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Process Analytical Technology (PAT) is a systematic approach for monitoring of process parameters and
product quality attributes and nowadays is considered for continuous processing of many industrial
products. It is a mechanism to design, analyse and control manufacturing processes through on-line,
in-line, at-line and off-line configurations for monitoring Critical Quality Attributes (CQAs). PAT systems
include a combination of reliable in-line sensors, spectroscopic instruments and Multivariate Statistical
Methods (MSMs) to provide informative knowledge for quality assessment of powdered and granule
products. Nevertheless, monitoring programs of advanced manufacturing processes based on PAT sys-
tems typically provide large sets of data which are complex to interpret. The application of appropriate
data-driven modelling techniques could assist in the interpretation of complex data matrices to better
control of processes. Data fusion is a data-driven approach that could increase performance and robust-
ness of models used for data interpretation to generate more accurate knowledge about process condi-
tions and performance by merging related outputs collected from several instruments and considering
synergies from multiple sources. This paper aims at presenting the current state of the art regarding
the application of multi-sensors data fusion for powdered and granule manufacturing processes and
making a critical review of recent progress and future possible perspectives in this field.
Crown Copyright � 2023 he Society of Powder Technology Japan. Published by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Continuous processing of powdered and granule products com-
prising the integration of multiple unit operations in one produc-
tion system is getting more attention due to advantages in
improved productivity, product quality and financial services.
While quality control and process performance in batch-scale
production can be monitored through off-line measurements, in-
process measurements become essential in a continuous manufac-
turing line [1–3]. The use of in-line PAT as an efficient process
monitoring framework can help to meet not only Critical Quality
Attributes (CQAs) for the desired products [4–6], but also could
help in boosting quality assurance, product robustness, productiv-
ity and ultimately profits.

There are a number of key CQAs that must be checked through
real-time monitoring in powdered and granule products, which
bring in return significant impact on the quality of products as well
as economics of the production. In many industrial sectors
involved in manufacturing and handling of powdered and granule
products, key CQAs include homogeneity in powder mixtures [7],
particle size [8–10], powder flowability [11,12], moisture content
[13–15], bulk density [9,16,17], particle strength and hardness
[18–20], morphological forms [21,22], together with other quality
attributes (Fig. 1).

For process monitoring in a continuous PAT manufacturing
platform, the generation of increased amount of data can mainly
be the consequence of installing multiple sensors continuously col-
lecting information for prolonged periods of time. Gathering data
from different sources could provide useful information about
the process itself and the quality of final products, and yield better
inferences in comparison to the use of an individual sensor. Never-
theless, this could significantly increase the complexity of data
analysis and processing. In addition, some collected data may be
uninformative and redundant due to the nature of the process,
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Fig. 1. Critical Quality Attributes (CQAs) for powdered and granule products.
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limitation/fault in equipment, material type, and signal noises. By
taking into account the growth in the size of data (multivariate
datasets), velocity (fast/real time acquisition rate) and variety
(multisource), advanced data analytics are recommended for the
assessment of the big data [23,24]. In that sense, data fusion could
be utilized in the field of PAT for an efficient handling of large ana-
lytical datasets in continuous processes. Implementation of an
appropriate big data analysis strategy would be essential not only
to eliminate the useless and redundant datasets, but also to inte-
grate useful datasets in order to obtain a simple, consistent, accu-
rate and useful interpretation of large and complex datasets.

Table 1 summarises the review papers that are available on the
topic of data fusion for different applications. As it can be observed
in Table 1, most of the review papers are relevant to food and bev-
Table 1
The review papers available on the topic of data fusion.

Domain Objective

1 Analytical
Chemistry

Overview of data handling in data fusion; understanding of th
data structure obtained from a particular instrument.

2 Analytical
Chemistry

Overview of the multi-block methods; tasks that can be
performed with them and the pros and cons of different
techniques.

3 Analytical
Chemistry

Overview of pre-processing techniques available for the
application of multi-block methods; dealing with blocks that
have data with different scales, and sizes.

4 Analytical
Chemistry

Overview of new data pre-processing trends based on ensemb
of several pre-processing techniques.

5 Food Overview of the applications of data fusion for food quality
authentication; summarizing the tools, data processing
algorithms, and fusion strategies.

6 Food and
beverage

A general overview of data fusion strategies used in the field
food and beverage authentication.

7 Animal source
food

Overview of several achievements in the field of artificial
sensors for the evaluation of animal source food products.

8 Food Overview of several achievements in the field of artificial
sensors for the evaluation of food products.

9 Manufacturing
process

Overview of multisensory measurement systems and data
fusion technologies and their applications in manufacturing
systems such as additive manufacturing.

10 Pharma Overview of implementing data fusion in data types available f
pharmaceutical manufacturing.

2

erage authentication, as well as analytical chemistry. However, a
few review papers focus on manufacturing processes such as addi-
tive manufacturing, and pharma.

