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ABSTRACT

Multi-task learning with temporal relation is a common prediction

method for modelling the evolution of a wide range of systems.

Considering the inherent relations between multiple time points,

many works apply multi-task learning to jointly analyse all time

points, with each time point corresponding to a prediction task.

The most difficult challenge is determining how to fully explore

and thus exploit the shared valuable temporal information between

tasks to improve the generalization performance and robustness of

model. Existing works are classified as temporal smoothness and

mean temporal relations. Both approaches, however, utilize a pre-

defined and symmetric task relation structure that is too rigid and

insufficient to adequately capture the intricate temporal relations

between tasks. Instead, we propose a novel mechanism named Au-

tomatic Temporal Relation (AutoTR) for directly and automatically

learning the temporal relation from any given dataset. To solve

the biconvex objective function, we adopt the alternating optimiza-

tion and show that the two related sub-optimization problems are

amenable to closed-form computation of the proximal operator. To

solve the two problems efficiently, the accelerated proximal gra-

dient method is used, which has the fastest convergence rate of

any first-order method. We have preprocessed six public real-life

datasets and conducted extensive experiments to fully demonstrate

the superiority of AutoTR. The results show that AutoTR outper-

forms several baseline methods on almost all datasets with different

training ratios, in terms of overall model performance and every

individual task performance. Furthermore, our findings verify that

the temporal relation between tasks is asymmetrical, which has

not been considered in previous works. The implementation source

can be found at https://github.com/menghui-zhou/AutoTR.

CCS CONCEPTS

· Computing methodologies → Multi-task learning; Regular-

ization.
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1 INTRODUCTION

Multi-task learning [16, 22, 26, 31] is a learning paradigm that

aims to leverage valuable information present in multiple related

tasks to increase the robustness and generalization performance

of the model. Recently, multi-task learning with temporal relation

has emerged as a popular and widely used numerical prediction

method for the evolution of a wide range of systems, e.g., stock

price movements prediction [3], robust key point tracking [32],

ensemble forecasting [27], temporal survival analysis [23], road

networks prediction [34], and disease progression model [7, 19].

Considering the inherent relations between multiple time points,

using multi-task learning to jointly analyse all time points and thus

take full advantage of the shared temporal information between

tasks is supposed to significantly improve the performance of mod-

els [12, 15, 17, 39], especially when data size is limited but feature

dimension is high [38, 40]. In this setting, each of the total𝑚 time

points corresponds to a prediction task and the multi-task model

coefficient matrix𝑊 = [w1, · · · ,wm]. As shown in Figure 1, the

𝑘-th time point represents the 𝑘-th task wk. The critical challenge

of this type of temporal multi-task learning is to determine how

to fully exploit the shared temporal information between tasks.

Existing works are broadly classified as temporal smoothness and

mean temporal relations.

The temporal smoothness relation assumes that the difference

between two successive tasks is relatively small and thus investi-

gates the temporal relation between multiple tasks. As a result, the

methods of multi-task learning with temporal smoothness typically

penalize the difference between adjacent tasks ∥wk − wk+1∥22 in
order to achieve temporal smoothness at task level [7, 17, 23, 39].

Some works [34, 38, 40] assume that nearby time points have simi-

lar features, so they penalize
∑
𝑘 |𝑤𝑖,𝑘 −𝑤𝑖,𝑘+1 | to pursue temporal

smoothness at feature level. Clearly, both task-level and feature-

level temporal smoothness seek the same outcome, i.e.,

wk ≈ wk+1 .

Unlike the temporal smoothness relation, some works [3, 27, 32]

suggest all tasks share an explicit common term w0 and a task-

specific weight vk, every task can be written as wk = w0 + vk.

This temporal relation structure has been proved in [8] that in the

setting of support vector machine, every task has a trend to chase

the mean value of all tasks
∑𝑚
𝑖=1wi/𝑚. In Section 3, we demonstrate
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Figure 1: The time points are not evenly distributed. Every

time point corresponds to a prediction task. The AutoTR

mechanism directly and automatically learns the complex

temporal relation between tasks.

that this mean temporal relation actually chases

wk ≈ 1

𝑚 − 1
(w1 + · · · +wk−1 +wk+1 + · · · +wm) .

It is concluded that in the temporal smoothness relation, only

the relation between adjacent tasks is considered, and the weight

of all temporal relations is fixed as 1. So temporal smoothness is

a local, predefined, and symmetric temporal relation. The mean

temporal relation is a global relation structure since it considers the

difference between tasks. However, since the weight of all temporal

relations is fixed as (𝑚 − 1)−1, it is still a predefined and symmetric

relation structure.

Due to the utilization of temporal information shared between

tasks, introducing temporal smoothness or mean temporal relation

into multi-task learning methods has been shown to have a signif-

icant positive impact on model in terms of accuracy, robustness,

and generalization performance [38]. However, the predefined and

symmetric task relation structure is too rigid and insufficient to

adequately capture the complex temporal relation among tasks.

This work comes from a strong and clear motivation that none of

these methods does consider the situation of uneven distribution

of time points, as shown in Figure 1, which is usual in real-life

applications. For example, based on the data from Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database [10], many works

[15, 38ś40] use multi-task learning with temporal relation to pre-

dict Alzheimer’s disease progression at a sequence of time points,

𝑀00, 𝑀06, 𝑀12, 𝑀24, · · · , 𝑀120. The notation𝑀00 is the baseline

time point and𝑀𝑥 represents 𝑥 months after𝑀00. Clearly, the time

points are not evenly distributed since the intervals between two

successive time points are not the same, i.e., 6 months or a year.

Furthermore, even when the time points are evenly distributed, the

given time notation is frequently inaccurate. The data at M24 may

come from M23, M25, or M26 in practice [24].

To deal with this common but extremely complicated situation,

it should be far preferable to learn the complex temporal relation be-

tween tasks directly and automatically from the given data, rather

than relying on a predefined temporal relation structure. So we

name this idea Automatic Temporal Relation (AutoTR) and mathe-

matically formulate it as

wk ≈ 𝑟1,𝑘w1 + · · · + 𝑟𝑘−1,𝑘wk−1 + 𝑟𝑘+1,𝑘wk+1 + · · · + 𝑟𝑚,𝑘wm .

Clearly, as shown in Figure 1, wk is related to all other tasks

wi,∀𝑖 ≠ 𝑘 . The weight of temporal relation 𝑟𝑥,𝑘 (the relation from

task wk to wx) is not fixed yet and needs to be learned from the

data. Another important point is that in AutoTR, the temporal re-

lation is not symmetric as predefined by temporal smoothness or

mean temporal relation, since we do not constrain 𝑟𝑥,𝑘 = 𝑟𝑘,𝑥 . In

fact, this asymmetry corresponds to the real-life temporal relation.

For instance, refer to Figure 1, 𝑟𝑘−1,𝑘 represents analyzing the past

state of one patient in the current 𝑘-th time point, whereas 𝑟𝑘,𝑘−1
represents predicting future state from (𝑘 − 1)-th time point. They

have completely different meanings in practice and should be al-

lowed to have different values, rather than being predefined as the

same value which is too strict in real-life applications.

