
This is a repository copy of First-person video domain adaptation with multi-scene cross-
site datasets and attention-based methods.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/199718/

Version: Accepted Version

Article:

Liu, X., Zhou, S., Lei, T. et al. (3 more authors) (2023) First-person video domain 
adaptation with multi-scene cross-site datasets and attention-based methods. IEEE 
Transactions on Circuits and Systems for Video Technology, 33 (12). pp. 7774-7788. ISSN 
1051-8215 

https://doi.org/10.1109/TCSVT.2023.3281671

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, MAY 29, 2023 1

First-Person Video Domain Adaptation with

Multi-Scene Cross-Site Datasets and

Attention-Based Methods
Xianyuan Liu, Shuo Zhou, Tao Lei, Ping Jiang, Zhixiang Chen and Haiping Lu, Senior Member, IEEE

Abstract—Unsupervised Domain Adaptation (UDA) can trans-
fer knowledge from labeled source data to unlabeled target data
of the same categories. However, UDA for first-person video
action recognition is an under-explored problem, with a lack
of benchmark datasets and limited consideration of first-person
video characteristics. Existing benchmark datasets provide videos
with a single activity scene, e.g. kitchen, and similar global
video statistics. However, multiple activity scenes and different
global video statistics are still essential for developing robust
UDA networks for real-world applications. To this end, we first
introduce two first-person video domain adaptation datasets:
ADL-7 and GTEA KITCHEN-6. To the best of our knowledge,
they are the first to provide multi-scene and cross-site settings for
UDA problem on first-person video action recognition, promoting
diversity. They provide five more domains based on the original
three from existing datasets, enriching data for this area. They are
also compatible with existing datasets, ensuring scalability. First-
person videos have unique challenges, i.e. actions tend to occur in
hand-object interaction areas. Therefore, networks paying more
attention to such areas can benefit common feature learning
in UDA. Attention mechanisms can endow networks with the
ability to allocate resources adaptively for the important parts of
the inputs and fade out the rest. Hence, we introduce channel-
temporal attention modules to capture the channel-wise and
temporal-wise relationships and model their inter-dependencies
important to this characteristic. Moreover, we propose a Channel-
Temporal Attention Network (CTAN) to integrate these modules
into existing architectures. CTAN outperforms baselines on the
new datasets and one existing dataset, EPIC-8.

Index Terms—Action recognition, unsupervised domain adap-
tation, first-person vision, channel-temporal attention.

I. INTRODUCTION

A
CTION recognition is one of the most challenging prob-

lems in computer vision with wide applications including

human-robot interaction [1] and video moment retrieval [2].

As first-person videos become more common with the wide

usage of portable cameras, first-person video action recogni-

tion attracted much attention recently because it can offer a
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Fig. 1. We enrich datasets and promote diversity via presenting two new
datasets with five more domains (left), and we improve UDA for first-person
video action recognition via proposing a new channel-temporal attention
network (right).

unique viewpoint for human daily activity analysis [3]. First-

person videos are recorded from the viewpoint of the camera

wearer, producing videos with non-linear and hard-to-predict

head and body motion and a lack of global context [4]. First-

person videos differ from third-person videos in several ways,

including occlusion-free interactions with objects, a focus

on hands and objects, and different motion patterns due to

body and head movements [4], [5]. Many networks [6]–[8]

have achieved excellent performance on third-person video

benchmark datasets [6], [9], [10], benefiting from their ability

to identify the human outline and analyze posture changes.

However, first-person videos contain hands rather than human

outlines. In addition, first-person video action recognition is

valuable for human-to-robot imitation learning [11], [12]. Due

to the complexity and expense of annotating new videos, the

availability of labelled datasets for first-person video action

recognition is still limited compared to third-person datasets.

Unsupervised Domain Adaptation (UDA) for first-person

video action recognition can address the sample size limitation

by leveraging labeled source videos to improve performance

on unlabeled target videos, e.g. via minimizing the distribu-

tion distance between source and target domains in spatial

and temporal feature spaces [13]–[15]. Therefore, this paper

Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.
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focuses on UDA for first-person video action recognition. To

the best of our knowledge, this topic has only been studied

on two subsets of the EPIC-KITCHEN (EPIC) dataset [3], i.e.

EPIC-97 [16] and EPIC-8 [17]. The shortage of benchmark

datasets significantly hinders the development in this area.

Meanwhile, the two existing datasets have the following

limitations: 1) Their actions are in a single activity scene,

e.g. cooking in a kitchen. Studying generalization performance

requires exploration on more activity scenes in daily life, i.e.

multi-scene problem. 2) They are for within-dataset domain

adaptation (DA) challenges, leading to similar global video

statistics. However, to study generalization performance, it is

important to investigate across datasets with different statistics,

i.e. cross-site problem. These limitations motivate us to enrich

the benchmark datasets, promote diversity, and accelerate the

development in this area.

Therefore, we first select and re-annotate samples from

existing datasets to create two first-person video datasets with

new challenges in UDA for first-person video action recog-

nition, as shown in Fig. 1: 1) ADL-7 including three long-

duration videos from the Activity Daily Living (ADL) dataset

[18], on daily life actions; 2) GTEA KITCHEN-6 including

two first-person video datasets, GTEA [19] and KITCHEN

[20], on cooking actions. They provide increased domain shift

for UDA research. As shown in Section III, they offer two

key benefits to the community. Firstly, they provide five more

domains to enrich the existing three domains to significantly

expand the available dataset choices: ADL-7 provides three

domains with multiple daily life scenes for researchers to study

against the multi-scene challenge, and GTEA KITCHEN-6

provides two domains with a larger global video statistics

difference to study the cross-site challenge. Secondly, they

contain overlapping categories with EPIC-8 to ensure compat-

ibility and scalability with all existing datasets. These benefits

would help researchers in evaluating networks across more

domains, exploring UDA for different scenarios, enhancing

network robustness for real-world applications, and expanding

these datasets in other additional ways.

There are two categories of UDA for action recognition. The

first category involves giving the image-based UDA [21], [22]

the ability to analyze spatio-temporal information [17], [23],

[24]. Some approaches uses a two-stream structure to extract

spatial and temporal information separately from videos and

transfer them separately between datasets. These methods

require a high space and time complexity for optical flow com-

putation. Others follow one-stream to extract spatio-temporal

information directly and transfer spatio-temporal knowledge

between domains. However, most existing approaches are not

end-to-end networks, requiring additional computing resources

for data argumentation. Moreover, these approaches cannot

learn task-specific features end-to-end, since they cannot di-

rectly generate spatio-temporal features from videos. The

second category involves creating positive-negative samples

to use contrastive learning techniques to transfer information

between domains [25]–[27]. However, these approaches re-

quire additional processes to get positive-negative samples,

e.g. different modalities or backgrounds from the same in-

put, requiring additional computational resources and time

complexity. Therefore, we consider the first category, follow

one-stream and construct an end-to-end network by jointly

extracting spatial and temporal information.

First-person videos have some unique characteristics, e.g.

actions tend to occur in some local areas, particularly the

interaction of the hands and objects. Hence, we hypothesize

that networks paying more attention to such areas can leverage

such characteristics to benefit common feature learning in

UDA, as shown in Fig. 1. In CNN, different channels in

different layers capture different characteristics. Therefore,

the better weighting of channels improves feature extrac-

tion, thereby enhancing the network’s performance. Attention

mechanisms can improve the weighting of channels to guide

the network to focus on the important components [28]. This

inspires us to design attention modules that can weigh the

channel-wise and temporal-wise features in the CNN layers

to reveal the channel-temporal relationships for first-person

videos. The term “channel-wise” denotes that algorithms are

designed specifically for channels in CNN, e.g. channel-wise

attention is an attention mechanism that learns and assigns the

weights of attention over each channel. The term “temporal-

wise” refers to the network’s design specifically for the tempo-

ral dimension, e.g. temporal-wise attention learns and assigns

weights over each frame. To this end, we propose a Channel-

Temporal Attention (CTA) module to excite action-related

spatio-temporal features in first-person videos. Moreover, the

network should not only focus on these important features but

also focus on the common features across domains. Therefore,

we utilize an adversarial approach at the video level for

alignment to minimize the discrepancy between important

channels in the source and target domains. Datasets have been

released at https://github.com/XianyuanLiu/EgoAction.

