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1  |  AN INTRODUC TION TO PAT TERNED 
HAIR LOSS

The hair follicle continuously cycles through three phases during its 

lifetime: anagen (growth phase— elongation of growing hair fibre), 

catagen (regression phase— formation of club hair fibre) and telogen 

(resting phase— retention of club hair fibre). At the end of telogen the 

club fibre is actively shed in a process termed exogen, while the folli-

cle itself re- enters anagen to start production of a new growing hair 

fibre.1 On the scalp of young non- bald men, anagen typically lasts at 

least 2 years,2 catagen 2 weeks and telogen around 2– 3 months.3 In 

male pattern hair loss (MPHL), the phenotype observed as an effect 

of androgenetic alopecia (AGA) in males, follicles undergo miniatur-

isation in a localised pattern.4 Specifically, follicles in the skin above 

the frontal and parietal bones of the skull vault undergo miniaturisa-

tion leading to what is described as a Norwood- Hamilton pattern of 

MPHL. These miniaturising follicles experience a decreased duration 

of anagen, an increased duration of telogen5 and often the prolon-

gation of a phase known as kenogen wherein the club fibre is shed 
during exogen yet the follicle remains ‘stuck’ in telogen.6 Collectively, 

these changes contribute to the appearance of a balding phenotype 

due to an overall decrease in hair fibre width and pigmentation. In 

contrast, follicles in skin above the occipital and temporal bones of 
the skull vault do not undergo miniaturisation— these are termed oc-

cipital or non- miniaturising follicles within this viewpoint.

The clinical presentation of MPHL is driven by miniaturisa-

tion of the hair follicle. While MPHL is androgen dependent and 

predominantly driven by genetics, the aetiology is much less 
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Abstract
Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) 

is the most common type of non- scarring progressive hair loss, with 80% of men suf-

fering from this condition in their lifetime. In MPHL, the hair line recedes to a specific 

part of the scalp which cannot be accurately predicted. Hair is lost from the front, ver-

tex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair 

loss is due to hair follicle miniaturisation, where terminal hair follicles become dimen-

sionally smaller. Miniaturisation is also characterised by a shortening of the growth 

phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). 
Together, these changes result in the production of thinner and shorter hair fibres, re-

ferred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs 

in this specific pattern, with frontal follicles being susceptible while occipital follicles 

remain in a terminal state. One main factor we believe to be at play, which will be dis-

cussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis 
on different regions of the scalp.
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2  |    REDMOND et al.

well- defined in the female equivalent of the trait, female pattern 

hair loss (FPHL). There are also many other differences between 

FPHL and MPHL, the most well described of which is the pattern 

of miniaturisation. In women, it is the follicles nearest the parting 

at the centre of the scalp which undergo miniaturisation with a 

diffuse pattern, giving rise to what was described by Olsen as a 

Christmas tree pattern of hair loss.7 There can also be occipital 

involvement, termed diffuse unpatterned alopecia,8 in some but 

not all cases of FPHL. In MPHL, there is a highly significant asso-

ciation of the androgen receptor (AR) locus (Xq11- 12) with early 

onset of the trait in a Norwood Hamilton pattern.9 In FPHL, studies 

in German and Chinese cohorts have not identified an association 

of the AR locus with FPHL.10,11 A nominally significant SNP in AR 

has been identified in a British population, however this was only 

associated with early onset FPHL.11

In addition to the AR locus, another locus which has been iden-

tified as strongly associated with MPHL is 20p11, first identified in 

a Suisse cohort and validated in British, Icelandic and Dutch popu-

lations.12 A later study in a German cohort, with men exhibiting the 

Norwood- Hamilton pattern of MPHL, corroborated these results.9 

Building on this were studies in a Chinese13 and Korean14 cohorts 

which also associated 20p11 locus with MPHL. In FPHL, no associ-

ation has been made to date, with the 20p11 locus in any cohort.15

While PAX1 is located at the 20p11 location, other genes includ-

ing FOXA2,12 HDAC916,17 and EDAR18 have also been significantly 

associated with MPHL. In addition to Xq11- 12, additional MPHL risk 
loci have also been identified on the X- chromosome, encompassing 

genes such as FAM9A, FAM9B, KLF8 and TRS2.18 Functional interac-

tions are now starting to be made between genes identified in MPHL 

GWAS19; however, to our knowledge these have not yet been inves-

tigated in FPHL.