To solve the nonsmooth and biconvex objective function, we

adopt the alternating optimization method. The associated two sub-

optimization problems are amenable to closed-form computation

of the proximal operator, resulting in an efficient algorithm based

on the accelerated proximal gradient method, which has the best

convergence rate of all first-order methods [25]. Furthermore, since

there is no theory to guarantee the convergence rate of alternat-

ing optimization [28], we design a simple but effective warm start

strategy based on the Gaussian kernel to improve efficiency even

further. According to the experimental results, this strategy effec-

tively increases efficiency by 17.6 times in terms of computation

time at best when compared to the zero initialization that is usually

used in multi-task learning literature [11, 13, 28].

We have preprocessed six public real-life datasets and conducted

extensive experiments to fully validate the superiority and gen-

eralization of the proposed AutoTR. Results show that AutoTR

outperforms several baseline methods on almost all six datasets

in terms of overall model performance and every individual task

performance. It is worth noting that our findings also demonstrate

that the temporal relation between tasks is asymmetric, which has

not been considered in previous works with temporal smoothness

or mean temporal relation.

We conclude this work has the following contributions:

• We propose a novel automatic temporal relation mechanism

AutoTR to directly and automatically capture the complex

temporal relation among tasks, rather than relying on pre-

defined and symmetric temporal relation structures used in

existing baseline methods. An efficient optimization algo-

rithm has been designed based on alternating optimization

and a simple but effective warm start strategy.

• We have preprocessed six widely used real-life datasets and

conducted extensive experiments. The results demonstrate

the superiority of AutoTR in terms of overall model perfor-

mance and every individual task performance, compared to

several baseline methods.

• To explore the complex temporal relation among tasks, we

visualize the automatically learned matrix of the temporal

relation between tasks. The results also confirm the tempo-

ral relation is asymmetry, which is not taken into account

by baseline methods. It implies that using a predetermined

structure, as existing methods, to investigate the temporal

relation between tasks is insufficient.

Notations:N𝑚 = {1, · · · ,𝑚}. 𝑥𝑖 and 𝑥𝑖, 𝑗 denote the 𝑖-th element

of a vector x and the (𝑖, 𝑗)-th element of a matrix 𝑋 . xi (xi) de-
notes the 𝑖-th column (row) of a matrix 𝑋 . Euclidean and Frobenius
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norms are denoted by ∥ · ∥2 and ∥ · ∥𝐹 , ⟨𝐴, 𝐵⟩ is the inner prod-
uct, 𝐴 ⊙ 𝐵 is component-wise multiplication of 𝐴 and 𝐵. ∥𝑋 ∥𝑝,𝑞 =

(∑𝑖 (
∑

𝑗 𝑥
𝑝
𝑗,𝑖 )

𝑞/𝑝 )1/𝑞 . The component-wise operator sgn(·) satisfies:
𝑡 < 0, sgn(𝑡) = −1; 𝑡 = 0, sgn(𝑡) = 0, and 𝑡 > 0, sgn(𝑡) = 1.

Organization: The remainder of this work is structured as fol-

lows. The related work is in Section 2. In Section 3, we thoroughly

discuss the existing baseline works and our proposed automatic

temporal relation. We go into great detail about the related opti-

mization algorithm in Section 4. Section 5 presents the experimental

findings. Section 6 serves as the conclusion of this paper.

2 RELATED WORK

In this section, we briefly discuss the multi-task learning methods

with temporal smoothness or mean temporal relation.

2.1 Temporal Smoothness Relation

Temporal smoothness relation can be divided into two categories,

task-level temporal smoothness, and feature-level temporal smooth-

ness. The former assumes the difference between two successive

time points is relatively small. Since every time point concerns a

task of prediction, it penalizes the difference between two adjacent

tasks over time ∥wk −wk+1∥22. Due to the property of differentiabil-
ity, the task-level temporal relation will save some computational

costs and hence has been widely used in a variety of scenarios, e.g.,

predicting disease progression [2, 7, 12, 17, 19, 30, 39], online en-

semble forecasting [27], air quality inference [33], and tensor-based

survival analysis [23]. Different from task-level temporal smooth-

ness relation, several works [38, 40], motivated by predicting the

progression of Alzheimer’s disease, assume the two neighbouring

time points have similar feature sets. They extend the famous fused

Lasso [20] to multi-task learning setting to penalize the difference

of each feature at two successive time points
∑
𝑘 |𝑤𝑖,𝑘 − 𝑤𝑖,𝑘+1 |

to chase the feature-level temporal smoothness. Zheng et al. [34]

also use the feature-level temporal smoothness for forecasting road

travel costs. We conclude that both the task-level and feature-level

temporal smoothness relations share the same goal, i.e.,wk ≈ wk+1.

2.2 Mean Temporal Relation

The mean temporal relation assumes every task wk shares an ex-

plicit common term w0 and has a task-specific term vk and both

terms are penalized based on 𝑙2 norm. It also arises in various appli-

cations, e.g., the prediction of day trading profit [3], online ensemble

forecast [27] and robust key point tracking [32]. Evgeniou et al. [8]

prove that in the setting of support vector machine, using the mean

temporal relation means every task has a trend to chase the mean

value of all tasks
∑𝑚
𝑖=1wi/𝑚, i.e., every task has the tendency to

arrive wk ≈ 1
𝑚−1 (w1 + · · · +wk−1 +wk+1 + · · · +wm).

Despite the fact that both temporal smoothness and mean tempo-

ral relations have been shown to significantly improve the capability

of the model in terms of generalization performance and robustness,

the main limitation is that both are predefined structures that are

too rigid and insufficient to fully explore the complex temporal rela-

tion between tasks. At the same time, these two temporal relations

are symmetric, which is too strict and inconsistent with reality. For

example, given two time points 𝑖 < 𝑗 , the temporal relation from

time point 𝑖 to 𝑗 likes predicting the state of one patient in the

future, but the relation from time point 𝑗 to 𝑖 likes analyzing the

historic data of the patient. They are clearly different. However, to

the best of our knowledge, the asymmetry of temporal relation is

not considered in all existing works.

Compared to the baselinemethods, our proposed AutoTR directly

and automatically learns the complex temporal relation between

tasks from every dataset which can even be asymmetric.

3 METHODS

In this section, we introduce the multi-task learning setting and

fully explore the temporal smoothness and mean temporal relation.

Then we propose our novel automatic temporal relation.

3.1 Multi-task Learning

Assume we’re given a series of time points, the total number of

which is 𝑚. Each time point is associated with a specific task.