In summary, our contributions are as follows:

• We create two first-person video datasets from existing

datasets to provide more benchmarking challenges for

UDA: ADL-7 for multi-scene and GTEA KITCHEN-

6 for cross-site. To our knowledge, they are the only

datasets besides EPIC [16], [17] for studying the first-

person video UDA problems.

• We explore different image-based attention mechanisms

and develop a new channel-temporal attention mod-

ule to model channel-wise and temporal-wise inter-

dependencies for UDA for first-person video action

recognition.

• We propose a new adversarial Channel-Temporal Atten-

tion Network (CTAN) and evaluate it on our proposed

and existing datasets. Our network outperforms all the

UDA baselines and attention networks on average.

Our proposed attention module differs from the reported works

in [28]–[37], where an individual temporal-wise attention is

not taken into consideration. Our UDA network also dif-

fers from the works reported in [14], [15], [38]–[44] in

three ways: 1) Our work focuses on video-based problems

rather than image-based problems. 2) Our work aligns spatio-

temporal features rather than just spatial features. 3) Our work

uses attention-based methods to enhance feature embedding

whereas the other works do not.
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The remainder of this paper is organized as follows. Section

II briefly introduces some related works. Next, Section III

describes our datasets. Then, Section IV explains the details of

the proposed network. Finally, the experiments and the imple-

mentation details are reported in Section V, with concluding

remarks summarized in Section VI.

II. RELATED WORKS

This section briefly reviews the relevant fields, includ-

ing datasets, attention mechanisms, and unsupervised domain

adaptation approaches for images and videos.

A. Related Datasets

There are very limited benchmark datasets for UDA prob-

lem on first-person video action recognition, hindering the

development in this area. To the best of our knowledge, two

subsets of EPIC are the only benchmark datasets for this

area, which are EPIC-8 [17] and EPIC-97 [16]. Both provide

videos with daily activities captured in the kitchen [3]. EPIC-

8 refers to P08, P01, P22 from EPIC as D1, D2, D3 to

build three domains, providing within-dataset setting. These

domains contain 8 overlapping verb categories, i.e. put, take,

open, close, mix, pour, wash and cut. This dataset contains

1978, 3245 and 4871 action segments, respectively. However,

all domains have the same resolutions as 640 × 480 and

similar global video statistics as shown in Table I and Table

II. EPIC-97 includes 97 verb categories and two domains,

giving a validation set with ground-truth labels for algorithm

evaluation. However, there are no ground-truth labels in the

testing set of the source domain, and in the training and testing

sets of the target domain. There are some problems with this

validation set, such as having 84 verb categories instead of

97; roughly a quarter (22 out of 84) not overlapping between

source and target; and 16 categories only containing a single

video. Given these problems, we excluded it from our paper.

B. Attention Mechanisms

Attention mechanisms equip networks with the ability to

focus on the informative input features, which is conducive

to the full exploitation of network representational ability and

the improvement of model performance [28], [32], [45], [46].

Hence, attention mechanisms have been widely used in various

tasks, including image captioning [29], [47], image dehazing

[28], [48], and person re-identification [30], [31]. The com-

monly used attention mechanisms include: Squeeze-Excitation

Network (SENet) [32], Convolutional Block Attention Module

(CBAM) [33], Style-based Recalibration Module (SRM) [34].

SENet enhances informative channels and fades the useless

channels via using average pooling for squeezing and the

sigmoid function for excitation. CBAM improves and extends

SENet to channel and spatial attentions via additionally using

max-pooled features and combining with a spatial attention

module. SRM enhances the capacity of networks to capture

global information via employing both the mean and standard

deviation of the input features to excites the style information

from each channel of the feature maps.

Moreover, several recent methods incorporate aforemen-

tioned attention mechanisms with temporal modeling for ac-

tion recognition, e.g. Channel-wise Temporal Attention Net-

work (CWTAN) [35], Temporal Excitation and Aggregation

Network (TEA) [36] and Symbiotic Attention with Object-

centric feature Alignment (SAOA) [37]. CWTAN utilizes

2D CNN and a global temporal aggregating mechanism for

temporal modeling and generates attention weights for each

channel in each frame. TEA utilizes 2D CNN and a local mul-

tiple temporal aggregating mechanism and generates weights

for each channel. SAOA construct VerbNet and NounNet as

a two-stream network to produce local/global alignment to

generate attention weights for action recognition. Different

from the previous attention mechanisms, this paper further

exploits channel- and temporal-wise attention by individually

generating attention weights for each channel and frame.

C. Related Unsupervised Domain Adaptation Approaches

Imaged-based UDA can be categorized into three ap-

proaches. The first approach is discrepancy-based, which

aligns source-target distributions by minimizing a divergence

that measures the distance between them, e.g. via Maxi-

mum Mean Discrepancy (MMD) [22], [41], [49] or Cor-

relation Alignment (CORAL) [42]. The second approach is

adversarial-based, constructing domain discriminators for ad-

versarial training to reduce the discrepancy. Domain Adver-

sarial Neural Network (DANN) [21] utilizes discriminators

and Gradient Reversal Layer (GRL). Conditional Domain

Adversarial Network (CDAN) [50] leverages multilinear and

entropy conditioning on discriminative information. The third

approach is reconstruction-based, generating reconstruction

loss to conduct domain alignment, e.g. pair-wise squared

reconstruction loss [43] and scale-invariant mean squared error

reconstruction loss [44]. We consider the first two approaches,

specifically, their extensions to video UDA, due to the high

price and huge difficulty of reconstructing videos.

Video-based UDA approaches can be categorized into two

parts. The first category integrates spatio-temporal video fea-

ture extractors into image-based UDA approaches [17], [24],

[51], [52], including Shuffle Attend Video Domain Adapta-

tion (SAVA) [23], Multi-Modal Self-Supervised Adversarial

Domain Adaptation (MM-SADA) [17], Temporal Attentive

Adversarial Adaptation Network (TA3N) [24]. SAVA utilizes

self-supervised clip order prediction and clip attention based

feature alignment for video domain adaptation. MM-SADA

utilizes two-stream networks and self-supervised multi-modal

UDA to learn the relationship between RGB and optical

flow. TA3N utilizes temporal relation module from [53] to

extract spatio-temporal features and extends image-based do-

main adaptation to videos by adding temporal attentive align-

ment. The second category utilizes contrastive learning tech-

nique, e.g. Spatio-Temporal Contrastive Domain Adaptation

(STCDA) [25], Cross-Modal Contrastive Domain Adaptation

(CMCDA) [26] and Contrast and Mix (CoMix) [27]. STCDA

and CMCDA utilize cross-modal contrastive learning networks

with sampling strategies for self-supervised learning to align

the feature distributions between video domains. CoMix uses
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TABLE I
STATISTICS OF THE FIRST-PERSON CROSS-DOMAIN VIDEO DATASETS. GTEA KITCHEN-6 PROVIDES TWO DATASETS WITH DIFFERENT GLOBAL VIDEO

STATISTICS FOR THE CROSS-SITE PROBLEM. ADL-7 PROVIDES VARIOUS ACTIVITY SCENES FOR THE MULTI-SCENE SETTING. G: GTEA. K: KITCHEN.

Dataset EPIC-8 GTEA KITCHEN-6 ADL-7

Resolution 640x480 G: 456x256 / K: 342x256 342x256

Frame rate 60 G: 15 / K: 30 30

Activity scene Kitchen Kitchen Kitchen, office, bathroom, etc.

Number of categories 8 6 7

Domains D1 D2 D3 G K D1 D2 D3
Number of training segments 1543 2495 3897 1166 2582 570 633 421
Number of testing segments 435 750 974 291 646 142 159 106

temporal contrastive learning over graph representations and

background mixing for domain-invariance.

In contrast to the aforementioned approaches, we build our

network by following a uni-modal setting and an end-to-end

fashion. For a fair comparison, we degenerated and evaluated

existing networks on the setting in this paper.

