 𝑥, 𝑧), (𝑍, 𝐸) is not 3-homogeneous.Also,𝐺 is not 2-primitive, as
𝐺𝑥 preserves an equivalence relation on 𝑍 ⧵ {𝑥}with classes {𝑦 ∶ 𝑥 → 𝑦} and {𝑦 ∶ 𝑦 → 𝑥}; indeed,
distinct 𝑦, 𝑧 are in the same equivalence class if and only if 𝑅(𝑦; 𝑥, 𝑧) ∨ 𝑅(𝑧; 𝑥, 𝑦) holds.
Next, we show that 𝑁3 is set-homogeneous. For any finite 𝑈 ⊂ 𝑍, define ∼𝑈 on 𝑈, putting

𝑎 ∼𝑈 𝑏 ⇔ ((𝑎 = 𝑏) ∨ (∀𝑥 ∈ 𝑈 ⧵ {𝑎, 𝑏})𝑎𝑏𝑥 is an edge).

It is easily seen that ∼𝑈 is an equivalence relation on 𝑈, and its classes are convex in the (clock-
wise) circular order induced from𝑁3 and are complete subhypergraphs.We say that𝑈 is balanced
if all ∼𝑈-classes have size 1.

Claim 1. Suppose that finite 𝑈 ⊂ 𝑍 is balanced. Then |𝑈| is odd and Aut(𝑈, 𝐸) = Aut(𝑈, 𝑅) and
equals the dihedral group 𝐷|𝑈|.

Proof of Claim. For any distinct 𝑥, 𝑦 ∈ 𝑈 with 𝑥 ∼𝑈 𝑦 and 𝑥 → 𝑦, there is 𝑧 ∈ 𝑈 such that 𝑥 and 𝑦

lie in opposite segmentswith respect to 𝑧, that is, we have 𝑦 → 𝑧 → 𝑥. Furthermore, assuming that
there is no 𝑤 ∈ 𝑈 with 𝑥 → 𝑤 → 𝑦, such 𝑧 is unique; for if 𝑧, 𝑧′ ∈ 𝑦+ ∩ 𝑥− then 𝑧 ∼𝑈 𝑧′. Also, if
𝑧 ∈ 𝑈 and 𝑧+ ∩ 𝑈 = {𝑥1, … , 𝑥𝑟}with 𝑧 = 𝑥0 → 𝑥1 → … → 𝑥𝑟, then for each 𝑖 = 0, … , 𝑟 − 1 there is
unique 𝑦𝑖+1 ∈ 𝑧− ∩ 𝑈 with 𝑥𝑖+1 → 𝑦𝑖+1 → 𝑥𝑖 , and 𝑈 = {𝑥0, 𝑥1, … , 𝑥𝑟, 𝑦1, … , 𝑦𝑟}, so |𝑈| = 2𝑟 + 1.
It is now easily seen that with𝐷2𝑟+1 acting in the natural way on𝑈 preserving the induced sepa-

ration relation 𝑆, we have𝐷2𝑟+1 ⩽ Aut(𝑈, 𝑅) ⩽ Aut(𝑈, 𝐸). To see thatAut(𝑈, 𝐸) ⩽ 𝐷2𝑟+1, observe
that there is a natural graph structure on 𝑈, whereby two distinct vertices 𝑎, 𝑏 are adjacent if
and only if there is a unique 𝑐 ∈ 𝑈 ⧵ {𝑎, 𝑏} (the witness for the adjacency) such that 𝑎𝑏𝑐 is not an
𝐸-edge; for example, 𝑥𝑖, 𝑥𝑖+1 are adjacent witnessed by 𝑦𝑖+1 (for 𝑖 = 0, … , 𝑟 − 1), 𝑥𝑟 and 𝑦1 are adja-
cent witnessed by 𝑥0, 𝑦𝑖 and 𝑦𝑖+1 are adjacent (for 𝑖 = 1, … , 𝑟 − 1) witnessed by 𝑥𝑖 , and 𝑦𝑟, 𝑥0 are
adjacentwitnessed by 𝑥𝑟. This graph is a cycle so has automorphism group𝐷2𝑟+1 and isAut(𝑈, 𝐸)-
invariant, so Aut(𝑈, 𝐸) ⩽ 𝐷2𝑟+1, yielding by the earlier containment that these groups are equal,
so giving Claim 1.
Now suppose that 𝜎 ∶ 𝑈 → 𝑉 is an isomorphism between finite subhypergraphs of 𝑁3. As ∼𝑈

is defined from 𝐸, 𝜎 maps ∼𝑈-classes to ∼𝑉-classes. Let 𝑈1, … , 𝑈𝑛 be the ∼𝑈-classes of 𝑈 listed
in the clockwise cyclic ordering, and for each 𝑖 let 𝑎𝑖 ∈ 𝑈𝑖 , let 𝑏𝑖 = 𝜎(𝑎𝑖), let 𝑉𝑖 be the ∼𝑉-class of
𝑏𝑖 , and put 𝐴 = {𝑎1, … , 𝑎𝑛}, and 𝐵 = {𝑏1, … , 𝑏𝑛}. Then 𝐴 and 𝐵 are balanced, and by the claim 𝜎

induces an isomorphism (𝐴, 𝑅) → (𝐵, 𝑅). We shall say that 𝜎 is positive if it preserves the positive
circular orientation on 𝐴, and negative otherwise (one of these holds, by Claim 1).
As 𝜎 maps ∼𝑈-classes to ∼𝑉-classes, it follows that for each 𝑖 = 1, … , 𝑛 the equivalence classes

𝑈𝑖 and 𝑉𝑖 have the same size 𝑡𝑖 . For each 𝑖 = 1, … , 𝑛 write𝑈𝑖 = {𝑎𝑖1, … , 𝑎𝑖𝑡𝑖
}with 𝑎𝑖𝑗 → 𝑎𝑖𝑘 when-

ever 𝑗 < 𝑘. For each 𝑖 = 1, … , 𝑛 we also put 𝑉𝑖 = {𝑏𝑖1, … , 𝑏𝑖𝑡𝑖
}, where if 𝜎 is positive we have

𝑏𝑖𝑗 → 𝑏𝑖𝑘 whenever 𝑗 < 𝑘, and if 𝜎 is negative we have 𝑏𝑖𝑗 → 𝑏𝑖𝑘 whenever 𝑗 > 𝑘.
Finally, define𝛼 ∶ 𝑈 → 𝑉 by putting𝛼(𝑎𝑖𝑗) = 𝑏𝑖𝑗 for each 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑡𝑖 . It suffices

to prove the following claim.

Claim 2. The map 𝛼 ∶ (𝑈, 𝑅) → (𝑉, 𝑅) is an isomorphism.

Proof of Claim. For triples within a ∼𝑈-class, 𝛼 preserves 𝑅 because it preserves or reverses the
ordering given by →. For triples meeting three distinct ∼𝑈-classes, 𝛼 preserves 𝑅 as 𝜎|𝐴 does,
and as elements outside a ∼-class are →-related to all elements of the ∼𝑈-class in the same
way. For triples containing two elements 𝑎𝑖𝑘, 𝑎𝑖𝑙 (𝑘 < 𝑙) from one class 𝑈𝑖 , and one element 𝑎𝑗𝑚
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1872 ASSARI et al.

from another class 𝑈𝑗 , suppose first that 𝜎 is positive, and that 𝑎𝑖 → 𝑎𝑗 . Then 𝑎𝑖𝑘, 𝑎𝑖𝑙 ∈ 𝑎−
𝑗𝑚
, and

𝑎𝑖𝑘 → 𝑎𝑖𝑙, so 𝑅(𝑎𝑖𝑙; 𝑎𝑖𝑘, 𝑎𝑗𝑚). We have 𝑏𝑖𝑘 → 𝑏𝑖𝑙 and 𝑏𝑖𝑘, 𝑏𝑖𝑙 ∈ 𝑏−
𝑗𝑚
, so 𝑅(𝑏𝑖𝑙; 𝑏𝑖𝑘, 𝑏𝑗𝑚) as required.