2  |  THE MECHANISM OF 
MINIATURISATION

The role of androgens in MPHL has been well- established as cas-

trated males (who lack androgens) do not exhibit follicle miniaturisa-

tion.20 This was explored in 1960, where 21 young adult males were 
castrated and monitored for signs of MPHL for 18 years following 
their castration. Subjects who had no hair loss at the time of castra-

tion kept their full head of hair, with those already showing slight 
frontal hair loss showing no further hair loss.

In contrast, exposure of castrated men with a family history of 

MPHL to androgens can lead to follicle miniaturisation.21 Given the 

stark appearance of the Norwood- Hamilton pattern in most cases 
of MPHL and the well- documented association with the AR, we will 

focus specifically on MPHL (as opposed to FPHL) from hereonin as 

a form of AGA in this viewpoint discussing the pattern of hair loss.

In MPHL, the process of miniaturisation is triggered by the con-

version of androgens such as circulating testosterone to their more 

potent form dihydrotestosterone (DHT), by 5α reductase type I 

and type II. Re- analysis of published scRNA- seq data of human hair 

follicles in anagen22 reveals that 5α reductase II is expressed exclu-

sively in the dermal papilla (DP), while 5α reductase I is expressed 

within cells both in the hair follicle dermis and hair follicle epithelium 

(Figure 1A). Once testosterone is converted to DHT it acts on the 

follicle by binding to cytoplasmic AR, which dimerises with another 

DHT- bound AR. Since AR is only expressed within the DP and der-

mal sheath of anagen hair follicles (Figure 1A), this dimerization of 

the DHT- bound AR occurs in the hair follicle dermis. The dimerised 

complex then enters the nucleus and binds to promoters of andro-

gen targets, leading to the expression of genes including TGF- β1, 

TGF- β2, DKK- 1 and IL- 6 and subsequent transformation of large ter-

minal follicles to a miniaturised vellus state.23

Within the hair follicle 5α reductase II and the AR gene are ex-

pressed within the DP,24,25 a flame shaped structure located at the 

base of the follicle containing specialised fibroblasts. DP cells have 

key roles in hair growth, including initiation of the anagen phase26 

and signalling for directed differentiation of the epithelial hair ma-

trix.27,28 The diameter of the DP is positively correlated with the 

diameter of the hair shaft produced by the follicle matrix.29 While 

the size of the DP is relatively static during anagen, it decreases in 

catagen and telogen due to a cell efflux, before increasing in size 

again at the start of a new anagen due to cell influx from the follicle 

dermal sheath stem cells.30 A key feature of miniaturised follicles in 
MPHL is that their DP become smaller.29 This miniaturisation of the 

DP does not occur during anagen per se, but instead it occurs when 

the follicle cycles,31 suggesting that a perturbation in the efflux or 

influx processes regulate DP size in MPHL.32

MPHL can additionally be characterised by replacement of the 

arrector pili muscle (APM) in the follicle with fat tissue.33 The APM 

in non- balding hair follicles has a branched attachment to all follicles 

within a follicular unit, whilst APM attachment is lost to miniatur-

ised follicles in AGA follicular units.33,34 Miniaturising follicles show 

a higher fat:APM ratio, suggesting that fat replacement of the APM 

is progressive with time. The presence of an APM also enables dis-

tinction between miniaturised hair follicles and vellus hair follicles 

on the face, which have an APM.35 Interestingly, in mice, hair follicle 

stem cells (HFSC) act as a niche for the APM, depositing extracel-

lular matrix which guides the attachment of the APM at the bulge 

region of the follicle.36 While the number of HFSC is not reduced in 

MPHL, their ability to differentiate into progenitors is impaired.37 

It is unclear however if impairment of signalling from HFSC is what 

determines the replacement of the APM in MPHL.