III. PROPOSED FIRST-PERSON VIDEO UDA DATASETS

This section mainly introduces the limitations of existing

benchmark dataset, the details and benefits of our datasets:

ADL-7 and GTEA KITCHEN-6. Key statistics for these

datasets are presented in Table I.

As shown in Section II-A, EPIC-8 is the only and the best

benchmark dataset for UDA problem on first-person video

action recognition. Despite EPIC-8 being well-established and

well-organized from EPIC, it still has some limitations. On

the one hand, EPIC-8 provides cooking actions in a kitchen.

However, there are other actions in daily human activities not

occurring in the kitchen, e.g. put toothpaste on a toothbrush

and put bread on a plate both belong to the same action

put. Still, the previous one would not occur in a kitchen.

Networks trained on videos from a single activity scene may

not apply to the real world, where the scenes are more

complicated. On the other hand, EPIC-8 is for within-dataset

DA challenges because all domains are collected from EPIC.

Within-dataset would lead to similar global video statistics

among all domains, e.g. resolution, illumination, contrast, etc.

As shown in Table II, the difference of RGB mean and

standard deviation across domains in EPIC-8 is small. Similar

global video statistics would lead to a smaller domain shift.

To solve these problems, we introduce our datasets based on

three of the most commonly used first-person video benchmark

datasets to provide more choices to evaluate UDA for first-

person video action recognition. There are two main chal-

lenges: 1) Most existing datasets are annotated with actions

(verb+noun). However, these annotations have very limited

overlaps and are not directly usable for domain adaptation. 2)

The new datasets should keep the compatibility of annotations

with EPIC to better utilize all existing datasets. To overcome

these challenges, we 1) separated verbs from original action

annotations because verbs have more overlapping categories;

2) matched our categories to those in EPIC-8 and extracted

overlapping categories from separated verbs; 3) manually

unified and organized the names of categories with similar

TABLE II
COMPARISON OF RGB MEAN AND STANDARD DEVIATION (STD) AMONG

DATASETS FOR UDA PROBLEM ON FIRST-PERSON VIDEO ACTION

RECOGNITION. G K-6 REFERS TO GTEA KITCHEN-6. GAP REFERS TO

THE ABSOLUTE DIFFERENCE BETWEEN DOMAINS. WE PRESENT THE

AVERAGE GAP IN EPIC-8 AND ADL-7.

Dataset Domain RGB Mean RGB std

D1 [0.385, 0.330, 0.323] [0.269, 0.249, 0.237]
D2 [0.447, 0.324, 0.275] [0.200, 0.190, 0.176]
D3 [0.392, 0.296, 0.247] [0.213, 0.217, 0.207]

EPIC-8

Gap [0.041, 0.023, 0.051] [0.046, 0.039, 0.041]

D1 [0.393, 0.365, 0.284] [0.172, 0.175, 0.168]
D2 [0.440, 0.362, 0.231] [0.177, 0.186, 0.164]
D3 [0.411, 0.321, 0.215] [0.194, 0.211, 0.175]

ADL-7

Gap [0.031, 0.029, 0.046] [0.015, 0.024, 0.007]

G [0.555, 0.430, 0.183] [0.132, 0.139, 0.123]
K [0.252, 0.243, 0.268] [0.188, 0.186, 0.191]G K-6

Gap [0.303, 0.187, 0.085] [0.056, 0.047, 0.068]

category names, e.g. mix/stir; 4) checked all the action videos

and manually annotated those lacking annotations but having

actions from the eight verb categories. Detailed descriptions

of each dataset are provided below.

A. ADL-7

Activity Daily Living (ADL) dataset is an activity dataset

of human’s real daily living in first-person camera views

[18], containing 10-hour action videos by 20 persons in 20

different apartments. Each video records similar actions by

different persons in various scenes, which provides daily

human activities besides cooking for UDA research. To make

the category consistent, we make our ADL-7 including the

overlapping categories in EPIC-8. We chose video P4, P6

and P11 from ADL as three domains in ADL-7 because they

include the most overlapping categories, namely put, take,

open, close, mix, pour and wash, seven categories in total.

We refer to P4, P6 and P11 as D1, D2 and D3 respectively.

These videos comprise one hour and 22 minutes in length. The

minimum length of each action in these videos is one second,

while the maximum is 46 seconds.

We enlisted the assistance of three volunteers to select and

annotate videos based on the following criteria: 1) All vol-

unteers can discern action; 2) Volunteers can see hand-object

interactions in action video; 3) Volunteers can identify back-

ground changes in the same action category across domains;
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TextText

D1

D2

D3

Fig. 2. Example frames of three domains in ADL-7 dataset. From left to right: put, take, open, close, mix, pour, wash. These example frames show activity
scenes are not only in a kitchen but also in a bathroom, office, and living room.

TABLE III
THE NUMBER OF ACTION SEGMENTS IN ADL-7 DATASET. D1, D2 AND D3

REFER TO P4, P6 AND P11 RESPECTIVELY IN ADL DATASET.

Domain Split
Verb category

put take open close mix pour wash

Training 37 58 36 33 86 110 210
Testing 9 15 9 8 22 27 52D1
Sum 46 73 45 41 108 137 262

Training 71 158 47 39 19 202 97
Testing 18 40 12 10 5 50 24D2
Sum 89 198 59 49 24 252 121

Training 34 131 40 46 87 52 31
Testing 8 33 10 12 22 13 8D3
Sum 42 164 50 58 109 65 39

4) The videos of each domain include all action categories.

We have collected action videos with categories that overlap

with EPIC-8 from original videos P4, P6 and P11, resulting

in 250 action videos. We then removed inappropriate action

videos according to the aforementioned criteria, resulting in

222 action videos. Next, we annotated these action videos

based on the original verb annotation in [54] by correcting

incorrect annotations and adding annotations where they are

absent. We finally segmented the selected action videos into

action segments according to the reorganized annotations for

data augmentation. We also split action segments into training

and testing sets equidistantly in each category with a ratio of

8:2. In the training process, we randomly split the training set

into training and validation with a ratio of 9:1.

These processes lead to a new benchmark dataset: ADL-7.

This dataset is the first in this area to extend the activity scene

from the kitchen to more others, e.g. living room, bathroom,

office, as shown in Fig. 2. This would benefit researchers to

develop networks that are more applicable in the real world.

Table III presents details about each category in ADL-7. Three

domains include 2031 extracted action segments in total. The

numbers of training segments in the three domains are 570,

633 and 421, while those of testing are 142, 159 and 106.

B. GTEA KITCHEN-6

GTEA [19], [55] and KITCHEN [20] datasets are first-

person video datasets recording actions in the kitchen. Their

actions, like their names, are related to cooking. GTEA videos

are filmed in the real kitchen, while KITCHEN videos are

filmed in a temporary-built kitchen in the lab. Therefore,

they have disparate video statistic. As shown in Table II,

the RGB mean difference between GTEA and KITCHEN

is [0.303, 0.187, 0.085], which is significantly bigger than

that in EPIC-8 [0.041, 0.023, 0.051]. We use the GTEA and

KITCHEN datasets as two domains to provide a cross-site

setting, which is absent from EPIC datasets. Additionally, we

consider category consistency.

We first collected all 115 action videos from the original

GTEA dataset [19] as domain G, as each action video satisfied

the requirements in the aforementioned criteria. The total

length of the videos is around 35 minutes. The minimum

length is one second, and the maximum is about 10 seconds.

Note that all videos in GTEA are uninterrupted, continuous

action. Therefore, GTEA has a shorter video length but more

action videos. We then annotated action videos based on their

original annotation for overlapping with ADL-7 and EPIC-8,

resulting in the reduction of 55 categories to six: put, take,

open, close, mix, pour. Each verb category corresponds to

multiple action categories from the original dataset. We finally

followed the same setting as ADL-7 to segment actions and

create training/validation/testing sets.

For KITCHEN, due to the fact that few of provided action

videos met the aforementioned criteria, we manually generated

339 action videos from the original KITCHEN dataset [20]

as domain K after viewing each original video. The total

length is about one hour and 36 minutes. The minimum and

maximum length are one second and 80 seconds, respectively.

