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ABSTRACT

Multi-task learning with temporal relation is a common prediction
method for modelling the evolution of a wide range of systems.
Considering the inherent relations between multiple time points,
many works apply multi-task learning to jointly analyse all time
points, with each time point corresponding to a prediction task.
The most difficult challenge is determining how to fully explore
and thus exploit the shared valuable temporal information between
tasks to improve the generalization performance and robustness of
model. Existing works are classified as temporal smoothness and
mean temporal relations. Both approaches, however, utilize a pre-
defined and symmetric task relation structure that is too rigid and
insufficient to adequately capture the intricate temporal relations
between tasks. Instead, we propose a novel mechanism named Au-
tomatic Temporal Relation (AutoTR) for directly and automatically
learning the temporal relation from any given dataset. To solve
the biconvex objective function, we adopt the alternating optimiza-
tion and show that the two related sub-optimization problems are
amenable to closed-form computation of the proximal operator. To
solve the two problems efficiently, the accelerated proximal gra-
dient method is used, which has the fastest convergence rate of
any first-order method. We have preprocessed six public real-life
datasets and conducted extensive experiments to fully demonstrate
the superiority of AutoTR. The results show that AutoTR outper-
forms several baseline methods on almost all datasets with different
training ratios, in terms of overall model performance and every
individual task performance. Furthermore, our findings verify that
the temporal relation between tasks is asymmetrical, which has
not been considered in previous works. The implementation source
can be found at https://github.com/menghui-zhou/AutoTR.
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» Computing methodologies — Multi-task learning; Regular-
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1 INTRODUCTION

Multi-task learning [16, 22, 26, 31] is a learning paradigm that
aims to leverage valuable information present in multiple related
tasks to increase the robustness and generalization performance
of the model. Recently, multi-task learning with temporal relation
has emerged as a popular and widely used numerical prediction
method for the evolution of a wide range of systems, e.g., stock
price movements prediction [3], robust key point tracking [32],
ensemble forecasting [27], temporal survival analysis [23], road
networks prediction [34], and disease progression model [7, 19].

Considering the inherent relations between multiple time points,
using multi-task learning to jointly analyse all time points and thus
take full advantage of the shared temporal information between
tasks is supposed to significantly improve the performance of mod-
els [12, 15, 17, 39], especially when data size is limited but feature
dimension is high [38, 40]. In this setting, each of the total m time
points corresponds to a prediction task and the multi-task model
coefficient matrix W = [wq, -+, wWn]. As shown in Figure 1, the
k-th time point represents the k-th task wy. The critical challenge
of this type of temporal multi-task learning is to determine how
to fully exploit the shared temporal information between tasks.
Existing works are broadly classified as temporal smoothness and
mean temporal relations.

The temporal smoothness relation assumes that the difference
between two successive tasks is relatively small and thus investi-
gates the temporal relation between multiple tasks. As a result, the
methods of multi-task learning with temporal smoothness typically
penalize the difference between adjacent tasks |[wy — Wyq ||§ in
order to achieve temporal smoothness at task level [7, 17, 23, 39].
Some works [34, 38, 40] assume that nearby time points have simi-
lar features, so they penalize 3 i [w; & — W; j41| to pursue temporal
smoothness at feature level. Clearly, both task-level and feature-
level temporal smoothness seek the same outcome, i.e.,

Wk X Wiyt

Unlike the temporal smoothness relation, some works [3, 27, 32]
suggest all tasks share an explicit common term wg and a task-
specific weight vy, every task can be written as wi = wo + V.
This temporal relation structure has been proved in [8] that in the
setting of support vector machine, every task has a trend to chase
the mean value of all tasks Z?ﬁ 1 Wi /m. In Section 3, we demonstrate
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Figure 1: The time points are not evenly distributed. Every
time point corresponds to a prediction task. The AutoTR
mechanism directly and automatically learns the complex
temporal relation between tasks.

that this mean temporal relation actually chases
Wi & ﬁ(wl + Wi+ Wiy o+ W)

It is concluded that in the temporal smoothness relation, only
the relation between adjacent tasks is considered, and the weight
of all temporal relations is fixed as 1. So temporal smoothness is
a local, predefined, and symmetric temporal relation. The mean
temporal relation is a global relation structure since it considers the
difference between tasks. However, since the weight of all temporal
relations is fixed as (m — 1)1, it is still a predefined and symmetric
relation structure.

Due to the utilization of temporal information shared between
tasks, introducing temporal smoothness or mean temporal relation
into multi-task learning methods has been shown to have a signif-
icant positive impact on model in terms of accuracy, robustness,
and generalization performance [38]. However, the predefined and
symmetric task relation structure is too rigid and insufficient to
adequately capture the complex temporal relation among tasks.
This work comes from a strong and clear motivation that none of
these methods does consider the situation of uneven distribution
of time points, as shown in Figure 1, which is usual in real-life
applications. For example, based on the data from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database [10], many works
[15, 38—40] use multi-task learning with temporal relation to pre-
dict Alzheimer’s disease progression at a sequence of time points,
MO00, M06, M12, M24, - - - , M120. The notation M0O is the baseline
time point and Mx represents x months after M00. Clearly, the time
points are not evenly distributed since the intervals between two
successive time points are not the same, i.e., 6 months or a year.
Furthermore, even when the time points are evenly distributed, the
given time notation is frequently inaccurate. The data at M24 may
come from M23, M25, or M26 in practice [24].