As mentioned earlier in this piece, in MPHL, follicle miniaturisa-

tion occurs in a specific pattern on the frontal scalp. In hair trans-

plant surgery to treat MPHL, occipital (non- miniaturising) follicles 

are surgically relocated to the frontal scalp to cover the balding 

area. Experimental observations by Orentreich in the 1950s indi-
cated that relocated hair follicles do not undergo miniaturisation 

post repositioning despite the levels of androgens being higher in 

the frontal scalp.38 This phenomenon is termed ‘donor dominance39 

and suggests susceptibility to miniaturisation is a trait that is intrinsic 

to the follicle itself rather than something that is driven by localised 

signalling cascades within the follicle's surroundings.
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    |  3REDMOND et al.

3  |  INTRINSIC DIFFERENCES IN THE 
DP OF MINIATURISING AND NON- 
MINIATURISING FOLLICLES

There are several intrinsic differences between miniaturising (fron-

tal) and non- miniaturising (occipital) follicles. It has been shown 

that in MPHL, follicles on the frontal scalp become hypersensitive 

to androgens— this is speculated to be due to an increased number 

of AR transcripts within frontal follicle DP.38 The expression of 5α 

reductase type I and II is also reported to be increased in frontal 

follicles although this was from a cohort of just 12 men and women, 

hence study repetition in a larger cohort would be valuable.38 Higher 

expression of 5α reductase type II is also found in other androgen- 

sensitive DP such as the beard, when compared to androgen- 

insensitive sites such as the occipital scalp.40 Despite both frontal 

and beard hair follicles containing an increased number of AR tran-

scripts relative to occipital scalp,41 the inhibitory androgen response 

on the frontal scalp is different to the stimulatory response observed 

in beard follicles (Figure 1). Instead of producing terminal hairs like 
the beard, frontal follicles produce miniaturised hairs post androgen 

exposure. The paradoxical effect of this hormone is thought to be 

completely unique in endocrinology.

RNA sequencing of intact DP from frontal scalp miniaturised fol-

licles and occipital scalp terminal hair follicles from individuals with 

MPHL has revealed large differential gene expression between DP 

from these sites.24 The authors focused on genes associated with 

angiogenesis, of which NOX5 and HAND1 were reported as having 

the largest fold change decrease from occipital to frontal DP (2.8- 

fold and 2.7- fold respectively). Various other studies have assessed 

cultured DP cells from miniaturising and non- miniaturising sites. 

These have revealed differential gene expression patterns suggest-

ing maintenance of androgen sensitivity and differential response to 

androgens even in culture. Work from Midorikawa and colleagues 
identified 107 genes as having differing expression levels between 

balding and non- balding DP in culture— genes including BMP2 and 

EPHRIN A3 were highlighted as downregulated in miniaturising DP.42 

A study of immortalised DP cells by Chew and colleagues noted 

AR as a candidate gene alongside several other genes identified as 

upregulated (TWIST1, UBIAD1, SRM, FRAP1, EXOSC10) or downreg-

ulated (CASZ1, PER2, TWIST2, RNF145, AUTS2, SSPN and MAPT) in 

miniaturising versus non- miniaturising DP.43 In other work, single 
genes such as SFRP2 have been investigated and identified as down-

regulated in frontal DP cells compared to occipital DP,44 reinforcing 

the idea that there are intrinsic differences in the DP between dif-

ferent sites on the scalp.

Research has also shown functional differences between frontal 

and occipital DP, related to their response to therapeutics. One such 

example is seen with minoxidil, a commonly used therapeutic which 

acts to prevent miniaturisation in MPHL. In response to minoxidil 

treatment, DP cultures from miniaturising follicles have increased 5α 

reductase activity, relative to non- treated cells. In comparison, in DP 

cultures from non- miniaturising follicles, minoxidil elicits no change 

in 5α reductase activity relative to the untreated baseline.45

4  |  WHAT LE ADS TO INTRINSIC 
DIFFERENCES BET WEEN FRONTAL AND 
OCCIPITAL FOLLICLES?

The differences in AR expression and downstream effects of AR 

target genes described earlier in this piece help in part to ex-

plain why follicles miniaturise on the frontal region of the scalp. 