The use of multi-sensors and data fusion approaches has
received attention mainly in the last decade for quality assessment
of powdered and granule products. Nevertheless, the number of
studies in this field is very limited, hence it is quite challenging
to write a review on this subject. However, the authors believe that
receiving the information of the current status and future perspec-
tives on this theme is important for readers. Therefore, this paper
aims to first provide an overview of the application of PAT for con-
tinuous manufacturing of powdered/granule products along with
data processing, interpretation of PAT systems using a variety of
Multivariate Statistical Methods (MSMs) and data fusion tech-
niques. Then, the state-of-art PAT techniques used for the charac-
terisation of product properties using single instruments and
multi-sensor data fusion techniques are presented based on which
further insights for creating complementarity of the data sets using
data fusion approaches can be derived for powdered and granules
products. Finally, the future perspectives of the applications of
multi-sensors data fusion in PAT platforms for characterising a
wide range of CQAs in continuous manufacturing of powdered
and granule products are proposed by providing several examples.
2. Monitoring of powdered and granules materials using PAT
tools

2.1. Objectives of a PAT framework

Handling (e.g. transporting, conveying, storing, dosing) of gran-
ular materials used for manufacturing of end particulate products
is known to be challenging due to their complex material attri-
butes which hinder an establishment of general constitutive equa-
tions relating shear rates and stresses [35,36]. The start-up
efficiency of continuous powder processes is significantly lower
than that of fluid processes. Powder processes often require ten
times as much time to start-up as compared to fluid due to the
Main insight Reference

e Knowing the structure of the data is essential to set the most
adequate merging scenario for combining data.

[25]

Sensor/computing technologies can benefit from Multi-block
data analysis to explore and combine data from multiple
sources.

[26]

Sensory data collectors placed at different points of the process
need the selection of the appropriate pre-processing before
modelling.

[27]

le Using multiple pre-processing can remove the artefacts
(unwanted variation) that could be left behind by using only
one technique.

[28]

Potential of advanced technologies for information fusion can
be evaluated for comprehensive analysis of food properties.

[29]

of Reliable sensor, and spectroscopic tools together with
multivariate chemometrics could offer better results for food
samples.

[30]

Employment of just a single sensor is often insufficient, and the
use of multivariate methods is recommended for the quality
assessment of food products.

[31]

Utilization of several instruments could provide better
performance than the individual sources for processed foods
and other edible products.

[32]

Multisensory monitoring and data fusion could offer
complementary, and low cost analysis in the fields of industrial
robotics and intelligent manufacturing.

[33]

or Data fusion techniques combined with machine learning can
tremendously support the decision-making in Pharma 4.0.

[34]
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adverse impact of powder inhomogeneity, powder transport
problems due to poor flowability and improper degree of size
reduction or enlargement.

In general, process monitoring can be achieved using different
approaches (at-line, off-line, on-line and in-line configurations),
(Fig. 2). For instance, at-line analytical techniques include the col-
lection of a grab sample and its isolation from the actual process
environment for the analysis of key required properties in close
proximity to the process stream, while off-line analyses require
that collected samples to be removed from the process stream
and transported to a laboratory for further analysis [9,37]. The
main difference between at-line and off-line analytical techniques
is the time spent in the analysis. Usually, at-line analysis can be
performed much faster than off-line analysis since a dedicated
device is placed close to the production line to analyse product
samples. However, traditional procedures using off-line and at-
line analysers are discontinuous, slow and time-consuming and
must be performed in a controlled location by highly trained tech-
nical personnel.

Real-time measurement data from state-of-art instruments
could be alternatively used to monitor CQAs and performance
properties of process materials and assist in the design, scale up
and control of manufacturing processes. Real-time monitoring of
the product quality will become the norm, as the powder manufac-
turing sectors including pharmaceutical industries are fast moving
from batch to continuous processing. In recent years, in-line and
on-line analytical techniques have been extensively used to obtain
in-situ and real-time information on the state of the manufacturing
process [9,37]. The desired characteristics of materials could be
determined by transferring collected samples from the process line
to the measurement device and returning it back to the process
stream. This is the basis of on-line analytical techniques. On the
other hand, in-line analysers that may be intrusive or non-
intrusive, use some measuring devices to collect data without
removing samples from the process. This can be achieved by plac-
ing analytical instruments directly into the process stream.

PAT platforms are potential candidates for real-time monitoring
of CQAs in powdered and granules products. The key elements
common to many powder-based manufacturing plants such as
pharmaceutical industries based on a PAT framework include: (1)
downstream process applications such as blending and mixing,
granulation, milling and coating; (2) real-time/in-line tools such
as spectroscopic methods, imaging methods, sensors and fibre
optics; and (3) Multivariate Statistical Methods (MSMs) for dimen-
sionality reduction, and multivariate regression. For instance, sev-
eral unit operations of a typical tablet manufacturing process in
pharmaceutical industries can benefit from PAT (see Fig. 3). In this
particular case, various process variables including humidity,
mixer speed and flowrate must be monitored to control CQAs such
as flowability, homogeneity, and Active Pharmaceutical Ingredient
(API) level in a blending process. Moreover, monitoring variables
such as impeller speed is vital to control particle size in granulation
and milling processes. In addition, variables like fill depth, nozzle
pressure and air temperature can be closely monitored to achieve
the desired tablet hardness and coating thickness.

2.2. Tools, modelling approaches and CQAs used in PAT platforms

Reliable in-line/on-line sensors or spectroscopic instruments
along with multivariate and multiway chemometrics could provide
informative results for the real-time quality assessment of pow-
dered and granule products. In summary, several sensors and ana-
lytical techniques used for the quality assessments of
powdered/granules products are electronic nose and tongue; spec-
troscopy devices such as Near-Infrared (NIR) and Ultraviolet–Visi-
ble (UV–vis) analysers; process sensors such as temperature,
3

pressure and torque meters; and other advanced techniques such
as Digital and Hyperspectral Scattering Imaging (HSI), as well as
particle size analysers such as Spatial Filter Velocimetry (SFV)
and Focused Beam Reflectance Measurement (FBRM), (Fig. 4).
Some descriptions of the functionality of these analytical tech-
niques for product characterisation are provided elsewhere
[16,30,41–43].