{(𝑋1, y1), · · · , (𝑋𝑚, ym)} is the data, 𝑋𝑖 ∈ R𝑛𝑖×𝑑 is the data ma-

trix of the 𝑖-th task with each row representing an instance; 𝑑

is the data dimension; 𝑛𝑖 is the number of samples for the 𝑖-th

task. yi ∈ R𝑛𝑖 is the target of the 𝑖-th task, yi has discrete val-

ues for classification and continuous values for regression. Denote

𝑊 = [w1, · · · ,wm] ∈ R𝑑×𝑚 as the weight matrix to be estimated,

the empirical risk is given by

L(𝑊 ) = 1

𝑚

𝑚∑︁

𝑖=1

1

𝑛𝑖

𝑛𝑖∑︁

𝑗=1

𝑙 ((x(𝑖 )𝑗 )wi, (𝑦𝑖 ) 𝑗 ),

where the loss function 𝑙 (·, ·) is square loss for regression problem

and logistic loss for binary classification problem.

3.2 Temporal Smoothness Relation

When using a multi-task learning approach, the biggest challenge

is capturing and exploiting the complex task relation to improve

the generalization performance and robustness of the model. The

widely used temporal smoothness relation [17, 19, 38] assumes

every time point is similar to its adjacent time points. If each task

corresponds to a time point, each task has a tendency to be similar

to its neighbouring tasks. To achieve this goal, the models based

on temporal smoothness usually penalize the difference between

two successive tasks ∥wi − wi+1∥22 to chase task-level temporal

smoothness using the penalty of

𝜆
∑︁𝑚−1

𝑖=1
∥wi −wi+1∥22,

where 𝜆 is a fine-tuning hyperparameter to control the degree of

the similarity between tasks. Some works, motivated by disease

progression modeling [38, 40] or road cost forecasting [34], assume

that the nearby time points have similar features, so they penalize∑
𝑗 |𝑤𝑖, 𝑗 −𝑤𝑖, 𝑗+1 | to chase the temporal smoothness at feature level

using the penalty of

𝜆
∑︁𝑑

𝑖=1

∑︁𝑚−1
𝑗=1

|𝑤𝑖, 𝑗 −𝑤𝑖, 𝑗+1 |.

We conclude that both task-level and feature-level temporal smooth-

ness relations share the same goal, i.e.,

wi ≈ wi+1 .

Despite that many experiments have proved that the introduc-

tion of temporal smoothness can effectively enhance the model
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performance, it is actually only a local, predefined, and symmetric

temporal relation. To make our statement clear, we explain it from

the perspective of graph theory. If each task is viewed as a node, the

temporal relation between a pair of nodes is an edge, so all tasks

and their temporal relation form a graph. However, the adjacency

matrix of the temporal smoothness relation graph is a fixed and

symmetric tridiagonal matrix as



0 1 · · · 0 0

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

0 0 · · · 1 0



.

3.3 Mean Temporal Relation

Unlike the temporal smoothness relation, some works [3, 27, 32]

assume all tasks share an explicit common term w0 and a task-

specific weight vi, every task can be written as wi = w0 + vi. Both

w0 and vi are penalized to chase the complex temporal relation

using

𝜆1

𝑚

𝑚∑︁

𝑖=1

∥vi∥22 + 𝜆2∥w0∥22,

where 𝜆1 and 𝜆2 are two fine-tuning hyperparameters. Evgeniou

et al. [8] prove that in the setting of support vector machine, this

temporal relation structure is equivalent to

𝜆1

𝑚∑︁

𝑖=1

∥wi∥22 + 𝜆2

𝑚∑︁

𝑖=1

∥wi −
1

𝑚

𝑚∑︁

𝑗=1

wj∥22 .

It is clear that every task has a trend to chase the mean value of all

tasks
∑𝑚

𝑗=1wj/𝑚. Actually, this mean temporal relation chases the

following type of temporal relation:

wk ≈ 1

𝑚 − 1
(w1 + · · · +wk−1 +wk+1 + · · · +wm) .

The corresponding adjacency matrix of the mean temporal relation

graph is

1

𝑚 − 1



0 1 · · · 1 1

1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1

1 1 · · · 1 0



.

So obviously, the mean temporal relation is a global relation struc-

ture since every task wk is related to all other tasks wx,∀𝑥 ≠ 𝑘 .

However, all temporal relations have the same weight fixed as

(𝑚 − 1)−1, the mean temporal relation is still a predefined and

symmetric relation structure.

3.4 Automatic Temporal Relation

To overcome these drawbacks, first of all, we assume that each task

is connected to every other task and the weight of temporal relation

should be learned directly and automatically from data, rather than

being predefined. So we formulate this type of temporal relation

mathematically as

wk ≈ 𝑟1,𝑘w1 + · · · + 𝑟𝑘−1,𝑘wk−1 + 𝑟𝑘+1,𝑘wk+1 + · · · + 𝑟𝑚,𝑘wm .

Obviously, wk is related to all other tasks wi,∀𝑖 ≠ 𝑘 . The weight of

temporal relation 𝑟𝑥,𝑘 (the relation from taskwk towx) is not fixed

yet and needs to be learned from data. Another key point is in this

structure, the temporal relation is not symmetric as predefined in

temporal smoothness or mean temporal relation, since we do not

constrain 𝑟𝑥,𝑘 = 𝑟𝑘,𝑥 . In fact, this asymmetry is consistent with the

real-life temporal relation. For example, analysing the past state of

one patient in the present moment is not the same as predicting

the future state, i.e., 𝑟𝑥,𝑘 ≠ 𝑟𝑘,𝑥 ,∀𝑥 ≠ 𝑘 .

Not only that, we do not assume that tasks are necessarily similar

to others, i.e., we do not constrain 𝑟𝑥,𝑘 ⩾ 0. In fact, as the results

show in Section 5, we found that sometimes tasks will have a nega-

tive relation, although very slightly, with 𝑟𝑥,𝑘 < 0. It means they

slightly repel, rather than approximate each other. This negative

temporal relation has never been studied in all existing works.

After integrating the temporal relation between all tasks, we

have

𝑊 ≈𝑊



0 𝑟1,2 · · · 𝑟1,𝑚
𝑟2,1 0 · · · 𝑟2,𝑚
...

...
. . .

...

𝑟𝑚−1,1 𝑟𝑚−1,2 · · · 𝑟𝑚−1,𝑚
𝑟𝑚,1 𝑟𝑚,2 · · · 0



=𝑊𝑅, (1)

where 𝑅 is the adjacency matrix of temporal relation between tasks.

Based on the above descriptions, we propose a novel mechanism,

termed Automatic Temporal Relation (AutoTR), to automatically

capture the complex temporal relation among tasks:

min
𝑊,𝑅

L(𝑊 ) + 𝜆1∥𝑊 −𝑊𝑅∥2𝐹 + 𝜆2∥𝑅∥1,1,

s.t. 𝑟𝑖,𝑖 = 0, 𝑖 ∈ N𝑚 . (2)

The first penalty ∥𝑊 −𝑊𝑅∥2
𝐹
is applied to chase the complex tem-

poral relation among all tasks. We use the second penalty ∥𝑅∥1,1
to encourage only tasks that are most pertinent to share common

temporal information.

