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Abstract

Biomethane, methane produced from organic waste residues through the

actions of mixed microbial communities, can be used as a net zero replacement for

natural gas and have a direct environmental impact through the reduction of carbon

dioxide emissions and therefore global warming. Biomethane offers a viable

alternative to liquid transport fuels and could be used as a chemical precursor for

carbon-containing materials such as plastics or fixed into sequestering materials for

carbon capture. Here, improvements, challenges and the potential of this technology

are considered and how biomethane can take a pivotal role in reaching net zero

carbon emissions is discussed.

Introduction

Fossil fuel reserves are being depleted, and their use has a heavy impact on

the planet in the form of global warming and increased pollution. Increasing numbers

of countries are committing to net zero by 2050 with the goal of replacing fossil fuels



with energy sources that do not add to the carbon dioxide and other greenhouse

gases being emitted into the atmosphere [1]. However, the transition to renewable

sources such as solar, wind, and geothermal energy faces challenges. The energy

output from wind and solar power is variable due to a reliance on factors such as the

weather [2]. Current infrastructure requires large-scale investment to support a

transition to e.g. electricity for domestic heating and electric vehicle charging. In

addition, current electric vehicles are not sufficiently powerful to replace fossil

fuel-powered HGVs and ships for moving goods [3]. The World Energy Outlook

report in 2021 illustrated that despite the reliance of society on carbon for energy and

materials, in all scenarios examined there was a decline in fossil fuel demand for the

first time [4]. In all scenarios, there is a sharp decline in the demand for coal, with a

predicted decline of 50% in global use, which is still far from the 90% coal demand

decrease needed to meet net zero by 2050 [4]. The demand for natural gas is

predicted to increase in the next 5 years but then decline as we reach 2050 net zero

goals [4]. However, unless further pledges are made, society will still be partially

reliant on fossil fuels and incapable of meeting the 2050 net zero goals.

Investment in energy was proposed to increase by 8% in 2022, however,

these increases are largely due to increases in costs and economic uncertainty [5].

Almost three-quarters of energy investment growth in 2022 is attributed to clean

energy [5]. In 2022, the World Energy Investment report valued this investment to

exceed 1.4 trillion US dollars [5].

Methane plays a considerable role in climate change, so is an excellent target

for emergent biotechnology approaches that can capture and harness methane as

an energy source. Methane (CH4) is the second most important greenhouse gas

(GHG); around 30% of the global temperature rise since the Industrial Revolution
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has been attributed to atmospheric CH4 [5]. A molecule of methane is estimated to

have 84-86 times the global warming potential (GWP) of a molecule of carbon

dioxide (CO2) over 20 years [6]. Gobally-averaged atmospheric methane emissions

have increased from 1644.69 parts per billion (ppb) in 1984 to 1895.63 ppb in 2021,

with an increase of 16.94 ppb between 2020 and 2021 alone [111].

Along with GWP, CH4 impacts air quality through the production of surface

ozone (O3). Nitrogen oxides (NOx) combined with CH4 produce ozone via

photochemical reactions [7]. At the tropospheric level, ozone is a pollutant

associated with the premature deaths of over a million people annually [8]. To limit

global warming in line with the Paris Agreement, the Intergovernmental Panel on

Climate Change (IPCC) calculated that a 45% cut in global GHG emissions

compared to 2010 levels needed to be achieved by 2030 [9]. A report in March 2021

by the UNFCCC showed that only 1% of this target had been met [10]. The

environmental impact of methane is mitigated by the fact that atmospheric methane

has a short lifetime in the troposphere of around nine years [6], compared with

centuries for CO2 [4]. Thus, methane is a good target for reduction that would lead to

a short-term lowering of global temperatures.