After real-time data collection from sensors in a PAT system,
chemometric techniques can be used for data processing and inter-

pretation (Fig. 5). That includes: (1) descriptive models such as Prin-

cipal Component Analysis (PCA); (2) classification models such as
Linear Discriminant Analysis (LDA), Support Vector Machine
(SVM), Partial Least Squares Discriminant Analysis (PLS-DA), k
Nearest Neighbors (kNN), some kind of discriminating Artificial
Neural Networks (ANNs), Soft Independent Modelling of Class

Analogy (SIMCA) and Unequal Class Models (UNEQ); and (3) pre-

diction models such as Multiple Linear Regression (MLR), Principal
Component Regression (PCR), Partial Least Squares Regression
(PLSR), Support Vector Machine Regression (SVM), and Artificial
Neural Networks (ANNs) [30]. Descriptive, classification and pre-
diction models are used to assess the repeatability of the measure-
ments and detect clear outliers; define delimiters between
established classes and calculate a separate model for each estab-
lished class; and predict properties or composition parameters,
respectively [30]. By employing an appropriate procedure for the
corresponding experimental, dimensionality reduction and multi-
variate regression techniques could be facilitated, together with a
suitable process monitoring and control approach.

A variety of real-time monitoring schemes using in-line or on-
line measurement tools along with chemometric techniques have
been implemented in a number of literature studies for invasive
or non-invasive quality assessment of powdered and granule prod-
ucts. Table 2 summarizes some of the applied single source instru-
ments and chemometric techniques for real-time analysis of
different granular material products. Due to the large number of
relevant studies available, only some studies were selected and
summarized in the Table 2.

There are a number of CQAs which have been monitored in PAT
platforms, including powder homogeneity, flowability, particle
size, density, moisture, morphology and hardness (Table 2). The
importance of monitoring these CQAs in powder manufacturing
processes, and summary of PAT tools suitable for measuring them
are detailed bellow.

2.3. Homogeneity:

A crucial step in many manufacturing processes is blending a
mixture of powders to reach to a homogeneous system, which
has a significant impact on the quality of the final product [7]. In
most cases, powder mixtures should be made with high content
uniformity. Usually, the homogeneity of powder mixtures can be
assessed by evaluating the samples taken from the mixture. The
goal of powder sampling is to collect a small amount of sample
from a bulk of powder materials in such a way that the sample rep-
resents the physical and chemical characteristics of the entire bulk.
The traditional samplers, e.g. thief and cross-cut, are the most com-
monly used instruments for powder sampling [73]. Nevertheless,
fast controlling of powder homogeneity using traditional sampling
techniques is not possible since sample extraction and off-line/at-
line analysis of samples could squander large amount of time.
Therefore, fast and accurate in-line or on-line homogeneity evalu-
ation of powder blends are getting more attention these days. NIR
chemical imaging [44], in-line NIR spectroscopy [45], Laser-
Induced Fluorescence (LIF) [46], In-line Raman spectroscopy [47],
and Passive Acoustic Emissions (PAE) [48] have been successfully



Fig. 2. Diagram of off-line, in-line, online, and at-line measuring techniques in a manufacturing process.
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used instead of off-line analysis for characterising the powder
homogeneity (Table 2).

NIR spectroscopy (a light absorption analytical method) uses -
light in the near-infrared region (wavelengths of 700–2500 nm)
which activates overtone and combination vibrations of molecules.
Near-infrared chemical imaging uses the fusion of NIR spec-
troscopy and image analysis for providing the data. On the other
hand, Raman spectroscopy (a light-scattering analytical method)
is a technique where scattered light is used to measure the vibra-
tional energy modes of a sample [74]. Along with a previously cre-
ated calibration, the spectra resulting from either NIR or Raman
spectroscopy can be used to determine the desired properties of
a sample. Another spectroscopy is LIF spectroscopy which is a tech-
nique used to monitor the concentration of inherently fluorescent
compounds. It functions by shining light on a sample at the ana-
lyte’s optical excitation wavelength, and then collecting the light
from the analyte at its emission wavelength perpendicular to the
incident beam. The other technique reported for homogeneity
analysis is based on acoustics which is the production by a source,
transmission through a medium, and reception by a receiver of
energy in the form of waves [75,76]. Another inexpensive and
non-destructive device for discriminating between different pro-
duct qualities is an electronic devise such as an electronic nose
(E-nose) which compromises of a combination of sensors to allow
the discrimination of products with different characteristics.
Designed to simulate the process and mechanisms of human
olfactory recognition, it can successfully be used for food flavour
examination [77–82] and powdered and granule characterisation
[83–87].
2.4. Flowability:

The most common problems encountered in solid processing
plants occur during transporting of solids and handling of fines
[88,89]. Solid powder components may not flow smoothly, and
process delays are often involved due to poor flow behaviour of
powder materials. For instance, many drug powders used in phar-
maceutical industries have very poor flowability. This accordingly
could affect manufacturing and other operations like blending
and tableting, leading to problems such as the lack of content uni-
formity and significant loss of revenue [11]. These problems are
caused by failure to incorporate accurate flowability measure-
ments into the design. The end result is frequent stoppage of the
process, involving costly loss of production time and inefficient
use of staff to restore the flow. The followability of powders could
4

be affected because of variations in powder properties e.g. size,
humidity or undergoing load e.g. shear stress/compaction on bulk
of powders. Many types of testing equipment exist to measure
the flowability of bulk solids off-line or at-line. Shear Cells [90],
Sevilla Powder Tester [91] and the Freeman FT4 Powder Rheome-
ter [92] are the most established methods of powder flow mea-
surement. However, in-line or on-line measurements of powder
flow is challenging and demand further investigations. A number
of research successfully implemented NIR Spectroscopy [57],
Non-invasive Acoustic Sensors [58], Revolution Powder Analyzer
(RPA) [56] and Capacitance-based approach [59,60] instead of
off-line analysis for the characterisation of powder flowability
(Table 2).

The RPA consists of a rotating drum covered on both sides with
transparent glass, where a camera is positioned in a way to record
pictures of the rotating drum. Flowability can be measured by
recording black-and-white pictures of the powder and the ava-
lanches within the drum [56]. Capacitance-based approach can
also be used for flowability measurement, which is a non-
invasive sensing technology with fast data acquisition to generate
a whole volumetric image of the region enclosed by the capaci-
tance sensors from the measured capacitance [93].
2.5. Particle size

Real-time monitoring of Particle Size Distribution (PSD) is also
important in continuous processes as it highly affects downstream
process efficiency [94,95] and final product quality [96,97]. Extrac-
tion of information of granules properties such as PSD is tempting,
as it could enhance the process knowledge without the need for
new capital investments. For instance, monitoring and control of
PSD is very important aspect in continuous granulation and drying
process in pharmaceutical products. Formation of too many fines
can cause some part of materials to stick to the tablet press, result-
ing in non-uniform drug content due to segregation, while altering
the tablet disintegration and dissolution profiles. On the other
hand, too many oversized particles can change the granules drying
profiles [54]. Among traditional off-line techniques of PSD charac-
terisation are Sieving, Laser Diffraction [98] and Microscopy [99]
which are all time-consuming. However, in-line or on-line particle
size analysers could offer fast, and non-destructive PSD measure-
ments, enabling the opportunity of real-time feedback or feedfor-
ward process control, and optimal process operation which are
critical to the migration from batch to continuous manufacture
[52].



Fig. 3. Unit operations in a typical pharmaceutical industry for tablet production (Images licenses:Tablet press: ‘‘German RepRap 3D-Drucker L320” by Liebimprinzip is
licensed under Creative Commons Attribution-Share Alike 4.0 International license.Coating: ‘‘Varian 3119 coating deposition machine” by Guillaume Paumier is licensed
under Creative Commons Attribution-Share Alike 3.0 Unported license. Mixer: ‘‘Static mixer” by Christian Lindecke is licensed under Creative Commons Attribution-Share
Alike 3.0 Unported license.), [38–40].
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Audible Acoustic Emissions (AAEs) [50], SFV Probe [51], Par-
ticle Vision Microscope (PVM) [52], Torque [53], and NIR spec-
troscopy [54,55] have been successfully used instead of off-
line analysis for the characterisation of particle size in powders
(Table 2). SFV probe is a PAT tool that can be installed in a pro-
cess to determine in-line particle size and PSD by measuring the
rate and chord length of the particles [100]. PVM can also be
used as an in-line imaging method for capturing a 2-D projec-
tion of particles to determine the particle size [52]. In addition,
process parameters affecting CQAs such as torque can be suc-
cessfully used as an in-process measurement and control of
granule size during a granulation process [53]. The torque is a
process variable which is representative of the power required
to mix and/or transport the material and rotate screws/paddles
[101].
5

2.6. Density

Monitoring the bulk density of either static or moving powders
particularly inside a process line is essential for manufacturing
high-quality products. In particular, granular materials are two-
phase systems including gas as a continuous phase and a dispersed
phase containing solids of various sizes. Therefore, the behaviour of
powder materials depends not only on the properties of individual
particles, but also the properties of the assemblies of particles and
the interactions between these assemblies and the continuous
phase [102]. The bulk density and tapped density can be deter-
mined using graduated cylinder off-line, by measuring granule
weight and volume, before and after employing an automatic tap-
per [16]. However, measuring the variabilities in properties of par-
ticle assemblies in real-time and setting up corrective actions