However, this still does not address the question of why there are 

these differences in AR expression in the first place. To look at this, 

F I G U R E  1  (A) Schematic showing 5α- reductase II (5αR- II) and AR expression in human hair follicles. Data re- analysed from Shim 2022.22 

(B) Developmental origins of the skull and facial bone alongside androgen sensitivity of the skin dermis in human scalp. Genes locally 
upregulated are taken from the literature.42– 44 We postulate that the patterning observed in murine development is conserved in humans.
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4  |    REDMOND et al.

we adjust our perspective to that of embryonic development. All 

cells in the body derive from three germ layers formed during the 

process of gastrulation during embryogenesis— these three layers 

are termed the ectoderm, mesoderm and endoderm. Once commit-

ted to one of these germ layers, cells continue to become primed 

as progenitors for specific cell types, before differentiating to their 

final state.

In terms of the skin, both the follicular DP fibroblasts and in-

terfollicular fibroblasts arise from the same precursor cell,46 mean-

ing they are derived from the same germ layer post gastrulation. 

However, several lines of evidence suggest that skin fibroblasts have 
different germ layers of origin depending on their location on the 

body. Murine and avian data shows that fibroblasts located on the 

front of the face (whisker pads) are of a neural crest ectodermal ori-
gin, while the back of the head and dorsal dermis contain fibroblasts 
from a paraxial mesoderm origin.47– 52 In quail chick chimeras, it has 
been shown that the mesoderm contributes only to the occipital and 

ear regions on the head.53

Fibroblasts are not the only cell type proposed to arise from dif-

fering developmental origins based on their location, as the underly-

ing bone has a similar story. The viscrerocranium (facial skeleton and 
jaw) of avian species is known to be of neural crest origin.54,55 The 

occipital bone of the skull vault is thought to be mesoderm derived, 
while bones found in the frontal scalp were originally thought to be 

of a mixed mesoderm and ectoderm origin.55 This mixed lineage hy-

potheses of the frontal region was however disputed a couple of 

decades later, with the region now firmly believed to be from the 

neural crest.53

In mice, lineage tracing has shown that neural crest ectoderm de-

rived components of the skull vault are localised in the frontal bone 
and in a tongue shaped extension along the sagittal suture (central 

region) of the interparietal bone, while the remainder of the pari-

etal bone and occipital bone are mesoderm derived.52 The overlying 

skin dermis has a comparable neural crest— mesoderm boundary, 
although skin movement during development means it does not lie 
directly above the boundary in the underlying bone.52

Assuming conservation of developmental patterning for transla-

tion of this to humans one can envisage how the beard dermis, which 

has parallels with the whisker pad, is of ectodermal origin while the 
dermis of the occipital scalp has its origins in the mesoderm. While 

the frontal balding scalp (covering both the frontal and paraxial 

bone) is in a less well- defined region (Figure 1) consensus in the sci-

entific community is that the frontal region is neural crest ectoderm. 

The difficulty comes when assessing the parietal region as it is not 

known if the tongue extension of neural crest along the sagittal ridge 
observed in mice is evolutionarily conserved in other species. In lieu 

of the capacity to conduct lineage tracing in humans, one way to 

investigate the origin of the frontal skin dermis in humans is to look 
at the intrinsic differences in gene expression in fibroblasts from this 

site. With the advancement of next generation sequencing technol-

ogies and design of elegant computational algorithms to assess the 

differentiation trajectory of cells in pseudo time, we envisage that 

one- day researchers will reverse engineer these trajectories and be 

able to determine the starting germ layer origin of cells that appear 

to have, at the cell surface, similar endpoints. Perhaps this too, can 

help explain the differing response to androgens between frontal 

and beard hair follicles.

