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The Computational Complexity of Concise Hypersphere Classification

Eduard Eiben 1 Robert Ganian 2 Iyad Kanj 3 Sebastian Ordytniak 4 Stefan Szeider 2

Abstract

Hypersphere classification is a classical and foun-

dational method that can provide easy-to-process

explanations for the classification of real-valued

and binary data. However, obtaining an (ideally

concise) explanation via hypersphere classifica-

tion is much more difficult when dealing with

binary data than real-valued data. In this paper,

we perform the first complexity-theoretic study of

the hypersphere classification problem for binary

data. We use the fine-grained parameterized com-

plexity paradigm to analyze the impact of struc-

tural properties that may be present in the input

data as well as potential conciseness constraints.

Our results include stronger lower bounds and

new fixed-parameter algorithms for hypersphere

classification of binary data, which can find an

exact and concise explanation when one exists.

1. Introduction

With the rapid advancement of Machine Learning (ML)

models to automate decisions, there has been increasing

interest in explainable Artificial Intelligence (XAI), where

the ML models can explain their decisions in a way humans

understand. This has led to the reexamination of ML models

that are implicitly easy to explain and interpret with a partic-

ular focus on the conciseness of explanations (Doshi-Velez

& Kim, 2017; Lipton, 2018; Monroe, 2018; Ribeiro et al.,

2018; Shih et al., 2018; Barceló et al., 2020; Chalasani et al.,

2020; Darwiche & Hirth, 2020; Blanc et al., 2021; Ignatiev

et al., 2021; Wäldchen et al., 2021; Izza et al., 2022).

In this article, we consider a simple classification task—

one of the cornerstones of machine learning—from the
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viewpoint of XAI. However, unlike previous works on ex-

plainability, which have typically targeted questions such as

identifying a suitable interpretable model for (area-specific)

classification (Nori et al., 2021; Shih et al., 2021; Wang

et al., 2021) or measuring the accuracy cost of explainabil-

ity (Laber & Murtinho, 2021; Makarychev & Shan, 2021),

the goal of this work is to obtain a comprehensive under-

standing of the computational complexity of performing

binary classification via one of the most fundamental inter-

pretable models.

Consider a set M of either real-valued or binary training

feature points, each represented as a d-dimensional feature

vector over [0, 1] or {0, 1} and labeled as either “blue” (the

set VB) or “red” (the set VR). There is, by now, a broad set

of more or less opaque classifiers capable of using such a

training set to classify unlabeled data, where the suitability

of each method depends on the data domain and context;

moreover, some classifiers are tailored to real-valued data,

while others are designed for binary (or, more generally,

categorical) data. In this paper, we consider one of the

two arguably simplest—and hence easiest to explain and

visualize—types of classifiers, which can be used in both

data settings: a hypersphere. More formally, the explana-

tions we consider consist of a cluster center c⃗ (an element

of [0, 1]d or {0, 1}d) and distance ℓ such that each feature

vector is at a distance at most ℓ from c⃗ if and only if it is

blue.

The reason for studying the complexity of hypersphere clas-

sification does not stem purely from the problem’s con-

nection to explainability. Together with classification by a

separating hyperplane, hypersphere classification represents

one of the most classic explanatory examples of classifiers

(see (Cooper, 1962; Wang et al., 2007; 2005) to name a

few) which have been extensively studied from both the

computational geometry and the machine learning perspec-

tives (Astorino et al., 2016; Astorino & Gaudioso, 2009;

Cooper, 1962; Wang et al., 2007; 2005; O’Rourke et al.,

1986; Agarwal et al., 2006; Hurtado et al., 2003). More-

over, hypersphere classification is of special importance in

one-class classification due to the inherent asymmetry of

the provided explanations (Kim et al., 2021). While hyper-

plane separation can be encoded as a linear program and

hence is easily polynomial-time solvable for real-valued and

binary data, the computational complexity of hypersphere
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classification is far less obvious and has so far remained

surprisingly unexplored.

This apparent gap contrasts the situation for several other

computational problems arising in the area of machine

learning, which have already been targeted by detailed

complexity-theoretic studies (Ordyniak & Szeider, 2013;

Ganian et al., 2018; Simonov et al., 2019; Dahiya et al.,

2021; Ganian & Korchemna, 2021; Ganian et al., 2022;

Grüttemeier & Komusiewicz, 2022), carried out using the

classical as well as the parameterized-complexity paradigms.

In this article, we close the gap by laying bare a detailed map

of the problem’s computational complexity via the design

of novel theoretical algorithms as well as accompanying

computational lower bounds.

Contributions. We begin by observing that the hyper-

sphere classification problem is polynomial-time solvable

when the input data is real-valued; in particular, this case

can be handled via a more sophisticated linear programming

encoding than the one used for the classical hyperplane

separation problem. However, this approach completely

fails when dealing with binary data, warranting a more care-

ful complexity-theoretic study of this case. Our first result

shows that hypersphere classification of binary data is not

only NP-hard in general but remains NP-hard even when

there are only two red vectors. We also obtain an analogous

hardness result for instances with two blue vectors.

The fact that the problem’s complexity differs between real-

valued and categorical data is already interesting. However,

the NP-hardness of the latter case does not preclude the

existence of efficient algorithms that can solve the problem

under additional natural restrictions. Indeed, one of the

central themes in modern complexity-theoretic research is

the identification of the exact boundaries of tractability. This

is frequently achieved through the lens of the parameterized

complexity paradigm (Downey & Fellows, 2013; Cygan

et al., 2015), where we associate each problem instance

I with an integer parameter k (often capturing a certain

structural property of the instance) and ask whether the

problem of interest can be solved by a “fixed-parameter”

algorithm, that is, by an algorithm with runtime of the form

f(k) · |I|O(1) for some computable function f . This gives

rise to a strong form of computational tractability called

fixed-parameter tractability (FPT).