Biomethane, methane produced from organic waste residues through the

actions of mixed microbial communities, is a good choice as both a transitional and

long-term solution which can partly circumvent the challenges posed by methane

emissions by capturing methane before emission while also providing an additional

revenue stream for some industries. Using currently available feedstocks,

biomethane has the potential to substitute 26-37% of natural gas consumed globally

[11] and could cut global GHG emissions by 10% by 2030. Biomethane used to its

full potential could reduce total UK GHG emissions by 6% in the

https://paperpile.com/c/GHvEAA/tWHE
https://paperpile.com/c/GHvEAA/l3BY
https://paperpile.com/c/GHvEAA/Vnro
https://paperpile.com/c/GHvEAA/1uIX
https://paperpile.com/c/GHvEAA/EZ5M/?noauthor=1
https://paperpile.com/c/GHvEAA/3iTN
https://paperpile.com/c/GHvEAA/l3BY
https://paperpile.com/c/GHvEAA/p0ka
https://paperpile.com/c/GHvEAA/xICw


hardest-to-decarbonise sectors [10]. This reduction is through two streams: capturing

methane that would otherwise be emitted from organic waste to generate biogas,

and through the displacement of fossil fuel and artificial fertiliser use [10].

Methane emissions

Annual global methane emissions are estimated at 576 million tonnes (Mt)

[6]. Determining the source of these emissions is essential for methane mitigation to

reach net carbon zero [12]. While this is challenging on a global scale, one method

to estimate the source of emissions is based on methane carbon isotope records.

Measurements of 13CH4 [13] and more recently, 14CH4 [14], have enabled 60% of

global methane emissions (359 Mt yr-1) to be linked to anthropogenic sources [6,15].

The agricultural and waste sectors combined are responsible for estimated

emissions of 206 Mt per year, around 56% of anthropogenic emissions [6]. Most of

the remainder of anthropogenic emissions are attributed to the global energy sector,

equivalent to ~135 Mt CH4 per year [15]. Of this, emissions from oil and gas

production represent around 25% of anthropogenic emissions, equivalent to 80 Mt

CH4 per year [16]. These emissions, mainly attributed to leaks during the production

and transmission of oil and gas [16], are known as fugitive emissions [17].

Following the recent launch of the TROPOspheric Monitoring Instrument

(TROPOMI), which samples daily CH4 column mole fractions (Figure 1), Lauvaux et

al. (2022) were able to identify several "ultra-emitters'' releasing over 25 tonnes/hour

of CH4. Around two-thirds of ultra-emitters were linked to oil and gas production or

transmission facilities. Due to the high monetary value of methane, it would be

possible to cut fugitive methane emissions from the oil and gas industry by 45% at
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no net cost simply by capturing the gas emitted [17]. Wastes including landfills and

wastewater are further responsible for an estimated 65 Mt CH4 emissions annually

[18].

The environmental process of anaerobic digestion

The warming planet is driving the release of methane from other sources.

Annual methane emissions from wetlands are estimated at 181 Mt CH4 and other

natural sources at 37 Mt CH4 [6]. Most methane produced from natural sources (i.e.

biomethane) is through the activity of microorganisms breaking down organic carbon

sources. Methanogenic archaea (methanogens) produce methane under anaerobic

conditions which occur in water-saturated environments when the decomposition of

organic matter depletes oxygen [6]. Methanogens have been found in many

environments including wetlands, the digestive tract of animals including humans

and even more extreme conditions such as hot springs and geothermal vents [19,20]

Permanently frozen ground, permafrost, is rapidly melting and forming

wetlands [21]. Estimates suggest >1 trillion tonnes of carbon are stored in the top 3m

of Northern Hemisphere permafrost region soils alone [22]. As permafrost thaws, the

carbon in the organic material originally captured is released in the form of CO2and

CH4 through decomposition by microorganisms [21]. This process releases an

estimated 0.3 - 0.6 billion tonnes of carbon per year [23]. The warming planet also

stimulates increased non-permafrost microbial activity, resulting in further methane

emissions [24].

The digestive tract of ruminant animals also provides an environment where

methanogens thrive, resulting in methane production from agriculture [25,26].
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Volatile fatty acids (VFAs) present in bovine rumen fluid act as substrates for ruminal

methanogens [26]. Levels of methane production can vary across livestock farms,

including differences between dairy cattle and cattle raised for meat [27]. The United

Nations Food and Agriculture Organisation (FAO) developed the Global Livestock

Environmental Assessment Model (GLEAM) to analyse data from the agricultural

industry. GLEAM uses a life cycle assessment (LCA) approach including GHG

emissions and waste production and management in livestock supply chains to

understand emissions [27]. Control methods for limiting methane production include

herd management, dietary supplementation, and selective breeding [27]. Aside from

enteric fermentation, other sources of methane emission in agriculture include rice

cultivation, manure management and biomass burning for land-use changes [6]. This

naturally occurring process of anaerobic digestion can be harnessed on a larger

industrial scale in order to recover and use biomethane as an energy source.