The other cases (where 𝑎𝑗 → 𝑎𝑖 , and where 𝜎 is negative) are similar.
Given Claim 2, it follows by homogeneity of (𝑍, 𝑅) (see Lemma 3.3.1) that 𝛼 is induced by some

g ∈ Aut(𝑍, 𝑅) = Aut(𝑍, 𝐸), and we have 𝑈g = 𝑉 as required. □

Proof of Theorem A(ii). See Proposition 3.3.2. □

Remark 3.3.3. The example 𝑁3 is a two-graph, namely a 3-hypergraph with the property that any
four vertices carry an even number of hypergraph edges (in this case, 2 or 4). This notion was
introduced by Higman; see [21] or [13] for background (including the infinite case).

4 THE CASE 𝒌 ⩾ 𝟒

In this section, we first apply methods from Section 3, in particular Lemmas 3.2.4 and 3.2.5, to
prove Theorem B(i). Then in Subsection 4.2, we prove Theorem B(ii) and (iii), basing our con-
struction on the (unordered) 2-regular countable dense proper 𝐶-set. Theorem C is proved in
Subsection 4.3, exploiting a 3-branching 𝐷-set.

4.1 Proof of Theorem B(i)

First, observe that if (𝑀, 𝐸) is an infinite set-homogeneous 𝑘-hypergraph with 𝑘 ⩾ 4 whose auto-
morphism group 𝐺 is not 2-transitive, then 𝐺 is 3-homogeneous, so by Theorem 2.2.2(ii), 𝐺

preserves a linear order < on 𝑀.
We now consider the case where 𝑘 = 4. We have not tried hard to apply the methods for larger

𝑘.

Proof of Theorem B(i). Let (𝑀, 𝐸) be a ⩽5-set-homogeneous countably infinite 4-hypergraph
whose automorphism group 𝐺 is not 2-transitive. By Theorem 2.2.2(ii), there is a 𝐺-invariant
dense total order < on 𝑀, and we adopt the notation 𝑆𝑖𝑗 and 𝑃𝑚

𝐽
from Subsection 2.2. By

Lemmas 3.2.4 and 3.2.5, each formula 𝑆𝑖𝑗 with |𝑖 − 𝑗| ⩾ 2 is realised by a 5-element substruc-
ture of 𝑀, and for each 𝑖 = 1, 2, 3, 4, 𝑀 contains a 5-tuple realising 𝑇𝑖 . There are 12 such 𝑆𝑖𝑗 ,
namely, 𝑆13, 𝑆14, 𝑆15, 𝑆24, 𝑆25, 𝑆35 (where 𝑖 < 𝑗) and the corresponding formulae with 𝑖 > 𝑗 namely
𝑆31, 𝑆41, 𝑆51, 𝑆42, 𝑆52, 𝑆53. By Lemma 3.2.5, the ways in which conditions 𝑃𝑚

𝐽
ensure that the

formulae 𝑆𝑖𝑗 and 𝑇𝑖 are realised are determined by Table 2.
By Lemma 3.2.5, we must show that there do not exist sets 𝐽1, 𝐽2, 𝐽3, 𝐽4 so that if 𝑃𝑚

𝐽𝑚
hold for

each𝑚 = 1, … , 4 then all formulae 𝑆𝑖𝑗 and 𝑇1, 𝑇2, 𝑇3, 𝑇4 are realised. As |𝐽1| = 4 and |𝐽2| = 3 and
they are both subsets of {1, 2, 3, 4, 5}, |𝐽1 ∩ 𝐽2| ⩾ 2. We consider all possible 2-sets that could lie in
the intersection, using symmetry (essentially, reversing the order) to reduce the number of cases.
As a small abuse, we shall write 𝑖𝑗𝐾 for the set {𝑖, 𝑗} ∪ 𝐾, so, for example, wewrite 𝑃1

23𝐾
for 𝑃1

{2,3}∪𝐾
.

We also write just 𝑃𝑚 for ‘𝑃𝑚
𝐽
for some 𝐽’.

(1) 𝑀 realises 𝑃1
12𝐽

and 𝑃2
12𝐾

for some 𝐽, 𝐾. These do not ensure realisation of 𝑇1, 𝑆13, 𝑆14, 𝑆15, 𝑆24

and 𝑆25 (see Table 2). So, the latter must arise from 𝑃3 and 𝑃4 conditions. The only cases that
realise 𝑆13 are the following cases.
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SET-HOMOGENEOUS HYPERGRAPHS 1873

TABLE 2 A table indicating how the conditions 𝑃𝑚
𝐽
can ensure that the formulas 𝑆𝑖𝑗 and 𝑇𝑖 are realised.

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑺𝟏𝟑 𝑺𝟑𝟏 𝑺𝟏𝟒 𝑺𝟒𝟏 𝑺𝟏𝟓 𝑺𝟓𝟏 𝑺𝟐𝟒 𝑺𝟒𝟐 𝑺𝟐𝟓 𝑺𝟓𝟐 𝑺𝟑𝟓 𝑺𝟓𝟑

𝑃1
1234

0 0 0 0
𝑃1

1245
0 0 0 0

𝑃1
1235

0 0 0 0
𝑃1

2345
0 0 0 0

𝑃1
1345

0 0 0 0
𝑃2

123
0 0 0 0 0 0

𝑃2
124

0 0 0 0 0 0
𝑃2

125
0 0 0 0 0 0

𝑃2
134

0 0 0 0 0 0
𝑃2

135
0 0 0 0 0 0

𝑃2
145

0 0 0 0 0 0
𝑃2

234
0 0 0 0 0 0

𝑃2
235

0 0 0 0 0 0
𝑃2

345
0 0 0 0 0 0

𝑃2
245

0 0 0 0 0 0
𝑃3

12
0 0 0 0 0 0

𝑃3
13

0 0 0 0 0 0
𝑃3

14
0 0 0 0 0 0

𝑃3
15

0 0 0 0 0 0
𝑃3

23
0 0 0 0 0 0

𝑃3
24

0 0 0 0 0 0
𝑃3

25
0 0 0 0 0 0

𝑃3
34

0 0 0 0 0 0
𝑃3

35
0 0 0 0 0 0

𝑃3
45

0 0 0 0 0 0
𝑃4

1
0 0 0 0

𝑃4
2

0 0 0 0
𝑃4

3
0 0 0 0

𝑃4
4

0 0 0 0
𝑃4

5
0 0 0 0

(a) 𝑃4
3
that needs 𝑇1, 𝑆14, 𝑆15 from some 𝑃3, which cannot occur.

(b) 𝑃3
23
that needs 𝑆14, 𝑆15 from 𝑃4, impossible.

(c) 𝑃3
34
that needs 𝑇1, 𝑆25 from 𝑃4, impossible.

(d) 𝑃3
35
that needs 𝑆14, 𝑇1 from 𝑃4, again impossible.