To deal with this common but extremely complicated situation,
it should be far preferable to learn the complex temporal relation be-
tween tasks directly and automatically from the given data, rather
than relying on a predefined temporal relation structure. So we
name this idea Automatic Temporal Relation (AutoTR) and mathe-
matically formulate it as

Wk X I eWi1+ o+ o1k Wk—1 + Tt 1,k Wkt + 0+ 7 kW

Clearly, as shown in Figure 1, wy is related to all other tasks
wj, Vi # k. The weight of temporal relation r,  (the relation from
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task wy to wy) is not fixed yet and needs to be learned from the
data. Another important point is that in AutoTR, the temporal re-
lation is not symmetric as predefined by temporal smoothness or
mean temporal relation, since we do not constrain ry y = 1y . In
fact, this asymmetry corresponds to the real-life temporal relation.
For instance, refer to Figure 1, ri_; j represents analyzing the past
state of one patient in the current k-th time point, whereas ry j_;
represents predicting future state from (k — 1)-th time point. They
have completely different meanings in practice and should be al-
lowed to have different values, rather than being predefined as the
same value which is too strict in real-life applications.

To solve the nonsmooth and biconvex objective function, we
adopt the alternating optimization method. The associated two sub-
optimization problems are amenable to closed-form computation
of the proximal operator, resulting in an efficient algorithm based
on the accelerated proximal gradient method, which has the best
convergence rate of all first-order methods [25]. Furthermore, since
there is no theory to guarantee the convergence rate of alternat-
ing optimization [28], we design a simple but effective warm start
strategy based on the Gaussian kernel to improve efficiency even
further. According to the experimental results, this strategy effec-
tively increases efficiency by 17.6 times in terms of computation
time at best when compared to the zero initialization that is usually
used in multi-task learning literature [11, 13, 28].

We have preprocessed six public real-life datasets and conducted
extensive experiments to fully validate the superiority and gen-
eralization of the proposed AutoTR. Results show that AutoTR
outperforms several baseline methods on almost all six datasets
in terms of overall model performance and every individual task
performance. It is worth noting that our findings also demonstrate
that the temporal relation between tasks is asymmetric, which has
not been considered in previous works with temporal smoothness
or mean temporal relation.

We conclude this work has the following contributions:

e We propose a novel automatic temporal relation mechanism
AutoTR to directly and automatically capture the complex
temporal relation among tasks, rather than relying on pre-
defined and symmetric temporal relation structures used in
existing baseline methods. An efficient optimization algo-
rithm has been designed based on alternating optimization
and a simple but effective warm start strategy.

e We have preprocessed six widely used real-life datasets and
conducted extensive experiments. The results demonstrate
the superiority of AutoTR in terms of overall model perfor-
mance and every individual task performance, compared to
several baseline methods.
To explore the complex temporal relation among tasks, we
visualize the automatically learned matrix of the temporal
relation between tasks. The results also confirm the tempo-
ral relation is asymmetry, which is not taken into account
by baseline methods. It implies that using a predetermined
structure, as existing methods, to investigate the temporal
relation between tasks is insufficient.

Notations: Ny, = {1, -, m}. x; and x; j denote the i-th element
of a vector x and the (i, j)-th element of a matrix X. x; (x!) de-
notes the i-th column (row) of a matrix X. Euclidean and Frobenius
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norms are denoted by || - ||2 and || - ||, (A, B) is the inner prod-
uct, A © B is component-wise multiplication of A and B. [|X]|p,q =
(2% xﬁj)q/p)l/q. The component-wise operator sgn(-) satisfies:
t <0,sgn(t) =—-1;¢t=0,sgn(t) =0,and t > 0,sgn(t) = 1.

Organization: The remainder of this work is structured as fol-
lows. The related work is in Section 2. In Section 3, we thoroughly
discuss the existing baseline works and our proposed automatic
temporal relation. We go into great detail about the related opti-
mization algorithm in Section 4. Section 5 presents the experimental
findings. Section 6 serves as the conclusion of this paper.

2 RELATED WORK

In this section, we briefly discuss the multi-task learning methods
with temporal smoothness or mean temporal relation.

2.1 Temporal Smoothness Relation

Temporal smoothness relation can be divided into two categories,
task-level temporal smoothness, and feature-level temporal smooth-
ness. The former assumes the difference between two successive
time points is relatively small. Since every time point concerns a
task of prediction, it penalizes the difference between two adjacent
tasks over time ||wy — W41 ||§ Due to the property of differentiabil-
ity, the task-level temporal relation will save some computational
costs and hence has been widely used in a variety of scenarios, e.g.,
predicting disease progression [2, 7, 12, 17, 19, 30, 39], online en-
semble forecasting [27], air quality inference [33], and tensor-based
survival analysis [23]. Different from task-level temporal smooth-
ness relation, several works [38, 40], motivated by predicting the
progression of Alzheimer’s disease, assume the two neighbouring
time points have similar feature sets. They extend the famous fused
Lasso [20] to multi-task learning setting to penalize the difference
of each feature at two successive time points Y [w; x — W; g1l
to chase the feature-level temporal smoothness. Zheng et al. [34]
also use the feature-level temporal smoothness for forecasting road
travel costs. We conclude that both the task-level and feature-level
temporal smoothness relations share the same goal, i.e., W = Wyq.

2.2 Mean Temporal Relation

The mean temporal relation assumes every task wy shares an ex-
plicit common term wq and has a task-specific term vy and both
terms are penalized based on I, norm. It also arises in various appli-
cations, e.g., the prediction of day trading profit [3], online ensemble
forecast [27] and robust key point tracking [32]. Evgeniou et al. [8]
prove that in the setting of support vector machine, using the mean
temporal relation means every task has a trend to chase the mean
value of all tasks .17, wi/m, i.e., every task has the tendency to
arrive wy ~ ﬁ(w1 + Wi+ Wy + o+ Win).

Despite the fact that both temporal smoothness and mean tempo-
ral relations have been shown to significantly improve the capability
of the model in terms of generalization performance and robustness,
the main limitation is that both are predefined structures that are
too rigid and insufficient to fully explore the complex temporal rela-
tion between tasks. At the same time, these two temporal relations
are symmetric, which is too strict and inconsistent with reality. For
example, given two time points i < j, the temporal relation from
time point i to j likes predicting the state of one patient in the
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future, but the relation from time point j to i likes analyzing the
historic data of the patient. They are clearly different. However, to
the best of our knowledge, the asymmetry of temporal relation is
not considered in all existing works.