In the case of our problem of interest, it is easy to ob-

serve that hypersphere classification of binary data is fixed-

parameter tractable when parameterized by the data di-

mension d (since the number of possible centers is upper-

bounded by 2d). Moreover, we show that the problem also

admits a fixed-parameter algorithm when parameterized

by the total number of feature points via a combinatorial

reduction to a known tractable fragment of Integer Lin-

ear Programming. While these are important pieces of the

complexity-theoretic landscape of hypersphere classifica-

tion, these two initial results are somewhat unsatisfying on

their own because (1) they rely on highly restrictive parame-

terizations, and (2) they ignore a central aspect of explain-

ability, which is conciseness or succinctness (Ribeiro et al.,

2018; Shih et al., 2018; Blanc et al., 2021; Wäldchen et al.,

2021; Chalasani et al., 2020; Izza et al., 2022; Ordyniak

et al., 2023).

A natural measure of conciseness in our setting is the num-

ber of “1” coordinates in a vector; indeed, any explanation

produced by a classifier will likely end up ignored by users

if such an explanation is incomprehensibly long, relying

on too many features. At the same time, depending on the

source of the input data, we may often deal with feature

vectors that are already concise. Having concise feature

vectors does not necessarily guarantee the existence of a

concise center (and vice-versa, concise centers may exist

for non-concise data); however, at least one of the two inde-

pendent measures of conciseness can be expected (or even

required) to be small in a variety of settings, making them

natural choices for parameters in our analysis. In the sec-

ond part of the article, we show that these two conciseness

parameters—a bound econ on the conciseness of the sought-

after explanation and a bound dcon on the conciseness of all

feature vectors in the training data—can be algorithmically

exploited to cope with the NP-hardness of the hypersphere

classification problem for binary data.

Toward understanding the complexity of hypersphere classi-

fication of binary data through the perspective of concise-

ness constraints, we begin by considering restrictions on the

data conciseness dcon. We obtain a tight classification by

showing that the problem is polynomial-time tractable when

dcon ≤ 3 via a reduction to a tractable fragment of the con-

straint satisfaction problem and NP-hard otherwise. More-

over, we obtain fixed-parameter algorithms parameterized

by dcon plus the number of red or blue points, circumvent-

ing the earlier NP-hardness results. When considering the

explanation conciseness, we show that hypersphere classifi-

cation is XP-tractable when parameterized by econ and at

the same time provide evidence excluding fixed-parameter

tractability even parameterized by econ together with the

number of red or blue points. Finally, we obtain a linear-time

fixed-parameter algorithm for the problem parameterized

by econ + dcon.

While this settles the complexity of binary-data hypersphere

classification from the perspective of conciseness measures,

the obtained lower bounds imply that neither measure of

conciseness (i.e., neither econ nor dcon) suffices to achieve

fixed-parameter tractability on its own. As our final con-

tribution, we consider whether achieving tractability for

the problem is possible by exploiting a suitable structural

measure of the input data. In particular, following recent
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Conciseness

Structure ∅ econ dcon econ + dcon

∅ NP-h (Thm 3) XP (Obs 10), W[2]-h (Thm 11) NP-h≥4 (Thm 7) FPT (Thm 13)

|VR| NP-h≥2 (Thm 3) XP (Obs 10), W[2]-h (Thm 11) FPT (Thm 9) FPT (Thm 9)

|VB| NP-h≥2 (Thm 3) XP (Obs 10), W[1]-h (Thm 12) FPT (Thm 9) FPT (Thm 9)

|VR ∪ VB| FPT (Thm 5) FPT (Thm 5) FPT (Thm 5) FPT (Thm 5)

d FPT (trivial) FPT (trivial) FPT (trivial) FPT (trivial)

tw XP (Cor 15) FPT (Cor 16) FPT (Cor 17) FPT (Cor 16)

Table 1. The complexity landscape of hypersphere classification with respect to combinations of structural and conciseness parameters: VR

and VB are the sets of red and blue points, respectively; d is the dimension; tw is the incidence treewidth of the data representation; econ is

the conciseness of the explanation, and dcon is the data conciseness. NP-h≥i means that the problem becomes NP-hard for parameter

values of at least 4, while W[j]-h means that the problem is hard for the complexity class W[j] and hence is unlikely to be fixed-parameter

tractable (Downey & Fellows, 2013).

successes in closely related areas such as clustering and data

completion (Ganian et al., 2022; 2018), we consider the

incidence treewidth tw of the data representation. Using a

non-trivial dynamic programming procedure, we obtain a

fixed-parameter algorithm for binary-data hypersphere clas-

sification parameterized by either tw + econ or tw + dcon;

in other words, each of the two notions of conciseness suf-

fices for tractability of hypersphere clustering for data that

is “well-structured,” in the sense of having small incidence

treewidth. Moreover, as a byproduct of our algorithm, we

also obtain the XP-tractability of binary-data hypersphere

classification parameterized by tw alone.

A summary of our results is provided in Table 1.

Related Work.