Note that the penalty ∥𝑊 −𝑊𝑅∥1,1 is an alternate option to chase
the temporal relation, however, with extremely expensive compu-

tational costs. Please refer to Section 4 for the detailed discussion

about the reason for using ∥𝑊 −𝑊𝑅∥2
𝐹
, rather than ∥𝑊 −𝑊𝑅∥1,1.

In order to constrain 𝑟𝑖,𝑖 = 0, we need to penalize the main

diagonal elements of 𝑅 much more heavily than other entries. So

we introduce the auxiliary matrix 𝑆 which is formulated as

𝑆 = (𝑠 − 1) · 𝐼𝑚×𝑚 + 1𝑚×𝑚 .

The optimization problem (2) becomes

min
𝑊,𝑅

L(𝑊 ) + 𝜆1∥𝑊 −𝑊𝑅∥2𝐹 + 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1 . (3)

It is worth noting that 𝑠 is only a łpseudož hyperparameter, not

a true hyperparameter like 𝜆1 and 𝜆2. We just need to give 𝑠 an

enough large number to constrain 𝑟𝑖,𝑖 = 0,∀𝑖 ∈ N𝑚 . In our experi-

mental setting, we let 𝑠 = 109 to achieve the constraint of 𝑟𝑖,𝑖 = 0.

It is concluded that introducing the auxiliary matrix 𝑆 will not in-

crease the computational complexity of the associated optimization

problem.

Note that the optimization problem (2) is biconvex which implies

we can employ the alternating optimization algorithm to update

both variables𝑊 and 𝑅. Based on AutoTR, we have the capability of
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automatically and directly learning the complex temporal relation

among tasks from every specific dataset.

4 OPTIMIZATION

The objective function (3) is not easy to solve, since it is nonsmooth

and biconvex. In this section, we first introduce the whole alter-

nating optimization for solving (3). Then we show how to adopt

the accelerated proximal gradient method (APM) [25] to solve the

associated two suboptimization problems about𝑊 and 𝑅 with high

efficiency.

The alternating optimization is widely used for solving the bi-

convex objective function [11, 13, 28]. We need to optimize𝑊 and

𝑅 alternately. The optimization procedure is stopped when the

relative change of objective function value Δ𝐹 at two successive

iterations is not bigger than the threshold 𝜖 .

4.1 Accelerated Proximal Gradient Method

To update𝑊 and 𝑅 efficiently, we use the accelerated proximal

gradient method (APM). Because of the fastest convergence rate

for the class of first-order methods, APM has been widely used to

address issues with multi-task learning [9, 36]. It has the following

form:

min
𝑊

𝐹 (𝑊 ) = 𝑓 (𝑊 ) + 𝑔(𝑊 ), (4)

where 𝑓 (𝑊 ) is smooth and convex, and 𝑔(𝑊 ) is nonsmooth and

convex. APM is built on two sequences, the search point {𝑆𝑘 } and
the approximation point {𝑊 𝑘 }. 𝑆𝑘 is a linear combination of𝑊 𝑘−1

and𝑊 𝑘 .

𝑆𝑘+1 =𝑊 𝑘 + 𝛼𝑘 (𝑊 𝑘 −𝑊 𝑘−1),

where 𝛼𝑘 is the combination coefficient. According to [1], let 𝛼𝑘 =

(𝑡𝑘−1−1)
𝑡𝑘

, 𝑡0 = 1 and 𝑡𝑘 =
1
2 (1 +

√︃
4𝑡2
𝑘−1 + 1) for 𝑘 ⩾ 1.

The approximation point𝑊 𝑘 is computed as

𝑊 𝑘
= 𝜋 (𝑆𝑘 − 𝜂𝑘∇𝑓 (𝑆𝑘 )), (5)

where 𝜂𝑘 is the chosen step size, 𝜋 (𝑉 ) is the proximal operator of

𝑉 . The global convergence of APM is dependent on an appropriate

step size of 𝜂𝑘 . Many sophisticated line search schemes [4] can

estimate the step size 𝜂𝑘 . Updates are made to the value of 𝜂𝑘 up

until the following condition is met

𝑓 (𝑊 𝑘 ) ⩽𝑓𝜂 (𝑊 𝑘 , 𝑆𝑘 )

=𝑓 (𝑆𝑘 ) + ⟨∇𝑓 (𝑆𝑘 ),𝑊 𝑘 − 𝑆𝑘 ⟩ + 1

2𝜂𝑘
∥𝑊 𝑘 − 𝑆𝑘 ∥2𝐹 . (6)

Please refer to Appendix for the pseudocode of APM.

Note that the computation of the proximal operator (5) is the

crucial step in using APM. The complexity for solving (5) domi-

nates the whole complexity of APM-based algorithms. As usual, the

proximal operator of the nonsmooth part is not easy to solve, e.g.,

[38, 40]. However, in our proposed AutoTR (3), updating𝑊 does

not involve computing the proximal operator of the nonsmooth

term.When updating 𝑅, the proximal operator admits a closed-form

solution, which enables to the design of efficient algorithm.

4.2 Fix 𝑅, Update𝑊

When updating𝑊 , we fix 𝑅, the suboptimization problem is

min
𝑊

L(𝑊 ) + 𝜆1∥𝑊 −𝑊𝑅∥2𝐹 . (7)

Both two terms are smooth and differentiable, we can directly use

the accelerated gradient descent to solve (7) efficiently.

4.3 Fix𝑊 , Update 𝑅

When updating 𝑅, we fix𝑊 and the sub-optimization problem is

min
𝑅

𝜆1∥𝑊 −𝑊𝑅∥2𝐹 + 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1 . (8)

To obtain the proximal operator of 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1, we need to resolve

𝜋 (𝑅) = argmin
𝑄

1

2
∥𝑄 − 𝑅∥2𝐹 + 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1 . (9)

Clearly, (9) is an extension of Lasso problem, we also apply the

soft-thresholding method to arrive at the closed-form solution:

𝜋 (𝑅) = max( |𝑅 | − 𝜆2𝑆, 0) ⊙ 𝑠𝑔𝑛(𝑅) . (10)

So we need the complexity of O(𝑚2) to solve (9).

4.4 The Reason for Using ∥𝑊 −𝑊𝑅∥2
𝐹

Based on the above discussion, here we explain the reason why

we choose ∥𝑊 −𝑊𝑅∥2
𝐹
, rather than ∥𝑊 −𝑊𝑅∥1,1, to capture the

complex temporal relation between tasks.