Compared to the baseline methods, our proposed AutoTR directly
and automatically learns the complex temporal relation between
tasks from every dataset which can even be asymmetric.

3 METHODS

In this section, we introduce the multi-task learning setting and
fully explore the temporal smoothness and mean temporal relation.
Then we propose our novel automatic temporal relation.

3.1 Multi-task Learning

Assume we're given a series of time points, the total number of
which is m. Each time point is associated with a specific task.
{(X1,y1), -+ s (Xim, ym)} is the data, X; € R"%*4 s the data ma-
trix of the i-th task with each row representing an instance; d
is the data dimension; n; is the number of samples for the i-th
task. y; € R™ is the target of the i-th task, y; has discrete val-
ues for classification and continuous values for regression. Denote
W=[wq,- -+ ,wWn] € RIXM 35 the weight matrix to be estimated,
the empirical risk is given by

L) == 3 = S U )w, (),
i=1 " j=1

where the loss function I(-, -) is square loss for regression problem
and logistic loss for binary classification problem.

3.2 Temporal Smoothness Relation

When using a multi-task learning approach, the biggest challenge
is capturing and exploiting the complex task relation to improve
the generalization performance and robustness of the model. The
widely used temporal smoothness relation [17, 19, 38] assumes
every time point is similar to its adjacent time points. If each task
corresponds to a time point, each task has a tendency to be similar
to its neighbouring tasks. To achieve this goal, the models based
on temporal smoothness usually penalize the difference between
two successive tasks ||w; — Wi+1||% to chase task-level temporal
smoothness using the penalty of

Ay i = wieal
where A is a fine-tuning hyperparameter to control the degree of
the similarity between tasks. Some works, motivated by disease
progression modeling [38, 40] or road cost forecasting [34], assume
that the nearby time points have similar features, so they penalize
2.j lwi,j —wi j+1] to chase the temporal smoothness at feature level
using the penalty of

d m—1
A Zi:l Zj:l Iwij = wijaal.

We conclude that both task-level and feature-level temporal smooth-
ness relations share the same goal, i.e.,

Wi X Wit1.

Despite that many experiments have proved that the introduc-
tion of temporal smoothness can effectively enhance the model
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performance, it is actually only a local, predefined, and symmetric
temporal relation. To make our statement clear, we explain it from
the perspective of graph theory. If each task is viewed as a node, the
temporal relation between a pair of nodes is an edge, so all tasks
and their temporal relation form a graph. However, the adjacency
matrix of the temporal smoothness relation graph is a fixed and
symmetric tridiagonal matrix as

o 1 --- 0 O
1 0 --- 0 O
o 0 --- 0 1
0 0 1

3.3 Mean Temporal Relation

Unlike the temporal smoothness relation, some works [3, 27, 32]
assume all tasks share an explicit common term wq and a task-
specific weight vj, every task can be written as wj = wq + vj. Both
wo and vj are penalized to chase the complex temporal relation
using

M e 2
=3 willg + Azllwoll3,
m i=1

where A1 and A3 are two fine-tuning hyperparameters. Evgeniou
et al. [8] prove that in the setting of support vector machine, this
temporal relation structure is equivalent to

m m 1 m

2 2

M § lIwill + A2 § lwi — — E wijll3.
i=1 i=1 Jj=1

It is clear that every task has a trend to chase the mean value of all
tasks Z;.":l wj/m. Actually, this mean temporal relation chases the
following type of temporal relation:

1
Wi & m(w1+~-+wk_1 + Wi+ +Wm).

The corresponding adjacency matrix of the mean temporal relation
graph is

0 1 1 1
1 0 1 1
1
m_l . . .
11 --- 0 1
11 --- 1 0

So obviously, the mean temporal relation is a global relation struc-
ture since every task wy is related to all other tasks wy, Vx # k.
However, all temporal relations have the same weight fixed as
(m — 1)7!, the mean temporal relation is still a predefined and
symmetric relation structure.

3.4 Automatic Temporal Relation

To overcome these drawbacks, first of all, we assume that each task
is connected to every other task and the weight of temporal relation
should be learned directly and automatically from data, rather than
being predefined. So we formulate this type of temporal relation
mathematically as

Wk X I W1+ e 1k Wk—1 + T 1,k Wkt + -+ 7 kW
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Obviously, wy, is related to all other tasks wj, Vi # k. The weight of
temporal relation r, ;. (the relation from task wy, to wy) is not fixed
yet and needs to be learned from data. Another key point is in this
structure, the temporal relation is not symmetric as predefined in
temporal smoothness or mean temporal relation, since we do not
constrain ry j = rg . In fact, this asymmetry is consistent with the
real-life temporal relation. For example, analysing the past state of
one patient in the present moment is not the same as predicting
the future state, i.e., ry g # i, VX % k.

Not only that, we do not assume that tasks are necessarily similar
to others, i.e., we do not constrain r, ;. > 0. In fact, as the results
show in Section 5, we found that sometimes tasks will have a nega-
tive relation, although very slightly, with r, ;. < 0. It means they
slightly repel, rather than approximate each other. This negative
temporal relation has never been studied in all existing works.

After integrating the temporal relation between all tasks, we
have

0 1,2 r,m
r2,1 0 r2,m
wawl| : © | =wr (1)
"m-1,1 Tm-12 m-1,m
m,1 "m,2 s 0

where R is the adjacency matrix of temporal relation between tasks.

Based on the above descriptions, we propose a novel mechanism,
termed Automatic Temporal Relation (AutoTR), to automatically
capture the complex temporal relation among tasks:

min L(W) + AW - WRII + 22/|Rl|1,1,
st. 1ii=0,i € Np,. (2)

The first penalty ||W — WR]| 129 is applied to chase the complex tem-
poral relation among all tasks. We use the second penalty [|R]|1,1
to encourage only tasks that are most pertinent to share common
temporal information.

