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The translation to clinical practice of agents or techniques that protect 

against the effect of ischaemia–reperfusion (IR) injury remains one of 

the most challenging areas of research in the field of cardiovascular 

medicine.1–4 This is particularly the case when IR injury follows 

revascularisation for acute MI (AMI). The publication of the combined 

Effect of Remote Ischaemic Conditioning on Clinical Outcomes in ST 

Elevation Myocardial Infarction Patients Undergoing Primary 

Percutaneous Coronary Intervention (CONDI2/ERIC-PPCI) trial, which 

showed that remote ischaemic conditioning (RIC) did not reduce infarct 

size or improve cardiovascular outcomes, was a blow to the most 

promising cardioprotective target in the last few decades.5

This short article will set the scene for this trial, review the results and 

conclusions of the study, and then consider why the field of 

cardioprotection has suffered so many disappointing failures.

The Need for Cardioprotection
Ischaemic heart disease remains the leading non-infective cause of 

morbidity and mortality in the world. Despite the advances in primary 

percutaneous coronary intervention (PPCI) during AMI, studies have 

suggested that up to 50% of the final infarcted territory is viable at the 

point of reperfusion.6,7 This suggests that continuing injury after, and 

attributable to, reperfusion occurs in the ischaemic myocardium. A 

therapy that consistently reduces the infarct size in this setting would 

have the potential to improve survival and reduce morbidity associated 

with AMI. IR injury is associated with recurrent ischaemia in the setting 

of no-reflow syndrome and coronary microvascular injury, heart failure 

secondary to impaired ventricular function, and an increased scar 

burden, which is associated with increased arrhythmia. Although timely 

reperfusion can limit these consequences, many patients are several 

hours into their AMI at the time of presentation. Mechanisms of 

myocardial IR injury are addressed in detail in other reviews.8,9

Ischaemic Conditioning
The history of the field of cardioprotection stretches back more than 30 

years, with extensive literature that is well reviewed elsewhere.10,11 In 

summary, ischaemic preconditioning was first demonstrated by Murry 

et al. when they discovered that a period of transient occlusion, 

followed reperfusion, of a canine coronary artery reduced infarct size 

when the same vessel was later subjected to a more prolonged period 

of ischaemia and reperfusion.12 This effect occurred even when the 

brief period of IR occurred in a different vascular bed, such as a different 

coronary artery, or a remote bed, such as a limb.13 This became known 

as remote ischaemic preconditioning. It was shown to reduce biomarker 

release and improve long-term outcomes when performed during 

elective percutaneous coronary intervention.14

Remote ischaemic preconditioning has a number of characteristics that 

need to be exploited for it to be effective. It is an all or nothing effect, 

likely reflecting a steep dose–response curve, with a trigger threshold 
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required to achieve protection.15 Both the number of cycles and their 

duration have been shown to be important in achieving protection.16 In 

trials where an adequate ‘dose’, usually a number of cycles of ischaemia 

and reperfusion, has not been achieved, there has been no 

cardioprotection. Furthermore, the protection is short-lived, with a 

window of only a few hours during which time the myocardium is 

protected. A second window of protection caused by transcriptional 

changes in the nucleus has also been investigated.17–20

Since remote ischaemic preconditioning was difficult to deliver prior to 

AMI in the clinical setting due to its unpredictable nature, other studies 

have considered whether postconditioning after the event, or delivering 

the conditioning stimulus during ischaemia, prior to reperfusion is of 

benefit. Zhao et al. demonstrated that a postconditioning stimulus, 

administered in the moments after reperfusion, was effective in 

reducing infarct size for patients receiving PPCI for AMI.21 This 

observation suggested that conditioning may be an adjunct to PPCI, 

limiting the impact of IR injury. While this study used a staggered 

reperfusion technique, others have demonstrated that RIC could 

protect the myocardium.22,23

A number of small to medium-sized trials have attempted to confirm 

that RIC trials have shown benefits on surrogate markers for clinical 

outcome, such as infarct size and the myocardial salvage index.24–31 

Others have confirmed benefits in clinical endpoints, such as major 

adverse cardiovascular and cerebrovascular events or mortality.32–34 

More details regarding these randomised trials of ischaemic 

conditioning are shown in Table 1. Despite the abundance of small-

scale studies demonstrating improvement, the practice of RIC did not 

translate into a change in clinical practice within interventional 

cardiology. Ischaemic conditioning in other contexts had been beset by 

a failure to translate into benefit in the largest-scale trials. For example, 

the large Remote Ischaemic Preconditioning for Heart Surgery 

(RIPHeart) and Effect of Remote Preconditioning on Clinical Outcomes 

in Patients Undergoing Coronary Artery Bypass Graft Surgery (ERRICA) 

