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Abstract

Walking activity and gait parameters are considered among the most relevant mobility-related parameters. Currently, gait 
assessments have been mainly analyzed in laboratory or hospital settings, which only partially reflect usual performance 
(i.e., real world behavior). In this study, we aim to validate a robust walking detection algorithm using a single foot-worn 
inertial measurement unit (IMU) in real-life settings. We used a challenging dataset including 18 individuals performing 
free-living activities. A multi-sensor wearable system including pressure insoles, multiple IMUs, and infrared distance sen-
sors (INDIP) was used as reference. Accurate walking detection was obtained, with sensitivity and specificity of 98 and 91% 
respectively. As robust walking detection is needed for ambulatory monitoring to complete the processing pipeline from raw 
recorded data to walking/mobility outcomes, a validated algorithm would pave the way for assessing patient performance 
and gait quality in real-world conditions.
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1 Introduction

The use of wearable sensors offers a valuable opportunity to 
obtain objective and valid mobility data in free-living condi-
tions [1, 2]. Walking activity and gait parameters are con-
sidered among the most relevant mobility-related parameters 
[3, 4]. Gait speed has been referred to as the sixth vital sign 
[5] and has been shown to be a reliable marker of functional 
decline and mobility [6, 7]. The assessment of walking in 
real-life conditions and the effects of specific interventions 
or medications on patient mobility are hence of great inter-
est [8]. In this context, automatic detection of walking bouts 
(WBs) (also referred as to gait /walking periods) before fur-
ther gait analysis and speed estimation is necessary.

The most commonly used algorithms for ambulatory 
locomotion detection are based on trunk-mounted (chest/
lower back) inertial measurement units (IMUs) and use 
different approaches such as threshold-based methods 
[9–12], zero-crossing methods [13, 14], and pattern recog-
nition [15]. One of the main advantages of using a sensor 
on the chest/lower back is the possibility to detect other 
physical activities besides locomotion, such as lying, 
sitting, standing, and postural transitions [16–18]. The 
advantage of lower back position is the estimation of step 
length, cadence and gait speed [19]. A wrist-mounted sen-
sor is also commonly used to assess daily activity [20–22] 
because it is practical to use and convenient for partici-
pants. Although recent algorithms allow estimation of 
gait speed based on lower back or wrist position [23, 24], 
a foot/shank-mounted IMU may provide detailed spatio-
temporal parameters with clinically acceptable accuracy 
[25, 26]. This is because the assumption of zero-velocity-
update can be exploited to reduce errors affecting the esti-
mation of spatial parameters [25, 27–29].

In a systematic review, Vienne et al. [2]  identified 
seven clinical criteria for semiological descriptions of 
gait quality in patients with neurological disorders, i.e., 
springiness, sturdiness, smoothness, steadiness, stability, 
symmetry, and synchronization [2]. With the exception of 
stability and synchronization, requiring an IMU attached 
to the trunk, all the other gait criteria can be computed 
from an IMU attached to the shank or foot. Therefore, in 
the context of clinical studies, in which accurate locomo-
tion identification and detailed gait analysis are critical 
for outcome evaluation, the foot can be considered as an 
appropriate sensor location.

Currently, gait assessments have been mainly analyzed 
in laboratory or hospital settings [2]. In a systematic review, 
Vienne et al., 2017 reported that of the 78 included studies, 
only 9 examined gait when patients were in their natural 
home environment, and only one measured gait with a foot-
worn sensor. Recently, discrepancies have been demonstrated 