We then annotated all action videos with six overlapping verb

categories for our dataset. Note that the number of mix

action segments is 3272, which is larger than the sum of

other categories. In our experiment, we randomly selected a

quarter of them to make mix have similar sample sizes with

the second most category pour because we excluded extremely

imbalanced UDA in this paper.

We finally presented the first benchmark dataset with the

cross-site setting: GTEA KITCHEN-6 dataset. As shown in

Table IV, this dataset includes 1166 training segments and 291

testing segments from GTEA, 2582 training segments and 646

testing segments from KITCHEN. Fig. 3 shows resolutions of

the two domains are different, where GTEA data is 456 ×
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TABLE IV
THE NUMBER OF ACTION SEGMENTS IN GTEA KITCHEN-6 DATASET. G

REFERS TO GTEA DATASET AND K REFERS TO KITCHEN DATASET.

Domain Split
Verb category

put take open close mix pour

Training 139 310 214 117 84 302
Testing 35 77 53 29 21 76G
Sum 174 387 267 146 105 378

Training 243 354 346 144 654 841
Testing 61 88 87 36 164 210K
Sum 304 442 433 180 818 1051

(a) GTEA

(b) KITCHEN

Fig. 3. Example frames of all categories in GTEA KITCHEN-6 dataset. First
row from left to right: put, take, open. Second row from left to right: close,
mix, pour.

256 and KITCHEN is 342 × 256. In addition, differences in

global video statistics between domains are more significant

, representing more considerable illumination and contrast

difference. These would be new challenges for UDA for first-

person video action recognition.

C. Benefits of Our Datasets

As shown in Table V and discussed above, our datasets,

ADL-7 and GTEA KITCHEN-6, have the following advan-

tages over existing datasets: 1) They combine and re-annotate

the original datasets (ADL, GTEA, and KITCHEN) to accom-

modate the multi-domain setting. 2) They provide five domains

in addition to the original three from EPIC-8. This significantly

expands the options available to researchers in this area for de-

veloping UDA for first-person videos. 3) They apply additional

real-world activity scenes, enabling researchers to develop

approaches for the complex multi-scene problem. 4) They

are constructed from different benchmark datasets to support

cross-site domain adaptation study, e.g. multi-source domain

adaptation. In addition, they are compatible with the existing

benchmark dataset, making it easy to establish new cross-

TABLE V
COMPARISON OF DATASET SETTINGS WITH OTHER RELATED

FIRST-PERSON DATASETS. G K-6 REFERS TO GTEA KITCHEN-6.

First-
person

Multi-
domain

Multi-
scene

Cross-
site

ADL [18] ✓ × × ×

GTEA [19] ✓ × × ×

KITCHEN [20] ✓ × × ×

EPIC-97 [16] ✓ ✓ × ×

EPIC-8 [17] ✓ ✓ × ×

ADL-7 (ours) ✓ ✓ ✓ ×

G K-6 (ours) ✓ ✓ × ✓

domain correspondences. This enables researchers to develop

UDA across all these domains. As shown in Fig. 5, their

categories are imbalanced, leading to another study-worthy

challenge: class-imbalanced DA. In conclusion, our datasets

would enrich benchmark datasets, promote diversity, ensure

compatibility and scalability, and accelerate the development

of this area. In this paper, we will additionally study source-

only and target-only recognition accuracy. The target-only

setting means training and testing are both on the target

dataset. In contrast, the source-only setting means the network

trained on the source dataset is directly tested on the target

dataset without UDA. These two results serve as the upper

and lower bounds of UDA on these datasets.

IV. PROPOSED ATTENTION-BASED METHOD

This section outlines our proposed attention modules and

integrated network for UDA for first-person video action

recognition. Fig. 4 shows our proposed UDA network named

as Channel-Temporal Attention Network (CTAN). In training,

source and target videos are fed into a feature extractor that

modifies the I3D [6] pretrained on ImageNet [56] by adding

multiple channel and temporal attention (CTA) modules. Each

proposed CTA module consists of a channel attention module

and a temporal attention module, and is inserted into I3D to

re-calibrate channel- and temporal-wise features. After feature

extraction, source features are fed into an action classifier, and

both source and target features are fed into a domain classifier

for adversarial domain discrimination. In testing, only target

videos are used as the input to the feature extractor to extract

features for the action classifier to predict the action category.

A. Channel-Temporal Attention Module

In first-person video action recognition, different channels

of CNN layers capture different spatio-temporal information

from actions. Such information can benefit domain adaptation

for action recognition. Firstly, inspired by the SENet [32]

that excites informative features in input image channels, we

extend the SENet to channel-wise attention (CA) module for

video input, as shown in Fig. 6a. Secondly, human can usually

recognize an action at a glance as long as they see small but

informative temporal parts of this action. This phenomenon

inspires us to extend the previous CA module to the temporal-

wise attention (TA) module. This module can capture the

temporal attention weights from the features. Applying the
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Source
Video

Target 
Video

Inception 
Module CTA block

CTA block

Feature Extractor Gf

Action 
Classifier Gy

Domain
Classifier Gd

Target 
Feature

... ... ...

Ltask

Lv
Source 
Feature

Inception 
Module

source
target
target (inference only)

Fig. 4. Architecture of the proposed Channel-Temporal Attention Network (CTAN) for first-person video action recognition. A feature extractor, which is
composed of Inception modules [6] and proposed Channel-Temporal Attention (CTA) modules, is shared by both source and target domains. The feature
extractor takes labeled source videos and unlabeled target videos as the input and generates corresponding features as the output in training. Source features
are fed into both action and domain classifiers, while target features are only fed to domain classifier. In testing, target videos are the only input to the feature
extractor and then the action classifier.

(a) ADL-7 (b) GTEA KITCHEN-6

Fig. 5. The distribution of categories in our datasets.

weights to features can excite parts with important temporal

information. These excited features are analogous to the in-

formative temporal parts of actions. Finally, we integrate the

CA and TA modules, as shown in Fig. 6b, into the channel-

temporal attention (CTA) module described in detail below.

Given a 5D video feature X ∈ R
N×T×C×H×W . N , T and

C denote batch size, temporal dimension and feature channel

size. H and W correspond to height and width. First, we

utilize 3D average pooling to extract channel-wise information

among dimensions T , H and W , i.e.,

X
c =

1

T ×H ×W

T∑

t=1

H∑

h=1

W∑

w=1

X:,t,:,h,w, (1)

where X
c
∈ R

N×1×C×1×1 is the squeezed feature.

Then, we capture the channel-reduced feature X
cr

∈

R
N×1×C/r×1×1 for efficiency by a linear layer with parame-

ters W c and a reduction ratio r, as follows:

X
cr = ReLU(Wc

X
c). (2)

Another linear layer is used with parameters Wcr to restore

the feature channel dimension and a sigmoid function σ is used

to capture channel-attentive weights A
c

∈ R
N×1×C×1×1.

In order to excite the informative channels, we compute a

Hadamard product ⊙ between these weights Ac and the video

feature X as

X
co = X+A

c
⊙X = X+ σ(Wcr

X
cr)⊙X, (3)

where X
co

∈ R
N×T×C×H×W denotes the output of the chan-

nel attention module with the excited and enhanced channel-

wise informative features. Considering that wrong channel

Inception
Module

Spatio-temporal
Pooling

FC

ReLU

FC

Sigmoid

Channel-wise
Attention

(a)

Inception
Module

Spatio-temporal
Pooling

FC

ReLU

FC

Sigmoid

Temporal-wise
Attention

Temporal-wise
Attention

(b)

Fig. 6. Architecture of the channel-temporal attention module. (a) Channel-
wise attention module. (b) Temporal-wise attention module.

attention may hurt the performance to some degree and some

channel attention may suppress other information, we add a

residual connection to mitigate these negative effects.

We then conduct a 3D average pooling on the video feature

X
co among C, H and W to extract the squeezed temporal

feature X
t
∈ R

N×T×1×1×1, which is expressed by

X
t =

1

C ×H ×W

C∑

c=1

H∑

h=1

W∑

w=1

X
co
:,:,c,h,w. (4)

We adopt one linear layer with the parameter W t to obtain

temporal-reduced feature X
tr

∈ R
N×T/r×1×1×1, i.e.,

X
tr = ReLU(Wt

X
t), (5)

and another with parameter W
tr to restore the features.