(2) 𝑀 realises 𝑃1
13𝐽

and 𝑃2
13𝐾

for some 𝐽, 𝐾. These do not realize 𝑆13, 𝑆31, 𝑆14, 𝑆15, 𝑆35 that need to
be realized by 𝑃3 and 𝑃4. The only possibilities of 𝑆13 are the following.
(a) 𝑃4

3
that still needs to realize 𝑆31, 𝑆14 from some 𝑃3, which cannot occur.

(b) 𝑃3
23
that needs 𝑆31, 𝑆14 from 𝑃4, impossible.

(c) 𝑃3
34
that needs 𝑆31, 𝑆35 from 𝑃4, impossible.

(d) 𝑃3
35
that needs 𝑆31, 𝑆35 from 𝑃4, which cannot happen.
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1874 ASSARI et al.

(3) 𝑀 realises 𝑃1
14𝐽

and 𝑃2
14𝐾

for some 𝐽, 𝐾. This is almost the same as the last case. These condi-
tions do not realise 𝑆13, 𝑆14, 𝑆41, 𝑆15, 𝑆42 that need to be realised by 𝑃3 and 𝑃4. As before, the
only possibilities of 𝑆13 are the following.
(a) 𝑃4

3
that needs 𝑆41, 𝑆14 from some 𝑃3, impossible.

(b) 𝑃3
23
, needs 𝑆41, 𝑆14 from 𝑃4, impossible.

(c) 𝑃3
34
, needs 𝑆41, 𝑆15 from 𝑃4, impossible.

(d) 𝑃3
35
, needs 𝑆41, 𝑆14 from 𝑃4, again impossible.

(4) 𝑀 realises 𝑃1
15𝐽

and 𝑃2
15𝐾

for some 𝐽, 𝐾. These do not realise 𝑆13, 𝑆14, 𝑆15, 𝑆51, 𝑆52, 𝑆53, which
need to be realised by 𝑃3 and 𝑃4. Again, the only possibilities for 𝑆13 are: 𝑃4

3
, 𝑃3

23
, 𝑃3

34
, 𝑃3

35
. The

first three need both 𝑆15 and 𝑆51 from the remaining condition, which is clearly impossible.
𝑃3

35
needs 𝑆14, 𝑆51 from 𝑃4, again impossible.

(5) 𝑀 realises 𝑃1
23𝐽

and 𝑃2
23𝐾

for some 𝐽, 𝐾. These do not realise 𝑆31, 𝑆24, 𝑆25, 𝑆35, 𝑇2 that need to
be realised by 𝑃3 and 𝑃4. The only possibilities of 𝑆31 are the following.
(a) 𝑃4

1
, which needs 𝑆24, 𝑆25, 𝑇2 from some 𝑃3, impossible.

(b) 𝑃3
12
, needs 𝑆24, 𝑆25 from 𝑃4, impossible.

(c) 𝑃3
14
, needs 𝑆25, 𝑆35, 𝑇2 from 𝑃4, impossible.

(d) 𝑃3
15
, needs 𝑆24, 𝑇2 from 𝑃4.

(6) 𝑀 realises 𝑃1
24𝐽

and 𝑃2
24𝐾

for some 𝐽, 𝐾. These do not realize 𝑆41, 𝑆24, 𝑆42, 𝑆25, which need to
be realised by 𝑃3 and 𝑃4. The only possibilities of 𝑆41 are the following.
(a) 𝑃4

1
, needs 𝑆42, 𝑆24 from some 𝑃3, impossible.

(b) 𝑃3
12
, needs 𝑆24, 𝑆25 from 𝑃4, impossible.

(c) 𝑃3
13
, needs 𝑆24, 𝑆25 from 𝑃4.

(d) 𝑃3
15
, needs 𝑆42, 𝑆24 from 𝑃4, impossible.

The remaining cases follow by symmetry from the above, arguing with the order reversed. For
example, the argument in Case (I) also eliminates that where 𝑀 realises 𝑃1

45𝐽
and 𝑃2

45𝐾
for some

𝐽, 𝐾. □

4.2 Set-homogeneous 4-hypergraphs with 2-transitive not 2-primitive
automorphism group

We here prove Theorem B(ii), a consequence of the following result. In this subsection, (𝑀, 𝐶)

denotes the 3-branching dense proper 𝐶-set as defined in Subsection 2.1 (so the reduct of the
structure (𝑀, 𝐶, ⩽) from Theorem 3.1.1).

Proposition 4.2.1. Define a 4-hypergraph structure on 𝑀 whose edge set 𝐸 consists of 4-sets of
form {𝑥1, 𝑥2, 𝑦1, 𝑦2} such that 𝐶(𝑥𝑖; 𝑦1, 𝑦2) and 𝐶(𝑦𝑖; 𝑥1, 𝑥2) hold for 𝑖 = 1, 2. Then 𝑀4 = (𝑀, 𝐸)

is set-homogeneous and has 2-transitive but not 2-primitive automorphism group, so is not a
homogeneous 4-hypergraph.

Proof. As noted in Subsection 2.1, (𝑀, 𝐶) is a homogeneous structure. The 4-sets prescribed to
form edges of 𝑀4 are those as in Figure 6.
Let 𝐺 = Aut(𝑀4). We observe first that 𝐺 preserves the relation 𝐶. Indeed, 𝐶 is ∅-definable in

(𝑀, 𝐸): for 𝑥, 𝑦, 𝑧 ∈ 𝑀 we have that 𝐶(𝑥; 𝑦, 𝑧) holds if and only if

(𝑦 = 𝑧 ∧ 𝑥 ≠ 𝑦) ∨ (∃𝑢∃𝑣(𝑥, 𝑦, 𝑧, 𝑢, 𝑣 are distinct and has only the edge 𝑦𝑢𝑣𝑧)).
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SET-HOMOGENEOUS HYPERGRAPHS 1875

F IGURE 6 A diagram showing how edges of 𝑀4 arise.

F IGURE 7 A diagram indicating how 𝐶 is recovered in 𝑀4.

See Figure 7 for a configuration indicating the left-to-right direction here. Thus, Aut(𝑀4) =

Aut(𝑀, 𝐶). (This can also be proved via [5, Corollary 2.3], as done in the proof of Claim 1 in Propo-
sition 4.3.1.) The group Aut(𝑀, 𝐶) is 2-transitive (by homogeneity of (𝑀, 𝐶)) but not 2-primitive,
for 𝑎 ∈ 𝑀 the stabiliser𝐺𝑎 preserves a proper non-trivial equivalence relation∼ on𝑀 ⧵ {𝑎}, where
𝑥 ∼ 𝑦 ⇔ 𝐶(𝑎; 𝑥, 𝑦). Thus, Aut(𝑀4) is 2-transitive but not 2-primitive.
We show next that 𝑀4 is set-homogeneous. So, suppose 𝑈, 𝑉 are finite subsets of 𝑀 that

carry isomorphic induced 4-hypergraphs, with 𝜎 ∶ (𝑈, 𝐸) → (𝑉, 𝐸) an isomorphism. We show by
induction on |𝑈| that (𝑈, 𝐶) ≅ (𝑉, 𝐶), from which it follows by homogeneity of (𝑀, 𝐶) that there
is g ∈ Aut(𝑀, 𝐶) = Aut(𝑀4) with 𝑈g = 𝑉, as required. We may assume that |𝑈| ⩾ 5, essentially
as Aut(𝑀, 𝐶) has just two orbits on 4-sets, and one on 𝑚-sets for each 𝑚 ⩽ 3.
Recall that by a null 4-hypergraph we mean one none of whose 4-subsets are edges. It is easily

seen that if 𝑊 is a null (induced) subhypergraph of (𝑀, 𝐸) of size 𝑛, then we may write 𝑊 =

