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a b s t r a c t

This paper proposes a simple and general strategic approach for analyzing bankruptcy problems. We
construct three strategic bargaining games and show that they yield unique subgame perfect equilib-
rium (SPE) outcomes that coincide with the allocations given by the three prominent solution concepts,
the constrained equal awards rule, the constrained equal losses rule and the Talmud rule, respectively.
We also discuss the robustness of the result in the presence of certain incomplete information. The
approach can be readily extended to study alternative solutions for bankruptcy problems or other
settings such as surplus sharing problems, and is further enriched by considering a voting stage. Central
to all these bargaining protocols is an extended and context-fitting ‘‘divide-and-choose’’ mechanism.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The seminal paper of Aumann and Maschler (1985) solves
a long-standing problem that has puzzled researchers for 2000
years. It discovers the logic behind the Talmud rule for bankruptcy
problems in relation to the Nucleolus solution (Schmeidler, 1969)
for TU (transferable utility) games. This has substantially de-
veloped our understanding about how to resolve problems of
conflicting claims.

In a bankruptcy problem (or claim problem), every creditor
has a certain claim over a perfectly divisible endowment which
is insufficient to grant all the claims.1 The bankruptcy prob-
lem captures the essence of most rationing situations, such as
the execution of a will to disburse the insufficient property to
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1 We follow Thomson (2015) and use endowment to describe the total

resource to be divided.

the beneficiaries, the distribution of the liquidation of a firm
among its creditors, the collection of a certain amount of tax
among tax payers with different responsibilities, etc. Such prob-
lems, arising from the Talmud, are first studied by O’Neill (1982)
and Aumann and Maschler (1985). Since then the literature has
flourished along an axiomatic perspective to study the fair alloca-
tion rules including the constrained equal awards rule (CEA), the
constrained equal losses rule (CEL), as well as the Talmud rule
(T). A comprehensive survey is provided by Thomson (2003) and
further updated in Thomson (2015).

Such problems and the related rules have general and wider
implications, even nowadays for contemporary issues. In 2020, as
a measure to support firms and workers during the pandemic, the
UK government introduced a scheme that pays 80% of salary for
staff who are kept on by their employers, covering wages of up
to £2500 a month. For the current energy crisis, many countries
introduced measures to provide subsidies to families according
to certain income levels. These are all applications or in the same
spirit of, e.g., the constrained equal awards rule.

In this paper, we provide a general non-cooperative approach
to bankruptcy problems, with the aim to better understand the
strategic elements underlying those axiomatically justified al-
location rules. It offers a way to address the problem where
centralized methods are not applicable, e.g., when the social
planner is lack of certain information. Hence, we provide the
arbitrator of a bankruptcy situation decentralized and easy-to-
implement procedures such that the players (or claimants) can
resolve their disputes on the sharing of the underlying endow-
ment through bargaining among themselves. We first propose

https://doi.org/10.1016/j.jmateco.2023.102862
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two bargaining games whose unique subgame perfect equilib-
rium (SPE) outcomes coincide with the CEA and CEL allocations,
respectively. Built upon these two games, we construct a third
one that yields the Talmud allocation as the unique SPE out-
come. We also discuss other variations that lead to alternative
bankruptcy rules.

The strategic analysis of bankruptcy problems is relatively less
explored, although a non-cooperative formulation was proposed
as early as in the seminal article by O’Neill (1982). Chun (1989)
defined a game where players propose order preservative rules
and the limit point of a process of adjustment coincides with the
CEA allocation. Herrero (2003) studied the dual game of the above
mechanism that reaches the CEL allocation as the unique Nash
equilibrium outcome. García-Jurado et al. (2006) implemented a
range of bankruptcy rules in Nash equilibrium. Different from
the above approaches that focus on Nash implementation, the
current paper designs strategic games consisting of multi-stages
and obtains the allocations prescribed by the respective rules by
subgame perfect implementation. Sonn (1992) studied a game of
demand, in a modified alternating offer bargaining game style,
where the SPE outcome converges to the CEA allocation when the
discount factor goes to 1. Different from the above approach, the
games proposed in the current paper reach the CEA and CEL in
SPE, respectively, rather than the limit point of the procedures.
It allows the players to achieve the desirable allocation in finite
steps.

As for the non-cooperative mechanisms for the Talmud al-
location, important contributions were made by Serrano (1995)
and Dagan et al. (1997). Hu et al. (2012, 2018) provide strategic
justifications of the constrained equal benefit rule and the nucleo-
lus in the nested-cost sharing problem, underlining the important
role that the consistency properties play in strategically justifying
the rules of related problems. This is also a major difference from
the strategic games introduced in our paper, where obtaining
the Talmud allocation as the SPE outcome does not resort to the
properties of consistency.2 A recent study in this literature is due
to Tsay and Yeh (2019).

The games proposed in this paper are inspired by the well-
known divide-and-choose mechanism in fair division (Brams and
Taylor, 1996). When two people want to share a cake fairly, one is
randomly chosen to cut the cake, and the other one has the right
to choose first which piece he wants. Apparently, the optimal
strategy for the player who cuts the cake is to cut it exactly
in halves. The unique SPE outcome is an equal division of the
cake. We extend this idea to the context of n-player bankruptcy
problems by restricting that no player can get a payoff higher
than his claim – a standard requirement in the literature (O’Neill,
1982).

For expositional purpose, we first present and analyze the
mechanisms in an environment where the endowment and claims
are assumed to be common knowledge to players and the social
planner, which is in line with Serrano (1995) and Dagan et al.
(1997). Such an informational structure was also discussed in
Thomson (2003). Generally, comparing centralized solutions with
decentralized bargaining protocols is interesting and helps better
understand the properties of the solutions.

We then relax the assumption of complete information, but
allow the social planner to have only limited information. This

2 The consistency property also plays a crucial role in Serrano (1995)’s

mechanism: if a creditor rejects a proposal, he will enter a bilateral negotiation

with the proposer, where he will receive an amount according to the Contested

Garment (CG) consistent rule (à la Aumann and Maschler, 1985). This amount,

which could be different from the creditor’s claim, needs to be enforced by the

social planner (or a ‘‘CG bilateral court’’). By contrast, our game obtains the

Talmud allocation without resorting to the CG consistency property. The social

planner in our game only needs to monitor and ensure that no player gets more

than her claim.

makes the current research more relevant and better justified, as
the social planner will be unable to implement a desired outcome
directly. In addition, we further make part of the information
private for players and show all our major results hold with such
incomplete information.

We first introduce a game where the player with the highest
claim acts as the executor and makes a proposal which is an
efficient allocation of the endowment. To be precise, please note
that a proposal is a multiset that may contain multiple instances
of its elements and the order of its elements is irrelevant. In
mathematics, a multiset is a modification of the concept of a
set that, unlike a set, allows for multiple instances for each of
its elements. For example, consider a 5-player problem with the
endowment E = 100. A proposal can be {6, 12, 12, 30, 40} where
the element 12 occurs twice, which means one player can take
12 and another player can take 12, too.

Then, players, following a reverse order according to their
claims, sequentially choose an element from the proposal as their
payoffs. That is, players with lower claims are given priority to
choose early on in the game, while the player who chooses last
is given the power to make the division. The privilege of dividing
the endowment and choosing early is spread out among the play-
ers. If at any point, a player’s choice is higher than his claim, he
only gets the amount equal to his claim and the executor makes
a new proposal with respect to the total remaining endowment
to be chosen by the players who have not yet got their payoffs.
The game ends when the executor takes (passively chooses) the
remaining endowment after all other players have received their
payoffs. It can be shown that the unique SPE outcome of this game
is the CEA allocation of the corresponding bankruptcy problem.
A similar game, where the deficit between the endowment and
total claim is distributed by the executor, yields the CEL allocation
as the unique outcome in all SPE. A game that suitably combines
these two games yields the Talmud allocation as the unique SPE
outcome. In each of the above games, the outcome is reached in
finite steps.

We then discuss the construction of alternative games to im-
plement various bankruptcy rules. Apart from the simplicity and
generality of the divide-and-choose approach, another innovative
aspect lies in that the results are robust in an environment of
incomplete information.

The rest of the paper is organized as follows. Section 2 in-
troduces the bankruptcy problems and the allocation rules. In
Section 3, we present three strategic bargaining games and the
main results. In Section 4 we introduce settings of incomplete
information and show the robustness of the results obtained in
Section 3. In Section 5 we discuss the extensions of the mecha-
nism and, in particular, we consider a model that allows players
to vote for games to adopt. Section 6 concludes.

2. Bankruptcy problems and allocation rules

Let N = {1, 2, . . . , n} be the finite set of players. For each
i ∈ N , let ci ∈ R+ denote player i’s claim and c = (ci)i∈N the vector
of claims. E ∈ R+ is the perfectly divisible endowment to be
divided among all players. A bankruptcy problem is a pair (E, c),
such that 0 < E <

∑

ci.
3 Without loss of generality, players

are assumed to be ordered according to their claims, that is, for
players 1, 2, . . . , n, we have 0 ≤ c1 ≤ c2 · · · ≤ cn. The order
is randomly decided in case of equal claims. An allocation in a
bankruptcy problem is an n-tuple x(E, c) = (x1, x2, . . . , xn) ∈ R

n
+,

with
∑

xi = E and 0 ≤ xi ≤ ci. An allocation rule is a function
that assigns a unique allocation to each bankruptcy problem.
The three prominent rules for this problem are the so-called the

3 For simplicity of notation,
∑

stands for
∑n

i=1 unless specified otherwise.
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constrained equal awards rule, the constrained equal losses rule
and the Talmud rule.