The sigmoid function σ is again adopted to obtain the

temporal-attentive weights A
t
∈ R

N×T×1×1×1. A residual

connection is also applied to prevent temporal attention from

suppressing other information and obtain the excited output

X
cto

∈ R
N×T×C×H×W . The final excitation function can be

formulated as

X
cto = X

co +A
t
⊙X

co = X
co + σ(Wtr

X
tr)⊙X

co. (6)
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Comparison with SENet. While CTAN and SENet have a

similar structure of channel-wise attention, CTAN differs from

SENet in the following two aspects: 1) A new dimension of

channel-wise attention. The channel-wise attention of CTAN

has an additional temporal dimension, T , in comparison to

the structure of that of SENet. This additional dimension

gives channel-wise attention of CTAN the ability of temporal

modelling and video application; 2) A new type of attention.

CTAN provides both temporal and channel-wise attention,

whereas SENet only provides channel-wise attention. The

additional temporal-wise attention can assign attention weights

for each feature frame to improve the weighting of temporal

dimension, hence further enhancing temporal modelling.

B. Adversarial UDA

For UDA problem, the network needs to learn common

features across domains while focusing on the important

features. For convenience, discrepancy-based and adversarial-

based approaches such as Deep Adaptation Network (DAN)

[22] and DANN [21] are easy to be adapted to our task

compared with reconstruction-based UDA. In comparison,

linear DAN needs a large batch size to avoid negative MMD

loss, resulting in high computational demand than DANN.

In this paper, considering the limited computation resources,

we use the DANN [21] in which a two-player mini-max game

is constructed, but still compare its recognition performance

with DAN [22] in Section V. The main idea of DANN is

to add one domain classifier Gd to discriminate whether the

data is from the source or target domain. Gd are trained by

minimizing the discriminator loss Ld, while feature extractor

Gf are trained by maximizing Ld. The aim is to outwit the

discriminator to guide the feature extractor to learn common

features between the source and target domain. Here, we

utilize a discriminator as in DANN to align features extracted

by the feature extractor across domains. The domain loss Lv

is defined for each video input xi as:

Lv = −
1

n

∑

xi∈Ds∪Dt

Ld(Gd(Gf (xi)), di), (7)

where Ds and Dt are source domain and target domain,

respectively, n is the number of sample from both domains.

di is the domain label of xi. If xi is from the source (target)

domain, di is set as 1 (0).

C. Integration with I3D Network

Finally, we integrate the proposed modules and adversarial

UDA into I3D, as illustrated in Fig. 4. Following the finding in

[32] that lower layer features are typically more general, while

higher layer features have greater specificity, we integrate

our proposed modules into 3rd to 7th Inception modules

in the I3D architecture. The domain classifier Gd and an

action classifier Gy are integrated after the average pooling

layer of I3D. As shown in Fig. 7, the action classifier yields

the task classification loss Ltask while the domain classifier

yields the domain discriminator loss Lv . The domain classifier

is composed of a binary classifier and a GRL. The binary

classifier is used to discriminate between source and target

I3D-extracted 
Features

FC

Batch Norm

FC

Softmax

ReLU

Ltask

(a)

I3D-extracted 
Features

FC

Batch Norm

FC

Softmax

ReLU

Lv

GRL

(b)

Fig. 7. Architecture of (a) the action classifier and (b) the domain classifier.

input features. GRL is used to invert the gradient during back-

propagation, i.e. it multiplies the gradient by -1. The overall

loss L can be expressed as follows:

L =Ltask + λvLv

=
1

ns

∑

xi∈Ds

Ly(Gy(Gf (xi)), yi)

−
λv

n

∑

xi∈Ds∪Dt

Ld(Gd(Gf (xi)), di),

(8)

where λv is a hyper-parameter to trade-off domain adaptation

with classification respectively. yi refers to the action labels of

input xi. The whole network is trained by two cross entropy

loss, Ly and Ld.

V. EXPERIMENTS

We evaluate our proposed method on the three datasets:

ADL-7, GTEA KITCHEN-6 and EPIC-8 against other image-

based UDA [21], [22], [50], video-based UDA [17], [24], and

attention mechanisms [32]–[34].

A. Experimental Setup

Datasets. For EPIC-8, we conduct our experiment using the

same settings as MM-SADA [17]. For our datasets, we first

download all videos from official websites of these datasets.

Then, we extract frames from videos at their respective sam-

pling rates, which are 15 fps for GTEA and 30 fps for both

ADL and KITCHEN. We finally restructure the annotations in

accordance with the introduction in Section III-A and Section

III-B. We follow a similar experimental protocol as EPIC-8.

For data augmentation, we sample every 16-frame segment

from each action video and make adjacent samples with a

4-frame overlap. All the segments are randomly divided into

training and testing sets at a ratio of 8:2, as shown in Table I.

Selected hyper parameters. We utilize I3D as our feature

extraction backbone and train our network end-to-end. Both

the domain classifier and the action classifier are composed

of two fully connected layers with a dimension of 100, a

batch normalization layer, a ReLU activation function and a

soft-max activation for generating predictions, as shown in
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Fig. 7. We select the outputs of the final average pooling

layer in I3D as the inputs for the domain classifier and the

action classifier. These outputs are with a dimension of 1024.

In the training stage, we use both labeled source data and

unlabeled target data, however in the testing stage, we only

use unlabeled target data. Inputs for both source and target

are 16-frame segments sampled from the action video, with

each frame scaled to 256 × 256 and then randomly cropped

to 224 × 224. The optimization is performed using SGD with

a momentum of 0.9 and batch size of 16. A weight decay with

5e-4 is applied to all parameters. The training stage consists of

two stages. Firstly, we initialize λv to 0 and train the feature

extractor and classifier for 10 epochs at a learning rate of 1e-2.

Secondly, we follow the same strategy in [21] to increase λv

from 0 to 1 and reduce the learning rate to train the overall

network for additional 20 epochs. Code has been released at

https://github.com/XianyuanLiu/CTAN using PyKale library

[57] based on PyTorch. The experiments were conducted on

an Intel Core i7-5930 3.50 GHz × 12 with 32 GB of RAM

and 1 NVIDIA Titan Xp GPU with 12 GB of memory. The

system uses Linux Ubuntu 18.04 with NVIDIA CUDA 10.0.

B. Comparison with Other UDA Networks

Image-based Baselines. We first extend three state-of-the-

art image-based UDA networks, i.e. DAN [22], DANN [21]

and CDAN [50], from image applications to video applications

as our baselines. We modify three components in these net-

works (feature extractor, task classifier, and domain network)

as outlined below. 1) replace the image feature extractor (e.g.

ResNet) with a video feature extractor (I3D pretrained on

ImageNet); 2) build the task classifier and domain network

separately, using two fully connected layers with a dimension

of 100 and a ReLU activation function; 3) add an average-

pooling layer to the tail of the feature extractor to make the

dimensions of the three components compatible. We follow

the same experimental settings of these UDA networks for a

fair comparison.

Video-based Baselines. We choose MM-SADA [17] and

TA3N [24] as the baselines. The default MM-SADA has a

two-stream architecture accepting multi-modal input. To make

the comparison fair, we develop a uni-modal MM-SADA by

freezing the self-supervision alignment classifier within MM-

SADA. We implement TA3N in two different configurations:

default and improved. For default implementation of TA3N,

we utilize ResNet-101 as the backbone to convert the RGB

frames to feature frames with a dimension of 2048. These

feature frames can serve as input for TA3N. Considering

that CTAN utilizes I3D as the backbone, we also develop an

improved implementation of TA3N with I3D as the backbone

for a more fair comparison. We are unable to implement

the uni-modal version of STCDA [25] owing to the lack

of publicly available code. Considering that different plat-

forms and configuration environments would affect the repro-

duction results, we evaluate CTAN and uni-modal STCDA

using their accuracy differences with uni-modal MM-SADA

in [25]. CMCDA [26] and CoMix [27] are excluded from

the comparison with CTAN. CMCDA, unlike MM-SADA, is

designed specifically for multi-modal input and developing

a uni-modal version would remove much of its originality.