{𝑤1, … , 𝑤𝑛} so that 𝐶(𝑤𝑖; 𝑤𝑗, 𝑤𝑘) whenever 𝑖 < 𝑗 < 𝑘. We may assume that 𝑈 and 𝑉 are not null,
as otherwise they carry isomorphic 𝐶-structures.
Choose a null subhypergraph 𝐴 of 𝑈 of maximal size 𝑛 say, and let 𝐵 = 𝜎(𝐴) (so 𝐵 is a

null subhypergraph of 𝑉 of maximal size). As noted above, we may write 𝐴 = {𝑎1, … , 𝑎𝑛} and
𝐵 = {𝑏1, … , 𝑏𝑛} so that 𝐶(𝑎𝑖; 𝑎𝑗, 𝑎𝑘) and 𝐶(𝑏𝑖; 𝑏𝑗, 𝑏𝑘) whenever 𝑖 < 𝑗 < 𝑘 (but we are not assum-
ing that 𝜎(𝑎𝑖) = 𝑏𝑖 for each 𝑖). We may assume 𝑛 ⩾ 4, as otherwise |𝑈| ⩽ 4 contrary to our
assumption above.
We say that 𝑢 ∈ 𝑈 ⧵ 𝐴 is high if 𝐴 ∪ {𝑢} has a single edge. By the maximality of |𝐴|, if there is

high 𝑢 ∈ 𝑈 ⧵ 𝐴 then𝐶(𝑎𝑛; 𝑢, 𝑎𝑛−2)holds (the edge is 𝑢𝑎𝑛−2𝑎𝑛−1𝑎𝑛); also such 𝑢 is unique, indeed,
given distinct high 𝑢, 𝑢′ with 𝐶(𝑎𝑛; 𝑢, 𝑎𝑛−2) ∧ 𝐶(𝑎𝑛; 𝑢′, 𝑎𝑛−2), the set 𝐴 ∪ {𝑢, 𝑢′} ⧵ {𝑎𝑛} would be
a null subhypergraph of 𝑈 of size |𝐴| + 1, contradicting maximality of |𝐴|. Furthermore in this
case, 𝑣 ∶= 𝜎(𝑢) is high (in the corresponding sense) in𝑉, is uniquely determined by this property,
and𝐶(𝑏𝑛; 𝑣, 𝑏𝑛−2), and also𝜎({𝑎𝑛−2, 𝑎𝑛−1, 𝑎𝑛}) = {𝑏𝑛−2, 𝑏𝑛−1, 𝑏𝑛}with𝜎(𝑎𝑛−2) = 𝑏𝑛−2. If such 𝑢, 𝑣
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1876 ASSARI et al.

F IGURE 8 A diagram showing special elements 𝑎1, … , 𝑎𝑟 .

exist, put𝐴∗ ∶= {𝑢, 𝑎𝑛−2, 𝑎𝑛−1, 𝑎𝑛} and𝐵∗ ∶= 𝜎(𝐴∗) = {𝑣, 𝑏𝑛−2, 𝑏𝑛−1, 𝑏𝑛}, and otherwise put𝐴∗ =

𝐵∗ = ∅.
For each 𝑎 ∈ 𝐴 ⧵ 𝐴∗ put 𝑆(𝑎) = {𝑥 ∈ 𝑈 ∶ (𝐴 ⧵ {𝑎}) ∪ {𝑥} is null of size 𝑛} and for 𝑏 ∈ 𝐵 ⧵ 𝐵∗

define 𝑆(𝑏) similarly. It can be checked that the sets 𝑆(𝑎) partition 𝑈 ⧵ 𝐴∗ and the sets 𝑆(𝑏)

partition 𝑉 ⧵ 𝐵∗, and that 𝛼 respects these partitions. We shall say that 𝑎 ∈ 𝐴 ⧵ 𝐴∗ is isolated
if |𝑆(𝑎)| = 1, and similarly for 𝑏 ∈ 𝐵 ⧵ 𝐵∗. Let 𝐼(𝐴) = {𝑎 ∈ 𝐴 ∶ 𝑎 is isolated}, and define 𝐼(𝐵)

similarly. Thus, 𝜎(𝐼(𝐴)) = 𝐼(𝐵).
If 𝑎 ∈ 𝐴 ⧵ 𝐴∗ is non-isolated, we shall say that 𝑆(𝑎) is low if for any distinct elements𝑥, 𝑦 ∈ 𝑆(𝑎)

and distinct 𝑧, 𝑤 ∈ 𝐴 ⧵ {𝑎}, 𝑥𝑦𝑧𝑤 is an edge (with a similar definition for 𝑆(𝑏) with 𝑏 ∈ 𝐵 ⧵ 𝐵∗

non-isolated). By considering the𝐶-relation, it can be checked that 𝑆(𝑎) is low if and only if 𝑎 = 𝑎1

and 𝑎1 is non-isolated. As 𝜎 respects lowness, it follows that 𝑆(𝑎1) is low if and only if 𝑆(𝑏1) is low,
and that if this holds then 𝜎(𝑆(𝑎1)) = 𝑆(𝑏1) so they carry isomorphic hypergraph structures, and
likewise 𝜎 induces an induced hypergraph isomorphism 𝑈 ⧵ 𝑆(𝑎1) → 𝑉 ⧵ 𝑆(𝑏1). By induction, it
follows that the𝐶-sets induced on 𝑆(𝑎1) and 𝑆(𝑏1) are isomorphic, as are the𝐶-sets induced on𝑈 ⧵

𝑆(𝑎1) and 𝑉 ⧵ 𝑆(𝑏1), and hence that the 𝐶-sets induced on 𝑈 and 𝑉 are isomorphic, as required.
Thus, we may suppose that 𝑎1 and 𝑏1 are both isolated. Let 𝑟 be maximal so that 𝑎1, … , 𝑎𝑟 are

all isolated. We shall say that an isolated element 𝑎 ∈ 𝐴 is special, if for any 𝑎′ ∈ 𝐼(𝐴) ∪ 𝐴∗, non-
isolated 𝑐 ∈ 𝐴 ⧵ 𝐴∗, and distinct 𝑐1, 𝑐2 ∈ 𝑆(𝑐), the set 𝑎𝑎′𝑐1𝑐2 is a non-edge. It can be checked
that the special elements of 𝐴 are exactly 𝑎1, … , 𝑎𝑟. See Figure 8 for the intended configura-
tion in terms of the 𝐶-relation. As 𝜎 respects specialness, the special elements of 𝐵 are 𝑏1, … , 𝑏𝑟,
and𝜎({𝑎1, … , 𝑎𝑟}) = {𝑏1, … , 𝑏𝑟}. Thus,𝜎 induces a hypergraph isomorphism𝑈 ⧵ {𝑎1, … , 𝑎𝑟} → 𝑉 ⧵

{𝑏1, … , 𝑏𝑟}. As these sets are smaller than |𝑈|, it follows by induction that they carry isomorphic
𝐶-set structures, and hence that 𝑈 and 𝑉 carry isomorphic 𝐶-set structures, as required. □

The following result now gives us Theorem B(iii).

Corollary 4.2.2. If (𝑁, 𝐸) is a ⩽5-set-homogeneous countably infinite 4-hypergraph whose auto-
morphism group 𝐾 is not 2-primitive, then either (𝑁, 𝐸) is isomorphic to the structure 𝑀4 of
Proposition 4.2.1 or its complement, or 𝐾 preserves a linear betweenness relation on 𝑁.