Note that the penalty | W —WR]||1 1 is an alternate option to chase
the temporal relation, however, with extremely expensive compu-
tational costs. Please refer to Section 4 for the detailed discussion
about the reason for using ||W — WR||12,:, rather than ||W — WR||1,1.

In order to constrain r;; = 0, we need to penalize the main
diagonal elements of R much more heavily than other entries. So
we introduce the auxiliary matrix S which is formulated as

S=(s=1) - Imxm + 1mxm-
The optimization problem (2) becomes

rvnvigz(W)+Al||W—WR||§+A2||RQS||1,1. 3)

It is worth noting that s is only a “pseudo” hyperparameter, not
a true hyperparameter like A; and A2. We just need to give s an
enough large number to constrain r;; = 0, Vi € Ny,. In our experi-
mental setting, we let s = 10 to achieve the constraint of r;; = 0.
It is concluded that introducing the auxiliary matrix S will not in-
crease the computational complexity of the associated optimization
problem.

Note that the optimization problem (2) is biconvex which implies
we can employ the alternating optimization algorithm to update
both variables W and R. Based on AutoTR, we have the capability of
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automatically and directly learning the complex temporal relation
among tasks from every specific dataset.

4 OPTIMIZATION

The objective function (3) is not easy to solve, since it is nonsmooth
and biconvex. In this section, we first introduce the whole alter-
nating optimization for solving (3). Then we show how to adopt
the accelerated proximal gradient method (APM) [25] to solve the
associated two suboptimization problems about W and R with high
efficiency.

The alternating optimization is widely used for solving the bi-
convex objective function [11, 13, 28]. We need to optimize W and
R alternately. The optimization procedure is stopped when the
relative change of objective function value AF at two successive
iterations is not bigger than the threshold e.

4.1 Accelerated Proximal Gradient Method

To update W and R efficiently, we use the accelerated proximal
gradient method (APM). Because of the fastest convergence rate
for the class of first-order methods, APM has been widely used to
address issues with multi-task learning [9, 36]. It has the following
form:

mMi/nF(W) = f(W) +g(W), 4

where f(W) is smooth and convex, and g(W) is nonsmooth and
convex. APM is built on two sequences, the search point {S¥} and
the approximation point {wk}. sk is a linear combination of Wk=1
and Wk,

Sk+1 — Wk + ak(Wk _ Wk*l)’

where a is the combination coefficient. According to [1], let o =

(tg-1—1) . _ _1 2
e to=1land ty = 3(1+ J4tk_1+1) fork > 1.

The approximation point wkis computed as
WE = n(s* — eV (55)), ©)

where 7 is the chosen step size, 7(V) is the proximal operator of
V. The global convergence of APM is dependent on an appropriate
step size of . Many sophisticated line search schemes [4] can
estimate the step size ni. Updates are made to the value of n; up
until the following condition is met

FWky <f(wk, s%)

=F(5) +(VF(s), Wk - %) + %nwk SR 6
k

Please refer to Appendix for the pseudocode of APM.

Note that the computation of the proximal operator (5) is the
crucial step in using APM. The complexity for solving (5) domi-
nates the whole complexity of APM-based algorithms. As usual, the
proximal operator of the nonsmooth part is not easy to solve, e.g.,
[38, 40]. However, in our proposed AutoTR (3), updating W does
not involve computing the proximal operator of the nonsmooth
term. When updating R, the proximal operator admits a closed-form
solution, which enables to the design of efficient algorithm.
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4.2 Fix R, Update W
When updating W, we fix R, the suboptimization problem is

mMi/nL(W) + MW — WR]|3. )

Both two terms are smooth and differentiable, we can directly use
the accelerated gradient descent to solve (7) efficiently.

4.3 Fix W, Update R
When updating R, we fix W and the sub-optimization problem is

min A1 [[W = WRIE + 2[R © S]l11. ®)
To obtain the proximal operator of A2||R © S||1,1, we need to resolve

.1
7(R) = argmin —[|Q = R|[} + A2[IR © S[l11. ©)
Q

Clearly, (9) is an extension of Lasso problem, we also apply the
soft-thresholding method to arrive at the closed-form solution:

7(R) = max(|R| — 125, 0) © sgn(R). (10)

So we need the complexity of O(m?) to solve (9).

4.4 The Reason for Using ||W — WR||12D

Based on the above discussion, here we explain the reason why
we choose ||[W — WR||%, rather than ||W — WR||,1, to capture the
complex temporal relation between tasks.

If we apply |[W — WR||1,1, the associated optimization problem
for updating W becomes from (7) to

mMi/nL(W)+/11||W—WR||1,1- (11)

We need to minimize the following problem to compute the proxi-
mal operator of A;||W — WR||1,1 at each iteration:

o1
x(W) :argm1n5||V—W||§,+Al||V—VR||1,14 (12)
Vv

This problem (12) no longer admits a closed-form solution. In fact,
we can solve (12) using the alternating direction method of multipli-
ers (ADMM) [5]. Despite ADMM being widely used [11, 28, 40, 40],
for a desired accuracy ¢, the worst-case convergence rate of ADMM
is only O(1/€?). It is quite slow, and the actual speed of imple-
mentation of ADMM may be affected by the penalty parameter p
chosen [29]. It is concluded that applying ||W — WR||1,; will result
in expensive computational costs for updating W.

Similarly, if ||[W — WR||1,1 is applied, the associated optimization
problem for updating R becomes from (8) to

H}%DMHW—WRHl,l +A2||lR© Sll1,1. (13)

Due to the all non smooth terms, (13) is challenging to solve. The
Subgradient method [4] is a viable option. However, the low con-
vergence rate of the subgradient method, say O(1/¢?) for a desired
accuracy €, will also lead to extremely expensive computational
costs for updating R.