The constrained equal awards rule (CEA) divides the endow-
ment equally among all players, subjected to no player gets more
than his claim.

CEAi(E, c) = min {α, ci} ,with α ∈ R+ solves
∑

min {α, ci} = E.

The constrained equal losses rule (CEL) assigns equal loss to
each player, subjected to no player receives negative payoff.

CELi(E, c) = max {0, ci − β} ,with β ∈ R+ solves
∑

max {0, ci − β} = E.

The Talmud rule (T) combines CEA and CEL. The Talmud allo-
cation is obtained by applying the CEA and CEL to the bankruptcy
problem sequentially, with half-claims instead of claims being
used as the switchpoint.

Ti(E, c) =

{

CEAi

(

E,
ci
2

)

when
∑

ci ≥ 2E;

ci
2

+ CELi
(

E −
∑ ci

2
,

ci
2

)

when
∑

ci < 2E.

For the desirable axiomatic properties underlying the above
three rules, please refer to Thomson (2015).

3. The extended divide-and-choose mechanism

We propose an extended divide-and-choose mechanism that
consists of variants of multi-step extensive form games, and show
that they all have unique SPE outcomes, respectively coinciding
with the CEA, CEL and Talmud allocations.

Consider a bankruptcy problem (E, c). We study the following
three games.

3.1. Game Γ cea for the constrained equal awards rule

Game Γ cea(E, c) is a divide-and-choose game with respect to
the bankruptcy problem (E, c). Denote the payoff for player i

in game Γ cea as π cea
i . With respect to the number of players n

in the associated bankruptcy problem, the game consists of n

stages. The basic idea is as follows. At stage 1, player n makes
a proposal for a division of the endowment. Then, player 1, who
has the lowest claim, picks one from the proposed amounts. If the
chosen amount is not higher than her claim c1, then she gets that
chosen amount. Otherwise, she gets her claim. At stage 2, player
n, forever as the proposer, makes a new proposal as a division
of the residual endowment (the original endowment minus what
player 1 got at stage 1) for the remaining players. Then, player 2
chooses from the proposal at this stage. If the chosen amount is
not higher than her claim c2, then she gets that chosen amount.
Otherwise, she gets her claim. The game continues in this pattern
until stage n−1 where player n proposes again on how to divide
the remaining endowment and then player n−1 makes a choice.
If the chosen amount is not higher than her claim, then player
n−1 gets the amount of her choice. Otherwise, she gets her claim.
After that, the game enters the final stage nwhere player n simply
receives the residual amount, and the entire game ends. Such a
simple mechanism will lead to the CEA allocation in SPE.

Note that in this game, other than player n who is the pro-
poser, all players are not allowed to get more than their claims,
while no restriction is placed on player n about how much he
could obtain. However, as one can see in the following analysis
of the game, in equilibrium player n will not be able to receive an
amount that is more than his claim because any other player will
not choose an amount that is lower than her claim when there
exists an amount that is higher than her claim in the proposal.

The game Γ cea is formally described below. It has n stages and
starts at stage 1.

At any stage s, where s = 1, . . . , n, the game proceeds as

follows. Player n makes a proposal that is a multiset, As =
{

xss, x
s
s+1, . . . , x

s
n

}

, such that xsi ∈ R+ for all i = s, . . . , n with
∑n

s x
s
i = E when s = 1 and

∑n

s x
s
i = E −

∑s−1
j=1 π cea

j when s > 1.
After observing As, player s chooses an element, denoted by θs,

from the proposal As. For any s < n, if θs ≤ cs, player s leaves

the game with payoff π cea
s = θs, and if θs > cs, player s’ payoff is

restricted to her claim and she leaves the game with π cea
s = cs.

Then, the game proceeds to stage s + 1 if s < n, or stops when

s = n, where player n receives E −
∑n−1

j=1 π cea
j .

Note that one can consider an alternative mechanism such

that after the proposer made the first proposal, all other players

will sequentially make a choice, following a reverse order ac-

cording to their claims, while the proposer would only be called

for taking action again when some player i chooses an amount

that is higher than her claim ci, in which case the proposer is

to make a new proposal for the rest. This will also implement

the constrained equal awards rule. The reason we would focus

on the current mechanism that allows the proposer to make a

proposal at every stage is twofold. One is for the convenience

and clarity of the proof of the main result, as this specification

helps to establish the same structure in every subgame. The other

is due to its generality, as the current rule essentially admits

and practically supersedes the alternative one: the proposer can

effectively maintain the same proposal, albeit taking away the

elements chosen by the previous players, so long as they are

no higher than their claims, which is strategically equivalent to

making such a ‘‘new’’ proposal.

Below we will show that game Γ cea has a unique SPE outcome

that coincides with the allocation prescribed by CEA.

Define the remaining endowment at stage 1 as E1 = E and at

stage s = 2, . . . , n − 1 as Es = E −
∑s−1

i=1 π cea
i .

The following lemma implies that at any stage, if the remain-

ing endowment is not sufficient to award every remaining player

the amount of the lowest claim among the remaining players, the

proposal at this stage must be an equal division in equilibrium.

By reverse induction on the number of the remaining players, we

show that if the proposal is not an equal division, the proposer

would end up with a lower payoff. Thus, any strategy of the

proposer that leads to a non-equal division at such a stage will

not be in SPE.

Lemma 3.1. If Es < (n−s+1)cs at any stage s, s = 1, 2, . . . , n−1,

the unique SPE outcome of the subgame starting from stage s with

respect to the bankruptcy problem (Es, (cs, cs+1, . . . , cn)) is π cea
i =

Es
n−s+1

, for all i = s, . . . , n.

Prior to the proof, we like to note that, given any s, s =

1, 2, . . . , n − 1, if Es < (n − s + 1)cs, then Es − Es
n−s+1

<

(n − s)cs+1 because cs < cs+1. This means that at any stage s,

if player s takes an equal share of the estate in that stage, then

the remaining estate (i.e., for stage s + 1) will not be sufficient

to award every remaining player the amount of the lowest claim

(i.e., cs+1) among the remaining players. One can readily see that

this will have a knock-on effect till the end of the game. That is, if

at any stage s, s = 1, 2, . . . , n− 1, Es < (n− s+ 1)cs, then for any

stage t , where t = s + 1, it holds that Et < (n − t + 1)ct , where

Et = Es−
Es

n−s+1
. Hence, if at any stage s, there is Es < (n−s+1)cs,

provided that from now on at each stage the player with the

lowest claim at the corresponding stage will get the average of

the remaining estate of that stage, then the remaining estate

at any of the following stages will not be sufficient to award

every remaining player the amount of the lowest claim among

the remaining players.

3
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Proof (of Lemma 3.1).
The proof is done by reverse induction on s.
We first show that the lemma holds for s = n − 1.
When s = n − 1, the lemma says if En−1 < 2cn−1, then the

unique SPE outcome is that both player n − 1 and player n have

the same payoff
En−1

2
. Consider the following strategies adopted

by the two players. Player n makes proposal An−1 =

{

En−1

2
,

En−1

2

}

and player n−1 chooses θn−1 ∈ max
{

xn−1
n−1, x

n−1
n

}

. It is easy to see
that both choices are best responses and therefore constitute an

SPE that leads to the outcome
{

En−1

2
,

En−1

2

}

. One can also readily

verify that there does not exist any other SPE. Choosing θn−1 ∈

max
{

xn−1
n−1, x

n−1
n

}

is the best response of player n − 1. Player n

would have no incentive to make a different proposal (An−1)′ =
{

En−1

2
− ∆,

En−1

2
+ ∆

}

, where ∆ ∈

(

0,
En−1

2

]

. Otherwise, player

n − 1 is at best response to choose
En−1

2
+ ∆. Since (π cea

n−1)
′ =

min
{

En−1

2
+ ∆, cn−1

}

>
En−1

2
, the game ends up with player n

having payoff (π cea
n )′ = En−1 − (π cea

n−1)
′ <

En−1

2
= π cea

n . Hence

(An−1)′ cannot be part of SPE.
Now assume the lemma holds for s + 1, where s < n − 1. We

show that the lemma holds for s.
At stage s, if Es < (n−s+1)cs, consider the following strategies.