in mobility parameters measured in unsupervised and in lab-
oratory settings [30]. Short walking tests performed in the 
laboratory provide a snapshot of patients’ capacity, which 
does not reflect their usual performance (i.e., real world 
behavior). There is growing consensus that unsupervised 
assessments for long-term mobility evaluation in real-life 
conditions can complement supervised walking tests, and 
contribute to individualized clinical decisions [30, 31]. The 
main challenge in unsupervised measurements is the need 
for an accurate gold standard reference system for algorithm 
validation. Video recordings are often used as a reference 
for labelling real-life activities [32]. However, manual label-
ling is very time-consuming, cumbersome, and should be 
performed independently by multiple observers to allow for 
cross-validation. Recently, a multi-sensor wearable system, 
which integrates pressure insoles with multiple IMUs and 
infrared distance sensors (INDIP), have been developed to be 
used as references for real-world experimentation and loco-
motion detection [33, 34]. Instrumented insoles, combined 
with IMUs, provide reliable identification of initial and final 
foot contacts, which is essential for walking bout detection 
and gait analysis [33].

Given the above-mentioned considerations, a robust 
detection of walking bouts for ambulatory monitoring 
based on foot-mounted IMUs is necessary to complete 
the processing pipeline from raw recorded data to walk-
ing/gait-related mobility outcomes. A validated algorithm 
would pave the way for evaluating patient performance 
and gait quality in a natural home environment. There-
fore, using the INDIP pressure sensor system as a refer-
ence, the aim of this study is to validate a walking bout 
detection algorithm using data recorded in real-life like 
environments with a foot-mounted IMU. The algorithm 
was evaluated for various sensor configurations, i.e., for 
one IMU (one foot) or two IMUs (two feet), and for 3D 
acceleration or 3D angular velocity signals.

2  Methods

2.1  Materials and data collection

Data  used to evaluate the performance of the pro-
posed  WBs detection algorithm were recorded in 18 
healthy subjects (10 healthy young (HY) and 8 healthy 
adults (HA)) who performed 2.5 h of free-living activi-
ties. The study was approved by the University of Shef-
field Research Ethics Committee (application number 
029143). During the 2.5 h of measurement, subjects were 
asked to: (1) rise from a chair and walk to another room; 
(2) walk to the kitchen and make a drink; (3) walk up 
and down a set of stairs; (4) walk outside, if possible for 
a minimum of 2 min; and (5) if walking outside, walk up 
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and down an inclined path. Each participant was equipped 
with a INDIP wearable multi-sensor system (Fig. 1). The 
INDIP system includes on each foot an IMU (3D acceler-
ometer, ± 16 g; 3D gyroscope, ± 2000 dps; 3D magnetom-
eter), 2 distance sensors, and two 16-elements plantar 
pressure insoles. In this study, acceleration and angular 
velocity, recorded at 100 Hz from shoe-mounted IMUs, 
were used to develop a new algorithm for step/stride and 
WBs detection. The performance of this algorithm was 
validated using the INDIP system, and dedicated algo-
rithms, as a reference (ground truth) [33].

2.2  Algorithm implementation

Step or stride detection from foot-worn sensors are gen-
erally based on the detection of peaks associated to con-
secutive mid-swing, heel-strike [28] or toe-off [35] instants 
in the pitch angular velocity obtained from the gyroscope 
signal. However, those detections are highly sensitive to 
sensor placement and orientation, and require a calibration 
procedure [25]. Thus, in this study, the 3D angular velocity 
norm, (ωN, Eq. 1) is used to overcome the calibration step:

where �
roll

 , �pitch and �
yaw

 are the components of the angu-
lar velocity signal recorded by the gyroscope around the 
3D rotation axes. In addition to the gyroscope signal, we 
also tested the performance of the algorithm when using the 
acceleration norm (aN) as input, making our methodology 
usable for 3D accelerometer only.

When using one IMU on one foot, only stride-related 
information from the instrumented foot can be extracted. 
The acceleration and angular velocity norm demonstrate 
periodic patterns with peaks generated by the contact 
with ground (i.e., heel-strike and toe-off) and the mid-
swing events at each stride. To enhance these periodic 
patterns and reduce the effect of movement artefacts, a 
peak enhancement stage was applied to obtain a signal 

(1)�N =

√

�
2

roll
+ �

2

pitch
+ �

2

yaw

containing stride-related information. Then, a peak selec-

tion stage using threshold-based approaches was designed 
to select the peaks corresponding to the strides [36]. A 
similar approach was used when considering two IMUs 
(one on each foot) to obtain step-related information. 
Finally, a walking bout detection method was applied 
using the selected strides or steps (Fig. 2). In the follow-
ing paragraphs, we described these three stages with ωN 
used as the input signal.