While there is, to the best of our knowledge, no prior work

targeting the complexity of hypersphere classification of

binary data, there is a significant work on the real-valued

variant of the problem by the machine learning commu-

nity (Cooper, 1962; Wang et al., 2007; 2005; Astorino &

Gaudioso, 2009; Astorino et al., 2016), where they stud-

ied the optimization version of the problem in which one

seeks the smallest bounding sphere that separates the blue

points from the red ones. Our results extend to the optimiza-

tion version of the problem for binary data, as mentioned

in Section 7. Many of the above works consider relax-

ations of the real-valued optimization problem, in which

the sphere sought is not of minimum radius (Wang et al.,

2007; 2005; Astorino & Gaudioso, 2009; Astorino et al.,

2016)—allowing for error or for outliers—and reduce the

problem to some fragment of quadratic programming. We

point out that the problem is also related to that of finding a

minimum bounding sphere to distinguish/discriminate a set

of objects (i.e., one-class classification) (Tax & Duin, 1999),

which is, in turn, inspired by the Support Vector Machine

models introduced in (Vapnik, 1995).

The hypersphere classification of real-valued low-

dimensional data has also been studied in the context

of point separability within the field of computational

geometry. In particular, the separability of two sets of points

in R
2 by a circle was studied by O’Rourke, Kosaraju and

Megiddo (1986), who established the linear-time tractability

of that case. They also observed that their result could be

lifted to an O(nd)-time algorithm for the separability of

n d-dimensional data points by a hypersphere; however

this is superseded by the nO(1)-time algorithm observed

in Proposition 1, which runs in polynomial time even

for unbounded values of d. Several authors also studied

related point-separation problems in R
2 and R

3, such

as separability of points via polyhedra (Megiddo, 1988),

L-shapes (Sheikhi et al., 2015) and a variety of other

objects (Agarwal et al., 2006; Alegrı́a et al., 2022).

2. Preliminaries

For ℓ ∈ N, we write [ℓ] for {1, . . . , ℓ}. For convenience,

we identify each vector v⃗ = (v1, . . . , vd) with the point

(v1, . . . , vd) in d-dimensional space.

Problem Definition and Terminology. For two vectors

a⃗, b⃗ ∈ {0, 1}d, we denote by δ(⃗a, b⃗) the Hamming distance

between a⃗ and b⃗. For a vector v⃗ ∈ {0, 1}d and r ∈ N,

denote by B(v⃗, r) the hypersphere (i.e., ball) centered at v⃗

and of radius r; that is, the set of all vectors x⃗ ∈ {0, 1}d

satisfying δ(v⃗, x⃗) ≤ r. Similarly, for vectors over [0, 1]d we

denote by B(v⃗, r) the hypersphere (i.e., ball) centered at v⃗

and of radius r with respect to the Euclidean distance in R
d.

The problem under consideration in this paper is defined as

follows:

BINARY HYPERSPHERE CLASSIFICATION (BHC)

Input: A set V = VR∪VB of d-dimensional vectors

over the binary domain D = {0, 1}, where

VR ∩ VB = ∅.

Question: Is there a vector c⃗ ∈ Dd and r ∈ N such

that VB ⊆ B(c⃗, r) and VR ∩B(c⃗, r) = ∅?
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Throughout the paper, we will refer to the vectors in VR

as “red” and those in VB as “blue”. We also denote by

1(v⃗) the set of all coordinates i such that v⃗[i] = 1 and we

write con(v⃗) for the conciseness of v⃗, i.e., con(v⃗) = |1(v⃗)|.
Moreover, observe that the Hamming distance δ(v⃗, c⃗) of two

vectors v⃗ and c⃗ can be written as δ(v⃗, c⃗) = |1(c⃗)|+ |1(v⃗)|−
2|1(v⃗) ∩ 1(c⃗)|.

Naturally, one may also consider the analogous problem of

REAL-VALUED HYPERSPHERE CLASSIFICATION, where

the only distinction is that the domain is [0, 1] instead of

{0, 1}. As mentioned in the introduction, this problem can

be shown to be polynomial-time solvable and hence is not

considered further in our complexity-theoretic analysis.

Proposition 1. REAL-VALUED HYPERSPHERE CLASSIFI-

CATION can be solved in polynomial time.

Parameterized Complexity. In parameterized algorith-

mics (Flum & Grohe, 2006; Downey & Fellows, 2013; Cy-

gan et al., 2015) the running-time of an algorithm is studied

with respect to a parameter k ∈ N0 and input size n. The

basic idea is to find a parameter that describes the structure

of the instance such that the combinatorial explosion can

be confined to this parameter. In this respect, the most fa-

vorable complexity class is FPT(fixed-parameter tractable)

which contains all problems that can be decided by an algo-

rithm running in time f(k) ·nO(1), where f is a computable

function. Algorithms with this running-time are called fixed-

parameter algorithms. A less favorable outcome is an XP

algorithm, which is an algorithm running in time O(nf(k));
problems admitting such algorithms belong to the class XP.

Showing that a parameterized problem is hard for the

complexity classes W[1] or W[2] rules out the existence

of a fixed-parameter algorithm under well-established

complexity-theoretic assumptions. Such hardness results are

typically established via a parameterized reduction, which

is an analogue of a classical polynomial-time reduction with

two notable distinctions: a parameterized reduction can run

in time f(k) · nO(1), but the parameter of the produced

instance must be upper-bounded by a function of the param-

eter in the original instance.

Treewidth. A nice tree-decomposition T of a graph G =
(V,E) is a pair (T, χ), where T is a tree (whose vertices are

called nodes) rooted at a node tr and χ is a function that

assigns each node t a set χ(t) ⊆ V such that the following

hold:

• For every uv ∈ E there is a node t such that u, v ∈
χ(t).