Proof. The set-homogeneity assumption ensures that 𝐾 is 3-homogeneous on 𝑁. Hence, by The-
orem B(i), 𝐾 is 2-transitive on 𝑁. Hence, by Theorem 2.2.2(iii) and 𝜔-categoricity, 𝐾 preserves on
𝑁 a linear betweenness relation or a relation 𝐶 on 𝑁 so that (𝑁, 𝐶) is isomorphic to the structure
(𝑀, 𝐶) from Theorem 3.1.1.
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SET-HOMOGENEOUS HYPERGRAPHS 1877

F IGURE 9 Diagrams showing why 𝑁4 is not 6-set-homogeneous.

So, suppose 𝐾 ⩽ Aut(𝑁, 𝐶). As Aut(𝑁, 𝐶) has two orbits on 4-sets and (𝑁, 𝐸) is ⩽5-set-
homogeneous, 𝐾 also has the same two orbits on 4-sets of 𝑁. One such orbit gives a hypergraph
isomorphic to 𝑀4, and the other gives its complement. □

We consider a further 4-hypergraph. Let (𝑁, 𝐷) be the countably infinite dense proper homo-
geneous 4-branching 𝐷-set (see Subsection 2.1). Define a 4-hypergraph 𝑁4 = (𝑁, 𝐸) from (𝑁, 𝐷),
whose edges are 4-sets that satisfy 𝐷 under some ordering.

Proposition 4.2.3. The 4-hypergraph 𝑁4 is ⩽5-set-homogeneous but not 6-set-homogeneous.

Proof. First, we observe that the 𝐷-relation can be defined from the hypergraph structure.
Given distinct 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑁, put 𝐷(𝑥, 𝑦; 𝑧, 𝑤) if and only if there is 𝑢 ∈ 𝑁 ⧵ {𝑥, 𝑦, 𝑧, 𝑤} such that
{𝑥, 𝑦, 𝑧, 𝑤, 𝑢} has only the non-edges 𝑥𝑦𝑢𝑧, 𝑥𝑦𝑢𝑤. It can be checked that this correctly recovers
the 𝐷-relation from 𝐸, so Aut(𝑁4) = Aut(𝑁, 𝐷).
Homogeneity of (𝑁, 𝐷) and inspection of possible 5-element substructures easily yields that𝑁4

is⩽5-set-homogeneous. It is not 6-set-homogeneous, as𝑁4 has 6-vertex complete subhypergraphs
corresponding to the non-isomorphic 𝐷-sets in Figure 9. □

4.3 Set-homogeneous 6-hypergraphs

In this section, we prove Theorem C. The main point is the existence assertion (i), restated below.
The example is defined from a 𝐷-set.

Proposition 4.3.1. There is a countably infinite set-homogeneous 6-hypergraph𝑀6 = (𝑀, 𝐸)whose
automorphism group 𝐺 is 3-transitive but not 3-primitive.

Proof. Our starting point is the group 𝐽 described in [10, Theorem 5.1]. The language in that paper
is different, but 𝐽 is the automorphism group of the unique countable homogeneous 𝐷-set (𝑀, 𝐷)

with branching number 3, as described in Subsection 2.1 and in [1, section 32]. It is easily checked
and noted in [10, Theorem 5.1]) that 𝐽 is 5-homogeneous but has two orbits on the collection
of subsets of 𝑀 of size 6. We define a 6-hypergraph 𝑀6 on 𝑀 in which the edges are sets whose
induced𝐷-structure has the isomorphism type in Figure 10. Let 𝐸 denote the resulting 6-ary edge-
relation on 𝑀. Clearly, 𝐽 = Aut(𝑀, 𝐷) ⩽ Aut(𝑀6).

Claim 1. Aut(𝑀6) = 𝐽.

Proof of Claim. We must define 𝐷 from 𝐸. It follows from [5, Corollary 2.3] that the structure
(𝑀, 𝐷) has no first-order reducts (up to interdefinability over ∅) other than itself and (𝑀, =); that
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1878 ASSARI et al.

F IGURE 10 A diagram indicating hyperedges of 𝑀6.

F IGURE 11 A diagram showing a set 𝑇𝑖 .

is, any structure on𝑀 that is ∅-definable in (𝑀, 𝐷) is interdefinable over ∅with (𝑀, 𝐷) or (𝑀, =).
As (𝑀, 𝐸) is ∅-definable in (𝑀, 𝐷) and is not a complete or null hypergraph, it is interdefinable
with (𝑀, 𝐷), giving the claim. (Formally, [5, Corollary 2.3] describes the reducts of the structure
(𝑀, 𝐶) from Subsection 4.2, and shows that the only proper non-trivial reduct is (𝑀, 𝐷), which is
in [5] denoted (𝕃, 𝑄)). □

To show that 𝑀6 is set-homogeneous, using the homogeneity of (𝑀, 𝐷) it suffices to prove the
following claim.

Claim 2. If 𝑈, 𝑉 ⊂ 𝑀 are finite and 𝜎 ∶ (𝑈, 𝐸) → (𝑉, 𝐸) is an isomorphism of the induced
subhypergraphs, then the structures (𝑈, 𝐷) and (𝑉, 𝐷) are isomorphic.

Proof of Claim. Let 𝐴 be a complete subhypergraph of 𝑈 of maximal size, and put 𝐵 = 𝜎(𝐴). It is
easily seen that the 𝐷-structure on 𝐴 = {𝑎1, … , 𝑎𝑛+2} has the form depicted in Figure 11. Likewise
𝐵 = {𝑏1, … , 𝑏𝑛+2} carries a 𝐷-structure as depicted. We may assume that 𝐴 ≠ 𝑈. We do not claim
that 𝜎(𝑎𝑖) = 𝑏𝑖 for each 𝑖.
For each 𝑖 = 3, … , 𝑛, let 𝑇𝑖 = {𝑒 ∶ 𝑎1𝑎2𝑒𝑎𝑖𝑎𝑛+1𝑎𝑛+2 is a non-edge}. An illustration of 𝑇𝑖 is

depicted in Fig. 11. By maximality of 𝐴, we have 𝑈 ⧵ 𝐴 =
⋃

(𝑇𝑖 ∶ 3 ⩽ 𝑖 ⩽ 𝑛), and maximality of
|𝐴| yields that |𝑇3| ⩽ 1 and |𝑇𝑛| ⩽ 1.
For each 𝑒 ∈ 𝑈 ⧵ 𝐴, write 𝑒 ∼ 𝑎𝑖 if (𝐴 ⧵ {𝑎𝑖}) ∪ {𝑒} carries a complete hypergraph. It can be

checked that if 𝑒 ∈ 𝑇3 then 𝑒 ∼ 𝑎𝑖 for each 𝑖 ∈ {1, 2, 3} and if 𝑒 ∈ 𝑇𝑛 then 𝑒 ∼ 𝑎𝑖 for 𝑖 ∈ {𝑛, 𝑛 +

1, 𝑛 + 2} but if 𝑒 ∈ 𝑇𝑖 where 4 ⩽ 𝑖 ⩽ 𝑛 − 1 then {𝑗 ∶ 𝑒 ∼ 𝑎𝑗} = {𝑖}. We say that 𝑒 ∈ 𝑈 ⧵ 𝐴 is periph-
eral if |{𝑖 ∶ 𝑒 ∼ 𝑎𝑖}| = 3, and that 𝑒 is central otherwise. We define 𝑇′

𝑖
correspondingly in 𝑉 (with

each 𝑏𝑖 replacing 𝑎𝑖) and ∼′ and the notions of central and peripheral in 𝑉 in the same way. Let
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SET-HOMOGENEOUS HYPERGRAPHS 1879