2.2.1  Peak enhancement

The objective of this first stage is to obtain a signal that 
contains improved stride-related information. This peak 
enhancement method should be robust to various gait pat-
terns/impairments. The raw angular velocity norm (ωN) 
is first down-sampled to 40 Hz to decrease the process-
ing time when data is recorded in long-term monitoring 
protocols. Then, the signal is detrended and low-pass fil-
tered (FIR filter, n = 120 coefficients, cutoff frequency: Fc 
≈3.2 Hz) to obtain ωN-LPF [10]. The cutoff frequency 
Fc was chosen to smooth the signal by removing the high 
frequency noise. As FIR filters have a linear phase shift, the 
shape of the waveform is not modified, however, a delay is 
introduced. To eliminate the delay and obtain zero-phase 
distortion, the filter is applied to ωN twice using the Mat-
lab function Filtfilt. Subsequently, the continuous wavelet 
transform (cwt, scale 15, gauss2 wavelet in Matlab) is used 
as a smoothing and differentiation procedure [37], allowing 
a stride-related peaks enhancement consistent among vari-
ous impaired or atypical gait patterns. The cwt time-scale 
was set to 15 to be adapted to stride detection. Finally, 
additional slight smoothing is performed using a linear 
Savitzky-Golay filter. The processed signal is referred 
to as ωN-LPF-CWT . An illustrative example of the peak 
enhancement procedure for the signals recorded from one-
foot IMU is shown in Fig. 3, and in Supplementary material 
A when two IMUs are used (one on each foot).

Fig. 1  Multi-sensor wearable 
system (INDIP); (a) INDIP 
system attached on the shoe, 
and (b) picture of two INDIP 
sensors (right and left feet), 
which integrate force sensitive 
resistor pressure insoles, inertial 
modules (IMUs), and infrared 
distance sensors
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2.2.2  Peak selection

From the processed gyroscope angular velocity signal 
(ωN-LPF-CWT, Fig. 2), the time of occurrence tpi of 
each peak ( pi) with amplitudes higher than a specific 
threshold are selected as potential stride-related tempo-
ral events. These peaks ( pi) correspond to mid-swing 
events when the gyroscope norm is used as input. The 
heel-strike events, on the other hand, are detected when 

the acceleration norm is used. Three amplitude thresh-
olding methods were implemented and tested in this 
study. The first method is based on a fixed threshold 
THfixed = 100(◦∕s) , ( THfixed = 0.5(g), when the acceleration 
is used as input signal). Both thresholds were chosen in a 
conservative manner to allow detection of stride-related 
temporal events for a wide range of walking speeds 
[38]. The second approach relies on an adaptive thresh-
old ( THadapt ) based on the percentile of the obtained 
amplitude distribution of peaks detected above the fixed 
threshold ( THfixed , Fig. 4). Finally, in the third method, 
we applied the Hilbert transform to pre-select potential 
walking bouts. The Hilbert envelope of the filtered signal 
ωN-LPF-CWT  is computed for a pre-selected of potential 
walking periods [39]. Then, the threshold ( TH

hilbert
 ) is 

defined as the percentile of the amplitude distribution 
of all peaks in the pre-selected bouts (Fig. 4). Percen-
tile values from 1 to 50%, with increment of 2.5%, were 
tested through receiver operating characteristic curve 
(ROC) for the two adaptive thresholding methods.