• For every vertex v ∈ V , the set of nodes t satisfying

v ∈ χ(t) forms a subtree of T .

• |χ(ℓ)| = 0 for every leaf ℓ of T and |χ(tr)| = 0.

• There are only three kinds of non-leaf nodes in T :

– Introduce node: a node t with exactly one child

t′ such that χ(t) = χ(t′) ∪ {v} for some vertex

v ̸∈ χ(t′).
– Forget node: a node t with exactly one child

t′ such that χ(t) = χ(t′) \ {v} for some vertex

v ∈ χ(t′).
– Join node: a node t with two children t1, t2 such

that χ(t) = χ(t1) = χ(t2).

The width of a nice tree-decomposition (T, χ) is the size of

a largest set χ(t) minus 1, and the treewidth of the graph

G, denoted tw(G), is the minimum width of a nice tree-

decomposition of G.

We let Tt denote the subtree of T rooted at a node t, and use

χ(Tt) to denote the set
⋃

t′∈V (Tt)
χ(t′) and Gt to denote the

graph G[χ(Tt)] induced by the vertices in χ(Tt). Efficient

fixed-parameter algorithms are known for computing a nice

tree-decomposition of near-optimal width:

Proposition 2 (Kloks 1994; Korhonen 2021). There ex-

ists an algorithm which, given an n-vertex graph G and

an integer k, in time 2O(k) · n either outputs a nice tree-

decomposition of G of width at most 2k+1 and O(n) nodes,

or determines that tw(G) > k.

Constraint Satisfaction Problems. Let D = {0, 1} and

let n an integer. An n-ary relation on D is a subset of Dn.

An instance I of a Boolean constraint satisfaction problem

(CSP) is a pair (V,C), where V is a finite set of variables

and C is a set of constraints. A constraint c ∈ C consists

of a scope, denoted by V (c), which is an ordered list of a

subset of V , and a relation, denoted by R(c), which is a

|V (c)|-ary relation on D; |V (c)| is the arity of c.

A solution to a CSP instance I = (V,C) is a mapping

τ : V → D such that ⟨τ(v1), . . . , τ(v|V (c)|)⟩ ∈ R(c) for

every c ∈ C with V (c) = ⟨v1, . . . , v|V (c)|⟩. A CSP instance

is satisfiable if and only if it has at least one solution.

3. NP-hardness of BHC Restricted to Two Red

or Blue Vectors

In this section, we show that BHC remains NP-hard even

when one of the two sets (VB or VR) has size at most two.

In particular, let us denote by 2RED-BHC the restriction

of BHC to instances in which the number of red vectors is

two (i.e., |VR| = 2), and by 2BLUE-BHC the restriction of

BHC to instances in which the number of blue vectors is

two (i.e., |VB| = 2).

Theorem 3. 2RED-BHC and 2BLUE-BHC are NP-

complete.

Proof Sketch. Proving membership in NP is straightfor-

ward and is omitted. We begin with the following problem,

which is known to be NP-hard (Frances & Litman, 1997):
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Minimum Radius (MR)

Input: A set V of (2n)-dimensional binary vectors

where n ∈ N.

Question: Is there a (2n)-dimensional center vector c⃗

such that V ⊆ B(c⃗, n)?

Denote by Rest-MR the restriction of MR to instances in

which V contains the (2n)-dimensional all-zero vector 0⃗2n
and we ask for a center vector c⃗ that contains exactly n

ones. We first show that Rest-MR remains NP-hard via a

polynomial-time Turing-reduction from MR to Rest-MR.

At this point, to complete the proof of the theorem it suf-

fices to exhibit a polynomial-time reduction from Rest-MR

to 2RED-BHC (an analogous reduction is also be used

for 2BLUE-BHC). Given an instance V of Rest-MR, we

construct an instance V + of 2Red-BHC such that V is

a Yes-instance of Rest-MR if and only if V + is a Yes-

instance of 2RED-BHC. Without loss of generality, we

may assume that (the (2n)-dimensional all 1’s vector)

1⃗2n ∈ V since V is a Yes-instance of Rest-MR if and

only if V ∪ {⃗12n} is. The previous statement is true since

0⃗2n ∈ V ⊆ B(c⃗, n), where c⃗ contains exactly n 1’s, if and

only if (V ∪ {⃗12n}) ⊆ B(c⃗, n).

To construct V +, we extend each (2n)-dimensional vec-

tor v⃗ ∈ V by adding two coordinates, that we refer to

as coordinates q2n+1 and q2n+2, and setting their values

to 0 and 1, respectively; let v⃗+ denote the extension of

v⃗. Let Vb be the resulting set of (extended) vectors from

V , and let Vr = {⃗02n+2, 1⃗2n+2}, where 0⃗2n+2, 1⃗2n+2 are

the (2n + 2)-dimensional all-zero and all-one vectors, re-

spectively. Finally, let V + = Vb ∪ Vr. We can now show

that V is a Yes-instance of Rest-MR if and only if V + is a

Yes-instance of 2Red-BHC.

4. Basic Parameterizations for BHC

We follow up on Theorem 3 by considering the two remain-

ing obvious parameterizations of the problem, notably d and

|V |. The former case is trivial since it bounds the size of the

input.

Observation 4. BHC is FPT parameterized by d.

Next, we give a fixed-parameter algorithm for BHC param-

eterized by the total number of vectors.

Theorem 5. BHC is FPT parameterized by the number of

red vectors plus blue vectors.