trials of ischemic conditioning prior to and during elective cardiac 

surgery with cardiopulmonary bypass did not show any evidence of 

improved outcomes.35,36

After these studies, a number of editorials suggested that the failures 

of translation in these studies were at least partially related to the 

effect of the anaesthetic agent, propofol, on the intracellular pathways 

of cardioprotection, as shown by Kottenberg et al., together with trial 

protocols that failed to address the populations most likely to benefit 

from RIC.37–39 Failure to address the biology of cardioprotection has 

been behind the difficulty in translating cardioprotective interventions 

into clinical practice for a long time (Figure 1).1,40–42

The CONDI2/ERIC-PPCI Trial
The CONDI2/ERIC-PPCI trial was a combination of two trials with 

harmonised protocols to carry out single-blind RIC during ST-elevation 

MI (STEMI). The trial randomised 5,401 patients at 33 centres to receive 

either ischaemic conditioning using an automated remote ischaemic 

conditioning device, or a sham procedure. Some centres offered 

standard care rather than the sham. The primary endpoint was 

cardiovascular death or hospitalisation for heart failure at 12 months. 

Secondary endpoints included major adverse cardiovascular and 

cerebrovascular events, and infarct size measured using the area 

under the curve for high-sensitivity troponin T.

The trial found that there were no clinically meaningful differences 

between the RIC group and the control group. The primary outcome 

occurred in 8.6% of the control group and 9.4% of the RIC group 

(treatment effect 1.10, 95% CI [0.91–1.32]; p=0.32) with no significant 

difference in biomarker-assessed infarct size. The cardiac MRI substudy 

is still awaited, but regardless of its findings it is unlikely to provide 

evidence that RIC offers substantial clinical benefit. Other editorial and 

opinion pieces have concluded that the low overall mortality was the 

reason for the failure of the study.43 Certainly, the study was appropriately 

powered for the expected event rate, but one possibility is that the 

patients were simply not unwell enough to see a significant benefit.

These findings are at odds with those of the previously published 

investigations discussed above. However, this study was adequately 

powered to provide a definitive answer, and evaluation of 

the previous literature now needs to be placed in the context of 

this study. Other studies were substantially smaller, with low 

numbers of events, potentially leading to type 1 error. Furthermore, 

publication bias may have favoured those RIC studies with positive 

results. The disappointing results of this trial have left researchers in 

the field looking for alternative targets that can be used to mitigate the 

impact of IR injury.

Alternative Targets for Cardioprotection
A number of potential pharmacological targets have presented 

themselves as alternatives to RIC. These include agents that interact 

with the cascade of biochemical and cellular changes that lead to cell 

death. A comprehensive review of all targets that have been investigated 

is beyond the scope of this review, but many of these have failed to 

translate to clinical practice, because trials have ignored the biology of 

cardioprotection and benefit in vitro, or small animal studies have not 

been replicated in human trials. Table 2 offers some of the reasons for 

the failure of clinical trials.

Adenosine
Binding of the adenosine receptor prior to ischaemia has been shown 

to provide cardioprotection and reduce infarct size. However, 

whether this benefit occurs if adenosine is administered after the onset 

of ischaemia is less clear. While some clinical studies have 

shown a reduction in infarct size and improvement in clinical 

outcome with adenosine, others have been neutral.44–47 These trials 

have been characterised by variability in dose, timing and route of 

Figure 1: The Window of Cardioprotection

The opportunities for cardioprotection around ischaemia and reperfusion are shown. The time 
in which effective therapy can be delivered after reperfusion with percutaneous coronary 
intervention is brief. After this time the window in which patients will benefit is closed.  
GLP-1 = glucagon-like peptide-1; PPCI = primary percutaneous coronary intervention;  
RA = receptor agonist; RIC = remote ischaemic conditioning. Source: Giblett et al. 2014.42 
Adapted with permission from Elsevier.