Figure 4a–b shows the filtered signal ωN-LPF-CWT  and 
the derived thresholds THadapt (blue) and TH

hilbert
 (purple), 

as well as the selected peaks (dark dots with amplitude 
above the thresholds), for data recorded in one subject. 
Figure 4c shows the amplitude distributions of the peaks 
and the thresholds obtained for each of the three methods 
tested (fixed, adaptive and Hilbert). The fixed-threshold 
THfixed is lower than the other two because it is less restric-
tive. In contrast, the adaptive threshold TH

hilbert
 is higher 

because of the pre-selected walking periods (dashed line 
in Fig. 4b).

Fig. 2  Flowchart of the walking bouts detection algorithm for one-
foot IMU. ωN: raw angular velocity norm; aN: raw acceleration 
norm; LPF: low-pass filter; CWT: continuous wavelet transform; 
THfixed : fixed threshold ( THfixed = 100deg∕s or THfixed = 0.5g ); 
THadapt : adaptive threshold based on the percentile of the obtained 

amplitude distribution of peaks detected above the fixed thresh-
old ( THfixed) ; TH

hilbert
 : Hilbert threshold based on the Hilbert enve-

lope and percentile of the obtained amplitude distribution of peaks 
detected; tpi : time of peak occurrence; StartLoc i: start of the walking 
bout i; EndLoc i: end of the walking bout i 

Fig. 3  Angular velocity signals recorded with the 3D gyroscope on 
one foot during several gait cycles for one subject. The top panel 
shows the raw angular velocity signals around the three axes (roll, 
pitch, yaw). The middle panel shows the raw angular velocity norm 
(ωN, magenta), the signal  after detrending and LPF (ωN-LPF, red), 
and the signal  after continuous wavelet transform (ωN- LPF-CWT , 
yellow). The bottom panel shows the pitch angular velocity, the con-
tinuous wavelet transform (ωN- LPF-CWT , yellow), and the detected 
strides. Strides are identified as maxima corresponding to mid- swing 
events (blue circle) with an amplitude higher than a certain threshold 
( THfixed , THadapt , or TH

hilbert
)
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2.2.3  Strides and walking bouts detection using one IMU 

(one foot)

The next stage consists of detecting the actual strides from peaks 
pi and identifying the beginning/end of the walking periods. 
Successive peaks with duration Δti = tpi+1

− tpi (i = 1, N − 1 ) 
lower than the adaptive duration threshold ( TH

d
 ) are consid-

ered as part of the same walking period. When one IMU is 
used, the threshold TH

d
 is initialized with a fixed value of 5 s. 

Then, the threshold is updated at each iteration using the for-
mula THd = 3 + average(Dstride)(s) , with Dstride defined 
as the average duration of the previous strides that belong to 
the current WB. TH

d
 is designed to adapt to the cadence of 

the current walking period, which improves the robustness of 
the stride detection under real-life conditions. The algorithm 
is also designed to be resilient to short breaks or occasional 
undetected stride-related peaks (e.g., during turning, gait asym-
metry) by accepting a maximum duration of 5 s between peaks 
(Fig. 2). The threshold TH

d
 is chosen to detect slow walking 

(minimum cadence around 40 steps/min, corresponding to about 
a stride duration of 3 s). Finally, only the walking episodes that 
contained at least two consecutive right and left strides (or five 
steps) were considered as true locomotion [40].

2.2.4  Steps and walking bouts detection using two IMU 

(both feet) 

First, the algorithm explained in the previous sections is 
applied to the right and left IMUs' signals independently. Thus, 

the thresholds for the peak selection obtained for the right and 
left foot might be slightly different to better adjust to asymmet-
ric gait patterns. As the right and left signals are synchronized, 
the peaks detected on the right (ωN-LPF-CWT-right) and left 
(ωN-LPF-CWT-left) processed angular velocity norms are 
merged to obtain the right and left mid-swing events. Taken 
together, these events correspond to the step detection. The 
maximum duration accepted between peaks within the same 
walking period is reduced to 3.5 s [10]. Finally, the WBs are 
detected using the threshold TH

d
 adapted for step-related peaks 

( THd = 1.5 + average(Dsteps)(s) , with Dsteps the average 
duration of the previous steps that belong to the current WB).