Biomethane recovery

Through the industrialisation of anaerobic digestion, potential carbon

emissions are reduced and the resulting biomethane can be recovered (Figure 2).

The gas produced is subsequently refined and can then be used to produce

high-value products (Figure 3) [28,29]. Landfill gas recovery captures biomethane

from landfill sites, but does not usually completely prevent carbon loss to the

atmosphere [30]. Anaerobic digestion is used at scale to recover resources (biogas

and a nitrogen-rich digestate) from organic waste streams. Biogas can be used

directly in combined heat and power engines, as cooking fuel, or upgraded to
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biomethane that can be injected into distribution networks as a net zero replacement

for natural gas [31,32].

Anaerobic Digestion (AD)

Biology

Biomethane is made by upgrading biogas produced by a biological process

called anaerobic digestion (AD) [33]. In AD, a mixed community of anaerobic

microorganisms recover resources from complex organic materials in four stages:

hydrolysis, acidogenesis, acetogenesis, and methanogenesis, ultimately yielding

biogas (mainly CH4 and CO2) [34]. AD occurs in the absence of oxygen [35]. AD is

used for the treatment of various anthropogenic wastes, such as sewage sludge,

food, and agricultural residues, in purpose-built vessels called anaerobic bioreactors

or digesters [36]. AD enables the recovery of energy and useful carbon-neutral

products from waste materials [37,38]. The use of anaerobic digesters to process

organic wastes also prevents the release of biogas, produced by indigenous

microbial communities that come into contact with these wastes, directly into the

atmosphere [33].

The communities of microorganisms that underpin AD are complex and

interactive, with community health and performance being contingent on the

well-being of multiple community members [39]. AD has the potential to be adopted

as a terminal destination for all spent organic residues, which has advantages over

purpose-grown feedstocks such as energy crops.
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Monitoring the microbial community

Process disruptions such as foaming can be a major barrier to cost-effective

AD [40,41]. Potential disruption could be avoided by monitoring the "health" of AD

microbial communities to identify warning signs of destabilisation and enable

preventative action to be taken [42,43].

An ideal monitoring technology would combine low cost with accurate

real-time prediction of community health [44]. While many techniques are currently

available, these generally come with at least one major drawback [42]. Another

barrier to effective monitoring is that the microbial communities that underpin AD

vary from digester to digester, so there is no universal set of monitoring parameters

that indicate AD community health [43,45]. For these reasons, techniques routinely

used for real-time monitoring of AD in industry are primarily restricted to simple

measurements, such as pH or temperature, which provide limited information about

the status of the microbial community [42,45]. The development of techniques such

as loop-mediated isothermal amplification (LAMP) provides a promising, low-cost

method for detecting key species that could provide an indication of operational

performance, as demonstrated for hydrogenotrophic methanogens [46].

Feedstocks

One of the benefits of AD is the ability to use different feedstocks from a

variety of biomass sources. The biomethane potential of organic materials varies

widely, and this needs to be considered when choosing the appropriateness of a

feedstock for a digester [47]. The biomethane potential can be estimated using

commercially available tests, however, the results of these often vary significantly

[48]. As a result, there have been calls for standardisation in testing this measure
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[48,49]. The biogas potential of feedstocks used for anaerobic digestion plants is key

to evaluating their economic viability. However, the operating conditions of the plant

performing the testing, and other factors such as the physical properties of the

inoculum, frequency of feed addition, operating temperature and location of sampling

can all influence the test results [49]. Methodologies used to determine the biogas

potential of materials and the practicality of using these methods are discussed in

[50,51].

Table 1: The most commonly used single-source feedstocks and their approximate

usage in the UK as of 2022, and the benefits and disadvantages to each feedstock

when used as a single source [52]. The NNFCC stated that in 2022 the UK produced

over 100 million tonnes of organic material that could be used as a feedstock for AD

[109]. Usage statistics for single feedstocks in Table 1 below are reported from the

NNFCC 2022 report unless stated differently.
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Table 1

Feedstock Usage Pros Cons References

Wastewater 75% of the 1.1 million
tonnes of sewage sludge
produced in England and
Wales is used on
agricultural land.