Fig. 4. Sensors and analytical techniques used for the quality assessments of powdered and granule products (Images licenses:‘‘An Electronic Nose Estimates Odor
Pleasantness” by Genia Brodsky and Noam Sobel is licensed under Creative Commons Attribution 2.5 Generic license.‘‘Taste buds” by MesserWoland is licensed under
Creative Commons Attribution-Share Alike 3.0 Unported license.‘‘Spectral sampling RGB multispectral hyperspectral imaging” by Lucasbosch is licensed under Creative
Commons Attribution-Share Alike 4.0 International.‘‘Chlorophyll Absorption Spectrum‘‘ by Serge Helfrich is licensed under Creative Commons Attribution-Share Alike 4.0
International license.‘‘Light spectrum (precise colors)” by Fulvio314 is licensed under Creative Commons Attribution-Share Alike 4.0 International license.‘‘LVDT flow meter”
by Hms1840london is licensed under Creative Commons Attribution-Share Alike 4.0 International license.‘‘Pressure gauge” by Twitch Chess Streamer is licensed under
Creative Commons 2.0 license.).
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before they can influence the product quality are challenging [17].
This is specifically important in the manufacturing of pharmaceu-
tical solid dosage forms. Powder density variation could produce
variabilities in tablet mass, dissolution rate and hardness during
tablet manufacturing processes. Incorrect amount of drug could
be delivered to patients due to variations in tablet mass, leading
to further health problems [62]. Therefore, it is really important
to monitor and control the relative densities of the intermediate
and final products which are highly critical for the product quality
and consistent product performance. Acoustic Emissions [50], Ter-
ahertz In-line Sensing [61] and Real-time NIR Sensor [17,62] were
used for characterising the bulk density as shown in Table 2. Tera-
hertz Time Domain Spectroscopy (THz-TDS) is a promising analyt-
ical tool for measuring the pore structure of tablets [103]. The
terahertz spectral region covers the range from 0.1 to 4 THz
(3 mm to 75 lm in wavelengths) [104]. The advantage of THz-
TDS compared with NIR, Mid-Infrared (Mid-IR) and Raman spec-
troscopy is that it operates at a much longer wavelength, hence
6

it is inherently less vulnerable to the scattering effects in powders
[103].

2.7. Moisture content

Product quality, chemical stability, shelf life, and reactivity of
many granular materials such as pharmaceutical products can be
affected by water [105–107]. The quantification of the water con-
tent in drug products is important for demonstrating compliance
with the quality standards. Moisture content in powders is a CQA
as it could adversely affect many manufacturing unit operations
including conveyance, compaction, granulation, drying, etc. if not
monitored properly [108–110]. Moreover, in the case of excessive
moisture during manufacturing processes such as fluidization
beds, many particles can agglomerate impacting the stability of
the process [13]. There are many time-consuming techniques for
the determination of water content in granular materials such as
Karl Fischer Titration for pharmaceutical products [111]. However,



Fig. 5. Chemometric techniques used for the analysis of data from instrumental apparatus.
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it would be favourable in the development of manufacturing pro-
cesses to implement accurate in-line or online techniques to facil-
itate determinations of moisture content as early as possible.

Instead of off-line analysis, In-line NIR Spectroscopy [64,65],
NIR Chemical Imaging [67], Microwave Sensor [66], and a Capaci-
tive Sensor [68] can be used for the characterisation of powder
moisture level (Table 2). The most common dielectric transducer
used for powder characterisation is Capacitive Sensor which is a
rapid and non-contact method, where parallel conductive plates
are attached to the outer layer of a measuring vessel. It enables cre-
ating what is essentially a capacitor, the capacitance of which is
related to the permittivities and quantities of dielectric materials
[112,113]. Most materials’ dielectric properties depend on factors
including the chemical composition, structure of the material,
and permanent dipole moments associated with water and any
other molecules making up the material. On the other hand, the
microwave sensors were developed to set up better methods for
the measurement of the permittivity and to investigate the relation
between the permittivity and the physical properties of materials
[114]. An electromagnetic wave in a microwave sensor has a wave-
length in the approximate range from 1 mm to 1 m (the region
between infrared and short-wave radio wavelengths) [115].

2.8. Hardness

One of the most investigated properties of granular materials is
hardness which depends on the elemental structure and chemistry
of materials. Standardised tests, such as Uniaxial Compressive
Strength [116], Rockwell, or Vickers and Schmidt Hammer Test
[117] or Scratch Hardness Tester [118] are normally used to mea-
sure the mechanical properties of particles such as rocks. However,
there are instances when it is not feasible to perform the standard-
ised tests, due to time- and cost-consuming nature of sample
preparation or because it is not applicable to collect a significant
enough set of results. Therefore, determination of granular mate-
rial hardness, such as quantification of tablet hardness [20] or rock
hardness [116], and granule compressibility and strength [19],
using rapid in-line or on-line techniques would be useful. As can
be seen in Table 2, on-line spectral measurements using NIR Pro-
cess Analyser [18,19] and Process Variables [69] could be imple-
7

mented for the characterisation of hardness. Further studies have
shown the applicability of a real-time NIR Spectroscopy for moni-
toring different CQAs including powder homogeneity, moisture,
bulk density, tensile strength, Young’s Modulus, median size and
Hauser ratio [71,72].