Player s chooses θs ∈ {xsi |x
s
i ∈ As, xsi ≥ cs} ∪ max As. That is,

player s is indifferent about all the elements in the proposal that
are greater than or equal to her claim; if there does not exist an
element that is greater than or equal to her claim, then player
s chooses the biggest element in the proposal. Player n makes a
proposal As =

{

xss, x
s
s+1, . . . , x

s
n

}

where xsi = Es
n−s+1

, i = s, s +

1, . . . , n. Here, the payoff for player s is π cea
s = Es

n−s+1
. Then, at

stage s+1, the remaining endowment will be Es+1 = Es−
Es

n−s+1
<

(n− s)cs+1. By the induction hypothesis, the unique SPE outcome

for the subgame starting from stage s+ 1 is π cea
i =

Es+1

n−s
= Es

n−s+1
,

for all i = s + 1, s + 2, . . . , n. Combining with the payoff for
player s, the SPE outcome for the subgame starting from stage
s is π cea

i = Es
n−s+1

, i = s, s + 1, . . . , n.
Next we show there does not exist any other SPE. It is easy

to see that in any SPE player s chooses θs ∈ {xsi |x
s
i ∈ As, xsi ≥

cs}∪max As. Player n would have no incentive to make a different
proposal (As)′ =

{

(xss)
′, (xss+1)

′, . . . , (xsn)
′
}

, where (xss)
′ ≤ (xss+1)

′ ≤

· · · ≤ (xsn)
′ with at least one strict inequality and

∑n

i=s(x
s
i )

′ = Es.

Otherwise, such a proposal will yield that (xss)
′ < Es

n−s+1
and

(xsn)
′ > Es

n−s+1
. Player s will be at best response to choose (xsn)

′ and

obtain payoff (π cea
s )′ = min

{

(xsn)
′, cs

}

> Es
n−s+1

. Then at stage s+1,

(Es+1)
′ = Es − min

{

(xsn)
′, cs

}

<
(n−s)Es
n−s+1

< (n − s)cs ≤ (n − s)cs+1.
By the induction hypothesis, the unique SPE outcome for the

subgame starting from stage s + 1 is
(

π cea
i

)′
=

(Es+1)
′

n−s
< Es

n−s+1
=

π cea
i , for all i = s+ 1, s+ 2, . . . , n.4 Hence, any deviation from As

would make player n strictly worse off. □

The next theorem shows that game Γ cea has a unique SPE
outcome which coincides with the allocation prescribed by CEA
in the corresponding bankruptcy problem.

Theorem 3.2. For any bankruptcy problem (E, c), the associated

game Γ cea(E, c) has a unique SPE outcome that is π cea = CEA(E, c).

Proof. The proof is done by induction on the number of players.
We first show that the theorem holds for |N| = 2. There are

two cases.

4 (π cea
n )′ − π cea

n =
(Es+1)

′

n−s
− Es

n−s+1
=

(n−s+1)(Es+1)
′−(n−s)Es

(n−s)(n−s+1)
=

Es−(n−s+1)·min{(xsn)
′,cs}

(n−s+1)(n−s)
.

Since Es < (n− s+ 1)(xsn)
′, Es < (n− s+ 1)cs, Es − (n− s+ 1) ·min

{

(xsn)
′, cs

}

< 0,

which means (π cea
n )′ < π cea

n .

Case 1, E < 2c1. CEAi(E, c) = E
2
, i = 1, 2. By Lemma 3.1, the

unique SPE outcome for the game with respect to the bankruptcy
problem (E, c) is π cea

i = E
2

= CEAi(E, c), i = 1, 2.
Case 2, E ≥ 2c1. CEA(E, c) = (c1, E − c1). In any SPE, player

1’s choice is θ1 = max
{

x11, x
1
2

}

if min
{

x11, x
1
2

}

< c1; otherwise,

if min
{

x11, x
1
2

}

≥ c1, player 1 is indifferent between the two
elements. Player 1’s payoff is π cea

1 = c1. A different choice would
lead to a lower payoff for player 1. At stage 1, any efficient
proposal made by player 2 constitutes an SPE and results in the
payoff π cea

2 = E − c1 for player 2.
Assuming the theorem holds for |N| = n− 1, we then show it

also holds for |N| = n. Consider the following two cases.
Case 1, if E < nc1, CEAi(E, c) = E

n
for all i = 1, 2, . . . , n. By

Lemma 3.1, the unique SPE outcome for the game with respect
to the bankruptcy problem (E, c) is π cea

i = E
n

= CEAi(E, c) for all
i = 1, 2, . . . , n.

Case 2, if nc1 ≤ E <
∑

ci, CEAi(E, c) = min {ci, α}, where
∑

min {ci, α} = E.
Consider the following strategy profile. Player n, at stage

1, proposes A1 =
{

x11, x
1
2, . . . , x

1
n

}

, where x1i = ci for i =

1, . . . , q, q < n and x1i = α for i = q + 1, q + 2, . . . , n, such

that
∑

x1i = E and cq ≤ α < cq+1.
At any subsequent stage s, player n makes the proposal As =

{

xss, x
s
s+1, . . . , x

s
n

}

, where xsi = ci if i ≤ q and xsi =
E−

∑s
k=1 πcea

k
−

∑q
l=s+1

cl

n−s
, if i > q. At stage s, where s ≤ q, player s

chooses θs = xss ∈ As if xss ≥ cs; if xss < cs, player s chooses

θs ∈ max
{

xss, x
s
s+1, . . . , x

s
n

}

. At stage s, where s > q, player s

chooses θs ∈ max
{

xss, x
s
s+1, . . . , x

s
n

}

.
The payoffs from the above strategies are π cea

i = ci for i =

1, . . . , q and π cea
i =

E−
∑q

i=1
ci

n−q
for i = q + 1, q + 2, . . . , n, which

coincides with the CEA allocation.
To verify that the above strategies constitute an SPE, one can

readily see that for each player i = 1, . . . , q, he has no incentive
to deviate from the current strategy as the payoff from the current
choice θi has already been the maximum he could achieve, which
equals to his claim. Player n’s proposals at stages 1 to q are
also the best responses. Any other proposal would still lead to a
payoff ci for player i, i = 1, . . . , q given their choosing strategies,
leaving Eq+1 = E −

∑q

i=1 ci < (n − q)cq+1. By Lemma 3.1, the
unique SPE outcome for the subgame starting from stage q+ 1 is

π cea
i =

E−
∑q

i=1
ci

n−q
for i = q + 1, q + 2, . . . , n. Hence, any deviation

would not change the payoff to player n.
We now show that all SPE yield the same outcome which

is the CEA allocation. In any SPE, given that E ≥ nc1 and the
proposal A1 =

{

x11, x
1
2, . . . , x

1
n

}

must be efficient, there necessarily

exists an x1j from the proposal such that x1j ≥ c1. Player 1’s best

response at stage 1 is θ1 = x1j ≥ c1 and gets payoff π cea
1 = c1.

Therefore, for stage 2, with the remaining endowment E2 = E−c1
and the n− 1 players, by the induction hypothesis, this subgame
has a unique SPE outcome which is π cea

i = min{ci, α}, for all
i = 2, . . . , n such that

∑n

i=2 π cea
i = E − c1. Since π cea

1 = c1
and c1 < α, then π cea

1 = min{c1, α}. Thus, the SPE outcome of
the entire game with n players could be expressed as π cea

i =

min{ci, α} = CEAi(E, c), i = 1, 2, . . . , n and
∑

π cea
i = E. □

As we have shown in the proof of Theorem 3.2, there may
exist multiple SPE, but all SPE yield the same outcome that is the
CEA allocation. To see the multiplicity of SPE, one can consider
the following case. If at any stage s, the remaining estate is
sufficiently large such that the equal split of the remaining estate
is an amount that is greater than the claim of player s, then any
proposal from player n constitutes an SPE. Player s will choose
an amount greater than or equal to her claim but leave with
the amount equal to her claim. So, in this situation, how player
n makes a proposal does not matter, so long as it is efficient,

4
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because it has no impact on the payoff of player s and will not
change the size of the remaining estate to be divided in the next
stage, either.

It is worth noting that in the above game (and also the fol-
lowing variants) the ordering of the players in making choices
matters. That is, if the order is not increasing from the lowest
claim to the highest claim (even if requiring player n to be the
last one to choose), then player n could manipulate the proposal
to his advantage, as shown by the following example.

Example 1. Consider a bankruptcy problem (330, (100, 200,
300)). The CEA allocation for this problem is (100, 115, 115).
Suppose the order to choose is: player 2, player 1, player 3. The
optimal proposal for player 3 would be {110, 110, 110}. The SPE
outcome payoff is (100, 110, 120).

Corollary 3.3. Given a random choosing order for players i =

1, 2, . . . , n− 1, player n maximize his expected payoff by proposing

equal division of the endowment.

Corollary 3.4. If E > nc1, there exists a choosing order such that

π cea
n ≥ CEAn(E, c).

The proofs of the above the corollaries are omitted as they can
be readily constructed.

In the above game Γ cea (and the following variants of the
game), it is important for the player with the highest claim to act
as the executor, so that the unique SPE outcome coincides with
the CEA allocation. It is easy to see that if the executor is not the
last to choose from the proposal, he would have the chance to
manipulate the proposal to get a higher payoff. We further use
an example to illustrate the case when some player other than
player n is the executor, and even if the executor is the last one
to make choice from the proposal, there exists an SPE outcome
that differs from the CEA allocation.

Example 2. Consider the bankruptcy problem in Example 1.
Suppose player 1 is the proposer. Players make choices by a
sequential order of players 2, 3 and 1. Consider a proposal of
(100, 101, 129) made by player 1. It is easy to verify that this
strategy would be part of an SPE. The SPE payoffs would be
100, 129 and 101 for players 1, 2 and 3, respectively, which are
different from the CEA allocation. Indeed, any proposal of the
form {100, a, 230 − a}, with 100 < a < 115, and the strategies
that players always choose the highest amount available in the
proposal, would constitute an SPE. All such SPE have the same
outcome (100, 230 − a, a) that differs from the CEA allocation.