- High volumes of sludge are
available and require
treatment.

- Carbon content can be
recycled

- Total volume of sludge to be
processed is greatly reduced

- Pathogen levels are reduced
through treatment.

- Close monitoring of pathogens and
pollutants such as heavy metals is
required before digestate is applied to
land.

[52–55, 109]

Agricultural waste
and energy crop

90 million tonnes of
manures and slurries per
annum

- Can be used for both animal
waste (manure) and crop
residues.

- There is a high abundance of
low-value crop waste that is
otherwise not utilised.

- Seasonal variations based on crop
growing seasons.

- Manures may contain high
concentrations of ammonia which can
be inhibitory to AD.

- Crop wastes can contain a high
percentage of lignocellulose which is
hard to degrade.

- Land use required for energy crops

[55–58, 109]

Municipal solid and
food waste

16-18 million tonnes of
food waste, both
industrial and household

- Can provide a source of energy
and revenue from an otherwise
high volume low revenue
waste.

- For municipal waste, the organic
fraction of MSW first needs to be
separated from non-organics such as
plastic or glass and other hazardous
materials.

- For food waste pH imbalances and high
concentrations of lipids can cause
clogging, foaming and inhibitory
concentrations of ammonia, hydrogen
sulphide and long-chain fatty acids.

- Communities may also require trace
element supplementation to maintain
maximum productivity.

[53,59,60,109,110]
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Co-digestion

Combining organic wastes from different sources, known as co-digestion, is

increasingly used [61]. In AD, food or animal wastes can be combined with cellulosic

substrates (e.g. wheat straw) or waste-activated sludge (WAS) to produce biogas

through anaerobic co-digestion (AcD). AcD results in a better nutrient balance for

methanogens [62] and higher biogas yields [63]. Co-digestion is particularly effective

on difficult-to-digest feedstocks such as wheat straw or WAS, and could overcome

difficulties experienced by mono-digestion systems, such as digester instability

[61,64]. Co-digestion can also help mitigate issues arising from seasonal fluctuations

in feedstock [65]. Both WAS and agricultural wastes including wheat straw are

difficult to digest anaerobically and have lower digestion efficiencies and organic

loading rates (OLR) compared to food waste [66,67]. Agricultural wastes such as

wheat straw contain a high concentration of lignin which is difficult for microbes to

digest [68]. WAS digestion is often rate-limited by extracellular polymeric substances

(EPS) and cell-wall-derived matter [66]. Co-digestion can lead to greater microbial

diversity in the digester, resulting in functional redundancy. Thus, stresses to an AD

system, which may result in the loss of particular taxa, are less catastrophic due to

the availability of other organisms to fill that niche [67,69,70]. A greater

understanding of the role that microbial communities play in digester productivity is

key to determining how mixing different microbial communities can impact digester

stability and productivity [61,67].

Co-digestion legislation may not permit the combination of certain wastes. In

the EU, there are strict regulations on the segregation of agricultural waste and

sewage sludge for AD [71]. Whereas, in the US, food waste co-digestion is

increasing due to restrictions on landfill use for food waste in some states [71].
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Biomethanisation

Biogas produced in conventional AD contains predominantly CH4 (50-70%)

and CO2 (30-50%). Biogas also contains other minor constituents like hydrogen

sulphide and carbon monoxide that need to be removed before biogas can be used

as biomethane [32,72]. ‘Upgrading’ is required to increase the concentration of

methane to at least 95% before it can be injected into gas networks or used to fuel

vehicles [73,74]. Abiotic upgrading technologies which exploit the different properties

of the various gases are most commonly used for the conversion or separation of

CO2 and other gases in biogas. These technologies include chemical reduction,

pressure swing absorption, membrane separation, cryogenic fractionation and

chemical absorption [72,75]. Although abiotic technologies are effective, they can

emit CO2 and still require toxic chemicals, high energy input or significant capital

expenditure [75]. An alternative biogas upgrading approach is to utilise biological

processes (e.g. [74,76–78] ). Biological upgrading processes are attractive due to

being renewable, operable in low-cost ambient conditions, and their ability to capture

and convert CO2 into additional CH4 or renewable products [73].