3  Validation

The performance of the WB classification was evaluated against 
the reference (INDIP pressure insoles) by calculating sensitiv-
ity, specificity, precision, and accuracy as follow (Eq. 2).

Each binary vector is sampled at 40 Hz, and a value of 0 or 
1 is assigned every second for no locomotion or locomotion, 
respectively. The true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN) were defined by com-
paring the binary vector of the reference with the output of the 
walking detection algorithms (0: no locomotion, 1: locomotion).

(2)
sensitivity =

TP

TP+FN
, specificity =

TP

TP+FP

accuracy =
TP+TN

Total
, precision =

TN

TN+FP

Fig. 4  Thresholding methods for peak selection, example based on 
data from one subject: (a) the filtered signal ωN-LPF-CWT  (orange) 
is shown, as well as the obtained THadapt (dark blue) and the selected 
peaks (dark blue starts with amplitudes above the thresholds); (b) 
the Hilbert envelope method is shown with the preselected walking 
periods (dashed line), and the selected peaks (dark purple dots); (c) 

amplitude distributions of the peaks, and the thresholds obtained for 
each of the three tested methods ( THfixed (green), THadapt (blue) and 
TH

hilbert
 (purple)). The histograms of the peaks obtained for the fixed 

and adaptive thresholds are identical. In fact, THadapt is defined as the 
10

th percentile of the distribution obtained after applying the fixed-
threshold THfixed = 100

◦∕s
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4  Results

4.1  Validation & ROC curves 

The mean age of the sample was 30 ± 7.2 years (range 
24–46) for HY (5 women, 5 men), and 72.8 ± 3.3 years 
(range 69–78) for HA (3 women, 5 men). The total number 
of WBs reported by the INDIP system (i.e., the reference sys-
tem) was 1156 with an average of (mean ± std) 63.9 ± 33.5 
and 71.4 ± 36.7 WBs for HY and HA, respectively. An 

illustrative example of the walking periods detected by the 
proposed algorithm, using the three thresholding methods, is 
shown in Fig. 5. The reference classification obtained using 
the INDIP system is shown in black (top graph, Fig. 5). We 
note that the fixed threshold method recognizes all move-
ments as WBs. In contrast, the Hilbert method ( 1th percen-
tile) is much more restrictive and misclassifies certain walk-
ing periods (false negatives). In this example, the adaptive 
method ( 10

th percentile) seems to provide the best walking 
detection.

The adaptive ( THadapt ) and Hilbert ( TH
hilbert

 ) methods 
depend on the percentile value for threshold selection. To 
evaluate the influence of this parameter on classification 
performance, we computed the ROC curves for different 
percentile values from 1 to 50% with 2.5% increments. Fig-
ure 6 shows the average ROC curves calculated for the 18 
subjects when one IMU (one foot) or two IMUs (two feet) 
are used. For the adaptive ( THadapt ) method, the best per-
formances are obtained for percentile values between 10% 
and 12.5%. A higher percentile value would result in a lower 
sensitivity (some WBs would not be detected). Conversely, a 
percentile value of less than 10% would result in an increase 
in the false positive rate (FPR, 1-specificity). As mentioned 
in the previous section, the Hilbert method ( TH

hilbert
 ) is 

more restrictive. The FPR is below 5% for all percentile 
values tested. However, the sensitivity drops sharply when 
the percentile value is too high (Fig. 6b). Consequently, the 
TH

hilbert
 should be low (maximum 1%) to avoid a high num-

ber of missing walking periods. The algorithms based on 
two IMUs (right and left foot) demonstrate slightly higher 

Fig. 5  Illustration of walking detection using the different threshold-
ing methods on data recorded in one subject: fixed threshold (green), 
adaptive threshold (blue) and Hilbert threshold (purple). The refer-
ence classification, obtained from the plantar pressure of the INDIP 
system, is displayed in black at the top of the figure