Proof Sketch. Let k be the total number of red vectors plus

blue vectors. For convenience, we will consider the matrix

representation of the input, in which the vectors are repre-

sented as the rows of a matrix M . Observe that, since there

are k rows of binary coordinates in M , the total number of

different column configurations of M is at most 2k. The

idea behind the fixed-parameter algorithm is to encode the

problem as an instance of an Integer Linear Program (ILP)

with 2k+1 variables—two for every column type. One such

variable will capture the number of “1”s the center uses in

the columns belonging to that type, while the other simply

captures the number of “0”s of the center in these columns.

The main reason why this suffices is that the exact positions

of these “0”s and “1”s within these column types is irrel-

evant when considering the distance between an arbitrary

point and a center. The constraints simply ensure that the

distance between the center and each blue point is strictly

smaller than the distance between the center and each red

point.

It is well known that such an ILP instance can then

be solved in FPT time using the classical result of

Lenstra (H. W. Lenstra, 1983; Kannan, 1987; Frank & Tar-

dos, 1987). Once the coordinates of the desired (hyper-

sphere) center have been determined, the radius of the hy-

persphere can be set as the maximum Hamming distance

between the center and the blue vectors in M .

5. The Complexity of BHC with Conciseness

In this section, we perform a detailed analysis of the com-

plexity of BHC with respect to conciseness. We will distin-

guish between data conciseness and explanation conciseness.

Data conciseness is the maximum number of 1’s appearing

in any red or blue vector of the instance I and is denoted

dcon(I); that is, dcon(I) = maxv⃗∈VR∪VB
con(v⃗). The ex-

planation conciseness on the other hand is the maximum

number of 1’s appearing in the sought-after vector c⃗. To

capture this aspect of the problem, we define a new version

of BHC that imposes a bound econ on the explanation con-

ciseness of the vector c⃗. Formally, let EC-BHC be defined

analogously to BHC, but where we are additionally given

an integer econ and the question is whether there exists a

vector c⃗ ∈ Dd of conciseness at most econ and r ∈ N such

that VB ⊆ B(c⃗, r) and VR ∩B(c⃗, r) = ∅.

5.1. Data Conciseness

In this subsection, we analyse the parameterized complex-

ity of BHC parameterized by the conciseness of the data

dcon(I). We start by showing that instances I satisfying

dcon(I) ≤ 3 can be solved in polynomial-time.

Theorem 6. The restriction of BHC to instances I satisfy-

ing dcon(I) ≤ 3 can be solved in time O(|V |d).

Proof Sketch. The main idea behind the algorithm is a case

distinction based on the minimum distance Mr of any red

vector from a solution vector c⃗. Note first that if we fix a

solution c⃗ for I , then |1(v⃗)| − 2|1(v⃗) ∩ 1(c⃗)| can be used

5



The Computational Complexity of Concise Hypersphere Classification

instead of the Hamming distance to compare the distances

of two vectors from c⃗. Altogether, we obtain four cases for

Mr = minr⃗∈Vr
|1(r⃗)| − 2|1(r⃗) ∩ 1(c⃗)| , i.e., (1) Mr ≤ −1,

(2) Mr = 0, (3) Mr = 1, and (4) Mr ≥ 2. While (1)

and (4) are trivial to solve, (2) and (3) are solved via a

reduction to a Boolean CSP instance that can be solved in

polynomial-time because its relational language is closed

under a majority operation. To illustrate the ideas for (1),

note that if Mr ≤ −1, then it is easy to show that any

solution vector must be 1 on all coordinates that has a 1
for any blue vector. But this means that the instance has a

solution if and only if the vector c⃗ that is 1 at all coordinates

in
⋃

v∈VB
1(v⃗) and otherwise 0 is a solution for I; this is

because setting the coordinates outside of
⋃

v∈VB
1(v⃗) to 1

only reduces the distance of c⃗ to vectors in VR.

We now show that BHC is already NP-complete for in-

stances with dcon(I) ≥ 4; in fact, this holds even when

restricted to the class of instances where dcon(I) is pre-

cisely 4.

Theorem 7. BHC is NP-complete even when restricted to

instances I satisfying dcon(I) = 4.

We prove Theorem 7 via a reduction from the CSP problem

using a constraint language Γ4 that is NP-hard by Schaefer’s

theorem (Schaefer, 1978; Chen, 2009). Γ4 is the Boolean

constraint language containing the following two Boolean

4-ary relations: the red relation RR containing all tuples

having at most 2 ones and the blue relation RB containing

all tuples having at least 3 ones.

Lemma 8. CSP(Γ4) is NP-complete.

With Lemma 8 in hand, we establish Theorem 7 by de-

signing a polynomial-time reduction from CSP(Γ4). We

note that, as mentioned already in the proof of Theorem 3,

inclusion in NP is trivial.

Proof Sketch for Theorem 7. Let I = (V,C) be the given

instance of CSP(Γ4). We denote by Cr/Cb the set of

all constraints c in C with R(c) = RR/R(c) = RB;

note that C = Cr ∪ Cb. We will construct the instance

I ′ = (VR, VB, d) of BHC as follows. First, we introduce

one coordinate dv for every variable v ∈ V . Moreover, for

every constraint c ∈ Cr, we introduce the red vector r⃗c that

is 1 on all coordinates that correspond to variables within

the scope of c and is 0 otherwise, i.e., r⃗c is 1 exactly on the

coordinates in { dv | v ∈ S(c) } and 0 at all other coordi-

nates. Similarly, for every constraint c ∈ Cb, we introduce

the blue vector b⃗c that is 1 on all coordinates that correspond

to variables within the scope of c and 0 otherwise.