Due to their high growth rates and the added benefit of simultaneous nutrient

recovery from digestate liquors, microalgae have been identified as suitable

organisms for the utilisation of biogas CO2 by photosynthesis [79]. Toledo-Cervantes

et al. [79] achieved a CH4 concentration of 96.2% in biogas bubbled through a

column of algal cultivation broth that was recirculated from a high-rate algal growth

pond, Marín et al. used a similar algal CO2-scrubbing pilot-scale system to upgrade

CH4 to a concentration of 97.9% and calculated that the treatment of biogas

consumed 0.14 kWh m−3. However, the challenges associated with sustaining high

productivity of algal biomass at an industrial scale include maintaining exposure to
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suitable levels of photosynthetic active radiation and loss of yield due to seasonal

temperature fluctuation in low-tech exposed algal ponds [80].

Biomethane compatibility with the energy grid

It is possible to upgrade biogas to a biomethane level comparable to fossil

natural gas, with a methane content of ≥ 90% and a lower heating value (LHV) of

around 36 MJ/m3 [81]. A major advantage of biomethane is its compatibility with

existing natural gas infrastructure and natural gas vehicles [81,82]. Currently, around

3.5 million tonnes of oil equivalent (Mtoe) of biomethane are produced globally, the

vast majority in Europe and North America, representing about 0.1% of the global

demand for natural gas [81]. In 2020, European biogas and biomethane production

resulted in 191 TWh of energy. This capacity is increasing, almost 300 new biogas

and biomethane plants have been built since 2020, and Europe's sustainable

biomethane production could meet 30-40% of the estimated EU gas consumption

needs (~1,000-1,700 TWh) by 2050 [83].

H2 supplementation of biogas is the most researched method of biological

upgrading and can be used to promote the pathways of homoacetogenesis,

acetoclastic methanogenesis and hydrogenotrophic methanogenesis which are

frequently limited by the availability of H2 gas [84]. H2 can be added either in-situ by

direct injection into AD reactors, or ex-situ by adding H2 to biogas and using the

gaseous mixture as a feedstock for microbial cultures in a second, segregated,

bioreactor. Ex-situ systems have consistently achieved high biomethane

concentrations above 96% [45]. In-situ systems are convenient due to the potential

to use existing infrastructure, but upgrading results have been more variable. This

variability can be attributed to the role of H2 in multiple AD metabolic pathways, thus
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creating the potential for H2 addition to unbalance the core biogas production

process [78,85]. Using hydrogen as part of the upgrading process is preferential to

the replacement of hydrogen in place of natural gas which is often proposed. Sole

replacement by hydrogen is driven by a desire for lower CO2 emissions, however,

hydrogen has several limitations compared to biomethane. Hydrogen presents a

greater safety risk due to a higher occurrence of leaks and subsequently increased

explosion risks [86]. It is also less compatible with existing gas grid infrastructure and

so greater modifications would be needed at both a high and end-user level [87].

Potential of biomethane

Life cycle analysis (LCA) comparing the sustainability of upgraded biogas for

transport to direct injection into the grid showed that upgrading resulted in lower

environmental burdens, due to a greater reduction of global warming potential and

non-renewable energy potential [88]. This may not hold for other downstream uses

and depends on the method of upgrading [88]. Many of the sustainability benefits

that come from upgraded biomethane within the transport sector are derived from

the replacement of fossil fuels which makes the direct comparison between biogas

and upgraded biomethane difficult [88]. Adoption of fully renewable sources of

energy can be limited due to country-specific restrictions and the cost required for

infrastructure changes [89,90]. One such example is in Spain, where the minimum

percentage of CH4 for injection into the grid has been lowered from 95% to 90% to

enhance the uptake of biogas generation [91]. Additional restrictions in Spain mean

that direct injection into the grid is often economically unfeasible without investments

in equipment and technology to make it more cost-effective [91]. In cases such as
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these, or where energy output is not consistent, hybrid plants that combine

renewable energy sources such as solar and AD could present a viable, sustainable

solution [89]. However, most of this data is derived from feasibility studies rather than

current operating plants [89,92,93].