The intuition behind the example is that if any of the players
other than player n is the proposer, he would not care about the
shares for players with higher claims, as long as he can get his
highest possible payoff.

3.2. Game Γ cel for the constrained equal losses rule

Similar to Γ cea, the game Γ cel is a divide-and-choose game
where players share the deficit of the endowment with respect
to the sum of claims, such that every player’s payoff is his claim
minus his share of the deficit.

Define the deficit or the total loss for all players N as L =
∑

ci − E. Denote the payoff for player i in game Γ cel as π cel
i . The

game Γ cel also starts at stage 1 and has n stages.
At any stage s, where s = 1, . . . , n, the game proceeds as

follows. Player n makes a proposal Bs =
{

xss, x
s
s+1, . . . , x

s
n

}

, such

that xsi ∈ R+ for all i = s, . . . , n while
∑n

s x
s
i = L when s = 1 and

∑n

s x
s
i = L −

∑s−1
j=1 cj +

∑s−1
j=1 π cel

j when s > 1. After observing Bs,
player s chooses an element, denoted by θs, from the proposal Bs.

If θs ≤ cs, player s leaves the game with payoff π cel
s = cs − θs. If

θs > cs, player s’ loss is restricted to her claim and she leaves the
game with π cel

s = 0. Then, the game proceeds to stage s + 1 if
s < n, or stops when s = n.

Without proof, we note that the CEL rule satisfies the endow-

ment monotonicity property (Curiel et al., 1987), which says that
if the endowment increases, each claimant should be awarded at
least as much as initially (Thomson, 2015).5

Theorem 3.5. For any bankruptcy problem (E, c), the unique SPE

outcome of game Γ cel(E, c) is π cel
i = CELi(E, c).

Proof.

The proof is done by induction on the number of players.
We first show that the theorem holds for |N| = 2.
Case 1, c2 − c1 < E, i.e. L = c1 + c2 − E < 2c1. First we show

that there exist an SPE of the game Γ cel(E, c) which yields the
outcome π cel

i = CELi(E, c) = ci −
L
2
.

Consider the following strategy profile. Player 1’s choice is
θ1 = min{x11, x

1
2} for any proposal. Player 2 makes the proposal

B1 =
{

L
2
, L

2

}

. The outcome of this strategy profile is π cel
i =

ci −
L
2

= CELi(E, c). Player 1 is best responding given the proposal

B1. It is easily shown that any proposal different from B1 would
result in a bigger loss for player 2. Thus the above strategy profile
constitutes an SPE.

Next, we point out that there exists only one SPE where
player 2’s proposal is B1 =

{

L
2
, L

2

}

and player 1 chooses θ1 =

min
{

L
2
, L

2

}

= L
2
. Any other proposal would give player 2 a lower

payoff, so cannot be part of the SPE. The outcome of the above
SPE is π cel

i = CELi(E, c) = ci −
L
2
.

Case 2, E ≤ c2 − c1, i.e. L ≥ 2c1. In this case, CEL assigns
the whole endowment to player 2, and 0 to player 1, that is
CEL1(E, c) = 0 and CEL2(E, c) = E.

Consider the following strategy profile. Player 1’s choice is
θ1 = min

{

x11, x
1
2

}

for any proposal. Player 2 makes the proposal

B1 = {c1, L − c1}. The outcome of this strategy profile is π cel
1 = 0

and π cel
2 = E. Player 1 is best responding given the proposal B1.

Player 2 cannot improve his payoff of E. Thus the above strategy
profile is an SPE.

Next, we point out that in any SPE, player 2’s proposal must
be B1 =

{

x11, x
1
2

}

such that x1i ≥ c1, i = 1, 2 and player 1’s

choice is θ1 = min
{

x11, x
1
2

}

for any proposal. Player 1 is best

responding given the proposal B1 and receiving a payoff of 0.
Player 2’s payoff is E. Any other proposal would result in player
1 choosing the share of loss smaller than his claim, which gives
player 1 a positive payoff and a lower payoff to player 2, so cannot
be part of SPE. All the SPE lead to the same outcome which is
π cel
i = CELi(E, c).
Assuming that the theorem holds for |N| = n − 1, we show

that it also holds for |N| = n.
Case 1, if

∑

ci − nc1 < E, i.e., L =
∑

ci − E < nc1, CELi(E, c) =

ci −
L
n
for i = 1, 2, . . . , n.

First, we show that there exist an SPE of the game Γ cel(E, c)
which yields the outcome of π cel

i = CELi(E, c) = ci −
L
n
. Consider

the following strategy profile. In every stage s, s = 1, 2, . . . , n,
player n makes the proposal Bs =

{

xss, x
s
s+1, . . . , x

s
n

}

, where xsi =
L
n
, for i = s, s + 1, . . . , n. Player s’ choice is θs = min

{

xss, . . . , x
s
n

}

for any proposal. The outcome of this strategy profile is π cel
i =

ci −
L
n

= CELi(E, c), for i = 1, 2, . . . , n.

5 For two bankruptcy problems (E, c) and (E ′, c), CELi(E, c) = max {0, ci − β},

with β ∈ R+ solves
∑

max {0, ci − β} = E and CELi(E
′, c) = max

{

0, ci − β ′
}

,

with β ′ ∈ R+ solves
∑

max
{

0, ci − β ′
}

= E ′ . If E > E ′ , by endowment

monotonicity, CELi(E, c) ≥ CELi(E
′, c). It follows that β < β ′ and CELn(E, c) >

CELn(E
′, c).

5
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Now we show that the above strategy profile is an SPE of the
game Γ cel(E, c). Define the remaining endowment at stage 1 as

E1 = E and at stage s = 2, . . . , n − 1 as Es = E −
∑s−1

i=1 π cel
i .

In stage 1, player n makes the proposal B1 =
{

x11, x
1
2, . . . , x

1
n

}

,

where x1i = L
n
, for i = 1, 2, . . . , n. Player 1’s choosing strategy

θ1 = min
{

x11, . . . , x
1
n

}

is a best response which leads to the

payoff π cel
1 = c1 − L

n
. In stage 2, the remaining endowment

becomes E2 = E − c1 +
L1
n
. The subgame from stage 2 is a

game with n− 1 players with respect to the bankruptcy problem
(E2, (c2, . . . , cn)).

6 By the induction hypothesis, the SPE outcome
from stage 2 is π cel

i = CELi(E2, (c2, . . . , cn)) = ci − L
n
, i =

2, 3, . . . , n. In every stage s, s = 2, . . . , n, player n’s proposal Bs =
{

xss, x
s
s+1 . . . , xsn

}

, where xsi = L
n
, for i = s, s + 1, . . . , n and player

s’ choice θs = min
{

xss, . . . , x
s
n

}

for any proposal constitute the
SPE for the subgame from stage 2. Consider a different proposal
made by player n, (B1)′ =

{

(x11)
′, (x12)

′, . . . , (x1n)
′
}

, where (x11)
′ ≤

(x12)
′ ≤ · · · ≤ (x1n)

′ (at least one strict inequality holds). It must

be the case that (x11)
′ < L

n
. Player 1’s choosing strategy θ1 =

min
{

(x11)
′, (x12)

′, . . . , (x1n)
′
}

is a best response which leads to the

payoff π cel
1 = c1 − (x11)

′. In stage 2, the remaining endowment

becomes (E2)
′ = E − c1 + (x11)

′ < E − c1 +
L1
n

= E2. It is easy to

verify that
(

(E2)
′, (c2, . . . , cn)

)

is a bankruptcy problem with n−1

players.7 By the induction hypothesis, the SPE outcome of the
subgame from stage 2 is (π cel

i )′ = CELi((E2)
′, (c2, . . . , cn)). Since

E2 > (E2)
′, by endowment monotonicity of CEL, π cel

n > (π cel
n )′. So

any proposal different from B1 would result in a lower payoff for
player n. Thus the proposal B1 must be part of the SPE.

Next we show that all SPE result in the same outcome of π cel
i =

CELi(E, c) = ci −
L
n
. First note that in all SPE, the proposal in stage

1 must be B1 =
{

x11, x
1
2, . . . , x

1
n

}

, where x1i = L
n
, for i = 1, 2, . . . , n

as shown above. Player 1’s choice θ1 = min
{

x11, . . . , x
1
n

}

leads

to the payoff π cel
1 = c1 − L

n
. By the induction hypothesis, from

stage 2, for the subgame with n − 1 players and the remaining
endowment E2 = E − L

n
, there is a unique SPE outcome π cel

i =

CELi
(

E − L
n
, (c2, . . . , cn)

)

= ci − L
n
, for i = 2, . . . , n. Combining

with player 1’s payoff π cel
1 = c1 − L

n
, the unique SPE outcome for

the game Γ cel(E, c) is π cel
i = ci −

L
n

= CELi(E, c), for i = 1, . . . , n.
Case 2, if

∑

ci − nc1 ≥ E, i.e. L =
∑

ci − E ≥ nc1, CELi(E, c) =

max{0, ci − β} = ci − min{ci, β}, where
∑

min{ci, β} = L. In
particular, CEL1(E, c) = 0 and CELn(E, c) = cn − β .