If we apply ∥𝑊 −𝑊𝑅∥1,1, the associated optimization problem

for updating𝑊 becomes from (7) to

min
𝑊

L(𝑊 ) + 𝜆1∥𝑊 −𝑊𝑅∥1,1 . (11)

We need to minimize the following problem to compute the proxi-

mal operator of 𝜆1∥𝑊 −𝑊𝑅∥1,1 at each iteration:

𝜋 (𝑊 ) = argmin
𝑉

1

2
∥𝑉 −𝑊 ∥2𝐹 + 𝜆1∥𝑉 −𝑉𝑅∥1,1 . (12)

This problem (12) no longer admits a closed-form solution. In fact,

we can solve (12) using the alternating direction method of multipli-

ers (ADMM) [5]. Despite ADMM being widely used [11, 28, 40, 40],

for a desired accuracy 𝜖 , the worst-case convergence rate of ADMM

is only O(1/𝜖2). It is quite slow, and the actual speed of imple-

mentation of ADMM may be affected by the penalty parameter 𝜌

chosen [29]. It is concluded that applying ∥𝑊 −𝑊𝑅∥1,1 will result
in expensive computational costs for updating𝑊 .

Similarly, if ∥𝑊 −𝑊𝑅∥1,1 is applied, the associated optimization

problem for updating 𝑅 becomes from (8) to

min
𝑅

𝜆1∥𝑊 −𝑊𝑅∥1,1 + 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1 . (13)

Due to the all non smooth terms, (13) is challenging to solve. The

Subgradient method [4] is a viable option. However, the low con-

vergence rate of the subgradient method, say O(1/𝜖2) for a desired
accuracy 𝜖 , will also lead to extremely expensive computational

costs for updating 𝑅.

We conclude that the utilization of ∥𝑊 −𝑊𝑅∥2
𝐹
is for reducing

the computational cost. ∥𝑊 −𝑊𝑅∥1,1 is an alternative option for

capturing the complex temporal relation between tasks, however,

only from the perspective of theory. In practice, we can hardly

accept such expensive computational costs leading by the use of

∥𝑊 −𝑊𝑅∥1,1.
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4.5 Complexity Analysis

For simplicity, we make an assumption that each task has identical

𝑛 training samples. The computational cost of our proposed opti-

mization algorithm is composed of two parts, the complexity of

updating𝑊 and 𝑅.

4.5.1 The Complexity of Updating W. When optimizing𝑊 , each

iteration needs to compute the gradient of L(𝑊 ) with the com-

plexity of O(𝑛𝑚𝑑 +𝑚2 (𝑚 +𝑑)). So in the procedure of updating𝑊 ,

each iteration has the complexity of O(𝑛𝑚𝑑 +𝑚2 (𝑚 +𝑑)). Here we
emphasize that in our implementation MATLAB code, we compute

the loss part L(𝑊 ) parallelly with the complexity of O(𝑛𝑑), so the

complexity of every iteration reduces to O(𝑛𝑑 +𝑚2 (𝑚 + 𝑑)). The
convergence rate of APM is proved to be O(1/

√
𝜖) iterations for a

desired accuracy 𝜖 [14, 25], so the overall complexity for updating

W is O
(
(𝑛𝑑 +𝑚2 (𝑚 + 𝑑))/

√
𝜖
)
.

4.5.2 The Complexity of Updating R. When optimizing 𝑅, each

iteration needs to compute the gradient of smooth part 𝜆1∥𝑊 −
𝑊𝑅∥2

𝐹
and the proximal gradient of non-smooth part 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1.

The complexity for computing the gradient is O(𝑚2𝑑). The cost for
computing the proximal operator of 𝜆2∥𝑅 ⊙ 𝑆 ∥1,1 is O(𝑚2). So for

updating 𝑅, each iteration has the complexity of O(𝑚2𝑑) and the

overall complexity for updating 𝑅 is O
(
𝑚2𝑑/

√
𝜖
)
.

4.5.3 The Overall Complexity of Algorithm 1. In the alternating

optimization procedure,𝑊 and 𝑅 will be updated once each as a

full iteration. Therefore, a full iteration has a complexity of

O
(
𝑛𝑑 +𝑚2 (𝑚 + 𝑑)

√
𝜖

)
.

4.6 A Warm Start Strategy

Note that, there is currently no theory work that can guarantee the

convergence rate of the alternating optimization [28]. In order to

further improve the efficiency, we propose a warm start technique

to initialize 𝑅. Specifically, this strategy starts from an intuitive

idea that the larger the interval between two time points, the less

similar they are. We use a variant of the Gaussian kernel to measure

the similarity between two time points 𝑖 and 𝑗 . The corresponding

weight of the temporal relation is initialized as

𝑟𝑖, 𝑗
Initialize
==========




𝑒−|𝑖− 𝑗 |
∑𝑚
𝑖=1,𝑖≠𝑗 𝑒

−|𝑖− 𝑗 | ,∀𝑖 ≠ 𝑗

0, 𝑖 = 𝑗 .

This simple warm start strategy has been shown to effectively en-

hance the efficiency by 17.6 times at best, compared to initialization

using the zero matrix in our experiments. It is worth noting that

we can use 𝑒−|𝑖− 𝑗 |𝛼 to propose different initialization strategies.

The parameter 𝛼 adjusts the decay of the temporal relation. In fact,

we have tried 𝛼 ∈ {0.5, 1, 2, 𝑒, 5, 10} and it works best when 𝛼 = 1.

As a result, in this work, we uniformly set 𝛼 = 1.

5 EXPERIMENT

In this section, we will first introduce the six datasets we used,

the method of preprocessing, and the detailed information for each

dataset. We test the effect of the proposed warm start strategy. Then,

we compare the performance of our proposed AutoTR to baseline

Table 1: Comparing the iteration number of AutoTR-0 and

AutoTR-w on six datasets.

Dataset Method
Stopping Criterion (⩽ 𝜏)

10−1 10−2 10−3 10−4 10−5

Motor UPDRS

AutoTR-0 3.4 5.6 27.4 416.6 605

AutoTR-w 2 3.6 4.4 19.8 242.6

Rate (%) 41 ↓ 36 ↓ 84 ↓ 95 ↓ 60 ↓

Total UPDRS

AutoTR-0 3.2 5.4 11.2 405.2 558.4

AutoTR-w 2.6 3 6.2 14.8 351.2

Rate (%) 19 ↓ 44 ↓ 45 ↓ 96 ⇓ 37 ↓

Weather

AutoTR-0 3.8 4.4 8.8 24 66.2

AutoTR-w 2.4 5 13.8 16.4 43.8

Rate (%) 37 ↓ 14 ↑ 57 ↑ 32 ↓ 34 ↓

MMSE

AutoTR-0 4.8 16.4 45.6 173.2 217.6

AutoTR-w 2.2 4 16 23.6 81.8

Rate (%) 54 ↓ 76 ↓ 65 ↓ 86 ↓ 62 ↓

ADAS-Cog

AutoTR-0 3.4 6 23.2 84.4 193

AutoTR-w 2.4 3.2 7.6 42.4 85

Rate (%) 29 ↓ 47 ↓ 67 ↓ 50 ↓ 56 ↓

RAVLT

AutoTR-0 4.2 8 28.2 71 206.6

AutoTR-w 2.2 4.2 5.8 26 67.6

Rate (%) 48 ↓ 48 ↓ 79 ↓ 63 ↓ 67 ↓

Table 2: Comparing the computation time (second) of

AutoTR-0 and AutoTR-w on six datasets.