Domestic Heating, Transport and other uses

Biomethane provides an economical short-term solution to decarbonise space

and water heating with the added advantage that any reduction in production can be

compensated with fuels such as natural gas in the short term. The use of

biomethane may also overcome the limitations of all-electric heating systems, which

primarily depend on heat pumps that require costly retrofitting [86].

Vehicles which run on natural gas can also run on grid-quality biomethane

with no alteration. Currently, liquified natural gas (LNG) and compressed natural gas

(CNG) are used as transport fuels, however, biomethane has a very similar chemical

composition to natural gas. Biomethane can potentially reduce the carbon footprint

and harmful emissions from heavy-duty diesel engines, found in heavy goods

vehicles, buses and off-road heavy machinery, which are more challenging to

electrify than light vehicles [94].

Biomethane can be used as a fuel in spark-ignition (gasoline) engines or

diesel engines converted to spark ignition. Another option for diesel engines is a

methane/diesel dual fuel mode of operation. Using a small quantity of diesel fuel to

initiate combustion allows a conventional diesel engine to operate on methane and

greatly reduce pollutants [94,95]. A key advantage of using biomethane over a

dual-fuel methane/diesel engine is the greater reduction in GHG emissions, with a

reduction of ~80% for dedicated biomethane compared to <50% for dual fuel [96].
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At present, the use of biomethane for transportation fuel is most practical in

urban areas due to the presence of existing natural gas infrastructure and the desire

of governments to reduce air pollution in these regions. The viability of biomethane

as a substitute for liquid fuels is dependent on overall uptake, public policies and

investment [94].

High-value products

Biomethane derived from biogas can be used as a carbon feedstock to

produce high-value products such as hydrogen, methanol and ectoine (worth

~$1000 per kg) [29] using both chemical and biological methods [28,29] (see Figure

3).

Chemical methods of methane transformation require expensive catalysts and

extreme operating conditions. One of the main uses of methane as a chemical

feedstock is for the production of hydrogen for the synthesis of ammonia [97].

Methane is reformed into a syngas (here, a mix of CO and H2) using steam methane

reforming (SMR). While this process is energy-intensive, the use of biomethane

instead of fossil-derived methane provides a more sustainable route for both

hydrogen and ammonia production [97].

Aerobic methane-oxidising microorganisms (methanotrophs) can be used as

biocatalysts to transform methane into high-value products [98]. These high-value

products, such as ectoine, biopolymers (e.g. poly-β-hydroxybutyrate (PHB)) and

methanol can be produced through metabolic pathways [29]. Through genetic

engineering, it is possible to turn methanotrophs into cell factories, which can
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improve the production of native compounds or enable the production of additional

high-value compounds [98]. Single-cell protein can be produced from methane by a

mixed microbial community including the methanotroph Methylococcus capsulatus

(Bath). This is approved for use as salmon and piglet feed in the EU - one such

product available on the market is FeedKind® [98].

The osmoprotective compounds ectoine and hydroxyectoine are naturally

synthesised in high-salt environments by halotolerant and halophilic methanotrophs,

such as Methylobacterium alcaliphilum [29]. Ectoine is used in the pharmaceutical

industry because of its osmotic properties. Around 15,000 tonnes of ectoine are

consumed a year, ectoine retails for ~$1000 per kg making it a highly lucrative

compound [29,98]. Other methanotrophs, such as Methylosinus and Methylocystis,

have been used to produce polymers that can be used for bioplastics, such as PHB,

in situations with excessive carbon or when nutrient-limited [29,99]. PHB is

biodegradable yet has similar mechanical properties to polypropylene, making it a

promising environmentally friendly alternative to oil-based plastics [99].