It should be mentioned that lack of reliability and limitations of
some instruments are the main issues of applying a single source
instrument in a continuous manufacturing of powder-based prod-
ucts [119]. For instance, Fig. 6 illustrates the main variables that
could have an adverse impact on the collected data based on apply-
ing a single spectroscopy device in the process (classed as process,
equipment and material). The powder process variables are highly
interactive, impacting the overall closed-loop control system per-
formance [120]. For instance, interference of some process param-
eters such as humidity and temperature [121] on the spectral data
could lead to the reduction of accuracy in extracting the desired
information from a spectroscopy sensor. Second source of issue
may arise due to failure of the equipment. Sometimes one sensor
may be in fault, data acquisition system may fail, some sensors
may produce very low sampling frequency, sensor touching win-
dows may be blocked/contaminated by powder dust during con-
tinuous process, or one sensor has to be removed from the
process due to maintenance or replacement. All of these factors
could adversely impact the continuous process monitoring and
control, resulting in lowering the product quality, increased pro-
duction costs, or even dangerous situations for plant personnel or
environment [122]. The last factor impacting the collected data
of an instrument is the nature of materials used in the manufactur-
ing process. In many industries, the end product composition is
complex and may contain compounds with functional groups hav-
ing nonselective spectral bands. Sometimes, a powder mixture up
to 10 to 20 ingredients would be necessary to meet the acceptable
quality standard of a final product [7]. The lack of spectral band
selectivity for some compounds in a powder mixture [123] could
be the main disadvantage when using a single spectroscopic
tool for the analysis of quality attributes. Therefore, big data
management of multi-sensors could be an alternative option
for improving the model prediction efficiency in a continuous
process of powdered and granule materials which is described in
section 3.



Table 2
Single source instruments used for the characterisation of powder properties.

Objective Process Materials Real-time instrument Chemometric Ref.

Powder uniformity Continuous twin screw granulation Pharmaceutical powder blend NIR Chemical Imaging PCA and PLS and CV [44]
Chute Pharmaceutical powder blend An in-line NIR spectroscopy PLS [45]
Blending process Pharmaceutical formulation LIF LIF profile [46]
High speed electrospinning and milled Pharmaceutics In-line and at-line NIR and Raman

spectroscopy
PLS [47]

V-blender Glass beads PAE The emission
amplitudes profile

[48]

HTPB propellant slurry Hydroxyl-Terminated
Polybutadiene (HTPB)
propellants

NIR-based methodology OPLS-DA [49]

Particle size

High-shear wet granulation Pharmaceutics AAEs PLS and OPLS [50]
Fluidized bed Placebo mixture SFV probe Regression [51]
Glass jacketed tank reactor Polystyrene (PS) particles PVM PLS [52]
Twin-screw wet granulation Pharmaceutics Torque MLR [53]
Granulation and drying process Pharmaceutics NIR spectroscopy PLS [54]

Powder storage Milk formula NIR spectrometers in diffuse
reflection mode

PLS [55]

Flowability Additive manufacturing Fe- and Ni-based powders RPA Regression [56]
A twin screw loss-in-weight feeder Pharmaceutics Transmission NIR Spectroscopy PLS [57]
Pneumatic transport Glass beads and PVC Non-invasive acoustic sensors Acoustic raw signal [58]
Food processing Beverage powders and their

mixtures
Capacitance-based approach The dielectric

differences profiles
[59]

Tablet Manufacturing Process Pharmaceutics Capacitance-based sensor Mass flow rate
profiles

[60]

Bulk density High-shear wet granulation Pharmaceutics AAEs PLS and OPLS [50]
Moving powder bed Pharmaceutics Terahertz in-line sensing Linear models [61]
Powder blending process Pharmaceutics Real-time NIR sensor PLS model [17,62]

Moisture content Fluidized bed dryers Corn particles Electrostatic sensor array Linear model [63]
Drying process Tapioca starch In-line NIR spectroscopy PLS [64]
T win-screw wet granulation,
vibrational fluid-bed drying and
milling

Pharmaceutics NIR spectroscopy PLS [65]

Dairy processing
industry

Milk powder Microwave sensor Linear least squares
method

[66]

Fluid bed drying Pharmaceutical granules NIR chemical imaging PLS and Elastic Net
Regression (ENR)

[67]

Spray dried process Gelatin powders A capacitive sensor Dielectric properties
profiles

[68]

Hardness Roller compaction Pharmaceutical powder blend On-line NIR Process analyser PLS [18,19]
High shear wet granulations Drug samples Granulation process variables

such as impeller speed
Combined
experimental design
and PCA

[69]

Morphology Crystallization An organic compound Non-invasive on-line imaging
technique

Real-time image
analysis

[21]

Milk powder plants Milk powder samples Light microscopy combined with
image processing algorithms

Real-time image
analysis

[70]

Multi-properties High-shear wet granulation process Pharmaceutical powder blend NIR spectroscopy PLS [71]
Multi-properties Roller Compaction Pharmaceutics Real-Time NIR Monitoring PLS [72]
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3. Multi-sensors data fusion for managing big analytical data

3.1. Data fusion approaches

Data processing techniques based on data fusion methods can
be potentially used for effectively analysing the big-analytical-
data. Data fusion is a data-driven approach by which complemen-
tary data displaying significant variations could be merged with
the desire of increasing the model performance and robustness.
The main advantages of employing data fusion techniques for ana-
lysing the collected big data in PAT system are summarised below:

o Converting large amount of complex datasets obtained from
multiple sources to a holistic, accurate and useful model for
monitoring and control of process. Superior capabilities of
multi-sensors data fusion include simultaneous multivariable
measurement, reduction of complexity of big data streams
and achievement of more accurate output compared to an indi-
vidual source, while ensuring robust monitoring of a continuous
powder process.
8

o Providing possibilities for obtaining robust predictive models
formmerging the data obtained frommultiple available sensors
in the process rather than employing expensive and/or hard to
install analysers for measuring the CQAs. It provides the possi-
bilities for developing soft-sensors (virtual sensors) from avail-
able process sensors which can then be used as a backup sensor
when a critical hardware sensor is in fault or removed.