We conclude that the utilization of ||W — WR||125 is for reducing
the computational cost. ||W — WR||1,1 is an alternative option for
capturing the complex temporal relation between tasks, however,
only from the perspective of theory. In practice, we can hardly
accept such expensive computational costs leading by the use of
IW = WRIl,1.
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4.5 Complexity Analysis

For simplicity, we make an assumption that each task has identical
n training samples. The computational cost of our proposed opti-
mization algorithm is composed of two parts, the complexity of
updating W and R.

4.5.1 The Complexity of Updating W. When optimizing W, each
iteration needs to compute the gradient of £(W) with the com-
plexity of O(nmd + m?(m +d)). So in the procedure of updating W,
each iteration has the complexity of O(nmd + m?(m + d)). Here we
emphasize that in our implementation MATLAB code, we compute
the loss part L (W) parallelly with the complexity of O(nd), so the
complexity of every iteration reduces to O(nd + m?(m + d)). The
convergence rate of APM is proved to be O(1/+/¢) iterations for a
desired accuracy € [14, 25], so the overall complexity for updating

W is O ((nd + m?(m + d)) /ve).

4.5.2 The Complexity of Updating R. When optimizing R, each
iteration needs to compute the gradient of smooth part A ||W —
WR||§, and the proximal gradient of non-smooth part A3||[R © S||11.
The complexity for computing the gradient is O(m?d). The cost for
computing the proximal operator of A3||R © S||1.1 is O(m?). So for
updating R, each iteration has the complexity of O(m?d) and the
overall complexity for updating R is O (mzd/\/g).

4.5.3 The Overall Complexity of Algorithm 1. In the alternating
optimization procedure, W and R will be updated once each as a
full iteration. Therefore, a full iteration has a complexity of

nd + m®(m + d)
o2 2).

4.6 A Warm Start Strategy

Note that, there is currently no theory work that can guarantee the
convergence rate of the alternating optimization [28]. In order to
further improve the efficiency, we propose a warm start technique
to initialize R. Specifically, this strategy starts from an intuitive
idea that the larger the interval between two time points, the less
similar they are. We use a variant of the Gaussian kernel to measure
the similarity between two time points i and j. The corresponding
weight of the temporal relation is initialized as

e~ li—Jl Vi

rig Initialize ?ﬁl,#j Ry 1#]

0, i=j.
This simple warm start strategy has been shown to effectively en-
hance the efficiency by 17.6 times at best, compared to initialization
using the zero matrix in our experiments. It is worth noting that
we can use e~ 11771 to propose different initialization strategies.
The parameter « adjusts the decay of the temporal relation. In fact,
we have tried a € {0.5,1,2,¢,5, 10} and it works best when « = 1.
As aresult, in this work, we uniformly set a = 1.

5 EXPERIMENT

In this section, we will first introduce the six datasets we used,
the method of preprocessing, and the detailed information for each
dataset. We test the effect of the proposed warm start strategy. Then,
we compare the performance of our proposed AutoTR to baseline
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Table 1: Comparing the iteration number of AutoTR-0 and
AutoTR-w on six datasets.

Stopping Criterion (< 7)

Dataset Method 107! 102 103 104 10-5
AutoTR-0 3.4 5.6 274  416.6 605
Motor UPDRS | AutoTR-w 2 3.6 44 19.8 2426
Rate (%) | 41 36] 84| 95] 60}
AutoTR-0 3.2 5.4 11.2 405.2 558.4
Total UPDRS | AutoTR-w | 2.6 3 6.2 14.8 351.2
Rate (%) | 19 44] 45] 960 37}

AutoTR-0 3.8 4.4 8.8 24 66.2

Weather AutoTR-w | 2.4 5 13.8 164  43.8
Rate (%) | 37 147 577 32] 34
AutoTR-0 4.8 164 456 173.2 217.6

MMSE AutoTR-w 2.2 4 16 23.6 81.8
Rate (%) | 54] 76| 650 8] 62]

AutoTR-0 3.4 6 23.2 84.4 193

ADAS-Cog AutoTR-w 2.4 3.2 7.6 42.4 85
Rate (%) | 29] 470 670 50] 56}
AutoTR-0 4.2 8 28.2 71 206.6

RAVLT AutoTR-w | 2.2 4.2 5.8 26 67.6
Rate (%) | 48] 48] 79| 63] 67

Table 2: Comparing the computation time (second) of
AutoTR-0 and AutoTR-w on six datasets.

Stopping Criterion (< 1)

Method
ot 10-1 1072 1073 107 1075

Dataset

AutoTR-0 | 0.02 005 028 | 282 43
Motor UPDRS | AutoTR-w | 0.02 004  0.05 016  1.65
Rate (%) | 701 30 82] 940 62]

AutoTR-0 | 0.03  0.04 0.11 2.58 4.13

Total UPDRS | AutoTR-w | 0.03  0.03 0.08 0.17 2.14
Rate (%) 50 350 25] 93] 48]

AutoTR-0 | 10.86 15.81 2392 103.61 296.59

Weather AutoTR-w | 8.13 22.68 51.01 64.51 208.14

Rate (%) | 25] 437 1137 38]  30]

AutoTR-0 9.76 2293 65.66 266.76 431.03
MMSE AutoTR-w | 7.89 9.35 42.94 86.46 200.1
Rate (%) | 190 590 35| 68| 541