Time

O
ns

et
P

re
se

nt
at

io
n

Before PPCI centre
Mild hypothermia
RIC
Oral antiplatelets

W
in

d
o

w
 c

lo
se

dAt PPCI centre
RIC
GLP-1 RA
Cangrelor
Beta blockade

R
ep

er
fu

si
o

n 
w

it
h 

P
P

C
I

After the
window is closed,
cardioprotection
is unlikely to be

effective

After reperfusion
Post-conditioning

Ischaemia Reperfusion



Cardioprotection for Acute MI

INTERVENTIONAL CARDIOLOGY REVIEW

administration. A recent meta-analysis suggests there may be a benefit 

for intracoronary adenosine in reducing the incidence of heart failure 

after AMI.48

Glucagon-like Peptide-1
Glucagon-like peptide-1 (GLP-1) is an incretin hormone used as a target 

in the treatment of type 2 diabetes. GLP-1 receptors may provide 

cardioprotection through activation of intracellular pathways, such as 

the reperfusion injury survival kinase and survivor activating factor 

enhancement pathways.49,50 While these pathways share components 

with the pathways of ischaemic conditioning, they are not identical.51 

GLP-1 receptor agonists have been shown to reduce the 

frequency of major adverse cardiovascular and cerebrovascular events 

in high-risk patients with diabetes in some larger cardiovascular 

outcome studies, improve myocardial function after non-lethal IR injury, 

as well as reducing infarct size and improving left ventricular function 

after PPCI in small proof of concept trials.52–57

However, not all trials have shown such benefit. GLP-1 agonists did not 

reduce the frequency of major adverse cardiovascular and 

cerebrovascular events following administration to diabetes patients 

after AMI, nor did they reduce periprocedural MI or cardiac troponin 

release during elective percutaneous coronary intervention.58,59 This 

conflicting evidence suggests the need for a larger and more definitive 

trial to establish benefit

Beta-blockers and Ivabradine
Early administration of beta-blockers has been considered an attractive 

cardioprotective strategy, since cardiologists are familiar with 

administering these agents in this patient group, making translation to 

clinical practice easier if effective. However, there are discrepancies 

between trials of the beta-blocker metoprolol during STEMI. In the 

Effect of Metoprolol in Cardioprotection During an Acute Myocardial 

Infarction (METOCARD-CNIC) study, a large dose of IV metoprolol 

reduced infarct size when administered before reperfusion, whereas in 

the Early Beta-blocker Administration Before Reperfusion in Patients 

with ST-elevation Myocardial Infarction (EARLY-BAMI) trial, a smaller 

dose given to a less selected population had no effect on infarct 

size.60,61 Earlier administration to metoprolol was associated with 

reduced infarct size in a post hoc analysis of METOCARD-CNIC.61 

Furthermore, ivabradine, which acts at the sinoatrial node to reduce 

heart rate, reduced infarct size in a porcine model of IR injury, but when 

given to humans up to 1 hour after PPCI, no benefit was seen.62,63 This 

was likely too late to prevent IR injury.

Dose-finding and timing studies are not routinely undertaken in humans 

in the field of cardioprotection, often leaving more questions than 

answers in the search for protection. The interpretation of these larger 

studies has been confounded by the absence of appropriate early 

studies establishing these characteristics.

Cyclosporine
Cyclosporine A prevents opening the mitochondrial permeability 

transition pore, which is part of the final pathway of cell death in 

reperfusion injury.64 Early trials showed apparent benefit in small 

numbers of patients treated with cyclosporine.65,66 Disappointingly, 

however, the much larger Cyclosporine to Improve Clinical Outcome in 

ST-elevation Myocardial Infarction Patients (CIRCUS) trial failed to show 

any benefit in terms of infarct size or clinical outcomes in patients with 

STEMI.67 This failure has been attributed to a number of different 

factors, including an increased length of ischemic time, a difference in 

the formulation of cyclosporine A and increased use of newer 

antiplatelet agents.9 Nonetheless, cyclosporine A has fallen at the same 

stage of translation as RIC. The definitive randomised control trial was 

neutral in outcome. Other mitochondrial permeability transition pore 

inhibitors have had mixed or neutral results in small proof of concept 

trials or animal studies.68 The mitochondrial permeability transition 

pore may remain a target for cardioprotection with the right agent.