Fig. 6  ROC curves for performance evaluation as a function of per-
centile values from 1 to 50% when the angular velocity norm ωN 
is used as input. The curves are obtained by averaging the results 
over the 10 subjects when one IMU (continuous line) or two IMUs 
(dashed line) are used; (a) Adaptive threshold method ( THadapt ) 
based on the percentile of the obtained peak amplitude distribution 

detected above the fixed threshold (THfixed = 100(◦∕s)); (b) Hilbert 
method: The threshold ( TH

hilbert
 ) is defined as the percentile of the 

peak amplitude distribution in the pre-selected walking bouts. The 
horizontal and vertical dashed lines correspond to a 95% true positive 
rate and a 4% false positive rate, respectively
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performances (Supplementary material A; Table 1), mainly 
in terms of specificity. Indeed, the ROC curves obtained 
with a single IMU are shifted towards a higher false positive 
rate as seen in Fig. 6. The same procedure was applied to 
the accelerometer data, and the ROC curves can be found in 
Supplementary material B.

Table 1 summarizes the performance obtained for one 
IMU and for the fixed, adaptive, and Hilbert methods. Based 
on the ROC curves, we used 10

th percentile for the adaptive 
method, and 1th percentile for the Hilbert approach. When 
using the gyroscope signal as input, the adaptive and Hilbert 
methods yield similar results with an accuracy of 93 ± 4%, 
precision of 76 ± 17%, sensitivity of 98 ± 2%, and specificity 
of 91.5 ± 4%.

Not surprisingly, the method based on the fixed thresh-
old is very sensitive (almost 100%), which means that all 
WBs are correctly detected. However, given the lower values 
for specificity (< 70%) and precision (< 90%), other move-
ments might be misclassified as walking. In general, the 
results obtained when using the gyroscope signal as input 
show higher sensitivity and slightly lower precision com-
pared to the acceleration signal (Table 1). Thus, using the 
gyroscope signal could result in a higher number of false 
positive WBs, but a lower number of missing walking peri-
ods (FNs).

5  Discussion

5.1  Walking detection

The walking and stride/step detection algorithms using 
foot IMU data performed well when applied to a chal-
lenging database of 2.5 h of free-living activities. Detec-
tion of walking based on a single foot gyroscope signal 
was achieved with high accuracy (> 90%) and sensitivity 
(> 98%) for the three threshold methods tested (Table 1). 
In addition, when adaptive thresholds were used for 
peak selection (i.e.,  adaptive and Hilbert methods), 

the precision and specificity were over 75% and 91%, 
respectively. As expected, the results were slightly bet-
ter for the configuration with two IMUs (one on each 
foot) because the steps are detected when the peaks from 
the right and left feet are combined, which is consistent 
with the reference system (Supplementary material A, 
Table 1). The algorithm, based on a single IMU, allows 
the detection of the mid-swing events of one foot (stride-
related peaks). Consequently, we increased the maxi-
mum resting period time within a bout to 5 s, compared 
to 3 s when steps are detected, as we do not know if the 
last or first step of a bout is performed with the une-
quipped foot. Thus, this threshold of 5 s allows longer 
resting periods within a bout, and successive walking 
bouts might be merged together, leading to false posi-
tive detection compared to the reference system. Simi-
lar accuracy, but slightly lower sensitivity was obtained 
when the acceleration norm was used as input signal 
(Table 1).

The proposed algorithm demonstrates an efficient 
peak enhancement procedure and mid-swing events 
detection (Figs. 3, 4). As explained in the “Algorithm 

implementation” section, the detection of the mid-swing 
events depends on a signal amplitude threshold. The 
fixed threshold, chosen to a low value, allows high sen-
sitivity at the expense of lower specificity. The specific-
ity of the walking detection is considerably improved 
by using the two customized thresholds (adaptive and 
Hilbert methods). Using the 10