We first show that there exists an SPE that leads to the out-
come of π cel

i = CELi(E, c). Consider the following strategy profile.
In any stage s, s = 1, 2, . . . , n, player n makes the proposal Bs =
{

xss, x
s
s+1, . . . , x

s
n

}

, where xsi = ci for i = s, s + 1, . . . , k, k < n and

xsi = β for i = k+1, k+2, . . . , n, such that
∑n

i=s x
s
i = L−

∑k

j=1 cj

and ck ≤ β < ck+1. Player s’ choice is θs = min
{

xss, x
s
s+1, . . . , x

s
n

}

for any proposal, which is the best response given proposal Bs.
Player s is best responding given the proposal Bs. The outcome of
the above strategy profile is π cel

i = ci − min{ci, β} = CELi(E, c),
where

∑

min{ci, β} = L. In particular, in stage 1, player n makes
the proposal B1 =

{

x11, x
1
2, . . . , x

1
n

}

, where x1i = ci for i =

1, 2, . . . , k, k < n and x1i = β for i = k + 1, k + 2, . . . , n, such

that
∑

x1i = L and ck ≤ β < ck+1. Player 1 makes choice of

θ1 = min B1 = x11 = c1 which is his best response. Player 1 leaves

with the payoff of π cel
1 = 0. In stage 2, the remaining endowment

is still E. It is easily shown that the subgame from stage 2 is a
game with n− 1 players with respect to the bankruptcy problem
(E, (c2, . . . , cn)). By the induction hypothesis, the SPE outcome
from stage 2 is π cel

i = CEL(E, (c2, . . . , cn)) = ci − min{ci, β},

i = 2, 3, . . . , n, where
∑n

i=2 min{ci, β} = L − c1. To see that B1

6 E − c1 +
L1
n

= E2 <
∑n

i=2 ci .
7 (E2)

′ < E − c1 +
L1
n

= E2 <
∑n

i=2 ci .

is part of an SPE, consider any proposal made by player n. For

any proposal, player 1’s minimum payoff is π cel
1 = 0 and the

maximum endowment to be divided in the subgame of stage 2

is E. By endowment monotonicity of CEL, player n cannot improve

upon his payoff by deviating from B1. Thus, B1 is part of the SPE.

Next, we show that all SPE lead to a unique outcome that is

π cel
i = CELi(E, c). First, player n’s proposal in stage 1 must be

B1 =
{

x11, x
1
2, . . . , x

1
n

}

, where x1i ≥ c1 for all i = 1, 2, . . . , n.

Player 1’s choice θ1 = min B1 is the best response. Player 1

gets payoff π cel
1 = 0 = CEL1(E, c). In stage 2, the remaining

endowment is still E. By the induction hypothesis, the SPE out-

come for the subgame with n − 1 players from stage 2 is π cel
i =

CEL(E, (c2, . . . , cn)) = max{0, ci − β}, such that
∑n

i=2 max{0, ci −

β} = E. Consider a different proposal by player n,
(

B1
)′

=
{

(x1i )
′, (x12)

′, . . . , (x1n)
′
}

, where (x1j )
′ = min(B1)′ < c1 for some j.

Player 1’s best response is to choose θ1 = (x1j )
′ and his payoff

is π cel
1 = c1 − (x1j )

′. From stage 2, the remaining endowment

to be divided becomes E ′ = E − c1 + (x1j )
′ < E. It is easy to

verify that
∑n

i=2 ci > E ′, i.e. from stage 2, (E ′, (c2, . . . , cn)) is a

bankruptcy problem with n−1 players. By the induction hypoth-

esis, the equilibrium outcome for the subgame from stage 2 is

CELi(E
′, (c2, . . . , cn)) = max

{

0, ci − β ′
}

for i = 2, . . . , n, where
∑n

i=2 max
{

0, ci − β ′
}

= E ′. Since E > E ′, by endowment mono-

tonicity, (π cel
n )′ = CELi(E

′, (c2, . . . , cn)) < CELn(E, (c2, . . . , cn)). Any

proposal different from B1 would result in a lower payoff for

player n, which, therefore, does not constitute an SPE. So in all

SPE, player 1 gets payoff π cel
1 = CEL1(E, c) = 0. Combining with

the SPE outcome payoffs for players 2 to n following proposal

B1, the unique outcome in all SPE is π cel
i = max{0, ci − β} =

CELi(E, c). □

3.3. Game Γ t for the Talmud rule

The game Γ cea and game Γ cel approach the claim problems

from two opposite perspectives: dividing and choosing from ei-

ther the endowment or the deficits of the endowment compared

to the total claims. One may consider combining the two views

into one and obtain a game Γ t that is a hybrid of game Γ cea

and game Γ cel. That is, in game Γ t , players will firstly follow a

procedure of Γ cea based on half of their claims and then play

the game Γ cel based on the other half of their claims and the

remaining endowment.

Consider any bankruptcy problem (E, c).

Step 1 Game Γ cea
(

E, c
2

)

is played with respect to
(

E, c
2

)

. The

allocation for player i (where i < n) in this step is his payoff π cea
i

in game Γ cea
(

E, c
2

)

, and the allocation for player n in this step is

π cea
n = min{E −

∑n−1
i=1 π cea

i , cn
2
}.8 The game continues to Step 2.

Step 2 Game Γ cel
(

E −
∑

π cea
i , c

2

)

is played where the asso-

ciated bankruptcy problem is
(

E −
∑

π cea
i , c

2

)

. The allocation for

player i in Step 2 is his payoff π cel
i in game Γ cel

(

E −
∑

π cea
i , c

2

)

.9

Step 3 Player i takes the final payoff πi = π cea
i + π cel

i .

The next theorem shows that game Γ t (E, c) has a unique

SPE outcome which coincides with the Talmud solution of the

8 Here in Step 1, E <
∑ ci

2
is not required. However, the proposals should still

be efficient. It is also important to note that in game Γ cea
(

E, c
2

)

, no player can

get more than her half claim, including player n. It implies that if E >
∑ ci

2
, in

SPE, the endowment E may not be exhausted in Step 1. One can modify Step 1 to

be Γ cea
(

min{E,
∑

c
2
}, c

2

)

, which would yield the same SPE outcome. However,

we adopt the current specification of the game as it is less restrictive, e.g., the

game would allow for the cases where an off-equilibrium strategy profile may

lead to
∑

π cea
i < min{E,

∑ ci
2
}.

9 The restriction that Γ cel is played with respect to a positive endowment is

relaxed. π cel
i = 0 if E −

∑

π cea
i ≤ 0.

6
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bankruptcy problem (E, c). Firstly, it is shown that if the endow-
ment is not enough to grant every player half of her claim, the
endowment will be fully distributed by the end of Step 1. Next,
if the endowment is more than half of the total claims, in Step
1, every player’s payoff is half of his claim. Finally, the payoff for
every player is the allocation assigned by the Talmud solution.

Theorem 3.6. For any bankruptcy problem (E, c), the unique SPE

outcome of game Γ t (E, c) is the allocation assigned by the Talmud

rule for the problem (E, c).

Proof. The proof is done by a series of claims.

Claim 1. if E ≤
∑ ci

2
, in all SPE, E −

∑

π cea
i = 0 in Step 2.

Suppose there are two SPE strategy profiles G and G
′. By following

G, E −
∑

π cea
i = 0 in Step 2 and the payoff for any player i is

πi = π cea
i , while by following G

′, E −
∑

(π cea
i )′ > 0 and player i’s

payoff is (πi)
′ = (π cea

i )′ + (π cel
i )′.

In G
′, at the last stage of Step 1, it must be the case that

(

π cea
n

)′
= cn

2
.10 So π cea

n ≤ (π cea
n )′. It implies that

∑n−1
i=1 π cea

i >
∑n−1

i=1 (π
cea
i )′.11 There must be at least one player j, j ̸= n, whose

allocation in Step 1 is lower in G
′ than in G, i.e.,

cj

2
≥ π cea

j >

(π cea
j )′. Suppose player j is the only such player. At Step 2, game

Γ cel is played with respect to
(

(π cea
j − (π cea

j )′) − ( cn
2

− π cea
n ), c

2

)

.

Player j’s payoff is
(

π cel
j

)′
<

(

π cea
j − (π cea

j )′
)

−
(

cn
2

− π cea
n

)

≤

π cea
j −(π cea

j )′. His final payoff is (πj)
′ = (π cea

j )′+(π cel
j )′ < π cea

j = πj.

So player j has an incentive to deviate from G
′. G′ cannot be an

SPE.

Claim 2. if E >
∑ ci

2
, in all SPE, the allocation in Step 1 for every

player is π cea
i =

ci
2
. Suppose there are two SPE strategy profiles G

and G
′. By following G, π cea

i =
ci
2

for any i, while by following G
′,

there exist at least one player j such that (π cea
j )′ <

cj

2
. Because the

proposal at any stage in Step 1 must be efficient, we have j ̸= n.

Without loss of generality, assume player j is the only such player.

In G, the game in Step 2 is game Γ cel with respect to
(

E −
∑ ci

2
, c

2

)

.