Prospects

As outlined by Spiers et al who did a systematic review on decarbonisation

strategies and the implications for infrastructure, biomethane production has

potential as a transition technology as the world moves to net zero. One of the major

strengths of biomethane over other decarbonising methods such as hydrogen is that

the existing natural gas infrastructure can be used to store, distribute and utilise

energy with little alteration required [86]. Another advantage of using biomethane

over other decarbonising methods is that a wide variety of feedstocks can be used

as outlined previously, see Table 1. This means that the feedstocks of choice can be

https://paperpile.com/c/GHvEAA/N1Ax
https://paperpile.com/c/GHvEAA/N1Ax
https://paperpile.com/c/GHvEAA/do6V
https://paperpile.com/c/GHvEAA/N1Ax+do6V
https://paperpile.com/c/GHvEAA/RR2E+do6V
https://paperpile.com/c/GHvEAA/RR2E
https://paperpile.com/c/GHvEAA/Fskd


adapted to respond to resource availability such as the seasonal variation in crop

waste [55,65]. Transitioning the global energy infrastructure away from fossil fuels is

an enormous task that is often underestimated [4,5]. To achieve this mitigation

without widespread price increases and energy insecurity, we need a reliable supply

of drop-in fuels that provide meaningful GHG reductions in a cost-effective and

timely manner. As biomethane can be injected into the grid to supplement or replace

natural gas, this may allow for a simpler shift from natural gas without the need for a

complex and costly retrofit of the grid infrastructure to handle hydrogen [100].

Biomethane could provide additional energy security and buffer against fluctuating

natural gas prices whilst providing revenue and a route for the responsible disposal

of organic wastes [86]. Biomethane is also a viable replacement for diesel for

long-distance transportation of heavy loads [88]. In the long term, AD facilities could

be used to capture carbon from organic residues either for storage or for utilisation in

carbon-requiring materials such as plastics [98].

To facilitate the move to greener technologies such as anaerobic digestion

appropriate financial incentives may be required at governmental scale [90,101]. The

lack of financial incentives for industries is a major barrier to greater adoption of AD,

which indicates the need to support the development of this infrastructure [10].

Reducing the legislative burden around administration and regulations for smaller

and medium companies with fewer resources would also enable companies who

wish to support sustainability but feel it is currently not viable [90,101]. As outlined in

the World Biogas Association’s Pathways to 2030 report, as the biogas energy

market matures, funding can move from infrastructure changes to make the

technology more efficient and affordable [10,101].
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H2 supplementation to enhance biomethane yield is still not a mature technology,

and additional research is required to realise this at an industrial scale. In particular

further work is needed to optimise in-situ H2 injection methods to effectively support

both the microbial community and mitigate any operational safety concerns

[78,84,102]. The sustainability of exogenous H2 from renewable sources such as

water electrolysers also needs to be considered [103]. However, the global

environmental drive to develop and utilise renewable biomethane is likely to

significantly reduce the associated costs and expand the use of biological biogas

upgrading technologies [45,103].

Thermal gasification of waste-derived solid biomass is a promising alternative route

for the capture of methane from biowastes that is currently underutilised at an

industrial scale [94,104,105]. Dry biomass is transformed into a synthetic mixture of

CH4, CO2 and other gases (syngas) in a multi-step process that requires low oxygen,

high temperature (700 – 800oC), and high pressure [105,106]. The treatment

capacity of a syngas plant is almost double that of a biogas plant (51 kt/y and 35 kt/y

respectively) [107] and thermal gasification has the potential to rapidly decompose

feedstocks that AD cannot, such as woody biomass [94].

Ensuring the scale of these changes is sufficient will require both financial and

political backing. The introduction of Environmental, Social and Governance (ESG)

criteria for companies suggests that there has been a shift toward investments in the

green economy and companies focusing on sustainability [10]. Biomethane from AD

could play an important role in both the transition and maintenance of a net zero

economy and is therefore worthy of additional research and investment.
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Figures:

Figure 1: Corrected global distribution of XCH4 in parts per billion for 2019

from the TROPOspheric Monitoring Instrument (TROPOMI). Taken from Figure 5

Lorente et al. 2021 [108]
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Figure 2: Methane production from biomass.Waste organic residues result in

significant biogas emissions that could potentially be recovered via a number of

routes as a net zero fossil fuel replacement that would support a reduction in fossil

fuel requirements.

Figure 3: Potential biogas applications. Biogas and upgraded biomethane is

currently mainly consumed as a fuel for heat, power and cooking (blue), but could be



further utilised in a range of applications supporting a transition to net zero emissions

(green).
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