CoMix is designed for video inputs that require intensive data

argumentation, e.g. background extraction and mixing. It is

inappropriate to compare CoMix to CTAN, which is developed

just for raw video input. We repeat each experiment three times

with different random seeds and report the average accuracy

on testing target set. The best result for each task is highlighted

in bold, and the second best is underlined.

EPIC-8. We first evaluate our network using six tasks

from EPIC-8. The results are shown in Table VI. CTAN

achieves the highest recognition accuracy across all tasks,

whereas TA3N with I3D backbone achieves the most second-

best results. For image-based networks, DANN outperforms

CDAN and DAN on average and improves the source-only

baseline by 0.3%. CTAN outperforms DANN by 1.2% on

average, proving the efficacy of proposed channel-temporal

attention modules. Video-based networks with I3D backbone

outperform DANN by 0.6% (MM-SADA) and 0.9% (TA3N),

respectively, whereas CTAN still performs better than video-

based baselines by 0.9% and 0.6% respectively. In addition,

MM-SADA improves source-only in five out of six tasks,

while our CTAN and TA3N with I3D backbone improves all

tasks. CTAN outperforms TA3N with I3D in all tasks, with the

exception of D2→D3, where they performed comparably. In

addition, according to Table 3 of Ref [25], uni-modal STCDA

with RGB input outperforms uni-modal MM-SADA in four

out of six tasks on the EPIC-8 dataset and improves the best

accuracy by 0.7% on average. Nevertheless, as shown in Table

VI, our CTAN outperforms uni-modal MM-SADA in all tasks

and improves the best accuracy by 0.9% on average, indicating

the effectiveness of our CTAN.

ADL-7. We then evaluate CTAN on ADL-7. As shown in

Table VI, in general, all networks improve the source-only

baseline on average and our network improves significantly

in five out of six tasks by 2.6% on average. For image-

based networks, CDAN outperforms DANN and DAN in

four out of six tasks, achieving the second-best performance

on average among all networks. CTAN outperforms CDAN

in four out of six tasks by 0.8% on average and achieves

the second-best results in the remaining two off-target tasks.

Both video-based networks improve the source-only baseline

in four out of six tasks and TA3N with I3D backbone

exceeds MM-SADA by 0.9% on average. CTAN continues to

outperform TA3N with I3D backbone by 1.1% on average. For

D1→D2 and D1→D3 tasks, only CTAN and TA3N achieve

better recognition accuracy than the source-only baseline. For

D2→D1 and D2→D3 tasks, CTAN performs much better

than DANN (by 3.9% and 5.1% respectively), MM-SADA

(by 3.5% and 4.0% respectively) and source-only (by 6.0%

and 4.1% respectively), despite not outperforming CDAN

(D2→D1) and DAN (D2→D3).

GTEA KITCHEN-6. We finally evaluate our proposed

network using GTEA KITCHEN-6 dataset, as shown in Table

VI. Our CTAN achieves the highest average performance,

3.0% better than the source-only baseline. On the G→K task,

image-based networks, excluding CDAN, improve the source-

only baseline by 1.4% (DANN) and 1.0% (DAN) respectively.
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TABLE VI
BEST ACCURACY (%) ON THE TARGET DOMAIN BY CTAN, COMPARED TO OTHER UDA APPROACHES ON EPIC-8 [17] AND OUR INTRODUCED ADL-7

AND GTEA KITCHEN-6 (G K-6) DATASETS. SO: SOURCE-ONLY, TO: TARGET-ONLY, WHICH ARE THE WORST AND BEST ACCURACY CAN BE

EXPECTED FOR UDA ON THESE DATASETS. GAIN: IMPROVEMENT COMPARE TO SO. THE BEST UDA RESULT FOR EACH TASK IS IN BOLD, AND THE

SECOND BEST IS UNDERLINED. NOTE THAT MM-SADA HERE IS THE UNI-MODAL VERSION FOR A FAIR COMPARISON WITH OTHER NETWORKS.

Method TO SO DANN [21] CDAN [50] DAN [22] MM-SADA [17] TA3N [24] CTAN (Ours)
Backbone I3D I3D I3D I3D I3D I3D ResNet-101 I3D I3D

D1→D2 64.7 39.4 39.4 40.7 36.3 40.1 33.1 39.6 41.3

D1→D3 52.8 32.0 32.9 30.3 34.1 33.2 30.6 34.0 35.0

D2→D1 60.2 35.5 36.2 36.4 36.1 36.1 32.0 36.4 36.6

EPIC-8 D2→D3 52.8 39.2 40.2 40.5 39.4 40.2 28.7 40.6 40.6

[17] D3→D1 60.2 38.1 37.6 38.2 37.9 38.1 28.5 38.6 39.3

D3→D2 64.7 40.5 40.3 40.0 40.7 40.7 27.7 40.9 41.3

Mean 59.2 37.5 37.8 37.7 37.4 38.1 30.1 38.4 39.0

Gain 21.7 - 0.3 0.2 -0.1 0.6 -7.4 0.9 1.5

D1→D2 95.8 41.1 40.6 41.1 35.9 40.8 47.4 44.6 43.2
D1→D3 93.5 28.6 28.1 27.3 26.6 28.1 23.5 29.0 31.5

D2→D1 95.1 25.0 27.1 34.0 25.7 27.5 25.0 28.7 31.0
ADL-7 D2→D3 93.5 24.8 23.8 26.2 31.1 24.9 28.4 28.9 28.9

D3→D1 95.1 27.4 29.5 23.6 31.2 28.6 17.8 24.5 26.7
D3→D2 95.8 37.5 37.5 42.7 36.5 38.0 32.1 37.4 38.2

Mean 94.8 30.7 31.1 32.5 31.2 31.3 29.0 32.2 33.3

Gain 64.1 - 0.4 1.8 0.5 0.6 -1.7 1.5 2.6

G→K 95.9 36.8 38.2 34.0 37.8 38.7 37.8 39.2 41.1

G K-6 K→G 94.5 45.9 46.5 48.4 43.4 46.5 26.2 47.4 47.6

Mean 95.2 41.4 42.4 41.2 40.6 42.6 32.0 43.3 44.4

Gain 53.8 - 1.0 -0.2 -0.8 1.2 -9.4 1.9 3.0

Each video-based network with I3D backbone improves the

source-only baseline by 1.9% (MM-SADA) and 2.4% (TA3N)

respectively. CTAN outperforms the source-only baseline by

4.3% and image-based networks DAN by 3.3%, CDAN by

7.1% and DANN by 2.9%, as well as video-based MM-SADA

by 2.4% and TA3N with I3D backbone by 0.9%. On the K→G

task, CDAN obtains the best performance, surpassing DANN

by 1.9% and DAN by 5.0%. Although it inferior to that of

CDAN, the performance of CTAN remains superior to other

image- and video-based networks. On average, CTAN has the

highest accuracy, surpassing DANN by 2.0%, CDAN by 3.2%,

MM-SADA by 1.8% and TA3N with I3D backbone by 1.1%.

In comparison, CDAN performs the best on the K→G task,

but the lowest (34.0%) in the G→K task.