th percentile of the peak 
amplitude distribution (i.e., adaptive method) allows to 
remove the peaks which most likely do not correspond to 
walking (Fig. 4). Regarding the Hilbert method, the pre-
selected walking periods, based on the Hilbert envelope, 
reduce the possibility of false positive detection. This 
method is more restrictive than the other two (Figs. 4, 
5), and the threshold based on the percentile of the peak 
amplitude distribution in the pre-selected bouts (i.e., 
TH

hilbert
 ) should be low to avoid a high number of miss-

ing strides. Thus, the adaptive and Hilbert methods have 
two main advantages: first, the specificity of the walking 
detection is improved, and second, those thresholds are 
based on the data distribution without selecting a spe-
cific threshold a priori. Therefore, these methods, which 
are subject-specific, can be well-adapted to different 
populations (e.g., slow walkers versus healthy subjects). 
The choice of one of these threshold methods depends 
on the application and whether researchers prefer high 
specificity or high sensitivity in the walking detection. 
If the main goal is to evaluate the patient’s performance 
at home based on the distribution of walking speed dur-
ing the day, we recommend using the adaptive or Hilbert 
methods with high specificity. However, if the goal is to 
focus on the amount of activity performed, it is better to 

Table 1  The results of the walking detection algorithms based on one 
IMU (gyr: gyroscope; and acc: accelerometer) for the three differ-
ent thresholding methods. The 10

th percentile is used for the adaptive 
method, and the 1th percentile for the Hilbert approach

Acc (%)
mean (std)

Prec (%)
mean (std)

Sen (%)
mean (std)

Spe (%)
mean (std)

Gyr THfixed 90.2 (4.6) 69.5 (16.5) 99.9 (0.0) 84.5 (8.3)

THadapt 92.8 (3.9) 76.1 (17.1) 98.7 (1.7) 91.4 (5.2)

TH
hilbert

92.9 (3.5) 76.2 (18.5) 98.2 (2.3) 76.2 (18.5)

Acc THfixed 94.7 (2.1) 81.6 (9.8) 96.4 (4.8) 92.0 (5.8)

THadapt 94.9 (2.0) 86.2 (9.5) 91.4 (5.9) 95.9 (2.1)

TH
hilbert

94.4 (2.6) 85.6 (11.2) 91.2 (5.6) 96.1 (2.0)
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choose a very sensitive method, as each movement can 
be important. In view of our results, we recommend the 
use of the adaptive method, which has the best trade-off 
between sensitivity and specificity and a lower computa-
tional cost than the Hilbert envelope calculation.

Moreover, in this study, we have shown that the gyro-
scope and accelerometer signals can both be used as input 
to the walking detection algorithm. Using the gyroscope 
signals is an interesting option since this allows to subse-
quently extract gait parameters at each walking bout using 
dedicated algorithms [28]. However, power consump-
tion of the gyroscope and consequently battery life of 
the wearable system are critical aspects to consider when 
conducting long-term monitoring studies. In this context, 
it might be interesting to collect only accelerometer data, 
which is less power-consuming than a gyroscope, and 
characterize the gait by duration of bouts, cadence, and 
asymmetry if synchronized devices are used on feet.

5.2  Comparison to existing algorithms based 
on foot‑mounted IMUs

In a recent study, Ullrich et al., implemented a novel algo-
rithm for the detection of gait from daily-life recordings 
[41]. Their approach, based on frequency spectrum analy-
sis, achieved high sensitivity (0.97) on semi-standardized 
gait tests and high sensitivity (0.98) and specificity (0.96) 
on laboratory measurements, which is comparable to our 
results. However, those performance were obtained when the 
angular rate around the media-lateral axis (considered as the 
best channel configuration) is used as input signal, requiring 
therefore a functional calibration. A sensitivity and specific-
ity of 0.89 and 0.81 respectively were reached for the norm 
of the 3D rate of rotation, which underperforms our results.