𝑃, 𝑃′ be the sets of peripheral vertices of𝑈, 𝑉, respectively. Then for each 𝑖 and 𝑒 ∈ 𝑈 ⧵ 𝐴, we have
𝑒 ∼ 𝑎𝑖 if and only if 𝜎(𝑒) ∼′ 𝜎(𝑎𝑖). Clearly, |𝑃| ⩽ 2 and 𝜎(𝑃) = 𝑃′.
Suppose first that |𝑃| = 2. Then 𝜎 maps {𝑎1, 𝑎2, 𝑎3} to {𝑏1, 𝑏2, 𝑏3} or {𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛+2}, and maps

{𝑎𝑛, 𝑎𝑛+1, 𝑎𝑛+2} to the other of the sets {𝑏1, 𝑏2, 𝑏3} or {𝑏𝑛, 𝑏𝑛+1, 𝑏𝑛+2}. Thus, 𝜎 induces some per-
mutation 𝜋 of {4, … , 𝑛 − 1} such that if 𝑒 is central in 𝑈 then 𝑒 ∈ 𝑇𝑖 if and only if 𝜎(𝑒) ∈ 𝑇′

𝜋(𝑖)
.

Relabelling the 𝑏𝑖 if necessary we may suppose that 𝜎(𝑇3) = 𝑇′
3
. Let 𝑅3 = 𝑇3 ∪ {𝑎1, 𝑎2, 𝑎3} and

𝑅′
3

= 𝑇′
3

∪ {𝑏1, 𝑏2, 𝑏3}. Then |𝑅3| = |𝑅′
3
| = 4.

Consider now the 𝐶-relation 𝐶𝑈 induced on 𝑈 ⧵ 𝑅3 with downwards direction towards 𝑎1; for
𝑥, 𝑦, 𝑧 ∈ 𝑈 ⧵ 𝑅3 wehave𝐶𝑈(𝑥; 𝑦, 𝑧) ⇔ 𝐷(𝑎1, 𝑥; 𝑦, 𝑧). Similarly let𝐶𝑉 be the𝐶-relation induced on
𝑉 ⧵ 𝑅′

3
with downwards direction towards 𝑏1. Observe that for any distinct 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ 𝑈 ⧵ 𝑅3,

and any distinct 𝑥, 𝑦 ∈ 𝑅3 and distinct 𝑥′, 𝑦′ ∈ 𝑅3, 𝑥𝑦𝑢1𝑢2𝑢3𝑢4 is a hypergraph edge if and only
if 𝑥′𝑦′𝑢1𝑢2𝑢3𝑢4 is a hypergraph edge. Thus, a canonical 4-hypergraph structure is induced on
𝑈 ⧵ 𝑅3 and its complement is derived from the relation 𝐶𝑈 on this set as in Proposition 4.2.1.
Likewise, a canonical 4-hypergraph is induced on 𝑉 ⧵ 𝑅′

3
, and is derived from 𝐶𝑉 . As 𝜎 induces

an isomorphism of the 4-hypergraph on 𝑈 ⧵ 𝑅3 onto that on 𝑉 ⧵ 𝑅′
3
, it follows by the proof of

Proposition 4.2.1 that the corresponding structures (𝑈 ⧵ 𝑅3, 𝐶𝑈) and (𝑉 ⧵ 𝑅′
3
, 𝐶𝑉) are isomorphic,

and hence that𝑈 and𝑉 carry isomorphic𝐷-substructures, yielding Claim 2 and hence the result.
A similar argument applies if |𝑃| = 1, say 𝑃 = {𝑒} ∈ 𝑇3. We may suppose after relabelling that

𝑒 ∈ 𝑇3 and 𝜎(𝑇3) = 𝑇′
3
. We define 𝑅3, 𝑅′

3
and 𝐶𝑈, 𝐶𝑉 as above, show that (𝑈 ⧵ 𝑅3, 𝐶𝑈) and (𝑉 ⧵

𝑅′
3
, 𝐶𝑉) are isomorphic, and deduce that 𝑈 and 𝑉 carry isomorphic 𝐷-substructures.
Finally, suppose |𝑃| = |𝑃′| = 0. Say 𝑎𝑖 is rich if 𝑇𝑖 ≠ ∅ (and similarly for 𝑏𝑖); then 𝜎 maps rich

points of𝐴 to rich points of 𝐵. Let 𝑖 be least such that 𝑎𝑖 is rich (so 𝑖 ⩾ 4) and let 𝑅 = {𝑎1, … , 𝑎𝑖−1}.
Also let 𝑖′ be greatest such that 𝑎𝑖′ is rich, and put 𝑅′ ∶= {𝑎𝑖′+1, … , 𝑎𝑛+2}. Similarly, let 𝑗 be least
such that 𝑏𝑗 is rich and put 𝑆 = {𝑏1, … , 𝑏𝑗−1}, and 𝑗′ be greatest such that 𝑏𝑗′ is rich and put 𝑆′ ∶=

{𝑏𝑗′+1, … , 𝑏𝑛+2}. □

Claim 3. In this situation, we have

(a) 𝜎(𝑅 ∪ 𝑅′) = 𝑆 ∪ 𝑆′,
(b) 𝜎(𝑅) ∈ {𝑆, 𝑆′}.

Proof.

(a) Wemay suppose that𝑈 and 𝑉 have at least two rich elements, as otherwise this is immediate
as 𝜎 preserves richness. Observe that 𝑎 ∈ 𝑅 has the property that for any distinct rich 𝑎′, 𝑎′′ ∈

𝐴 and 𝑒′ ∼ 𝑎′, 𝑒′′ ∼ 𝑎′′, there is non-rich 𝑎′′′ ∈ 𝐴 (namely any element of 𝑅 ⧵ {𝑎}) such that
𝑎𝑎′𝑎′′𝑎′′′𝑒′𝑒′′ is a hypergraph 6-element non-edge. However, if 𝑎 ∈ 𝐴 ⧵ (𝑅 ∪ 𝑅′) is non-rich,
there are rich 𝑎′, 𝑎′′ on either ‘side’ of 𝑎, and 𝑒′ ∼ 𝑎′ and 𝑒′′ ∼ 𝑎′′ such that there is no such
𝑎′′′. This property of elements of 𝑅 ∪ 𝑅′ is preserved by 𝜎.

(b) We say that 𝑋 ⊂ 𝐴 is tidy if 𝑋 contains no rich point of 𝐴, |𝑋| ⩾ 3, and for any rich 𝑎 ∈ 𝐴

and 𝑒 ∼ 𝑎, 𝑋 ∪ {𝑎, 𝑒, 𝑥} is a complete hypergraph for each 𝑥 ∈ 𝐴 ⧵ (𝑋 ∪ {𝑎}). Then 𝑅 and 𝑅′

are tidy, but no subset of 𝑅 ∪ 𝑅′ meeting both 𝑅 and 𝑅′ is tidy. Furthermore, 𝑅 and also 𝑅′

are maximal subject to being tidy The same assertions hold for 𝑆, 𝑆′. These properties are
preserved by 𝜎, and the result follows.