CTAN achieves the best overall performance of these state-

of-the-art image- and video-based UDA on the three datasets

and has significantly improved the source-only baseline. The

improvement is consistent across all pairs of domains in 13

out of 14 tasks. In contrast, other networks improve the

source-only baseline in 7 (DANN), 8 (CDAN), 9 (DAN),

11 (MM-SADA) and 12 (TA3N with I3D backbone) out of

14 tasks. The only off-target is the D3→D1 task in ADL-

7, which is reasonable considering that D3 is the smallest

and most imbalanced domain in this dataset. The Pearson

correlation [58] between sample numbers from three domains

demonstrates that D3 has the lowest average value (0.23),

compared to D1 (0.24) and D2 (0.28). Therefore, D3 has

the lowest correlation with the sample number of the other

domains, making it the most imbalanced domain. It is still

difficult for UDA to transfer knowledge from a small dataset

with imbalanced categories to a large dataset. Similarly, the

D3→D2 task is improved slightly by CTAN as shown in Table

VI. On all three datasets, the default implementation of TA3N
with ResNet-101 as the backbone performs poorly, missing

the target in the most tasks and achieving the lowest average

accuracy. TA3N with an I3D backbone surpasses the default

implementation in 13 out of 14 tasks, demonstrating that 3D

CNN is capable of providing better feature representation

for spatio-temporal information. Furthermore, although CTAN

achieves the best performance on two other single-scene

datasets and the best average performance on ADL-7, it is not

the best in some specific ADL-7 tasks. The reason is that ADL-

7 captures human daily life in multiple scenes, with varying

proportions of each scene in each domain, e.g. D1 contains

a greater proportion of bathroom scenes than D2, whereas

D2 contains more kitchen scenes. These varying proportions

result in more complicated domain gaps across domains, such

as considerable background and object differences, which is

a greater challenge to the performance and robustness of

methods compared to the single-scene problem. For example,

task D1 → D2 would require a stronger focus on spatial

characteristics. Therefore, TA3N, which has an additional

spatial domain network, outperforms our method, even though

it is based on a 2D CNN backbone (ResNet-101). UDA in this

multi-scene setting is a good future direction.

C. Comparison with Other Attention Modules

We then compare our proposed attention to two state-of-

the-art attention modules, CBAM [33] and SRM [34], becuase

CBAM and SRM have the ability to excite the channel-wise

informative features, exceeding SENet in some applications.

The original versions of them are designed for image ap-

plications. We first extend them to videos by adding the
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TABLE VII
BEST ACCURACY (%) ON THE TARGET DOMAIN FOR OUR PROPOSED

CTAN, COMPARED TO OTHER ATTENTION APPROACHES ON EPIC-8 [17],
ADL-7 AND GTEA KITCHEN-6 (G K-6) DATASETS. GAIN:

IMPROVEMENT COMPARED TO DANN [21].

Datasets Tasks DANN [21] CBAM [33] SRM [34] CTAN (Ours)

D1→D2 39.4 40.4 37.9 41.3

D1→D3 32.9 35.6 36.9 35.0
D2→D1 36.2 36.8 37.6 36.6

EPIC-8 D2→D3 40.2 40.4 40.8 40.6
[17] D3→D1 37.6 35.3 36.9 39.3

D3→D2 40.3 40.8 38.6 41.3

Mean 37.8 38.2 38.1 39.0

Gain - 0.4 0.3 1.2

D1→D2 40.6 41.0 42.5 43.2

D1→D3 28.1 29.5 27.4 31.5

D2→D1 27.1 28.4 28.5 31.0

ADL-7 D2→D3 23.8 28.4 29.1 28.9
D3→D1 29.5 27.6 26.2 26.7
D3→D2 37.5 38.5 39.0 38.2

Mean 31.1 32.2 32.1 33.3

Gain - - 1.1 1.0 2.2

G→K 38.2 38.4 38.6 41.1

G K-6 K→G 46.5 46.6 46.3 47.6

Mean 42.4 42.5 42.5 44.4

Gain - 0.1 0.1 2.0

temporal dimension, T . For CBAM, 3D pooling layers and 3D

convolutional layers are applied to generate spatial attention.

For SRM, we replace the 2D batch normalization layer with

a 3D layer and calculated the mean and standard deviation

of the input features in three dimensions (temporal, height

and weight). This addition not only adds the capacity for

temporal modeling, but also preserves the characteristics of

these attentions. We use the same settings as CTAN to evaluate

them. Note that we apply residual connection to them for a

fair comparison as they do not have. We evaluate them on all

datasets and compare their best accuracy in Table VII.

EPIC-8. We first evaluate our network on all tasks of EPIC-

8. Table VII shows all attention networks improve the baseline.

CBAM improves the baseline by 0.4% on average but fails in

the D3→D1 task. SRM achieves comparable performance with

CBAM and have more best results. However, SRM fails in

three out of these six tasks (D1→D2, D3→D1 and D3→D2).

CTAN outperforms CBAM and SRM on average recognition

accuracy, exceeding them by 0.8% and 0.9% respectively, and

improving the baseline in all six tasks.

ADL-7. We evaluate CTAN on ADL-7. Table VII shows

CBAM and SRM bring comparable improvement in baseline

by 1.1% and 1.0% respectively, while SRM fails in two tasks

(D1→D3 and D3→D1). All approaches fail to improve the

baseline in task D3→D1. Although CTAN did not outper-

form CBAM (D3→D1 and D3→D2) and SRM (D2→D3

and D3→D2), it still achieved the best average performance,

surpassing CBAM and SRM by 1.1% and 1.2%, respectively.

GTEA KITCHEN-6. We finally analyze these networks

using our new cross-site dataset, GTEA KITCHEN-6. Table

VII shows CBAM and SRM achieve equivalent recognition

accuracy on this cross-site dataset, whereas they only benefit

UDA slightly. However, CTAN outperforms other approaches

by improving in both tasks, G→K and K→G (by 2.9% and

1.1%, respectively). On average, CTAN performs better than

CBAM and SRM by 1.9%.

On the three datasets with within-dataset and cross-site

settings, CTAN performs better than the other state-of-the-

art attention modules. CBAM and SRM enhance the baseline

in six and eight out of 14 tasks respectively. CTAN makes

the improvement in 13 out of 14 tasks and achieves the most

best results among three datasets, showing the significance of

modeling temporal-wise inter-dependencies.

D. Ablation Studies and Further Analysis

Practical effectiveness of our datasets. We discuss the

practical effectiveness of our datasets. On the one hand, Table

II shows ADL-7 has a small difference in RGB mean and

standard deviation across domains because ADL-7 videos are

collected from a single dataset ADL, similar to EPIC-8. The

smaller difference indicates similar global video statistics,

resulting in a reduced domain gap. Nevertheless, as long as

datasets contain domain gaps, datasets with a small global

difference are still practically valuable for studying UDA prob-

lems. As shown in Table VI, the difference in average accuracy

between source-only and target-only for EPIC-8 is 21.3%.

However, it is 64.1% for ADL-7, which is significantly higher

than EPIC-8, indicating that ADL-7 has a more significant

domain gap than EPIC-8. The multi-scene setting brings more

diverse backgrounds and objects, resulting in a larger domain

gap. On the other hand, although large-scale datasets will be

better, smaller datasets that are far from saturation are still

valuable for advancing UDA research. Table I shows ADL-

7 is smaller than EPIC-8, but as discussed above, ADL-7

has a larger domain gap. Furthermore, ADL-7 also presents

a bigger challenge than EPIC-8 in Table VI. The difference

of average accuracy between the best method (CTAN) and

target-only for ADL-7 is 61.5%, significantly larger than that

for EPIC-8 (20.2%), indicating that ADL-7 is far from being

saturated. ADL-7 has a large domain gap and is not yet

saturated, so it is still practically usable. Similar to ADL-7, the

difference of average accuracy between source-only and target-

only for GTEA KITCHEN-6 is 53.8%, while the difference

of average accuracy between the best method (CTAN) and

target-only for GTEA KITCHEN-6 is 50.8%. Both are larger

than those of EPIC-8 (21.3% and 20.2% respectively). Hence,

GTEA KITCHEN-6 is also practically applicable. CTAN can

narrow the gap for ADL-7 and GTEA KITCHEN-6 by 2.9%

and 2.6%, respectively, but there is still a large room for further

improvement. This indicates that our datasets are challenging

and far from saturated, allowing researchers to facilitate further

research in this area.

Importance of our datasets. The recognition performance

on a single dataset may not be sufficient for robust network

exploration. Two additional datasets with distinct settings

would strengthen the validity of this conclusion. Despite the

fact that Table VI shows that CDAN is the second-best network

on average in the within-dataset setting, we are aware that

CDAN may not perform well on some cross-site domains

benefited from our new cross-site dataset. Similarly, some im-
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Fig. 8. t-SNE visualization on ADL-7 produced by (a) backbone without attention module, (b) with CBAM, (c) with SRM, and (d) with our proposed module.