Regarding stride detection, a Hidden Markov Model 
(HMM) approach demonstrated promising results in patients 
with Parkinson’s disease performing in laboratory walking 
tests [42]. However, the performance decreased by almost 
4% when applied to a free-living recorded dataset. The data-
driven HMM approach is highly dependent on the walking 
bout length, with lower performance for bouts with less than 
30 strides [42]. Since short walking bouts (less than 30 s) 
represent, around 65% of total strides per day [23], this drop 
in stride recognition performance could be a limitation in a 
free-living environment. The advantage of the algorithm we 
proposed in this study is the step- or stride-based detection 
before the walking detection. Thus, the performance of step/
stride detection is independent of the walking bout length.

The main objective of the current study was to validate the 
walking bout detection method. Therefore, we did not focus on 
the performance of step/stride detection. However, it is worth 
noting that unlike the aforementioned approaches, our algorithm 
enables simultaneous step/stride and walking periods detection. 

The outcomes of our algorithm provide sufficient information 
(i.e., the type of activity (locomotion versus non-locomotion), its 
duration, its intensity, and its frequency) to further analyze the 
daily physical behavior and their temporal variations [43, 44].

5.3  Strength and limitations

The strengths of this study are evidently associated to the vali-
dation of the walking detection algorithm on a challenging 
database using gyroscope or accelerometer data collected in a 
real-life like monitoring setting. In addition, the developed algo-
rithm is based on the norm of the gyroscope or accelerometer 
signal. Therefore, no calibration procedure to correct the sen-
sor orientation is necessary, which makes this algorithm very 
practical for real life monitoring. However, some limitations 
must also be acknowledged. Although participants were asked 
to perform various gait patterns (inside/outside, up/down stairs) 
to test the algorithm under different conditions, only healthy 
individuals were included. Therefore, the algorithm needs fur-
ther validation for very slow walking or gait abnormalities in 
different clinical populations. One potential limitation is the 
robustness for very impaired walking patterns, characterized 
by asymmetry and/or the usage of walking aids. However, we 
expect our approach to be adaptable to other cohorts as long as 
the cyclic properties of gait are present in the signals.

Furthermore, we did not evaluate the performance of our 
algorithm for distinguishing walking to other activities of 
daily living (e.g. stairs, cycling, running, vacuuming, rope 
jumping etc.). Future investigations are necessary to verify 
the robustness of such classification.

5.4  Clinical perspectives

The WB detection methods proposed in this study open new 
perspectives for gait analysis in real-world conditions which 
is very relevant for future clinical applications. Once WBs 
are detected, the spatio-temporal gait parameters such as 
gait speed, cadence, foot clearance, stride length and vari-
ability can be extracted using an IMU (accelerometer and 
gyroscope) attached to the shoes [25].

The assessment of gait speed under real-life conditions, 
and the effects of specific interventions or medications on 
patient mobility are of great interest [8]. Another important 
clinical application of measuring the spatio-temporal gait 
parameters under real-world conditions is the evaluation of 
functional/physical fatigue during the day (i.e., termed eco-
logical fatigue). In the laboratory, fatigue can be quantified 
using specific walking tests such as the 6-min walk test [45]. 
However, the measurement of ecological fatigue is still in its 
infancy and should be explored in future studies. Decreases 
in activity engagement, walking bout duration and gait speed 
over the course of the day, as measured by a foot-mounted 
IMU, may be an interesting direction to investigate further.
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6  Conclusion

This study validated a robust algorithm for WB detection in 
a real-life like environment using a foot-mounted IMU. The 
norms of gyroscope or accelerometer signals are used as input 
signal to overcome the calibration procedure, which makes 
this algorithm very practical for real life monitoring. The best 
results were obtained using the adaptive threshold method with 
sensitivity and specificity of 98% and 91% respectively. For 
ambulatory monitoring, robust walking detection is required 
to complete the processing pipeline from raw recorded data to 
walking/ mobility outcomes. Therefore, this validated algo-
rithm enables robust assessment of locomotion in real-world 
conditions, opening new perspectives. Ecological fatigue, the 
effects of medication or rehabilitation periods on physical 
activity and gait in everyday life can be further explored.
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