Given the claim, wemay suppose that 𝜎(𝑅) = 𝑆. Now, as in the case when |𝑃| = 2, we define𝐶-
relations 𝐶𝑈 on 𝑈 ⧵ 𝑅 and 𝐶𝑉 on 𝑉 ⧵ 𝑆, define corresponding 4-hypergraphs on 𝑈 ⧵ 𝑅 and 𝑉 ⧵ 𝑆,
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1880 ASSARI et al.

argue as above that these 4-hypergraphs and hence these𝐶-structures are isomorphic, and deduce
that the corresponding 𝐷-structures on 𝑈 and 𝑉 are isomorphic. □

Corollary 4.3.2. Let (𝑁, 𝐸) be a set-homogeneous 6-hypergraph whose automorphism group
is not 3-primitive. Then either (𝑁, 𝐸) or its complement is isomorphic to the structure 𝑀6 from
Proposition 4.3.1, or Aut(𝑁, 𝐸) preserves a separation relation on 𝑁.

Proof. Let 𝐾 = Aut(𝑁, 𝐸). Then 𝐾 is a 5-homogeneous permutation group that is not 3-primitive.
If 𝐾 is not 3-transitive on 𝑁, then by Theorem 2.2.2 (parts (i) and (iv)) 𝐾 preserves a circular
order or linear betweenness relation, and hence preserves a separation relation on𝑁, as the latter
is definable without parameters in a circular order or linear betweenness relation. So, we may
suppose that 𝐾 is 3-transitive. It follows by Theorem 2.2.2(v) and 𝜔-categoricity that, assuming 𝐾

does not preserve a separation relation on 𝑁, then there is a 𝐾-invariant 𝐷-relation 𝐷 on 𝑁 such
that (𝑁, 𝐷) is isomorphic to the 3-branching 𝐷-set (𝑀, 𝐷) from the proof of Proposition 4.3.1. As
Aut(𝑁, 𝐷) has two orbits on 6-sets, the result follows (one orbit gives a hypergraph isomorphic to
𝑀6, and the other gives the complement). □

Proof of Theorem C. See Proposition 4.3.1 and Corollary 4.3.2. □

For completeness, we also record the following immediate corollary of Theorem2.2.2(iv), which
may make it possible to apply methods similar to those of Lemma 3.2.5. Part (vi) of Theorem 2.2.2
also has consequences for set-homogeneous 𝑘-hypergraphs for 𝑘 ⩾ 9.

Corollary 4.3.3. Let 𝑘 ⩾ 5 and let 𝑁 be an infinite set homogeneous 𝑘-hypergraph whose auto-
morphism group is not 3-transitive. Then there is an ∅-definable (so Aut(𝑁, 𝐸)-invariant) linear
betweenness relation, or circular order on 𝑁.

5 FINITE SET-HOMOGENEOUS STRUCTURES

In this section, explore briefly what can be said about finite set-homogeneous hypergraphs. The
finite homogeneous 3-hypergraphswere classified byLachlan andTripp in [33]. There are just four
examples, with automorphism groups PGL3(2), PGL3(3), PSL2(5), and the extension of PSL2(9)

by an involutory field automorphism, each in the natural action on the projective plane or line.
By homogeneity, the automorphism group of any homogeneous 3-hypergraph is 2-transitive, and
via the classification of finite simple groups all finite 2-transitive groups are known, making the
Lachlan–Tripp result feasible.We have not attempted to carry out the corresponding classification
under set-homogeneity, but first note that such hypergraphs again have 2-transitive automor-
phism group by the following result. Finite 𝑘-homogeneous groups that are not 𝑘-transitive (for
some 𝑘 ⩾ 2) were classified by Kantor in [29], but this is not needed for the next result.

Lemma 5.1. Let 𝑘 ⩾ 3, let Γ = (𝑋, 𝐸) be a finite set-homogeneous 𝑘-hypergraph, and put 𝐺 =

Aut(Γ). Then 𝐺 acts 2-transitively on 𝑋.

Proof. Using the rigidity of finite total orders, this follows immediately from Lemma 3.2.3 for
𝑘 = 3, and from Theorem 2.2.2(ii) for larger 𝑘. (As stated, Theorem 2.2.2(ii) has an assumption
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SET-HOMOGENEOUS HYPERGRAPHS 1881

that 𝑋 is infinite, but the proof in [12] only uses this to ensure that 𝐺 is 2-homogeneous, which
holds here anyway.) □

Enomoto [20] gave a very short proof that any finite set-homogeneous graph is homogenous. As
noted in [26, Lemma 3.1], Enomoto’s argumentworks also for finite tournaments, but not for finite
digraphs (a directed 5-cycle is set-homogeneous but not homogeneous). The following example
shows that his argument (at least in the original form) is not applicable to 3-hypergraphs.

Example 5.2. We give an example of a finite set-homogeneous 3-hypergraph that is not homoge-
neous. Let 𝐺 be the groupAGL1(7) = (𝔽7, +) ⋊ (𝔽∗

7, ⋅) acting on 𝔽7 = {0, 1, 2, 3, 4, 5, 6}with opera-
tionsmodulo 7. This group is 2-transitive and it can be checkedwith bare hands that it has 2 orbits
on sets of size 3, namely an orbit Ω1 of size 14 containing the 3-sets 013, 026, 023, 045, 015, 046,

124, 235, 346, 156, 134, 245, 356, 126 (listing 3-sets as triples), and an orbitΩ2 of size 21 containing
the remaining 3-sets. Let𝑀 by the 3-hypergraph on vertex set 𝔽7 whose edges are the 3-sets inΩ1.
The group 𝐺 also has two orbits on sets of size 4, namely Θ1 consisting of complements of sets
in Ω1, and Θ2 containing the complements of elements of Ω2. Observe that {2, 4, 5, 6} ∈ Θ1, and
{3, 4, 5, 6} ∈ Θ2. The induced hypergraph on {3, 4, 5, 6} contains two edges (346 and 356), and that
on {2, 4, 5, 6} has 1 edge (245), so they are non-isomorphic. As 𝐺 is transitive on 5-sets and 6-sets
from {0, 1, … , 6}, it follows that 𝐺 acts set-homogeneously on 𝑀.
The hypergraph 𝑀 is not homogeneous, as it does not occur among the examples in [33].

Indeed, the only 7-vertex example in [33] is the Fano plane, which has PSL3(2) as automorphism
group. As the latter is simple of order 168, it cannot have 𝐺 as a subgroup; indeed, |𝐺| = 42, and
a group of order 168 with a subgroup of order 42 must have a proper normal subgroup of index at
most 4!, so cannot be simple.

Proof of Theorem D. See Lemma 5.1 and Example 5.2. □

Lachlan (see [31] and also [16] for the existence of a bound on rank) developed a very general
structure theory for finite homogeneous relational structures. First, recall that a countably infinite
structure 𝑀 is smoothly approximable by a sequence 𝑀0 ⩽ 𝑀1 ⩽ … of finite substructures if 𝑀 is
𝜔-categorical, and (with 𝐺 = Aut(𝑀)), for any 𝑖 ∈ ℕ and tuples 𝑢̄, 𝑣 from 𝑀𝑖 , 𝑢̄ and 𝑣 lie in the
same Aut(𝑀)-orbit if and only if they lie in the same orbit of the setwise stabiliser Aut(𝑀){𝑀𝑖}

of
𝑀𝑖 . A rich theory around smooth approximation is developed in [15].
Roughly, the Lachlan theory says that if 𝐿 is a finite relational language, then the finite homoge-

neous 𝐿-structures consist of finitelymany ‘sporadic’ examples, and finitelymany infinite families
of examples, so that within each family the isomorphism type is determined by finitely many
‘dimensions’ taking values in ℕ, the dimensions varying independently and freely above a certain
minimum. The infinite ‘limits’ of these families are exactly the homogeneous countably infinite
𝐿-structures that are stable (see Section 6); they are ‘smoothly approximated’ by the finite fami-
lies. It can be shown that something very similar holds under set-homogeneity, and we make this
precise below.