The hypothesis of frontal scalp in humans being of ectodermal 

lineage has been borne out of extrapolation of observations in other 

species, and it is difficult to validate in humans where lineage tracing 

to this extent is not feasible. It is well accepted that there is het-

erogeneity in fibroblast identity, both within a single body site and 

across different body sites.56,57 This heterogeneity based on devel-

opmental origin is also important to consider in the context of hair 

transplantation, where follicles are relocated from the occipital to 

the frontal scalp to treat MPHL. Earlier in this piece we introduced 

the concept of donor dominance— this idea that follicles remember 

their origin and consequently behave like follicles from their origin 
location. While we are not aware of any studies that have evaluated 

gene expression in occipital dermal papillae transplanted to a frontal 

location, we presume that transplanted papillae would retain their 

mesoderm lineage profile. This assumption is based on results from 

heterotopic transplantation experiments in rodents, which showed 

that whisker papillae transplanted to an ear location would retain 
their whisker properties and induce formation of whisker- like folli-
cles in the ear epidermis.58

5  |  CONSEQUENCES OF 
DE VELOPMENTAL ORIGINS ON HAIR 
FOLLICLE MINIATURISATION

In this viewpoint so far, we have postulated that the different de-

velopmental origins of the skin dermis on the scalp facilitate the 
observed differences in androgen sensitivity. Asides from androgen 

sensitivity, MPHL can be characterised by three other defining fea-

tures: a decrease in anagen duration, a decline in hair fibre diameter, 

and longer latency periods (kenogen) between fibre shedding and 
regrowth.59 The ratio of large (terminal) to small (including both min-

iaturised and vellus) follicles is <3:1 in MPHL, while this value can be 

greater than 7:1 in men without MPHL.60

We propose that different developmental origins on the scalp 

and consequently differences in androgen sensitivity directly con-

tribute to these other defining features seen in MPHL. While ex-

pression of the AR targets DKK- 1 and TGF- β1 inhibit proliferation 

of keratinocytes,61,62 expression of TGF- β2 and IL- 6 induces the 

early onset of catagen.63,64 This in turn leads to a shortening of 

anagen which relative to an equivalent length telogen reduces the 

anagen:telogen ratio of follicles on the scalp.65 The anagen: telogen 

ratio varies between individuals (both non- balding and MPHL sub-

jects) and between investigators using different methods of assess-

ment. On a typical non- balding scalp one might find 90% of follicles 
are in anagen, 1% in catagen and 9% in telogen.31 Comparatively, in 

AGA the anagen: telogen ratio can decrease to 83:17.31 In the case 

of the greatest observed decrease in cycle duration in MPHL, fron-

tal scalp follicles have an anagen phase of under 6 months59 and a 
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    |  5REDMOND et al.

telogen phase of 2– 3 months, meaning that in individuals with MPHL 
follicles in the frontal balding zone cycle more frequently over a set 

duration of time (Figure 2). More specifically, the length of anagen 

in individuals with AGA has been noted to decrease by 20%– 95% 
across 10 years, with the latency period (telogen and kenogen com-

bined) between cycles increasing between 10%– 125%.59 In minia-

turised follicles with a 95% decrease in anagen duration and only 
a 10% latency increase, a follicle could be cycling around 9.4 times 
for every 1 cycle it would have previously undergone as a terminal 
follicle (Figure 2A).

6  |  IS MPHL A FORM OF LOC ALISED 
ACCELER ATED AGEING?

So far in this piece, we have linked developmental origins and andro-

gen sensitivity with an increased number of transitions through the 

hair follicle cycle in miniaturising follicles. A decreased anagen dura-

tion along with an increased latency period has also been identified 

in hair follicles with increasing chronological age.2 The observations 

of perturbations to the follicle cycle in MPHL appear to manifest as 

an excessive version of those observed during normal hair follicle 

ageing. But how do these changes to the hair follicle cycle lead to 

miniaturisation in MPHL?

In mice, at the start of each new anagen there is a division of 

dermal sheath stem cells that act as a fuel source to replenish the DP 

to its size during the previous anagen.30 The increased frequency 

of cycling observed in MPHL must in turn impact the frequency at 

which the dermal sheath stem cells proliferate to replenish the DP 

at the start of anagen. Increased proliferation above the norm would 

lead to an increase in the epigenetic age of dermal sheath stem cells, 

and consequently the dermal papilla cells, in miniaturised follicles. 