Using data fusion approaches, integration of the data collected
from several analytical techniques can be performed using differ-
ent strategies based on low-, mid- and high-levels. Fig. 7 shows a
schematic representation of different data fusion techniques. The
number of input sources could vary depending on the scale of
the process. Basically, two, three or even up to five sources can
be merged together [124–128].

A common methodology proposed by Steinmetz et al. [129] can
then be used to access the quality of the model based on data
fusion approach (Fig. 8).

Different data fusion approaches for the interpretation of big
datasets are summarized below:



Fig. 6. Variables impacting the collected data of a single spectroscopy instrument used for the evaluation of CQAs in a continuous powder process.
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3.2. Low-level data fusion

Data from all sources can simply concatenated into a single
matrix (rows as samples and columns as variables), and then the
new matrix will be used for calculating a single model using clas-
sification or prediction models. This method is called a low-level
fusion which is very simple. In doing a low-level data fusion, the
analyst must decide which variables are expected to be more rele-
vant to the problem. This process is called variable selection by
which uninformative variables with excessive noise or the ones
non-correlated to the property of interest can be discarded before
further analysis. Stepwise Selection (e.g. Forward Stepwise or
Backward Stepwise) [130], is one method of variable selection
where variables are chosen to enter or leave the model following
a selected criterion. On the other hand, regions of variables can
be selected instead of single variables when data are highly corre-
lated. For instance, performing Forward/Reverse Variable Selection
of Variable Intervals can be done by Interval PLS (iPLS) [131].
Genetic Algorithms (GAs) [132], Analysis of Variance (ANOVA)
variable selection [133], Clustering around Latent Variables (CLV)
[134], and Variable Importance in Projection (VIP) [124] are among
other variable selection methods.

3.3. Mid-level data fusion

High data volume and predominance of one data source over
other sources are among the disadvantages of low-level data
fusion. The disadvantages of low-level fusion could be overcome
by applying a mid-level fusion strategy, by which the extraction
of relevant features from each data source separately, and then
concatenating them into a new matrix before using classification
and regression analysis are performed for minimizing the number
of variables. Data dimensionality can significantly be reduced by
feature extraction while filtering block noises. For instance, score
from PCA or PLS-DA [124] can be used to produce the latent vari-
ables from the signals of each instrument. Other techniques for fea-
ture extraction are Multivariate Curve Resolution [135], Kernel
Based Methods [136], Independent Component Analysis [137],
Wavelet Transform [138], LDA [139], Multiblock Methods such as
Hierarchical PCA/ PLS [140,141] and Multiblock PCA/PLS [142] or
Serial-PLS [141].

3.4. High-level data fusion

Testing all the combinations of feature extraction methods and
pre-processing methods in Mid-level data fusion is sometime cum-
bersome and computationally intensive. Therefore, the use of high-
level data fusion might be useful for some cases. In a high-level
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fusion, separate classification of regression models are first devel-
oped for each data source. Then, the combination of the results
from the individual models will produce the final identity declara-
tion [30]. In high-level fusion, the classification or regression
model that works best for each block must be determined. In this
case, their combination could perform better than individual mod-
els. Therefore, results from inefficient techniques do not worsen
the overall performance since every individual matrix is treated
independently. Accurate data pre-processing and considering the
correlation of the responses between sources are the important
prerequisites for high-level data fusion.

3.5. Main considerations before performing data fusion

Overall, the main considerations for integrating data for devel-
oping robust data-driven models are discussed below [25–28]:

3.5.1. Understanding the structure of data generated by analytical
devices

Focusing on the structure of the data acquired by different types
of analytical instruments, experimental setups, and other types of
sources is important. Due to heterogeneous nature of samples,
specific properties can be detected by each individual instrument.
Thus, understanding how datasets can be fused to extract the com-
bined relevant information and not distort results due to an incor-
rect fusing method is really critical. Prior to selecting the data
fusion approach, exploring the instrument with which data is
acquired is important (Fig. 9). Zero-order instruments also called
one-way data, can produce a single response per sample such as
temperature, or concentration of a compound; First-order instru-
ments also called two-way data, can enable measuring the proper-
ties of a sample for different dependent variables including data
acquired from analytical techniques such as spectroscopic; and
second-order also called three-way data, can provide a full matrix
for each sample (the two directions of the matrix are dependent
variables) [25]. Also, understanding other concepts such as mode
and multivariate is important in defining the structure of data.
For instance, when data is acquired by two different spectroscopic
techniques such as UV–vis and NIR spectroscopy instruments,
spectral profiles are multivariate as the responses are acquired at
several wavenumbers. Also they are multimodal as the two differ-
ent spectroscopic techniques represent the modes.

3.5.2. Optimising the pre-processing of the collected datasets
Considering the best data pre-processing technique is a critical

part of data analysis task to extract the most useful information
from data. This can be achieved by finding suitable strategies to
remove undesirable effects such as artefacts (e.g. baseline and peak



Fig. 7. Different data fusion approaches (low-level, mid-level and high-level).
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shifts, noise, systematic factors, missing data, multiplicative
effects, etc.) [27,28], Fig. 10. This step is really crucial to maximize
the potential of improving the quality of information extracted
from data. Each artefact comes from its own background causes.
For instance in the case of spectroscopy, it can be observed due
to a human error during measurements, and/or the complex inter-
action of light with the physical structure of the sample.
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Overall, pre-processing steps start from the intra-block level,
proceeding to the inter-block levels [27] as follows, which are
important particularly for a low-level data fusion:

Level I: intra-block Signal-to-Noise Ratio (SNR) improvement
and feature enhancing;

Level II: intra-block scaling for equalizing the importance of the
intra-block predictive components;



Fig. 8. A common methodology to access the quality of the products using data fusion approaches.