Finally, we will introduce two gadgets which will enforce

that in every solution c⃗ of I ′, it holds that:

(1) there is a red vector r⃗ ∈ VR such that c⃗ is 1 on at least

two coordinates, where r⃗ is also 1; and

(2) there is a blue vector b⃗ ∈ VB such that c⃗ is not 1 on all

coordinates where b⃗ is 1.

Towards enforcing (1), we add two new blue vectors v⃗b1 and

v⃗b2 together with 8 new coordinates db1, . . . , d
b
8 such that v⃗b1

is 1 exactly at the coordinates db1, . . . , d
b
4 and v⃗b2 is 1 exactly

at the coordinates db5, . . . , d
b
8. Moreover, for every i and j

with 1 ≤ i < j ≤ 8, we introduce a red vector vrij that is

1 exactly at the coordinates ci and cj plus two additional

fresh coordinates.

Towards enforcing (2), we add one new blue vector u⃗b
i

together with four fresh coordinates ei1, . . . , e
i
4 for every

i with 1 ≤ i ≤ 4 such that u⃗b
i is 1 exactly on the coordinates

ei1, . . . , e
i
4. Finally, we add one new red vector u⃗r that is 1

exactly at the coordinates e11, e21, e31, and e41.

We can now complete the proof by showing the equiva-

lence between the original instance I of CSP(Γ4) and the

constructed instance I ′ of BHC.

5.2. Data Conciseness Plus |VR| or |VB|

Here we show that if in addition to the input conciseness

one also parameterizes by the minimum of the numbers

of red vectors and blue vectors, then BHC becomes fixed-

parameter tractable.

Theorem 9. BHC is fixed-parameter tractable parameter-

ized by dcon(I) + min{|VB|, |VR|}.

Proof. Let I = (VR, VB, d) be the given instance of BHC.

It suffices to show that BHC is fixed-parameter tractable

parameterized by dcon(I) + |VB| and also by dcon(I) +
|VR|. To avoid any confusion, we remark that it is well

known (and easy to see) that establishing fixed-parameter

tractability w.r.t. the sum α+β of two numbers is equivalent

to establishing fixed-parameter tractability w.r.t. the product

α · β of the same numbers.

The main observation behind the algorithm (for the case

dcon(I)+|VB|) is that the total number of coordinates, where

any blue vector can be 1 is at most |VB|dcon(I); let B =
⋃

b⃗∈VB
1(⃗b) be the set of all those coordinates. Since any

solution c⃗ can be assumed to be 0 at any coordinate outside

of B, we can solve I by “guessing” (i.e., branching to find) a

solution in time O(2dcon(I)|VB||V |d). More specifically, for

every subset B′ of the at most 2dcon(I)|VB| subsets of B, we

check in time O(|V |d) whether the vector c⃗ that is 1 exactly

at the coordinates in B′ is a solution for I . If one of those

vectors is a solution, then we output it, otherwise we can

correctly return that I is a No-instance.

The algorithm for the case where we parameterize by

dcon(I) + |VR| is almost identical with the only difference

6
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being the observation that the set R =
⋃

r⃗∈VR
1(r⃗) has size

at most 2dcon(I)|VR| and that any solution c⃗ can be assumed

to be 1 at every coordinate in R.

5.3. Explanation Concisness

Recall that EC-BHC is defined analogously as BHC, but

one is additionally given an integer econ and is asked for a

solution c⃗ for BHC with conciseness at most econ. Note that

a simple brute-force algorithm that enumerates all potential

solution vectors c⃗ with at most econ 1’s shows that EC-BHC

is in XP parameterized by econ.

Observation 10. EC-BHC can be solved in time

O(decon|V |d).

Therefore, it becomes natural to ask whether this can be

improved to fixed-parameter tractability. The following two

theorems show that this is unlikely to be the case, even if

we additionally assume |VB| = 1 or |VR| = 1.

Theorem 11. EC-BHC is W[2]-hard parameterized by the

conciseness econ of the solution even if |VR| = 1.

Proof Sketch. We provide a parameterized reduction from

the UNIFORM HITTING SET problem, which given a set U

of elements, a family F ⊆ 2U of subsets of U with |F | = ℓ

for every F ∈ F and an integer k, asks whether F has a

hitting set H ⊆ U of size at most k, i.e., H ∩ F ̸= ∅ for

every F ∈ F . UNIFORM HITTING SET is W[2]-complete

parameterized by k (Downey & Fellows, 2013).

Let I = (U,F , k) be an instance of UNIFORM HITTING

SET with sets of size ℓ. We construct an equivalent in-

stance I ′ = (VR, VB, d, econ) of EC-BHC as follows. We

set econ = k. For every u ∈ U , we introduce the (ele-

ment) coordinate du and for every i with 1 ≤ i ≤ ℓ, we

introduce the (dummy) coordinate d′i. Moreover, for every

F ∈ F , we add the blue vector b⃗F to VB, which is 1 on

all coordinates du with u ∈ F and 0 at all other coordi-

nates. Finally, we introduce the red vector r⃗ that is 1 at

all dummy coordinates d′i and 0 at all element coordinates.

This completes the construction of I ′, which can clearly be

achieved in polynomial-time.We can now show that I is a

Yes-instance of UNIFORM HITTING SET if and only if I ′ is

a Yes-instance of EC-BHC.

Theorem 12. EC-BHC is W[1]-hard parameterized by the

conciseness econ of the solution even if |VB| = 1.