Player j’s allocation in Step 2 is π cel
j = max

{ cj

2
− β, 0

}

, where

β solves
∑

max
{

ci
2

− β, 0
}

= E −
∑ ci

2
. Player j’s final payoff

is πj =
cj

2
+ π cel

j . In G
′, the game in Step 2 is game Γ cel with

respect to (E −
∑ ci

2
+ (

cj

2
− (π cea

j )′), c
2
). His allocation in Step 2 is

(π cel
j )′ = max

{ cj

2
− β ′, 0

}

, where β ′ solves
∑

max
{

ci
2

− β ′, 0
}

=

E −
∑ ci

2
+

( cj

2
− (π cea

j )′
)

. His final payoff is π ′
j = (π cea

j )′ + (π cel
j )′.

It can be easily shown that (π cel
j )′ − π cel

j <
cj

2
− (π cea

j )′.12 So player

j must have an incentive to deviate from G
′ which is not an SPE.

Claim 3. in all SPE, the final payoff for every player in game Γ t

coincides with his payoff assigned by Talmud rule in bankruptcy

problem (E, c). By Claim 1 and Theorem 3.2, for all bankruptcy

game (E, c) such that E ≤
∑ ci

2
, the final payoff for any player i

is πi = π cea
i = CEAi

(

E, c
2

)

= Ti(E, c).

10 E −
∑

(π cea
i )′ > 0 ⇔ E −

∑n−1
i=1 (π

cea
i )′ − (π cea

n )′ > 0 ⇔ E −
∑n−1

i=1 (π
cea
i )′ >

(π cea
n )′ > 0. Because (π cea

n )′ = max{0, min{ cn
2
, E −

∑n−1
i=1 (π

cea
i )′}}, we must have

(π cea
n )′ = cn

2
.

11 At G, if π cea
n = cn

2
, we must have E −

∑n−1
i=1 π cea

i = cn
2
. Since E −

∑n−1
i=1 (π

cea
i )′ > cn

2
, which means E −

∑n−1
i=1 (π

cea
i )′ > E −

∑n−1
i=1 π cea

i .
12 Note that β solves

∑

max
{

ci
2

− β, 0
}

= E −
∑ ci

2
and β ′ solves

∑

max
{

ci
2

− β ′, 0
}

= E −
∑ ci

2
+

( cj

2
− (π cea

j )′
)

. By endowment monotonicity,

we have β > β ′ .
∑

max
{

ci
2

− β ′, 0
}

−
∑

max
{

ci
2

− β, 0
}

=
( cj

2
− (π cea

j )′
)

=

(π cel
j )′ − π cel

j + (
∑

i̸=j max
{

ci
2

− β ′, 0
}

−
∑

i̸=j max
{

ci
2

− β, 0
}

). Since j ̸= n, we

must have (
∑

i̸=j max
{

ci
2

− β ′, 0
}

−
∑

i̸=j max
{

ci
2

− β, 0
}

) > 0. So (π cel
j )′−π cel

j <
cj

2
− (π cea

j )′ .

By Claim 2, for all bankruptcy game (E, c) such that E >
∑ ci

2
,

the allocation in Step 1 is π cea
i =

ci
2
. By Theorem 3.5, in Step 2

the allocation is π cel
i = CELi

(

E −
∑ ci

2
, c

2

)

. The final payoff for any

player i is πi = π cea
i +π cel

i =
ci
2
+CELi

(

E −
∑ ci

2
, c

2

)

= Ti(E, c). □

4. Informational robustness

As pointed out by Dagan et al. (1999), implementing a solution
becomes harder if there is more private information in the prob-
lem. They have also shown the negative result of implementation
with fully private information. This holds with our mechanism,
too. However, it is interesting to see that with our approach
the implementation results can be largely maintained despite a
substantial relaxation of complete information. This shows that
the extended divide-and-choose mechanism is robust to certain
degree of incomplete information.

So far in this paper, we have assumed complete information,
that is, the social planner of the mechanism and all players know
the total endowment to be divided (E) and the claim of each
player (c). Below we will consider relaxing this requirement in
two aspects: reducing the knowledge of the social planner and
making part of information private for players.

We first consider the following modification of the informa-
tional structure. Here, the social planner still knows the claims of
all the players and could monitor and enforce the actions taken
by the players and the consequent outcome of the game, but
does not know the size of the endowment (or it is too costly
to know it), which happens often in real life, e.g., the court may
not know the value of an asset but the relevant claimants know
it; as heirs, the family members have not yet revealed to the
adjudicator the exact value of the wealth to be inherited, although
all the heirs know it, while they may resort to the adjudicator
for a fair procedure of allocating the wealth rather than asking
for advice on a vector of payoffs. We call this assumption (A1).
Then, apparently, the social planner cannot directly distribute the
endowment by any rule on itself because of the incapability of
calculating the outcome. Thus, this specification alone renders
sufficient validity for considering decentralized implementations
via strategic mechanisms. One can readily see that the games
presented in Section 3 well work in this scenario. The proposer
would have no incentive to make a proposal that may lead to a
deficit or surplus on the endowment, as either way would result
in a lower payoff for the proposer, given what he could take away
from the game will be monitored by the social planner. Such an
enforceability is actually a weak condition, as implicitly adopted
in almost all implementation literature.

In addition to (A1) that serves as a relaxation on the planner’s
information, we can further allow players to have a certain degree
of private information, which is specified by the following two
assumptions.

• (A2) Every player only knows his own claim and his own
position in the ordering of all the claims.

• (A3) Player n knows that she herself is the highest claimant
and how many claimants are in the game as well as the size
of the (remaining) endowment at every stage.

That is, every player’s claim will be private information and
can only be known to the social planner but not to the other play-
ers. We can show that for game Γ cea with incomplete information
as described above an equal division proposal from player n at
each stage of the game is a weakly dominant strategy. Thus, the
CEA rule can be implemented as the unique SPE outcome even
with incomplete information, as stated by the following theorem.

Theorem 4.1. For any bankruptcy problem (E, c), the associated
game Γ cea(E, c) satisfying (A1), (A2) and (A3) has a unique SPE
outcome that is π cea = CEA(E, c).
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The proof can be constructed along the same lines as in

Lemma 3.1 and Theorem 3.2, and therefore is omitted. However,

we provide the following remarks to highlight the main intuition

behind the result.

If the endowment is small (i.e., E < nc1), equal division of the

whole endowment is the dominant strategy for player n. Every

player’s award is the equal share of the whole endowment, which

is the CEA allocation of the problem. The proof is analogous to

that of Lemma 3.1.

If the endowment is large enough to grant some players their

claims under the CEA allocation (i.e., E > nc1), it is easy to see

that there must exist a stage, where according to Lemma 3.1 the

equal division is the dominant proposal for player n. Let stage s

be the first stage that satisfies the conditions of Lemma 3.1. In

the previous s − 1 stages, any proposal, including equal division

of the available endowment, would award players 1, . . . , s −

1 their claims. However, under incomplete information, where

the claim of each player is unknown to player n, she cannot

determine when stage s is reached. Any unequal division of the

remaining endowment would risk resulting in a lower payoff to

the proposer. Thus, the weakly dominant strategy for player n

is to propose the equal division of the remaining endowment at

every stage.

Similarly, the CEL rule and the Talmud rule can be imple-

mented in the presence of incomplete information as well.

By contrast, most existing mechanisms in the literature usually

require players to evaluate the proposals of other players and

engage in bilateral negotiation in the case of rejection of the

proposal, which requires the claims to be common knowledge,

and hence, they do not possess the robustness to the incomplete

information as discussed here.

The above informational structure is not the only one that

could sustain the implementation results of the CEA, CEL and Tal-

mud rules using our extended divide-and-choose mechanisms. An

alternative informational structure that also works is as follows.13

Consider the following the assumptions:

• (B1): The social planner knows the claims of all the players

and could monitor and enforce the actions taken by the

players and the consequent outcome of the game, but does

not know the size of the endowment E. The social planner

also appoints the player with the highest claim as the pro-

poser and specifies the order of choosing from the proposals

to be ascending on claims.

• (B2): The proposer knows the number of remaining players

and the size of the remaining estate to be divided at every

stage.

The main difference from the previous informational structure

is (A2) being omitted, i.e., here no player knows their claims.

Given that the social planner knows each player’s claim, it is

reasonable to let the social planner restrict each player receiving

no more than her claim and let the social planner decide the order

of choosing from the proposal. In the game of Γ cea, when a player

is going to choose, her weakly dominant strategy is to simply

choose the largest amount in the proposal. Similarly, in Γ cel, her

weakly dominant strategy is to choose the smallest amount in the

proposal. Hence, (A2) is no longer necessary. One can then readily

see that all the implementation results hold in this alternative

informational structure.

13 We thank an anonymous referee for generously sharing his/her idea and

suggesting this informational structure.

5. Extension

5.1. Alternative rules

The divide-and-choose mechanism can be modified to fit for

other rules and alternative settings.

Piniles’ rule (see Thomson, 2015) results from applying the

CEA twice using half-claims as the award constraints. Replacing

Step 2 of game Γ t with game Γ cea, the Piniles’ rule allocation can

be achieved as the unique SPE outcome.