Table 1: The Flaws of Cardioprotective Trials

Flaw Explanation

Timing •	 Must be administered during ischaemia or first moments of reperfusion to be effective

•	 Intervention administered after cardioprotective window is closed will not reduce infarct size

•	 For some interventions, however biologically attractive, timing may be impossible to practically achieve in the setting of AMI

Dose •	 If the intervention does not achieve the required dose in the ischaemic tissue, it will not be effective

•	 Careful decisions regarding route and timing of administration are required to ensure biological effects can be exploited

•	 Animal and small-scale human dose finding studies will aid the design of larger scale trials

Patient selection •	 Patients with both too little ischaemia and too long an ischaemic time are less likely to benefit from cardioprotective interventions

•	 Heterogenous groups included in trials (older people and people with diabetes) may have different thresholds of resistance to 
cardioprotection

•	 Optimising patient recruitment by including more high-risk patients may increase the chance of demonstrating benefit, as the cost 
of reduced applicability of the study to current practice

Animal studies •	 Interventions with inconsistent effects in animal models need careful consideration before application to large-scale human trials

•	 Attention to biology demonstrated in these studies, including evidence in larger animal models with physiology more closely 
related to humans, will improve trial design

Concurrent medication •	 Exclusion of patients on medications likely to reduce the effectiveness of the intervention (such as propofol in CABG RIC trials) may 
increase the chance of demonstrating benefit

Endpoints •	 Inconsistent use of endpoints between trials make comparison more challenging

•	 Biomarker endpoints may be consistently reduced with cardioprotective interventions, but these may be of little clinical 
consequence

•	 Care must be taken when infarct size is corrected for area at risk, particularly when estimation of area at risk can be affected by 
the intervention itself

AMI = acute MI; CABG = coronary artery bypass graft; RIC = remote ischaemic conditioning.
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P2Y12 inhibitors 
Yang et al. first demonstrated a direct cardioprotective effect with the 

P2Y12 receptor antagonist cangrelor prior to reperfusion, and showed 

a 30% reduction in MI size in rabbits.69 Crucially, cangrelor was only 

effective at limiting MI size if it was administered prior to reperfusion. 

Cangrelor-mediated cardioprotection (but not platelet inhibition) was 

abrogated by pharmacological inhibitors of phosphoinositide 3-kinase 

and mitogen-activated protein kinase kinase 1/2, both known mediators 

of cardioprotection, suggesting the protective effect of cangrelor was 

independent of antiplatelet effects. 

The cardioprotective effects of P2Y12 inhibitors have also been shown 

using pretreatment with oral ticagrelor in rats, and cangrelor in 

primates.70,71 Furthermore, pretreatment with ticagrelor was also shown 

to reduce MI size in a porcine MI model.72 The Platelet Inhibition to 

Target Reperfusion Injury (PITRI) trial is currently ongoing, and is 

evaluating whether cangrelor administered prior to reperfusion would 

reduce reperfusion injury, as assessed by CMR in 210 patients 

(NCT03102723).73 

Supersaturated Oxygen Therapy
Delivery of supersaturated oxygen with a partial pressure of 750–

1,000 mmHg immediately after reperfusion has been shown to reduce 

anterior myocardial infarct size in the Acute Myocardial Infarction with 

Hyperoxemic Therapy II (AMIHOT-II) trial.74 Furthermore, the IC-HOT 

study demonstrated that it was feasible for supersaturated oxygen to 

be delivered directly to the left main stem during STEMI.75 While the 

TherOx system has been approved by the Food and Drug Administration 

for treatment of AMI, randomised trials have only been conducted in 

relatively small numbers of patients. Similar results have been seen for 

other cardioprotective interventions, which have proven to be 

ineffective in larger or less well selected trials. It is worth noting that in 

AMIHOT-II, only 317 patients out of 2,517 screened with STEMI were 

enrolled, and most of these failures were due to failure to meet 

inclusion criteria. It is uncertain how generalisable this data is to the 

unselected STEMI population. Larger trials in this area are required.