Proof Sketch. We will provide a parameterized reduction

from the MULTI-COLORED INDEPENDENT SET problem,

which given an undirected graph G = (V,E), where V

is partitioned into k vertex sets V1, . . . , Vk with |Vi| = n

and G[Vi] is a clique and an integer k, asks whether G

has an independent set of size at least k; note that such an

independent set must contain exactly one vertex from each

Vi. MULTI-COLORED INDEPENDENT SET is well-known

to be W[1]-complete (Downey & Fellows, 2013).

Let I = (G, V1, . . . , Vk, k) be an instance of MULTI-

COLORED INDEPENDENT SET with |Vi| = n and V =
⋃k

i=1 Vi. We construct an equivalent instance I ′ =
(VR, VB, d, econ) of EC-BHC as follows. We set econ = k.

For every v ∈ V , we introduce the (vertex) coordinate

dv and for every i with 1 ≤ i ≤ nk − 2k + 1, we in-

troduce the (dummy) coordinate d′i. Moreover, for every

e = {u, v} ∈ E(G), we add the red vector r⃗e to VR, which

is 1 on the coordinates du and dv as well as the coordinate

d′i for every i with 1 ≤ i ≤ nk − 2k + 1. We also add

the red vector r⃗ to VR that is 1 at the coordinates d′i with

1 ≤ i ≤ nk − 2k + 1. Finally, we introduce the blue vector

b⃗ that is 1 at all vertex coordinates dv and 0 at all dummy co-

ordinates. This completes the construction of I ′, which can

clearly be achieved in polynomial-time. We can now show

that I is a Yes-instance of MULTI-COLORED INDEPENDENT

SET if and only if I ′ is a Yes-instance of EC-BHC.

5.4. Data and Explanation Conciseness

As our final result in this section, we show that EC-BHC is

fixed-parameter tractable when parameterized by data and

explanation conciseness combined.

Theorem 13. EC-BHC can be solved in time

O(dcon(I)econ|V |d) and is therefore fixed-parameter

tractable parameterized by econ + dcon.

Proof. Let I = (VR, VB, d, econ) with V = VR ∪ VB be the

given instance of EC-BHC. The main idea behind the algo-

rithm is as follows. We start by initializing the solution vec-

tor c⃗ to the all-zero vector. We then check in time O(|V |d)
whether c⃗ is already a solution. If so, we are done. Other-

wise, there must exist a red vector r⃗ ∈ VR and a blue vector

b⃗ ∈ VB such that δ(r⃗, c⃗) ≤ δ(⃗b, c⃗) and therefore: |1(r⃗)| +

|1(c⃗)|−2|1(r⃗)∩1(c⃗)| ≤ |1(⃗b)|+ |1(c⃗)|−2|1(⃗b)∩1(c⃗)|, or

in short |1(r⃗)| − 2|1(r⃗)∩ 1(c⃗)| ≤ |1(⃗b)| − 2|1(⃗b)∩ 1(c⃗)|. It

follows that any vector c⃗′ with 1(c⃗) ⊆ 1(c⃗′) and δ(r⃗, c⃗′) >

δ(⃗b, c⃗′) has to be obtained from c⃗ by flipping at least one

coordinate in B = 1(⃗b) \ (1(r⃗) ∪ 1(c⃗)) from 0 to 1; note

that |B| ≤ dcon(I). We can therefore branch on the coordi-

nates of B, and for every such choice b ∈ B, we continue

with the vector c⃗′ obtained from c⃗ after flipping the coor-

dinate b from 0 to 1. We stop if either we have reached

a solution or if the number of 1’s in the current vector c⃗

exceeds the conciseness upper bound econ. In other words,

we can solve the problem using a branching algorithm that

has at most |1(⃗b)| ≤ dcon(I) many choices per branch, uses

time O(|V |d) per search-tree node, and makes at most econ

branching decisions before it stops. Therefore, the run-time

of the algorithm is O(dcon(I)econ|V |d).

7
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6. A Treewidth-Based Algorithm for BHC

Let the incidence graph GI of an instance I = (VR, VB, d)
of BHC be the bipartite graph defined as follows. First of

all, V (GI) = VR ∪ VB ∪ [d]. As for the edge set, there is

an edge v⃗c ∈ E(GI) between a vector v⃗ ∈ VR ∪ VB and

a coordinate c ∈ [d] if and only if c ∈ 1(v⃗). We identify

the vertices of GI with the vectors in VR ∪ VB and the

coordinates in [d]. That is, for a set of vertices X in GI , we

often say “vectors in X” or “coordinates in X” to mean the

vectors/the coordinates associated with the vertices in X .

This section is dedicated to proving the following technical

theorem, which implies all the claimed tractability results

concerning the treewidth of the incidence graph:

Theorem 14. Given an instance I = (VR, VB, d) of

BHC and a nice tree-decomposition T = (T, χ) of

GI of width w, there is an algorithm solving I in time

(2min{econmin, dcon(I)})2w+2 · (|V | + d)O(1), where

econmin is the minimum conciseness of any center. More-

over, if I is Yes-instance, then the algorithm outputs a center

with conciseness econmin and minimum radius among all

such centers.