Dataset Method
Stopping Criterion (⩽ 𝜏)

10−1 10−2 10−3 10−4 10−5

Motor UPDRS

AutoTR-0 0.02 0.05 0.28 2.82 4.3

AutoTR-w 0.02 0.04 0.05 0.16 1.65

Rate (%) 7 ↓ 30 ↓ 82 ↓ 94 ⇓ 62 ↓

Total UPDRS

AutoTR-0 0.03 0.04 0.11 2.58 4.13

AutoTR-w 0.03 0.03 0.08 0.17 2.14

Rate (%) 5 ↓ 35 ↓ 25 ↓ 93 ↓ 48 ↓

Weather

AutoTR-0 10.86 15.81 23.92 103.61 296.59

AutoTR-w 8.13 22.68 51.01 64.51 208.14

Rate (%) 25 ↓ 43 ↑ 113 ↑ 38 ↓ 30 ↓

MMSE

AutoTR-0 9.76 22.93 65.66 266.76 431.03

AutoTR-w 7.89 9.35 42.94 86.46 200.1

Rate (%) 19 ↓ 59 ↓ 35 ↓ 68 ↓ 54 ↓

ADAS-Cog

AutoTR-0 5.76 15.14 80.11 370.58 760.03

AutoTR-w 7.2 10.75 25.49 171.41 350.22

Rate (%) 25 ↑ 29 ↓ 68 ↓ 54 ↓ 54 ↓

RAVLT

AutoTR-0 7.49 20.45 102.52 109.87 489.14

AutoTR-w 5.69 11.5 16.45 76.5 189.43

Rate (%) 24 ↓ 44 ↓ 84 ↓ 30 ↓ 61 ↓

methods on six datasets. We also visualize the learned temporal

relation matrix. The hardware condition is an Apple M1 Max chip

with 32 GB memory. The implementation code runs on MATLAB.
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Table 3: The average rMSE over 5 repetitions with various training ratios is displayed. The bold font highlights superior models.

Dataset Ratio 𝛽 Ridge Lasso TaskTS FeaTS MeanTR AutoTR

Motor UPDRS
0.6 10.088 ± 0.779 9.037 ± 0.592 7.763 ± 0.663 7.814 ± 0.916 7.737 ± 0.694 7.534 ± 0.571

0.8 9.303 ± 1.128 8.458 ± 0.227 7.051 ± 0.116 6.976 ± 0.320 7.006 ± 0.204 6.924 ± 0.232

Total UPDRS
0.6 13.587 ± 1.145 12.047 ± 0.634 10.095 ± 0.353 9.832 ± 0.094 9.914 ± 0.127 9.810 ± 0.096

0.8 12.906 ± 1.325 11.417 ± 0.738 10.060 ± 0.594 9.715 ± 0.688 9.891 ± 0.559 9.677 ± 0.643

Weather
0.6 0.568 ± 0.040 0.577 ± 0.039 0.523 ± 0.022 0.577 ± 0.078 0.550 ± 0.041 0.466 ± 0.020

0.8 0.553 ± 0.038 0.561 ± 0.035 0.504 ± 0.033 0.518 ± 0.030 0.509 ± 0.030 0.463 ± 0.053

MMSE
0.6 9.641 ± 0.552 3.785 ± 0.050 3.606 ± 0.116 3.347 ± 0.081 3.477 ± 0.046 3.349 ± 0.102

0.8 8.259 ± 0.228 3.827 ± 0.151 3.673 ± 0.092 3.413 ± 0.127 3.518 ± 0.157 3.320 ± 0.118

ADAS-Cog
0.6 12.310 ± 0.241 9.874 ± 0.289 8.389 ± 0.214 8.490 ± 0.204 8.454 ± 0.208 8.140 ± 0.258

0.8 11.611 ± 0.223 9.792 ± 0.222 8.352 ± 0.117 8.485 ± 0.108 8.426 ± 0.135 7.953 ± 0.103

RAVLT
0.6 4.781 ± 0.042 3.226 ± 0.017 2.807 ± 0.016 2.744 ± 0.034 2.773 ± 0.020 2.727 ± 0.031

0.8 4.580 ± 0.180 3.176 ± 0.074 2.767 ± 0.073 2.706 ± 0.055 2.737 ± 0.058 2.659 ± 0.040

Figure 2: The average rMSE over 5 repetitions of every single task is displayed. The training ratio is 0.8.

5.1 Dataset

We have preprocessed the following six public real-life datasets.

Motor UPDRS and Total UPDRS Datasets [21]: The two

datasets are composed of a range of biomedical voice measurements

from 42 people with early-stage Parkinson’s disease. The goal is

to predict the motor and total Unified Parkinson’s Disease Rating

Scale scores (motor UPDRS and total UPDRS) to estimate the state

of Parkinson’s disease patients. In these two datasets, there are 18

features, including 16 biomedical features. Every thirty days as a

period, we calculate the average UPDRS score for each period. We

have seven time points in total.

Weather Dataset [35] 1: This dataset contains local clima-

tological data for nearly 1,600 locations in the United States from

2010 to 2013, with data points collected every 1 hour. Each data

point contains the "Wet Bulb Celsius" target value (the wet-bulb

temperature, which is given in tenths of a degree Celsius) and 11

climate features. We want to forecast how the wet bulb will change

throughout the day. Each hour counts as one task, for a total of 24

tasks. Each task contains 1461 samples.

MMSE, ADAS-Cog, RAVLT Datasets [10, 24]: These three

datasets come from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database 2 has been to ascertainwhether serial magnetic

1Original Weather dataset: https://www.ncei.noaa.gov/data/local-climatological-data/.
2Original ADNI database: https://adni.loni.usc.edu/
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resonance imaging (MRI), positron emission tomography (PET),

and neuropsychological tests can be used in conjunction to track

the development of early AD. After preprocessing , we have data for

a total of 12 time points and every simple has 313 MRI features. Fol-

lowing the strategy used in previous works [15, 18, 40], we use the

three most common cognitive scores, which are the Mini-Mental

State Examination (MMSE), the Alzheimer’s Disease Assessment

Scale-Cognitive Subscale (ADAS-Cog), and the Rey Auditory Verbal

Learning Test (RAVLT), as the response of the model.

5.2 Effectiveness of the Warm Start Strategy

We demonstrate the effectiveness of the proposed warm start strat-

egy, refer to AutoTR initialized with zero as AutoTR-0, and initial-

ized with our proposed warm start strategy as AutoTR-w. Note that

for numerical accuracy consideration, we follow the way used in

previous works [6, 37] and solve the AutoTR formulation with its ob-

jective function multiplied by
∑𝑚
𝑖=1 𝑛𝑖 , where𝑚 and 𝑛𝑖 correspond

to the task number and the sample sizes for task 𝑖 , respectively.