AutoTR-0 | 5.76 15.14 80.11 370.58 760.03

ADAS-Cog | AutoTR-w | 7.2 1075 2549 17141 350.22
Rate (%) | 257 29] 68] 54 54

AutoTR-0 | 7.49 2045 10252 109.87 489.14

RAVLT AutoTR-w | 569 115 1645 765 189.43

Rate (%) | 24] 44] 84] 30 61}

methods on six datasets. We also visualize the learned temporal
relation matrix. The hardware condition is an Apple M1 Max chip
with 32 GB memory. The implementation code runs on MATLAB.
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Table 3: The average rMSE over 5 repetitions with various training ratios is displayed. The bold font highlights superior models.
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Dataset Ratio f ‘ Ridge Lasso TaskTS FeaT$S MeanTR ‘ AutoTR
Motor UPDRS 0.6 10.088 + 0.779  9.037 =+ 0.592 7.763 £ 0.663 7.814 £ 0916 7.737 £0.694 | 7.534 £ 0.571
0.8 9.303 + 1.128 8.458 + 0.227 7.051 £+ 0.116 6.976 £ 0320 7.006 + 0.204 | 6.924 + 0.232
0.6 13.587 £ 1.145 12.047 £ 0.63¢ 10.095 £ 0353  9.832 £ 0.094 9.914 +0.127 | 9.810 * 0.096
Total UPDRS
0.8 12.906 + 1325 11.417 £0.738 10.060 £ 0594  9.715 £ 0.688  9.891 + 0.559 | 9.677 + 0.643
Weather 0.6 0.568 =+ 0.040 0.577 % 0.039 0.523 + 0.022 0.577 £ 0.078  0.550 + 0.041 | 0.466 + 0.020
0.8 0.553 + 0.038 0.561 + 0.035 0.504 + 0.033 0.518 £ 0.030  0.509 +0.030 | 0.463 + 0.053
MMSE 0.6 9.641 + 0.552 3.785 % 0.050 3.606 £ 0.116  3.347 +0.081 3.477 £ 0.046 | 3.349 + 0.102
0.8 8.259 + 0.228 3.827 + 0.151 3.673 £ 0.092 3.413 £ 0127 3.518 £ 0.157 | 3.320 £ 0.118
ADAS-Co 0.6 12.310 £ 0241  9.874 + 0.289 8.389 + 0.214 8.490 + 0.204 8.454 +0.208 | 8.140 + 0.258
& 0.8 11.611 £ 0223  9.792 + 0.222 8.352 + 0.117 8.485 +0.108  8.426 +0.135 | 7.953 + 0.103
RAVLT 0.6 4.781 + 0.042 3.226 + 0.017 2.807 £ 0.016 2.744 +£0.03¢4  2.773 £0.020 | 2.727 £ 0.031
0.8 4.580 + 0.180 3.176 + 0.074 2.767 £ 0.073 2.706 £ 0.055 2.737 £ 0.058 | 2.659 + 0.040
16 Motor UPDRS 20 Total UPDRS 13 ‘Weather
- Ridge — Ridge — Ridge
14 ——Lasso N ——Lasso 1k —— Lasso
TaskTS TaskTS TaskTS
12 —— FeaTS 16 —— FeaT$S —— FeaTS
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Figure 2: The average rMSE over 5 repetitions of every single task is displayed. The training ratio is 0.8.

5.1 Dataset

We have preprocessed the following six public real-life datasets.

Motor UPDRS and Total UPDRS Datasets [21]: The two
datasets are composed of a range of biomedical voice measurements
from 42 people with early-stage Parkinson’s disease. The goal is
to predict the motor and total Unified Parkinson’s Disease Rating
Scale scores (motor UPDRS and total UPDRS) to estimate the state
of Parkinson’s disease patients. In these two datasets, there are 18
features, including 16 biomedical features. Every thirty days as a
period, we calculate the average UPDRS score for each period. We
have seven time points in total.

Weather Dataset [35] 1:  This dataset contains local clima-
tological data for nearly 1,600 locations in the United States from
2010 to 2013, with data points collected every 1 hour. Each data
point contains the "Wet Bulb Celsius" target value (the wet-bulb
temperature, which is given in tenths of a degree Celsius) and 11
climate features. We want to forecast how the wet bulb will change
throughout the day. Each hour counts as one task, for a total of 24
tasks. Each task contains 1461 samples.

MMSE, ADAS-Cog, RAVLT Datasets [10, 24]: These three
datasets come from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database ? has been to ascertain whether serial magnetic

1Original Weather dataset: https://www.ncei.noaa.gov/data/local-climatological-data/.
2QOriginal ADNI database: https://adni.loni.usc.edu/
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resonance imaging (MRI), positron emission tomography (PET),
and neuropsychological tests can be used in conjunction to track
the development of early AD. After preprocessing , we have data for
a total of 12 time points and every simple has 313 MRI features. Fol-
lowing the strategy used in previous works [15, 18, 40], we use the
three most common cognitive scores, which are the Mini-Mental
State Examination (MMSE), the Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog), and the Rey Auditory Verbal
Learning Test (RAVLT), as the response of the model.

5.2 Effectiveness of the Warm Start Strategy

We demonstrate the effectiveness of the proposed warm start strat-
egy, refer to AutoTR initialized with zero as AutoTR-0, and initial-
ized with our proposed warm start strategy as AutoTR-w. Note that
for numerical accuracy consideration, we follow the way used in
previous works [6, 37] and solve the AutoTR formulation with its ob-
jective function multiplied by 3.1, n;, where m and n; correspond
to the task number and the sample sizes for task i, respectively.

To thoroughly test the effectiveness of the warm start strategy,
we randomly select 5 times of hyperparameters and run them on
each of the six datasets. A1, A2 € {100, 101,102, 103, 104}, the pseudo
hyperparameter s is 10°. The feature matrix X;,Vi € Ny, is nor-
malized. When the relative change of objective function value in
two successive iterations is not greater than the stopping criterion
7€{1071,1072,1073,107%, 1077}, the optimization algorithm is ter-
minated. The maximum iteration is 1000. We record the average
number of iterations and the time of algorithm computation on six
datasets, respectively.

As shown in Table 1, we discover that the proposed warm start
strategy can significantly reduce the number of iterations on all
datasets and stopping criteria. When r = 107%, the number of
iterations on the Total UPDRS dataset is reduced by 96%. When
7 =[1072,1073], the warm start strategy results in a slight increase
in the number of iterations, but it has no significant impact because
the highest iteration number is only 11.2.