Proof Sketch. We begin by enumerating each choice of

center conciseness λ = 0, 1, 2, . . . , d and radius r =
0, 1, 2, . . . , d, and aim to construct a solution with exactly

this conciseness and radius. The algorithm is a bottom-up

dynamic programming along the nice tree-decomposition

T . We first describe the records that we need to com-

pute for every node t of T . Given the description of the

records, we need to show that for each of the node types

(i.e., leaf/introduce/forget/join), we can compute the records

from the records of their children. Finally, we need to also

show that given the records for the root node of the tree-

decomposition, we can decide whether I is a Yes-instance

and if so output a center vector c⃗ such that |1(c⃗)| = λ,

VB ⊆ B(c⃗, r), and VR ∩B(c⃗, r) = ∅.

We begin by describing the record Γt for each node t ∈ T .

We can think about Γt as a map that maps a tuple C =
(cpast, cfuture, Cbag, Vbag) ∈ N×N× 2χ(t) ×N

|χ(t)| to either

a vector c⃗t = {0, 1}d with con(c⃗t) = λ or ⊥. The intuition

behind the record is that the tuple (cpast, cfuture, Cbag, Vbag) is

mapped to an arbitrary vector c⃗t such that

1. cpast is the number of non-zero coordinates of c⃗t on

already “forgotten” coordinates, i.e., cpast = |1(c⃗t) ∩
χ(Tt) \ χ(t)|;

2. cfuture is the number of non-zero coordinates of c⃗t on

coordinates that are not yet introduced, i.e., cfuture =
|1(c⃗t) ∩ [d] \ χ(Tt)|;

3. Cbag = 1(c⃗t) ∩ χ(t);
4. Vbag contains, for every vector v⃗ ∈ χ(t), the number

of ones on ”forgotten” coordinates in 1(c⃗t), that is

Vbag(v⃗) = |1(c⃗t) ∩ 1(v⃗) ∩ (χ(Tt) \ χ(t))|;

5. no forgotten red vector is at distance at most r from c⃗t,

i.e., VR ∩ (χ(Tt) \ χ(t)) ∩B(c⃗t, r) = ∅; and

6. all forgotten blue vectors are at distance at most r from

c⃗t, i.e., (VB ∩ (χ(Tt) \ χ(t))) ⊆ B(c⃗t, r).

We say that a vector c⃗t that satisfies all the above properties

is compatible with (cpast, cfuture, Cbag, Vbag) for t. Moreover,

(cpast, cfuture, Cbag, Vbag) is mapped to ⊥ if and only if no vec-

tor in {0, 1}d is compatible with (cpast, cfuture, Cbag, Vbag).

First note that if t is the root node, then χ(t) is empty and

χ(Tt) \ χ(t) contains all vectors in the instance. Hence, if

any tuple is mapped to a vector in the root, then the vector

is a solution by properties 5 and 6 above.

We say that a tuple C = (cpast, cfuture, Cbag, Vbag) is achiev-

able for Γt if the following holds:

• cpast + cfuture + |Cbag| = λ; and

• for all vectors v⃗ ∈ χ(t): Vbag(v⃗) ≤ min{λ, |1(v⃗) ∩
(χ(Tt) \ χ(t))|}.

Note that if C is not achievable for Γt, then no vector with

conciseness λ can be compatible with C. Hence, the table Γt

will only contain the achievable tuples for Γt. We observe

that |Γt| ≤ λ2 ·2χ(t) · (min{λ, dcon(I)})|χ(t)|. We can now

compute the records in a leaf-to-root fashion at each of the

four different types of nodes in T .

Combining Theorem 14 and Proposition 2, we get the fol-

lowing three corollaries:

Corollary 15. BHC and EC-BHC are in XP parameter-

ized by tw(GI).

Corollary 16. EC-BHC is fixed-parameter tractable pa-

rameterized by tw(GI) + econ.

Corollary 17. BHC and EC-BHC are fixed-parameter

tractable parameterized by tw(GI) + dcon(I).

7. Concluding Remarks

In this paper, we studied hypersphere classification prob-

lems from a parameterized complexity perspective, focus-

ing strongly on conciseness. We considered conciseness in

terms of the sought-after explanation and in terms of the

feature vectors in the training data. Our algorithmic and

lower-bound results draw a comprehensive complexity map

of hypersphere classification. This map pinpoints the exact

complexity of the various combinations of parameters which

can either measure the structural properties of the input data

or the conciseness of data or explanations.

All our lower and upper complexity bounds are essentially

tight, with a single exception: While we show that hyper-

sphere classification without conciseness restrictions is XP-

tractable when parameterized by treewidth alone, whether

the problem is fixed-parameter tractable or W[1]-hard under
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this parameterization is left open.

Finally, we remark that all our results carry over to the

case where one aims to find a minimum-radius separating

hypersphere (instead of merely deciding whether one exists)

that classifies the training data. This problem has also been

extensively studied (Cooper, 1962; Wang et al., 2007; 2005;

Astorino & Gaudioso, 2009; Astorino et al., 2016).
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Frank, A. and Tardos, É. An application of simultaneous

diophantine approximation in combinatorial optimization.

Combinatorica, 7(1):49–65, 1987.

Ganian, R. and Korchemna, V. The complexity of bayesian

network learning: Revisiting the superstructure. In Pro-

ceedings of the Thirty-Fourth Conference on Neural Infor-

mation Processing Systems NeurIPS, pp. 430–442, 2021.

Ganian, R., Kanj, I. A., Ordyniak, S., and Szeider, S. Param-

eterized algorithms for the matrix completion problem.

In Proceedings of the 35th International Conference on

Machine Learning (ICML), volume 80, pp. 1642–1651,

2018.

Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., and

Simonov, K. The complexity of k-means clustering when

little is known. In International Conference on Machine

Learning (ICML), volume 162, pp. 6960–6987, 2022.
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