How Can We Do Better with Future 
Targets for Cardioprotection?
Translation in this field has proved beyond challenging. Despite an 

enormous investment of time, money and resources in the search for 

an adjunct to coronary revascularisation to prevent IR injury, no 

candidate therapy has become a part of the armamentarium of the 

interventional cardiologist. It is more than 30 years since the discovery 

of ischaemia preconditioning, but we still wait. Criticisms of decisions 

taken in trials are not new and have been repeated many times. 

Nonetheless, it is worth rehearsing some of the challenges of study 

design, which may provide better direction for future research.

Failure to pay attention to the biology of IR injury, cardioprotection 

and the specific cardioprotective agents under investigation is a key 

factor in many studies. No agent will be effective at reducing infarct 

size if it is delivered too late, or in too small a dose to be effective. 

Table 2: Randomised Trials of Ischaemic Conditioning in Primary Percutaneous Coronary Intervention

Study n Endpoints Results Comments

Botker et al. 201024 333 Myocardial salvage index (MPI) Mean salvage index 0.69 (RIC) versus 0.57 (control), p=0.03RIC

Lonborg et al. 201025 118 Infarct size (CMR) 17% reduction in infarct size as %LV with PostC PostC

Sorrenson et al. 201026 76 Infarct size (CMR) No difference in infarct size for overall group, post hoc 
analysis suggests benefit in patients with large area at risk

PostC

Freixa et al. 201227 79 Myocardial salvage index (CMR) Lower myocardial salvage index in PostC 
group (18.9 ± 27.4 versus 30.9 ± 20.5%, 
p=0.038). No significant difference in infarct size 
or LV ejection fraction

PostC

Zhao et al. 201228 62 LV ejection fraction (Echo) No difference between PostC and control at 
1 week. Improved LV ejection fraction at 6-month 
follow-up in PostC group

PostC

Thuny et al. 201229 50 Infarct size (CMR) Reduced infarct size after PostC (13 ± 7 g/m2 versus  
21 ± 14 g/m2; p=0.01). Note PostC also reduced 
myocardial oedema on CMR, suggesting this may not be 
reliable for area-at-risk calculation

PostC. Note: PostC also reduced 
myocardial oedema on CMR,  
suggesting this may not be reliable  
for area-at-risk calculation

Hahn et al. 201330 
(POST)

700 ST segment resolution at 30 
minutes

No difference between PostC and control in ST segment 
resolution at 30 minutes or MACE 

PostC

Sloth et al. 201432 251 MACE Reduced MACE events with HR 0.49 
(95% CI [0.27–0.89]); p=0.018

All-cause mortality also improved in  
per protocol analysis

White et al. 201531 83 Infarct size (CMR) Reduction in infarct size by 27% (p<0.01) RIC. Also reduced myocardial oedema, 
and myocardial salvage index

Gaspar et al. 201833

(RIC STEMI)
448 Cardiovascular death or heart 

failure hospitalisation at  
long-term follow-up

Reduction in clinical events of composite endpoint 
at follow up (HR 0.35, 95% CI [0.15–0.78])

RIC

Stiermaier et al. 201934 696 MACE Combined RIC and PostC reduced events 
compared to control and PostC alone

1:1:1 randomisation to control, PostC 
alone, or PostC and RIC

Hausenloy et al. 20195 

(CONDI2/ERIC-PPCI)
5,401 Cardiovascular death or heart 

failure hospitalisation at 
12 months

No difference between RIC and control  
(HR 1.10, 95% CI [0.91–1.32], p=0.32)