To thoroughly test the effectiveness of the warm start strategy,

we randomly select 5 times of hyperparameters and run them on

each of the six datasets. 𝜆1, 𝜆2 ∈ {100, 101, 102, 103, 104}, the pseudo
hyperparameter 𝑠 is 109. The feature matrix 𝑋𝑖 ,∀𝑖 ∈ N𝑚, is nor-

malized. When the relative change of objective function value in

two successive iterations is not greater than the stopping criterion

𝜏 ∈{10−1, 10−2, 10−3, 10−4, 10−5}, the optimization algorithm is ter-

minated. The maximum iteration is 1000. We record the average

number of iterations and the time of algorithm computation on six

datasets, respectively.

As shown in Table 1, we discover that the proposed warm start

strategy can significantly reduce the number of iterations on all

datasets and stopping criteria. When 𝜏 = 10−4, the number of

iterations on the Total UPDRS dataset is reduced by 96%. When

𝜏 = [10−2, 10−3], the warm start strategy results in a slight increase

in the number of iterations, but it has no significant impact because

the highest iteration number is only 11.2.

According to Table 1, the warm start strategy can obviously

reduce the computation time required for model convergence basi-

cally on all datasets and all stopping criteria. In the best case, on the

Motor UPDRS dataset, when 𝜏 = 10−4, the computation time can

be reduced by 94%, i.e., the efficiency is increased by 17.6 times, as

it drops from 2.82𝑠 to 0.16𝑠 . On other datasets and stopping criteria,

the warm start strategy continues to improve efficiency in terms

of iterations and computation time. These experimental results

demonstrate that using a decay strategy based on a Gaussian kernel

variant to initialize the temporal relation matrix 𝑅 is effective.

5.3 Empirical Evaluation

We use the Root Mean Square Error (rMSE) for empirical evaluation.

Specially, we not only compute the rMSE of the whole multi-task

learning model, but also calculate the rMSE of every single task. The

baseline methods include single-task learning with ridge penalty

(Ridge), single-task learning with Lasso penalty (Lasso), multi-task

learning with task-level temporal smoothness (TaskTS) [17, 19, 38],

multi-task learning with feature-level temporal smoothness (FeaTS)

[34, 38, 40] , and multi-task learning with mean temporal relation

(MeanTR) [3, 27, 32]. The grid range of hyperparameters of all
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Figure 3: The temporal relation matrix of AutoTR on Motor

UPDRS, Total UPDRS, and Weather datasets.

methods is [100, · · · , 104], the pseudo hyperparameter 𝑠 in AutoTR

is 109. We randomly select 𝛽 of the dataset as the training set, where

the training ratio 𝛽 ∈ {0.6, 0.8} and the rest is used to test.We repeat

5 trials. In each trial, a 2-fold cross validation is applied to select the

regularization hyperparameters. The feature matrix 𝑋𝑖 ,∀𝑖 ∈ N𝑚, is

normalized. When the relative change of objective function value in

two successive iterations is not greater than the stopping criterion

𝜏 = 10−4, the optimization algorithm is terminated. The maximum

iteration is 1000. We record the average number of rMSE of all

methods on six datasets to measure the performance of the whole

model and every single task.

First of all, we evaluate the overall performance of the model.

According to Table 3, all of the multi-task learning methods TaskTS,

FeaTS, MeanTR, and our AutoTR, perform much better than the

two single-task learning methods Ridge and Lasso. The method of

Ridge in particular consistently has the worst performance. These

results demonstrate the effectiveness of using multi-task learning

to jointly analyze multiple time points. Note that baseline method

FeaTS performs best on the MMSE dataset with rMSE = 3.347 when

𝛽 = 0.6, but only slightly better than AutoTRwith rMSE = 3.349. The

possible reason is that FeaTS introduces the sparsity of first-order

difference of the feature weight at two adjacent time points which

helps improve the model performance. Furthermore, compared to

TaskTS, FeaTS has better performance under most circumstances,

except when training ratio 𝛽 = 0.6 onMotor UPDRS dataset, TaskTS

with rMSE = 0.763 has a little better performance than FeaTS with

rMSE = 7.814. TaskTS and FeaTS mainly differ in that FeaTS intro-

duces sparse first-order difference of feature weight, which TaskTS

does not. Experimental results show the importance of that kind of

sparsity.

It is worth noting that our proposed AutoTR achieves the best

performance on most datasets, except the MMSE dataset with train-

ing ratio 𝛽 = 0.6. On the Weather dataset, when the training ratio

𝛽 = 0.6, the rMSE of the best baseline method TaskTS is 0.523,

our AutoTR significantly reduces the rMSE to 0.466, almost %11 of

rMSE. When the training ratio is 0.8, the best baseline method is

also TaskTS with rMSE = 0.505, and AutoTR has greatly reduced

rMSE to 0.463. Given that the Weather dataset has the most time

points, i.e., 24 tasks, the experimental result proves that our method
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Figure 4: The temporal relation matrix of AutoTR on MMSE, ADAS-Cog and RAVLT datasets.

seems to have better performance with more tasks. In other words,

it also shows that when the number of tasks is large, simply utiliz-

ing kinds of predefined temporal relations to capture the complex

temporal relation between tasks is far from sufficient.

We also demonstrate the superiority of our AutoTR in terms of

the performance of every single task. We show the experimental

results with training ratio 𝛽 = 0.8 in Figure 2. We first notice that

Ridge has the highest single task error in most cases, especially in

the MMSE, ADAS-Cog, and RAVLT datasets related to Alzheimer’s

disease, while Lasso has much better performance. The possible

reason is all three datasets have 313 features, but the sample size

is only several hundred, so feature selection can improve the per-

formance of the model. AutoTR performs significantly better on a

single task on two datasets, Weather and ADAS-Cog, than other

baseline methods. Note that on the Total UPDRS dataset, the indi-

vidual task rMSE curves of FeaTS and AutoTR almost overlap, and

this result is consistent with the results found in Table 3, as the

overall performance of the two models does not differ significantly

when 𝛽 = 0.8. We conclude that AutoTR has the best single-task

performance in most cases compared to baseline methods. This

shows that our approach can not only achieve better overall perfor-

mance but also better individual task performance. It also clearly

illustrates the necessity to fully explore and exploit the complex

temporal relation between tasks.

In addition, to prove the effectiveness of our method even further,

we repeat our experiment 5 times with 𝛽 = 0.8. We conduct an

independent two-sample t-test and almost all p-values are less than

0.05, except that on the Motor UPDRS dataset, the p-value between

FeaTS and out AutoTR is marginally larger, i.e., 0.057.