Theorem 5.3. Let 𝐿 be a finite relational language and let  be the collection of all finite set-
homogeneous 𝐿-structures. Then we may write  = 0 ∪ 1 ∪ … ∪ 𝑡 where 0 is finite, and the
structures in each 𝑖 (for 𝑖 = 1, … , 𝑡) smoothly approximate a set-homogeneous countably infinite
𝐿-structure 𝑀𝑖 .
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1882 ASSARI et al.

Proof. As 𝐿 is fixed, set-homogeneity ensures that there is 𝑑 ∈ ℕ such that for each 𝑀 ∈ ,
Aut(𝑀) has at most 𝑑 orbits on 𝑀4. The result now follows from [41, Theorem 4.4.1], which
is based on results from [15]. It is almost immediate from the definition of smooth approxima-
tion that if a family 𝑖 smoothly approximates an infinite structure 𝑀𝑖 then 𝑀𝑖 will itself be
set-homogeneous. □

6 FURTHER QUESTIONS

The literature around set-homogeneity is not well-developed, and we consider here some
further directions.
First, extending the results given in this paper, it seems feasible to classify set-homogeneous

hypergraphs that are not 𝑡-homogeneous for some small 𝑡.

Problem 6.1. For 𝑘 ⩾ 3, classify set-homogeneous countably infinite (𝑘 + 1)-hypergraphs whose
automorphism group is not 𝑘-transitive. In particular, classify set-homogeneous 4-hypergraphs
whose automorphism group is not 2-primitive (see Corollary 4.2.2), and set-homogeneous
6-hypergraphs whose automorphism group is not 3-primitive (see Corollary 4.3.2).

In the case of Corollary 4.2.2, we must consider cases where there is an underlying invariant
linear betweenness relation, and for Corollary 4.3.2 one considers an invariant separation relation.
It seems likely that the methods of Lemmas 3.2.4 and 3.2.5 are applicable. As a special case of the
above problem, again with these lemmas as an approach, we ask for the following extensions of
Theorems A(i) (the uniqueness assertion) and B(i).

Problem 6.2. Show that for 𝑘 ⩾ 3 the only set-homogeneous 𝑘-hypergraph whose automorphism
group is not 2-transitive is 𝑀3. Show also that 𝑀3, 𝑁3 and 𝑁𝑐

3
are the only set-homogeneous 3-

hypergraphs that are not 3-homogeneous (that is, do not have 𝑆3 induced on both edges and non-
edges).

Remark 6.3. If 𝑀, 𝑁 are 𝜔-categorical structures with the same domain, then 𝑁 is said to be
a (first-order) reduct of 𝑀 if Aut(𝑁) ⩾ Aut(𝑀) (as subgroups of Sym(𝑀)), and to be a proper
reduct if Aut(𝑁) > Aut(𝑀). Thus, by the Ryll–Nardzewski theorem, 𝑁 is a reduct of 𝑀 if and
only if every ∅-definable relation of 𝑁 is ∅-definable in 𝑀. Observe that 𝑀4 is a proper reduct
of 𝑀3 and 𝑀6 is a proper reduct of 𝑀4. Indeed, if 𝐶 is the dense 3-branching 𝐶-relation on
𝑀3 and 𝐷 is the corresponding 3-branching 𝐷-relation as described in Subsection 2.1, we have
Aut(𝑀3) = Aut(𝑀, 𝐶, ⩽) < Aut(𝑀, 𝐶) = Aut(𝑀4) < Aut(𝑀, 𝐷) = Aut(𝑀6); see the proofs of
Propositions 3.1.2, 4.2.1 and 4.3.1. By the main theorem of [5], 𝑀6 has no proper reducts other
than the ‘trivial’ one with automorphism group Sym(𝑀6); indeed, it is shown in [5] that 𝑀4 has
no proper reducts (up to ∅-interdefinability) other than 𝑀6 and the trivial one.

It seems quite possible that for 𝑘 ⩾ 3 we have found all infinite set-homogeneous but not
homogeneous 𝑘-hypergraphs. We have checked that no other examples have the same automor-
phism group as the universal homogeneous 𝑡-branching 𝐶 or 𝐷-relation for any 𝑡, and closely
related structures (the most generic semilinear orders, and general betweenness relations, as
developed in [1]) also seem not to give examples. Likewise, there are no examples (other than
𝑀3) obtained by expanding the above 𝐶-structures by a compatible total order. There is an
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SET-HOMOGENEOUS HYPERGRAPHS 1883

analogous notion of compatibility of a 𝐷-relation with a circular order, but this gives no exam-
ples. There are other related structures considered in [11] that we have not checked. There also
appear to be obstructions to crude amalgamation arguments designed to build a homogeneous
expansion of a set-homogeneous hypergraph in which we aim to force that (for the hypergraph)
the group induced on some finite subset is smaller than the full automorphism group of the
induced subhypergraph.
Section 5 suggests the following extension of [33].

Problem 6.4. Classify finite set-homogeneous 𝑘-hypergraphs for 𝑘 ⩾ 3.

The next question was also asked in Remark 2 of [19, p. 91].

Problem 6.5. Give an example of a set-homogeneous countably infinite structure over a finite
relational language that is not homogenizable, that is, cannot be made homogeneous by adding
symbols for finitely many ∅-definable relations.

Following on from [35], which proves the corresponding result assuming homogeneity, we pose
the following.

Problem 6.6. Show that if𝑀 is set-homogeneous over a finite relational language then no infinite
group is interpretable in 𝑀.

A complete theory 𝑇 is stable if there do not exist a formula 𝜙(𝑥̄, 𝑦̄), 𝑀 ⊧ 𝑇, and 𝑎̄𝑖 ∈ 𝑀|𝑥̄| and
𝑏̄𝑖 ∈ 𝑀|𝑦̄| for 𝑖 ∈ 𝜔, such that for 𝑖, 𝑗 ∈ 𝜔 we have 𝑀 ⊧ 𝜙(𝑎̄𝑖, 𝑏̄𝑗) ⇔ 𝑖 < 𝑗. For more on this major
theme in model theory see, for example, [38].

Conjecture 6.7. For 𝑘 ⩾ 3, any infinite set-homogeneous 𝑘-hypergraph with stable theory is
complete or has complete complement.

The corresponding result for stable homogeneous 3-hypergraphs holds, by [33] in combination
with the Lachlan theory of stable homogeneous structures mentioned in Section 5. This conjec-
ture would hold if there is no example as in Problem 6.5 for 𝑘-hypergraphs with 𝑘 ⩾ 3. Indeed,
suppose this is the case, and that (𝑀, 𝐸) is a set-homogeneous stable 𝑘-hypergraph with 𝑘 ⩾ 3.
Then (𝑀, 𝐸) can be expanded to a stable homogeneous structure 𝑀′ over a finite relational lan-
guage 𝐿′, with the same automorphism group. By Lachlan’s theory for such structures, 𝑀 will be
smoothly approximated by a sequence of finite such structures (𝑀𝑖 ∶ 𝑖 ∈ ℕ)which by Theorem 5.1
will have 2-transitive automorphism group. By the classification of finite 2-transitive permutation
groups, it follows that an infinite group will be interpretable in𝑀′, contrary to the main theorem
of [35].
We also repeat a problem from the introduction of [19], where it is asked whether the two

examples 𝑅(3) and its complement are the only countably infinite set-homogeneous but not
homogeneous graphs.

Problem 6.8. Classify countably infinite set-homogeneous graphs.
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