RIC

CMR = cardiac magnetic resonance; LV = left ventricle; MACE = major adverse cardiovascular events; MPI = myocardial perfusion imaging; PostC = postconditioning; RIC = remote ischaemic 
conditioning; STEMI = ST-elevation MI.
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Small-scale human trials can provide much information in this regard, 

and ideally dose and timing studies should be undertaken with 

appropriately powered surrogates for benefit, before proceeding to 

larger human studies. Careful selection of patients in both small and 

large studies is also key to success. Inclusion of patients who will not 

benefit from the intervention will reduce the power of the study to 

show benefit. This could include patients with both too little ischaemia 

or too long an ischaemic time. Enriching the cohort with patients 

likely to benefit, such as those with anterior infarcts or with moderate 

ischaemic times, will increase the power of the study to show benefit, 

although this may come at the cost of generalisability in the real world 

of clinical practice.

Post hoc analysis of the Botker et al. study suggests that RIC was 

effective in patients with a delayed transfer to a PPCI centre while not 

benefiting those who received more rapid reperfusion.24,76 Furthermore, 

inclusion of older patients, or patients with diabetes, may require 

adjustment of the dosing regimens to increase the likelihood of benefit.

The selection of a single target has been a consistent theme in trials of 

cardioprotection. It is possible that an effective reduction in infarct size 

depends upon accessing multiple pathways of cardioprotection 

simultaneously.77 There may be additive and synergistic effects between 

interrelated pathways, or it may be that in a heterogenous population 

presenting with AMI, different pathways will provide more or less 

effective cardioprotection for a given individual, depending upon 

comorbidities and other patient factors. A large number of animal 

models have been successfully tested, but there have been relatively 

few human trials of this approach reported. Combination Therapy in 

Myocardial Infarction (COMBAT-MI) is an example of a clinical trial 

combining RIC with exenatide infusion to evaluate whether combination 

therapy is more effective (NCT02404376).

Endpoint selection is a key factor in the success of translational studies.9 

Assessment of infarct size using biomarker endpoints, such as cardiac 

troponin, are very sensitive, but unless high thresholds are used, small 

changes in these may be of limited clinical relevance, particularly in the 

context of periprocedural MI.78 Cardiomyocyte-specific creatine kinase 

has been shown to be the most robust biomarker for quantification of 

infarct size, but in clinical practice it has largely been replaced with 

cardiac troponin, which limits its availability for multicentre clinical 

trials.79 Cardiac MRI is an excellent method to quantify infarct size and 

assess cardioprotective strategies used during AMI.80,81 The more 

sensitive myocardial salvage index can be used to increase the power of 

the study, but remains controversial, as T2-weighted imaging is used to 

delineate the oedema-based area at risk.82 The myocardial oedema may 

be impacted by both the timing and nature of the intervention, and the 

timing of the MRI.29,31

New late gadolinium after AMI is a more robust tool to investigate the 

impact of cardioprotection in phase II studies.83 Assessment of the 

microcirculation may also prove to be important. Some retrospective 

evidence suggests that therapies improving microcirculatory function 

after MI may improve clinical outcome independently of the infarct 

size.84 This requires further investigation, and these endpoints 

investigated prospectively.

Clinical endpoints are important, but should reflect the biology of 

cardioprotection. Hard endpoints, such as cardiovascular mortality, are 

important. Endpoints, such as heart failure admission or the need for 

escalation in heart failure medication, are important, as this is the 

syndrome most likely to be impacted by therapies that reduce infarct 

size. They need to be carefully defined, as these are softer clinical 

endpoints that are vulnerable to a number of biases. Endpoints 

commonly used in trials of percutaneous coronary intervention 

strategies and stents, such as the need for repeat revascularisation, 

reduce the power of these studies to show benefit, as they are unlikely 

to be affected by the cardioprotective intervention.

Conclusion
The CONDI2/ERIC-PPCI study was a well-run clinical trial of a potentially 

valuable therapy. Its neutral result leaves behind serious questions for 

the field of cardioprotection; the next avenue that should be pursued in 

a large-scale trial is not altogether clear. The development of 

collaborative groups, such as the European Society of Cardiology 

Working Group on Cellular Biology of the Heart and the EU-

CARDIOPROTECTION COST Action, to push the field forward is welcome, 

and is likely to produce more fruitful translation to clinical practice. 
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