According to Table 1, the warm start strategy can obviously
reduce the computation time required for model convergence basi-
cally on all datasets and all stopping criteria. In the best case, on the
Motor UPDRS dataset, when 7 = 1074, the computation time can
be reduced by 94%, i.e., the efficiency is increased by 17.6 times, as
it drops from 2.82s to 0.16s. On other datasets and stopping criteria,
the warm start strategy continues to improve efficiency in terms
of iterations and computation time. These experimental results
demonstrate that using a decay strategy based on a Gaussian kernel
variant to initialize the temporal relation matrix R is effective.

5.3 Empirical Evaluation

We use the Root Mean Square Error (rMSE) for empirical evaluation.
Specially, we not only compute the rMSE of the whole multi-task
learning model, but also calculate the rMSE of every single task. The
baseline methods include single-task learning with ridge penalty
(Ridge), single-task learning with Lasso penalty (Lasso), multi-task
learning with task-level temporal smoothness (TaskTS) [17, 19, 38],
multi-task learning with feature-level temporal smoothness (FeaTS)
[34, 38, 40] , and multi-task learning with mean temporal relation
(MeanTR) [3, 27, 32]. The grid range of hyperparameters of all
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Figure 3: The temporal relation matrix of AutoTR on Motor
UPDRS, Total UPDRS, and Weather datasets.

methods is [10, - - -, 10%], the pseudo hyperparameter s in AutoTR
is 10°. We randomly select 8 of the dataset as the training set, where
the training ratio f € {0.6, 0.8} and the rest is used to test. We repeat
5 trials. In each trial, a 2-fold cross validation is applied to select the
regularization hyperparameters. The feature matrix X;, Vi € Np,, is
normalized. When the relative change of objective function value in
two successive iterations is not greater than the stopping criterion
T = 1074, the optimization algorithm is terminated. The maximum
iteration is 1000. We record the average number of rMSE of all
methods on six datasets to measure the performance of the whole
model and every single task.

First of all, we evaluate the overall performance of the model.
According to Table 3, all of the multi-task learning methods TaskTS,
FeaTS, MeanTR, and our AutoTR, perform much better than the
two single-task learning methods Ridge and Lasso. The method of
Ridge in particular consistently has the worst performance. These
results demonstrate the effectiveness of using multi-task learning
to jointly analyze multiple time points. Note that baseline method
FeaTS performs best on the MMSE dataset with rMSE = 3.347 when
B = 0.6, but only slightly better than AutoTR with rMSE = 3.349. The
possible reason is that FeaTS introduces the sparsity of first-order
difference of the feature weight at two adjacent time points which
helps improve the model performance. Furthermore, compared to
TaskTS, FeaTs has better performance under most circumstances,
except when training ratio f = 0.6 on Motor UPDRS dataset, TaskTS
with rMSE = 0.763 has a little better performance than FeaTS with
rMSE = 7.814. TaskTS and FeaTS mainly differ in that FeaTs intro-
duces sparse first-order difference of feature weight, which TaskTS
does not. Experimental results show the importance of that kind of
sparsity.

It is worth noting that our proposed AutoTR achieves the best
performance on most datasets, except the MMSE dataset with train-
ing ratio f# = 0.6. On the Weather dataset, when the training ratio
B = 0.6, the rMSE of the best baseline method TaskTS is 0.523,
our AutoTR significantly reduces the rMSE to 0.466, almost %11 of
rMSE. When the training ratio is 0.8, the best baseline method is
also TaskTS with rMSE = 0.505, and AutoTR has greatly reduced
rMSE to 0.463. Given that the Weather dataset has the most time
points, i.e., 24 tasks, the experimental result proves that our method
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Figure 4: The temporal relation matrix of AutoTR on MMSE, ADAS-Cog and RAVLT datasets.

seems to have better performance with more tasks. In other words,
it also shows that when the number of tasks is large, simply utiliz-
ing kinds of predefined temporal relations to capture the complex
temporal relation between tasks is far from sufficient.

We also demonstrate the superiority of our AutoTR in terms of
the performance of every single task. We show the experimental
results with training ratio f = 0.8 in Figure 2. We first notice that
Ridge has the highest single task error in most cases, especially in
the MMSE, ADAS-Cog, and RAVLT datasets related to Alzheimer’s
disease, while Lasso has much better performance. The possible
reason is all three datasets have 313 features, but the sample size
is only several hundred, so feature selection can improve the per-
formance of the model. AutoTR performs significantly better on a
single task on two datasets, Weather and ADAS-Cog, than other
baseline methods. Note that on the Total UPDRS dataset, the indi-
vidual task rMSE curves of FeaTS and AutoTR almost overlap, and
this result is consistent with the results found in Table 3, as the
overall performance of the two models does not differ significantly
when f = 0.8. We conclude that AutoTR has the best single-task
performance in most cases compared to baseline methods. This
shows that our approach can not only achieve better overall perfor-
mance but also better individual task performance. It also clearly
illustrates the necessity to fully explore and exploit the complex
temporal relation between tasks.

In addition, to prove the effectiveness of our method even further,
we repeat our experiment 5 times with f = 0.8. We conduct an
independent two-sample t-test and almost all p-values are less than
0.05, except that on the Motor UPDRS dataset, the p-value between
FeaTS and out AutoTR is marginally larger, i.e., 0.057.