This is a double- edged sword as a combination of follicular and more 

specifically stem cell ageing can contribute to dysfunction in self re-

newal and/or differentiation capacity.66 Here, we hypothesise that 

MPHL is characterised by localised accelerated ageing of the hair 

follicle dermis, driven in response to signalling downstream of AR 

activation in frontal follicles. This hypothesis is supported by the 

observation of increased p16INK4a expression (a marker of senes-

cence) in cultured balding DP versus non- balding DP cells from the 

same patient.67

Lastly, during normal chronological ageing of murine hair folli-

cles, several biologically repressive genes including Cyr61 (senes-

cence), Egr1 (tumour suppressor), Btg2 (anti –  proliferation), Gadd45g 

F I G U R E  2  Is AGA a form of 
accelerated ageing? (A) Data from 

Courtois et al.,59 was reanalysed to 

determine the impact of changes in cycle 

length in MPHL on the number of hair 

cycles across a 5 year time frame. (B) The 
signature of murine DP changes with 

increasing age. Schematic created with 

data from Shin et al.68 (C) Genes such 

as EGR1 are found to be increased in 

expression in frontal DP versus occipital 

DP in humans (own unpublished data set).
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(proliferation arrest) and SocS3 (cytokine signalling repressor) are 
upregulated in their DP compared to young mouse DP (Figure 2B).68 

An upregulation of Cyr61 leads to fibroblast senescence through 

p16INK4a activation. EGR1 has also been associated with ageing 

in human haematopoietic stem cells,69 and granulosa cell apoptosis 

which is a cause of ovary ageing.70 In unpublished work from our 
research group we recently found a significant increase in EGR1 ex-

pression in frontal human DP relative to occipital DP from matched 

patient samples (Figure 2C). This too, supports the concept that 

MPHL is a form of localised accelerated ageing. Should this be the 

case, MPHL could be not only a condition of hormonal imbalance, 

but also one of accelerated ageing, with the pool of potential thera-

peutics for the condition widening to include rejuvenation or seno-

lytic therapies.

7  |  CONCLUDING REMARKS

The pattern of follicle miniaturisation in MPHL being restricted to 

frontal scalp is an intriguing phenomenon. Here, we have presented 

our argument that this pattern is due to differences in AR activ-

ity, which is facilitated by the developmental origin of the DP. We 

propose that miniaturisation of follicles on the frontal scalp in re-

sponse to androgens leads to localised ageing of the hair follicle 

dermis (dermal papilla and dermal sheath) which in turn exacerbates 

MPHL.

A crux of the matter which remains unanswered is whether the 

frontal scalp is of a mixed lineage. Should this be the case, is it the 

presence of mesodermal cells in the environment of ectodermal cells 

that alters androgen sensitivity across the scalp? We suggest this 

could be investigated by using induced pluripotent stem cell (iPSC) 

derived DP, which are formed exclusively via an ectodermal71 or me-

sodermal lineage,72 as well as a culture mixing the two. Differences 

in AR and other candidate genes identified above could be analysed 

in iPSC- derived DP from different lineages, to see if they resemble 

the differences in current profiles relating to AR expression and the 

balding state. It must be noted that iPSC- derived organoids remain 

in an early developmental state, however this could be the first 

step to begin correlating developmental origins with DP function. 

Should this be the case, maybe the differences observed are indeed 

caused by differing developmental origins of the DP. An alternative 

approach to investigating the lineage of frontal and occipital scalp 

would be to attempt to directly reprogramming fibroblasts obtained 

from the two regions into neurons. Ectodermal derived cells which 

are non- neuronal (e.g., keratinocytes) are not able to directly repro-

gram into neurons due to the presence of a trivalent motif suppress-

ing the neuronal state,73 hence should frontal scalp fibroblasts resist 

the reprogramming, they are likely to be of an ectodermal origin.
A final take home message from this piece relates to experimen-

tal design and reporting. We have argued throughout that miniatur-

isation occurs due to a different developmental origin of follicles 

on the frontal scalp and described how dermal papilla from fron-

tal and occipital sites have different transcriptomes and respond 

differently to therapeutics. When reporting results generated from 

follicles taken from the ‘scalp’, researchers should clearly define the 
location on the scalp from which the follicles were taken since as 
we have seen, this can have a dramatic effect on the interpretation 

of results.
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