Chun et al. (2001) proposed a reverse Talmud rule which,

using half claims, applies the CEL first and if there is excess after

the initial distribution then the CEA is applied.14 That is,

RTi(E, c) =

{

CELi
(

E,
ci
2

)

when
∑

ci ≥ 2E;

ci
2

+ CEAi

(

E −
∑ ci

2
,

ci
2

)

when
∑

ci < 2E.

By switching the order of the two games in steps 1 and 2 in Γ t ,

we obtain game Γ rt as follows, where players will firstly follow a

procedure of Γ cel based on half of their claims and then play the

game Γ cea with the other half of their claims and the remaining

endowment.

Consider any bankruptcy problem (E, c).

Step 1 Game Γ cel
(

E, c
2

)

is played with respect to
(

E, c
2

)

. The

allocation for player i (where i < n), in this step is his payoff

π cel
i in game Γ cel

(

E, c
2

)

. The allocation for player n in this step is

π cel
n = min{E −

∑n−1
i=1 π cel

i , cn
2
}.15 The game continues to Step 2.

Step 2 Game Γ cea
(

E −
∑

π cel
i , c

2

)

is played where the asso-

ciated bankruptcy problem is
(

E −
∑

π cel
i , c

2

)

.16

Step 3 Player i takes the final payoff π rt
i = π cel

i + π cea
i .

Game Γ rt (E, c) has a unique SPE outcome which coincides

with the reverse Talmud solution of the bankruptcy problem

(E, c). The proof is analogous to that of game Γ t and therefore

omitted.

It is well-known that the allocation rule of the convex com-

bination of CEA and CEL is not consistent, which means non-

cooperative games that rely on consistency are not suitable to

achieve such rules.17 By introducing nature’s random choice of

game Γ cea and Γ cel, we could achieve such allocations as the

expected outcome of SPE.

Furthermore, the model is not restricted to bankruptcy prob-

lems. We can apply the approach to handle the surplus sharing

problems, where the endowment to be distributed is bigger than

the sum of claims. The mechanism that yields a CEA-like solution

for the surplus sharing problem (E, c), where E >
∑

ci, can be

constructed as a multi-step game. If game Γ cea is repeated k times

until the whole endowment is distributed, then the SPE outcome

for the game is πi = (k − 1)ci + CEAi(E − (k − 1)
∑

ci, c). That

is, the endowment is shared proportional to the players’ claims

up to a point where the remaining endowment is not enough

to cover the sum of all claims. Then the remaining endowment

is distributed according to the CEA rule. In the same spirit, the

divide-and-choose mechanism can shed light on cost sharing

problems.

14 Here, E <
∑ ci

2
is not required. If E ≥

∑ ci
2
, each player is assigned a loss

of 0 and receive a payoff of
ci
2

in this step.
15 Here, E <

∑ ci
2

is not required. However, the proposals should still be

efficient.
16 The restriction that Γ cea is played with respect to a positive endowment is

relaxed. π cea
i = 0 if E −

∑

π cel
i ≤ 0.

17 The convex combination of CEA and CEL can be described as Ai(E, c) =

αCEAi(E, c) + (1 − α)CELi(E, c), where 0 ≤ α ≤ 1.
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5.2. A vote-divide-choose mechanism

Given there are different games (e.g., Γ cea and Γ cel) to play, it
seems natural to consider introducing a voting stage18 to the cur-
rent divide-and-choose mechanism. Indeed, players with lower
claims would prefer the CEA allocation whereas those with higher
claims would prefer the CEL allocation. Allowing players to vote
for playing either Γ cea or Γ cel can serve as an endogenous way of
deciding the order of playing the two games Γ cea and Γ cel.

To be specific, the idea is to delegate the choice of which game
(Γ cea or Γ cel) to play to players. That is, if the players could agree
unanimously on Γ cea or Γ cel, then the chosen game is played to
divide the estate; but if the players cannot reach unanimity, then
the players will first play the game chosen by the majority votes
with half of their claims, and then play the other game by the
minority votes with the remaining estate and the other half of
claims. Formally, the vote-divide-choose game Γ v is composed
of two stages and proceeds as follows.

Consider any bankruptcy problem (E, c).
Stage 1 All players sequentially19 vote for either Γ cea or Γ cel.

Denote the number of votes for Γ cea and Γ cel by ncea and ncel,
respectively.

Stage 2 It has the following five cases.

(i) If ncea = n, then game Γ cea is played with respect to the
bankruptcy problem (E, c).

(ii) If ncel = n, then game Γ cel is played with respect to the
bankruptcy problem (E, c).

(iii) If ncea > ncel > 0, game Γ t is played. That is, game Γ cea

is played with respect to (E, c
2
), followed by Γ cel with the

remaining estate and half-claims.

(iv) If ncel > ncea > 0, game Γ rt is played. That is, game Γ cel

is played with respect to (E, c
2
), followed by Γ cea with the

remaining estate and half-claims.

(v) If ncea = ncel, the game to be played is randomly decided
between Γ t and Γ rt .

Denote the number of players whose allocations according
to the Talmud solution are greater, smaller than, or equal to
those according to the reverse Talmud solutions as nt , nrt and ne,
respectively.

Theorem 5.1. For any bankruptcy problem (E, c) with E ≤
∑

ci
2

,
game Γ v(E, c) has SPE, and

(i) if nt > n
2
, the unique SPE outcome of game Γ v(E, c) is the

allocation assigned by the Talmud rule for the problem (E, c);

(ii) if nrt > n
2
, the unique SPE outcome of game Γ v(E, c) is the

allocation assigned by the reverse Talmud rule for the problem
(E, c);

(iii) if neither nt > n
2
nor nrt > n

2
, game Γ v(E, c) has (ex post)

two SPE outcomes that are the allocations assigned by the
Talmud rule or by the reverse Talmud rule for the problem
(E, c).

In proving the above theorem, we shall omit the description
of players’ strategies in stage 2 as these subgames have been
analyzed in Section 3 and it would be unnecessarily cumbersome
to repeat here. The essential analysis is on stage 1.

Proof. First of all, it is easy to see that with E ≤
∑

ci
2

both games
Γ t and Γ rt end after stage 1 as there will be no remaining estate
to be divided in stage 2 in either game Γ t or Γ rt .

18 Once again, we are grateful to the anonymous referee for sharing this

interesting idea and advising us to make an investigation.
19 Simultaneous voting may cause problems in implementation in this setting

because it cannot rule out the ‘‘bad’’ equilibria, e.g., when two or more players

simultaneously voted for Γ cel while they should have actually voted for Γ cea .

For case (i), since nt > n
2
, we know that nt > nrt +ne. Consider

the following strategies in stage 1: the players who prefer the
Talmud allocation vote for game Γ cea, the players who prefer the
reverse Talmud allocation vote for game Γ cel, and the players
who are indifferent between the Talmud and the reverse Talmud
allocations vote either Γ cea or Γ cel. Since nt is the majority of n,
the game to be played is Γ t and the SPE outcome is the Talmud
allocation. To verify these strategies are in SPE, one can see that
players have no incentive to change the vote as it would either
not affect their payoffs (as it will not change the game to be
played) or lead to a lower payoff. One can see that these SPE
strategies are independent of any specific ordering and, therefore,
any ordering can be adopted here.

To be more specific, when E ≤
∑

ci
2

, one can see that the payoff
for player 1 who has the lowest claim satisfies CEA1 ≥ T1 ≥

RT1 ≥ CEL1,
20 and the payoff for player n who has the highest

claim satisfies CELn ≥ RTn ≥ Tn ≥ CEAn.
21

Note that there may exist a special class of bankruptcy prob-
lems (E, c) such that the CEA allocation coincides with the Talmud
allocation, e.g., all players have high claims relative to the estate
to be divided and hence both the CEA and the Talmud rule yield
the equal allocation of the estate among all players. For this
special occasion, all players voting for Γ cea also constitutes an
equilibrium, following which game Γ cea(E, c) will be played and
generates the CEA allocation. No player would have any incentive
to change her vote as it would lead to Γ t which yields the same
payoff. However, in this case, the equilibrium outcome of CEA
allocation is the same as the Talmud allocation for the bankruptcy
problem (E, c). So the statement in the theorem remains valid.

When CEA(E, c) ̸= T (E, c), it is a dominant strategy for player
1 to vote for game Γ cea, so unanimous voting on Γ cel would
not occur. It is a dominant strategy for player n to vote for
game Γ cel. Similarly, unanimous voting on Γ cea would not occur,
either, as player n would have the incentive to veto the CEA
allocations being implemented by voting for Γ cel. Therefore, only
the Talmud allocation or the reverse Talmud allocation would be
implemented in SPE in this mechanism. Hence, for case (i), it is a
(weakly) dominant strategy for every player to vote in accordance
with his or her preference of the Talmud and the reverse Talmud
allocations, which, given nt > n

2
, yields the Talmud allocation in

SPE.
There exists alternative SPE but they all have the same out-

come that is the Talmud allocation. Other SPE are those strategy
combinations that would yield the same outcome as above. For
instance, more than n

2
players from those who prefer the Talmud

solution over the reverse Talmud solution vote for Γ cea while
the rest vote for Γ cel, which would be in SPE as well for it still
guarantees the game to be played is Γ t . The reverse Talmud
allocation cannot be sustained as an SPE outcome in this case
because with the sequential voting, if this were to happen, those
who prefer the Talmud solution over the reverse Talmud solution
will deviate from voting for Γ cel and make sure the game to be
played is Γ t .