5.4 Automatically Learned Temporal Relation

To demonstrate other advantages of our approach, we average the
learned temporal relation matrix R when conducting a p-value test
and visualize it. According to Figure 3 and 4, first and most notable,
we clearly find that the temporal relation between tasks can be, al-
though very slightly, negative. It reveals that the temporal relation
between tasks is not necessarily similar, and may even be slightly
repulsive. Specifically, on the Weather dataset, the pattern of tem-
poral relation is clear. There is a slight negative correlation between
tasks near 6 o’clock and 15 o’clock. The possible reason is that the
humidity difference between 6 o’clock and 15 o’clock is relatively
large. A similar situation also occurs in the tasks around 12 o’clock

and 24 o’clock. In addition, we also find a slight negative correlation
on the two datasets of MMSE and ADAS-Cog, roughly around the
first time point and the 12-th time point. The possible reason is that
the tasks are farther apart. It is noted that all the temporal relation
matrices learned from each dataset imply that in most cases, the
more adjacent tasks are, the stronger the temporal relation is. This
also reveals why our proposed warm start strategy based on the
decaying mode of the Gaussian kernel can effectively improve the
efficiency of the algorithm. Because compared to initializing the
temporal relation matrix R with zero, the start point of the warm
start strategy is much closer to the optimal temporal relation among
tasks. Finally, but perhaps more importantly, we note that none of
the temporal relation matrices learned from the datasets is strictly
symmetric. This makes sense, temporal relation is not supposed
to be symmetric. For example, given two time points i < j, the
temporal relation from time point i to j likes predicting the state
of one patient in the future, but the relation from time point j to
i likes analyzing the historic data of the patient. They should be
different. However, to the best of our knowledge, the asymmetry of
temporal relation is not considered in all existing baseline works.

6 CONCLUSION

In this work, under the setting of multi-task learning, we proposed
a novel automatic temporal relation mechanism to fully capture
and exploit the complex temporal relation between tasks. In order
to improve the efficiency of the optimization algorithm, we de-
signed a warm start strategy based on the Gaussian kernel function.
To comprehensively analyze the performance of our method, we
preprocessed six public real-life datasets. Extensive experimental
results proved that, compared to baseline methods, our algorithm
not only has the best overall performance of the whole model but
also has the best performance on every single task. The designed
warm start strategy, which is simple but effective, can significantly
reduce the number of iterations required by algorithm convergence
(up to 96%) and the computation time required by the algorithm (up
to 94%, 17.6 times efficiency). We also visualized the six temporal re-
lation matrices learned from six datasets, verifying the asymmetry
of temporal relation that, however, none of the baseline methods
considered. In the future, we will try to explore the effectiveness of
our proposed approach AutoTR in other real-life areas, e.g., stock
price movement prediction.
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A DETAILED OPTIMIZATION

The pseudocode of the overall alternating optimization algorithm
for solving our AutoTR is in Algorithm 1. We summarize the proce-
dure of APM in Algorithm 2.

Algorithm 1 Alternating Optimization for AutoTR.

Input:
X = [Xj,- -+, Xm]: feature dataset for m tasks.
Y = [y1,- -+, yYm]: response for m tasks.

A1, A2: hyperparameter.
s: the pseudo hyperparameter to constrain r; ; = 0.
€: the threshold for terminating the procedure.
Output:
W: the model coefficient matrix.
R: the temporal relation between tasks.
1: Initialize: W = 0,R = 0.
2. fork=1to--- do
3: Fix R, update W.
4 Fix W, update R.
5 if AF < € then
6: break
7 end if
8: end for

Algorithm 2 The Accelerated Proximal Gradient Algorithm.

Input:
X = [Xi, -+, Xm]: feature dataset for m tasks..
Y = [y1, -, ¥Ym]: response for m tasks.
Output:

W: the model coefficient matrix.
1: Initialize: o = 1, { = 0, t; = 1, W' = W0,
2: fork=1to--- do
3 a = % sk = wk 4 o (WK — wk=1) » search point

4 form=0to--- do

5: Mk = 2"y

6: Solving (5) for Wk+1,

7: if (6) is satisfied then > line search
8: break

9: end if

10: end for

1: tk=%(1+1/1+4t£71)

12: if convergence crition is satisfied then
13: Output wk , break

14: end if

15: end for

B DETAILS OF ADNI DATASETS

Three ADNI Datasets [10, 24]:
roimaging Initiative (ADNI) database’s main objective has been
to determine whether serial positron emission tomography (PET),
magnetic resonance imaging (MRI), and neuropsychological tests
can be used in conjunction to track the progression of early AD.
The baseline refers to a patient’s initial hospital screening. The
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follow-up time point is represented as the time point when the
baseline started. For example, "M12" denotes a time point that is
one year after the initial visit (baseline time point). The most recent
ADNI offers follow-up information from up to 120 months for spe-
cific patients. However, many participants drop out of the study for
a variety of reasons. As a result, the data on fever increases with
increasing distance from the baseline time point. Finally, we have
information for 12 different time points, ranging from M00 to M120.
Please refer to Table 4 for detailed information.

The data preprocessing steps we take are the same as [40]. Fi-
nally, we have three datasets, MMSE, ADAS-Cog, and RAVLT for
predicting AD evolution. Each dataset receives 314 features in total.
Table 4 shows the specifics of the datasets.

Table 4: The sample number at each time point on the MMSE,
ADAS-Cog, and RAVLT datasets.

Time point | MMSE  ADAS-Cog  RAVLT

Mo00 1092 1074 1091
Mo6 1078 1064 1074
Mi2 1027 1014 1021
M24 883 867 877
M36 579 556 576
M48 494 483 468
M60 305 299 267
M72 333 327 249
Ms84 262 259 192
M96 200 200 148
M108 118 118 97

M120 69 69 61

C P-VALUE TEST

We repeat the experiment procedure used in Table 3 5 times and
report the p-value to further prove the effectiveness of our method.
However, for the sake of paper space, we only show the experimen-
tal result with the training ratio f = 0.8. We conduct an independent
two-sample t-test. If the p-value < 1073, we report 0; if p-value
> 0.05, we highlight it.

Table 5: The p-value between different methods, and the
training ration f = 0.8

Method ‘ Ridge Lasso TaskTS FeaTS MeanTR
Motor UPDRS 0 0 0.032 0.057 0.011
Total UPDRS 0 0 0.006 0.043 0
Weather 0 0 0 0 0
MMSE 0 0 0 0.027 0
ADAS-Cog 0 0 0 0 0.006
RAVLT 0 0 0.013 0 0.009

Obviously, except for the p-value of the FeaTS method on the
Motor UPDRS dataset which is slightly higher than 0.05, the other
values are very small. This proves that the improvement of our
method is statistically significant.
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