TABLE VIII
THE EFFECT OF THE RESIDUAL CONNECTION. BEST AVERAGE ACCURACY

(%) ON THE TARGET DOMAIN ACROSS ALL DOMAINS ON ADL-7 AND

GTEA KITCHEN-6 (G K-6) DATASETS. / : IMPROVEMENT / DECLINE

COMPARED TO THE BASELINE [21].

ADL-7 G K-6

Baseline [21] 31.1 42.4

CBAM [33]
- w/o residual 29.6 -1.5 41.8 -0.6

- w/ residual 32.2 +1.1 42.5 +0.1

SRM [34]
- w/o residual 30.9 -0.2 40.3 -2.1

- w/ residual 32.1 +1.0 42.5 +0.1

provements should be made before using DAN for both cross-

site and multi-scene setting. Our proposed network, CTAN,

achieves the best performance among all datasets, proving

its robustness for multiple scenarios, e.g. single-scene, multi-

scene and cross-site. Our new datasets increase the variety

of available datasets, promotes diversity in this area, enabling

researchers to facilitate more credible and convincing studies.

Qualitative results. Fig. 8 visualizes the distribution of the

features learned without attention, with CBAM, with SRM and

with our proposed module in 2D via t-SNE [59]. The visu-

alization shows that our proposed channel-temporal attention

(CTA) yields a better separation of classes, particularly in the

categories put, take, open, and close. Among these categories,

open and close are the two most inseparable actions, as shown

in Fig. 8(a). One possible reason is the spatial information is

similar in the two actions but in an opposite temporal order.

Attention modules embed them in two more separable clusters

as shown in Fig. 8(b)(c)(d). Fig. 8(d) shows our proposed

module achieved the best performance in separating these

clusters, demonstrating its effectiveness in classification.

Effect of residual connection. We investigate the effect

of using residual connection. The original SRM and CBAM

(without residual connection) do not perform well on the ADL-

7 and GTEA KITCHEN-6 datasets, according to Table VIII,

with CBAM reducing baseline by 1.5% and SRM reducing

baseline by 2.1%. On the ADL-7 and GTEA KITCHEN-

6 datasets, CBAM with residual connection performs better

than the original version by 2.6% and 0.7% respectively.

Similar findings are obtained by using SRM with residual

connection, which enhances the original version by 1.2%

and 2.2%, showing the effect of residual connection. Using

residual connection can lessen the negative effect that the

wrong attentions may suppress other useful information and

enhance performance.

Arrangement of attentions. We also measure various

module versions to investigate the channel- and temporal-wise

inter-dependencies. We evaluate four different configurations

TABLE IX
ABLATION STUDY OF THE ATTENTION ARRANGEMENTS ON ADL-7. BEST

ACCURACY (%) BY FOUR APPROACHES OF ARRANGING THE CHANNEL

AND TEMPORAL ATTENTION MODULES ARE REPORTED.

w/o Attention CAN TAN TCAN CTAN

D1→D2 40.6 44.8 40.9 40.6 43.2
D1→D3 28.1 27.6 27.9 29.4 31.5

D2→D1 27.1 30.6 25.7 30.3 31.0

D2→D3 23.8 27.8 28.9 28.9 28.9

D3→D1 29.5 19.8 24.0 31.9 26.7
D3→D2 37.5 39.9 37.2 31.3 38.2

Mean 31.1 31.8 30.8 32.1 33.3

Gain - +0.7 -0.3 +1.0 +2.2

of arranging the channel and temporal attention network:

1) CAN: channel-only attention; 2) TAN: temporal-only at-

tention; 3) CTAN: sequential channel-temporal attention; 4)

TCAN: sequential temporal-channel attention. As shown in

Table IX, CAN outperforms TAN, showing channels benefit

the network more than temporal dimensions. The reason is that

channels carry more spatio-temporal information than tempo-

ral dimensions. In addition, the performance of TAN is poorer

than the baseline DANN in most pairs. It means simply paying

more attention to temporal information may suppress spatial

information. Moreover, CTAN and TCAN outperform other

networks with only one attention, showing the importance

of utilizing both attentions. Finally, CTAN achieves the best

accuracy among the four structures, showing that the best-

arranging technique continues to improve performance.

Integration strategy of attentions. We investigate the

effect of integrating attention for distinct stages. We add our

channel-temporal modules into three stages of I3D: 1) early-

stage: Inception blocks 3a and 3b; 2) middle-stage: Inception

blocks 4c and 4d; 3) late-stage: Inception blocks 5b and 5c.

As shown in Table X, 15 out of 18 tasks of stages improve

the baseline, demonstrating once more the effectiveness of

proposed channel-temporal attention modules. As the stage

goes deeper, recognition performance on average gradually

gets better because earlier layers are typically more general

while later layers exhibit more significant levels of specificity.

By applying attention to later layers, excited features would

be more specific, which would enhance class-specific learning.

Similarly, the performance difference between the early and

middle stages is more significant than that between the middle

and last. These findings are consistent with those in [32],

showing middle stages are more class-specific than others.

Model complexity. We study the model complexity of our

proposed method. Table XI shows the average accuracy and

model complexity of CTAN and several UDA methods on

the ADL-7 dataset. All evaluations are performed on a single
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TABLE X
ABLATION STUDY OF ATTENTION INTEGRATION STRATEGIES ON ADL-7.
BEST ACCURACY (%) BY INTEGRATING ATTENTION MODULES DIFFERENT

STAGES ARE REPORTED.

w/o Attention Early Middle Last

D1→D2 40.6 40.7 40.8 41.2

D1→D3 28.1 28.6 28.9 29.0

D2→D1 27.1 27.9 29.0 29.4

D2→D3 23.8 26.6 28.5 28.3
D3→D1 29.5 24.7 26.5 26.8
D3→D2 37.5 37.9 37.2 37.3

Mean 31.1 31.1 31.8 32.0

Gain - 0.0 +0.7 +0.9

TABLE XI
MODEL COMPLEXITY OF CTAN AND THREE COMPARING METHODS ON

THE ADL-7 DATASET.

Model DANN [21] CDAN [50] DAN [22] CTAN (Ours)

FLOPs (G) 446.03 446.04 446.03 446.26
Param. (M) 12.65 13.27 12.55 13.13

Mean Acc. (%) 31.3 32.5 31.2 33.3

NVIDIA Titan Xp GPU. We select 16 frames from a video

and resize them to 224 × 224. To evaluate speed, we utilize

a batch size of 16 and ignore data loading time. Compared to

DANN, CDAN and DAN, our CTAN achieves 2.0%, 0.8%

and 6.1% improvement of the best average accuracy with

comparable FLOPs. Due to its additional attention modules,

CTAN slightly increases the parameter size by 0.48M and

0.58M when compared to DANN and DAN.

VI. CONCLUSION AND FUTURE WORK

This paper introduced two action recognition datasets

with significant domain discrepancies and new challenges

in UDA for first-person video action recognition, ADL-7

and GTEA KITCHEN-6. Our new datasets enrich data and

promote diversity by providing more domains and multiple

settings. They also keep compatibility and scalability to better

utilize existing benchmark datasets. We also proposed channel-

and temporal-wise attention modules for videos to make the

network focus on the important CNN channels and temporal

dimensions. Finally, we proposed Channel-Temporal Attention

Network, which utilizes spatio-temporal and channel attentions

for videos to highlight informative video features. As a result,

our network beats the image-based and video-based UDA

baselines and attention networks on all three datasets.

In future work, it would be interesting to explore UDA

with the effects of occlusion and camera shake in first-

person videos by 1) establishing one or more new domains

including occlusion and/or camera shaking and 2) study-

ing action recognition and domain adaptation on such new

data. Another future direction is to extend our proposed

methods to other applications. Our attention-based method

can leverage action-related information in videos, which can

benefit applications including action localization [60], [61] and

video object segmentation [62], [63]. Attention-based methods

have improved feature embedding capabilities. Thus, applying

channel-temporal attention to the feature extractor in [60]–[63]

can improve feature embedding and generate better features

for the proposal process. Furthermore, channel-wise attention

can enhance the appearance modules [63] in generating more

informative spatial features, whereas temporal-wise attention

can strengthen the proposal generator [60] in capturing more

action-related temporal proposal segments.
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