Case (ii) is the opposite of case (i) and its proof can be con-
structed analogously.

Case (iii) has two subcases. Subcase 1 is that nt = nrt and
ne = 0. Then, it is easy to see that it is a hybrid of case (i) and case
(ii). Its outcome depends on which game (Γ t or Γ rt ) to be chosen
by the randomized tie-breaking device in stage 2. Hence the ex
post SPE outcome can be the allocations by either the Talmud

20 Note than T1 > RT1 when E <
∑

ci
2

, and T1 = RT1 only when E =
∑

ci
2

.

Moreover, CEA1 > CEL1 whenever E ≤
∑

ci
2

.
21 Note than RTn > Tn when E <

∑

ci
2

, and RTn = Tn only when E =
∑

ci
2

.

Moreover, CELn > CEAn whenever E ≤
∑

ci
2

.
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rule or the reverse Talmud rule. Subcase 2 is that ne > 0. Then,

those players whose Talmud allocations equal the reverse Talmud

allocations will affect the SPE outcome of the entire game. Since

they themselves are indifferent between voting for Γ cea and Γ cel,

their votes will affect the comparison between the number of

players voting for Γ cea and the number of players voting for Γ cel,

and consequently, lead to the corresponding SPE outcomes. The

proof of this case can be constructed along the same way as in

the above cases and therefore omitted. □

For a bankruptcy problem (E, c) with E >
∑

ci
2

, the vote-

divide-choose mechanism is more complicated and may not al-

ways have SPE. The reason is that with certain ordering of players

to vote there may always exist players who have incentives

to deviate in the loop of the CEA, CEL, Talumd and reverse

Talmud allocations. However, we can introduce additional con-

ditions to ensure the existence of SPE for the vote-divide-choose

mechanism in this case.

Theorem 5.2. For any bankruptcy problem (E, c) with E >
∑

ci
2

,

(i) if nt > n
2
+1, game Γ v(E, c) has a unique SPE outcome that is

the allocation assigned by the Talmud rule for the bankruptcy

problem (E, c);

(ii) if nrt > n
2
+ 1, game Γ v(E, c) has a unique SPE outcome that

is the allocation assigned by the reverse Talmud rule for the

bankruptcy problem (E, c).

Before presenting the proof, we provide some intuition of the

result. Firstly, note that the threshold n
2

+ 1 implies that when

there are less than five players the game Γ v(E, c) with E >
∑

ci
2

may not have SPE. A sufficient condition for the existence of

SPE would be that players who strictly prefer the Talmud (or

reverse Talmud) allocation need to be able to be in control of

the voting outcome irrespective of how the other players would

vote. Hence, nt > n
2

+ 1 or nrt > n
2

+ 1 can guarantee such a

full control with respect to the Talmud allocation or the reverse

Talmud allocation. To be more specific, please note that when

E >
∑

ci
2

, game Γ t (game Γ rt ) results in allocating the half

claim to each player and then dividing the remaining estate

according to game Γ cel (game Γ cea) with respect to the other

half claims. For example, to have game Γ rt being played requires

a majority vote on game Γ cel. However, this means if all such

players cast their votes based on their preferences on the reverse

Talmud allocation, there may exist a scenario where the other

players strictly prefer CEL over the reverse Talmud allocations

and, therefore, will have an incentive to also vote for game Γ cel in

order to invoke the unanimous vote on game Γ cel, which would

make the former players worse off. So voting purely based on the

preference between the Talmud and reverse Talmud allocations

will not be in SPE as happened in Theorem 5.1. In order to

implement the allocation that the majority players prefer and also

prevent the situation of a unanimous vote on the less preferred

allocation, at least one of these majority players needs to vote

against their preference between the Talmud and reverse Talmud

allocation. However, this would risk the majority being flipped

and the less preferred allocation being implemented. Thus, the

number of players who prefer the reverse Talmud solution needs

to be at least one larger than the required majority to implement

the reverse Talmud solution. This is to allow one of those who

prefer the reverse Talmud allocation to vote for Γ cea, while the

others (still form the majority of all players) of those who prefer

the reverse Talmud solution will simply vote for Γ cel, which will

prevent a unanimous voting outcome on Γ cel and guarantee the

final game to be played is Γ rt .

Proof. First of all, it is easy to see that when E >
∑

ci
2

, the payoff

for player 1 satisfies CEA1 ≥ RT1 > T1 ≥ CEL1 and the payoff for

player n satisfies CELn ≥ Tn > RTn ≥ CEAn. Thus, unanimous

voting on either Γ cea or Γ cel would not occur as both player

1 and player n would have the incentive to veto, respectively,

the CEL and CEA allocations being implemented. Therefore, only

the Talmud allocation or the reverse Talmud allocation would be

implemented in SPE in this mechanism.

For case (i), consider the following strategies in stage 1: all

but one of those players who prefer the Talmud solution vote

for Γ cea and the remaining players all vote for Γ cel, which yields

the Talmud allocation. This is in SPE because no player would

have an incentive to change his or her vote as otherwise it would

either not affect their payoffs (as it will not change the game to be

played) or lead to a lower payoff. There exists alternative SPE but

they all have the same outcome which is the Talmud allocation.

One such SPE is that more than n
2
of the players who prefer the

Talmud solution vote for Γ cea and at least one of the players

who prefer the Talmud solution vote for Γ cel, while some of the

remaining players vote for Γ cea and some vote for Γ cel. One can

see that these voting strategies guarantee the Talmud allocation

being implemented by majority voting on Γ cea but avoid the

unanimous voting on Γ cea that may lead to the CEA allocation.

Case (ii) is the opposite of (i) and its proof can be constructed

analogously. □

5.3. A modified voting game

In order to rule out the situations where SPE may not exist,

we consider a modified mechanism Γ vm as follows.

Stage 1 All players sequentially vote for either Γ cea or Γ cel.

Denote the number of votes for Γ cea and Γ cel by ncea and ncel,

respectively.

Stage 2 It has the following three cases.

(i) If ncea > ncel, game Γ t is played. That is, game Γ cea is played

with respect to (E, c
2
), followed by Γ cel with the remaining

estate and half-claims.

(ii) If ncel > ncea, game Γ rt is played. That is, game Γ cel is

played with respect to (E, c
2
), followed by Γ cea with the

remaining estate and half-claims.

(iii) If ncea = ncel, the game to be played is randomly decided

between Γ t and Γ rt .

That is, compared to game Γ v , here in Γ vm we change the

voting rule such that the game being played in stage 2 is decided

by the majority of the votes but not by the possible unanimous

votes. Thus, even all players unanimously vote for Γ cea, it just

implies that game Γ cea will be played first, with respect to (E, c
2
),

while Γ cel will still be played, albeit later, with the remaining

estate and half-claims. Thus, such a modification excludes the

possibility of CEA and CEL allocations to be the final outcomes,

and therefore, it breaks the possible loop that appears in the game

Γ v with (E, c) and E >
∑

ci
2

.

It can be easily shown that for the above game, SPE always

exists. And the SPE outcome depends on the number of players

who prefer Talmud or reverse Talmud allocations. If nt > n
2
(if

nrt > n
2
), in SPE, we always have ncea > ncel (ncel > ncea) in the

voting stage and the SPE outcome is the allocation according to

the Talmud (reverse Talmud) solution. If nt ≤ n
2
and nrt ≤ n

2
, the

game has a unique SPE outcome that is either the Talmud or the

reverse Talmud allocation.
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6. Concluding remark

This paper proposes and advocates the extended divide-and-
choose mechanism for it has three desirable features. Firstly, it is
simple. It provides a clear and intuitive explanation of the strate-
gic elements of the allocation rules for bankruptcy problems,
which are sometimes complex from conceptual or axiomatic per-
spectives. Secondly, it is general. It seems that all these major
bankruptcy rules can be accommodated within the same divide-
and-choose framework. The basic divide-and-choose idea can be
modified into variant mechanisms to obtain alternative allocation
rules and applied to related settings like surplus sharing prob-
lems. The comparison of the variants also helps clearly pin down
the essential strategic differences between the rules. Finally, it is
robust to certain incomplete information. In particular, claims are
no longer needed to be common knowledge. The only essential
requirement we need, a rather weak assumption though, is that
the proposer knows the number of claimants. Then, all the results
hold.

We like to conclude by highlighting three topics that should be
of interest for future research. Firstly, one can extend the divide-
and-choose idea to study alternative bankruptcy rules and it also
seems promising to construct new rules along this strategic per-
spective. Secondly, it is worth exploring alternative informational
structures that may still preserve the results presented in the
paper. Generally, implementation with incomplete information
for bankruptcy problems is under-developed and much can be
done in this area. Finally, one can further investigate other ways
of (modeling) strategic interaction among the claimants when
they are allowed to play different games. For example, one can
study the design of a mechanism such that the right to choose
between sharing the endowment directly and sharing the deficits
can be endogenously determined. As in Section 5.2, we offered an
attempt by introducing a voting stage. More analysis can be done
along this line and other ideas can be explored as well.
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