5.4 Automatically Learned Temporal Relation

To demonstrate other advantages of our approach, we average the

learned temporal relation matrix 𝑅 when conducting a p-value test

and visualize it. According to Figure 3 and 4, first and most notable,

we clearly find that the temporal relation between tasks can be, al-

though very slightly, negative. It reveals that the temporal relation

between tasks is not necessarily similar, and may even be slightly

repulsive. Specifically, on the Weather dataset, the pattern of tem-

poral relation is clear. There is a slight negative correlation between

tasks near 6 o’clock and 15 o’clock. The possible reason is that the

humidity difference between 6 o’clock and 15 o’clock is relatively

large. A similar situation also occurs in the tasks around 12 o’clock

and 24 o’clock. In addition, we also find a slight negative correlation

on the two datasets of MMSE and ADAS-Cog, roughly around the

first time point and the 12-th time point. The possible reason is that

the tasks are farther apart. It is noted that all the temporal relation

matrices learned from each dataset imply that in most cases, the

more adjacent tasks are, the stronger the temporal relation is. This

also reveals why our proposed warm start strategy based on the

decaying mode of the Gaussian kernel can effectively improve the

efficiency of the algorithm. Because compared to initializing the

temporal relation matrix R with zero, the start point of the warm

start strategy is much closer to the optimal temporal relation among

tasks. Finally, but perhaps more importantly, we note that none of

the temporal relation matrices learned from the datasets is strictly

symmetric. This makes sense, temporal relation is not supposed

to be symmetric. For example, given two time points 𝑖 < 𝑗 , the

temporal relation from time point 𝑖 to 𝑗 likes predicting the state

of one patient in the future, but the relation from time point 𝑗 to

𝑖 likes analyzing the historic data of the patient. They should be

different. However, to the best of our knowledge, the asymmetry of

temporal relation is not considered in all existing baseline works.

6 CONCLUSION

In this work, under the setting of multi-task learning, we proposed

a novel automatic temporal relation mechanism to fully capture

and exploit the complex temporal relation between tasks. In order

to improve the efficiency of the optimization algorithm, we de-

signed a warm start strategy based on the Gaussian kernel function.

To comprehensively analyze the performance of our method, we

preprocessed six public real-life datasets. Extensive experimental

results proved that, compared to baseline methods, our algorithm

not only has the best overall performance of the whole model but

also has the best performance on every single task. The designed

warm start strategy, which is simple but effective, can significantly

reduce the number of iterations required by algorithm convergence

(up to 96%) and the computation time required by the algorithm (up

to 94%, 17.6 times efficiency). We also visualized the six temporal re-

lation matrices learned from six datasets, verifying the asymmetry

of temporal relation that, however, none of the baseline methods

considered. In the future, we will try to explore the effectiveness of

our proposed approach AutoTR in other real-life areas, e.g., stock

price movement prediction.
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A DETAILED OPTIMIZATION

The pseudocode of the overall alternating optimization algorithm

for solving our AutoTR is in Algorithm 1. We summarize the proce-

dure of APM in Algorithm 2.

Algorithm 1 Alternating Optimization for AutoTR.

Input:

𝑋 = [𝑋1, · · · , 𝑋𝑚]: feature dataset for m tasks.

𝑌 = [y1, · · · , ym]: response for m tasks.

𝜆1, 𝜆2: hyperparameter.

𝑠: the pseudo hyperparameter to constrain 𝑟𝑖,𝑖 = 0.

𝜖 : the threshold for terminating the procedure.

Output:

𝑊 : the model coefficient matrix.

𝑅: the temporal relation between tasks.

1: Initialize:𝑊 = 0, 𝑅 = 0.

2: for 𝑘 = 1 𝑡𝑜 · · · do
3: Fix 𝑅, update𝑊 .

4: Fix𝑊 , update 𝑅.

5: if Δ𝐹 ⩽ 𝜖 then

6: break

7: end if

8: end for

Algorithm 2 The Accelerated Proximal Gradient Algorithm.

Input:

𝑋 = [𝑋1, · · · , 𝑋𝑚]: feature dataset for m tasks..

𝑌 = [y1, · · · , ym]: response for m tasks.

Output:

𝑊 : the model coefficient matrix.

1: Initialize: 𝜂0 = 1, 𝑡0 = 0, 𝑡1 = 1,𝑊 1
=𝑊 0.

2: for 𝑘 = 1 𝑡𝑜 · · · do
3: 𝛼𝑘 =

𝑡𝑘−1−1
𝑡𝑘

, 𝑆𝑘 =𝑊 𝑘 + 𝛼𝑘 (𝑊 𝑘 −𝑊 𝑘−1). ⊲ search point

4: for𝑚 = 0 𝑡𝑜 · · · do
5: 𝜂𝑘 = 2𝑚𝜂𝑘−1
6: Solving (5) for𝑊 𝑘+1.
7: if (6) is satisfied then ⊲ line search

8: break

9: end if

10: end for

11: 𝑡𝑘 =
1
2

(
1 +

√︃
1 + 4𝑡2

𝑘−1

)

12: if convergence crition is satisfied then

13: Output𝑊 𝑘 , break

14: end if

15: end for

B DETAILS OF ADNI DATASETS

Three ADNI Datasets [10, 24]: The Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database’s main objective has been

to determine whether serial positron emission tomography (PET),

magnetic resonance imaging (MRI), and neuropsychological tests

can be used in conjunction to track the progression of early AD.

The baseline refers to a patient’s initial hospital screening. The

follow-up time point is represented as the time point when the

baseline started. For example, "M12" denotes a time point that is

one year after the initial visit (baseline time point). The most recent

ADNI offers follow-up information from up to 120 months for spe-

cific patients. However, many participants drop out of the study for

a variety of reasons. As a result, the data on fever increases with

increasing distance from the baseline time point. Finally, we have

information for 12 different time points, ranging from M00 to M120.

Please refer to Table 4 for detailed information.

The data preprocessing steps we take are the same as [40]. Fi-

nally, we have three datasets, MMSE, ADAS-Cog, and RAVLT for

predicting AD evolution. Each dataset receives 314 features in total.

Table 4 shows the specifics of the datasets.

Table 4: The sample number at each time point on the MMSE,

ADAS-Cog, and RAVLT datasets.

Time point MMSE ADAS-Cog RAVLT

M00 1092 1074 1091

M06 1078 1064 1074

M12 1027 1014 1021

M24 883 867 877

M36 579 556 576

M48 494 483 468

M60 305 299 267

M72 333 327 249

M84 262 259 192

M96 200 200 148

M108 118 118 97

M120 69 69 61

C P-VALUE TEST

We repeat the experiment procedure used in Table 3 5 times and

report the p-value to further prove the effectiveness of our method.

However, for the sake of paper space, we only show the experimen-

tal result with the training ratio 𝛽 = 0.8.We conduct an independent

two-sample t-test. If the p-value ⩽ 10−3, we report 0; if p-value
⩾ 0.05, we highlight it.

Table 5: The p-value between different methods, and the

training ration 𝛽 = 0.8

Method Ridge Lasso TaskTS FeaTS MeanTR

Motor UPDRS 0 0 0.032 0.057 0.011

Total UPDRS 0 0 0.006 0.043 0

Weather 0 0 0 0 0

MMSE 0 0 0 0.027 0

ADAS-Cog 0 0 0 0 0.006

RAVLT 0 0 0.013 0 0.009

Obviously, except for the p-value of the FeaTS method on the

Motor UPDRS dataset which is slightly higher than 0.05, the other

values are very small. This proves that the improvement of our

method is statistically significant.
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