Fig. 9. The structure of the data acquired by different tools (M samples, N and K variables), reprinted from Azcarate et al. [25] with permission from Elsevier.
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Level III: balancing inter-block effects and making their contri-
butions commensurate in the analysis.

Obtaining the appropriate pre-processing method is usually not
a straightforward task as it depends on the structure of data, the
purpose of the analysis, and the modelling method selected. In
most cases, the selection of pre-processing strategy involves exten-
sive trial and error processes, or is achieved by the user experience
11
on similar cases. The overviews of the correction of all the types of
artefacts for noise removal, missing data imputation, multiplica-
tive effect correction, baseline correction, and peak alignment were
presented elsewhere [27,28].

Overall, some pre-processing techniques before implementing
low-, mid- and high-level data fusion strategies are Standard Nor-
mal Variate (SNV) for Mid-Infrared (MIR) [124], Multiplicative



Fig. 10. Example of several artefacts for visible and NIR data, reprinted from Mishra
et al. [28] with permission from Elsevier.

Table 3
Comparison of data fusion strategies.

Low-Level Mid-Level High-Level

Method
description

Also called data
augmentation or
multi-block
analysis, it aims
at coupling of
datasets in the
samples or the
direction of the
variables, by
directly placing
the datasets
next to the other
or coupling
them across the
variables.

A two-step
methodology:
First, extracting
relevant features
from each data
source
separately; and
second,
concatenating
these outputs to
build a single
matrix to be
processed.

Is a suitable
strategy to
integrate data
by treating each
data block
independently
and, then fusing
the outcomes
(predictions) to
analyse them as
a single block.

Benefits -The most
straightforward
and simple way
of data fusion.
-Used as a first
approach when
there is more
than one dataset
available.
-Easily applied
in data
concatenation of
zero- and/or
first-order.

-It solves the
issue of
concatenating
data blocks of
different orders.
-Preferred when
first-order data
to be combined
with a zero-
order.
-Leading to a
better final data
fusion model as
cross-validation

-It solves the
issue of
concatenating
data blocks of
different orders.
-Encompasses
simple
development
since only the
outputs coming
from different
models are
fused.
-Does not need
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Scatter Correction (MSC) for NIR and MIR spectra [143], baseline
corrections and derivatives for eliminating baseline shifts in infra-
red spectra and UV–vis spectra [144], and scaling/normalization
for Mass Spectra (MS) [145]. In order to compensate for different
measuring scales and variability of datasets in low-level fusion,
additional pre-processing such as autoscaling, root square scaling
and log scaling may also be required [146]. This could prevent
one block from being dominant. Finally, data is mean-centered
before building the model after data are merged.
-Not having the
difficult problem
of needing an
optimal
extraction of
features.
- Efficient for the
fusion of data
with a similar
structure.

is made in each
model.
-Frequently
used for
handling
spectroscopic
data as a huge
amount of
information is
involved.

to adjust an
adequate
scaling since
each model
being fitted
independently
with its best
scaling.

Challenges -Complex to be
used for second-
order data.
-Needing
optimisation of
prior and post
data pre-
processing to
tackle the noisy
and redundant

-Performing
exhausting
methodologies
for data fusion
due to needing
the optimisation
of feature
selection
algorithms.
- If a proper data

-Less used in the
literature due to
major
complexity
compared with
other data
fusion
approaches.
-The order of
combining the
3.5.3. Selecting an appropriate data fusion method
One of the great challenges of multi-sensory data collection in a

continues process monitoring and control loop is how to meaning-
fully combine not only different variables of an individual sensor
outputs but also blocks of sensors to achieve the best and quick
process automation system [147]. Implementing an appropriate
data fusion method can be a laborious task and should be selected
wisely. Table 3 summarizes the comparison of different data fusion
strategies which shows that factors including the order, scale and
structure of data, the level of noise and redundant information of
original data, dataset variability, model development and precision
could all impact the final decision for implementing a suitable data
fusion approach. Therefore, selection and implementation of an
appropriate big data analysis strategy according to the type of pro-
cess and the producing datasets would be essential to integrate all
the collected data.
information.
-The data block
scaling is more
critical in this
level with
respect to other
fusion
approaches.

reduction is not
performed,
useful
information can
be left out in the
residuals.

predictions
obtained affects
the final
decisions.
3.6. Current status of data fusion used for powdered and granule
characterisation

Data fusion strategies have been successfully used for the per-
formance improvement of PAT platforms. For instance, instru-
ments including vibrational spectroscopy (NIR and Raman
spectroscopy), and colour quantification (colorimetry and image
analysis) were used for the quantification of the API in an electro-
spinning case study [148]. A Mid-level data fusion approach (data
compression through latent variables and ANN for regression pur-
pose) was reported as an efficient method to quantify the API.
Fusion of Fourier Transform Infrared (FTIR) spectroscopy and Pow-
der X-ray Diffraction (PXRD) was employed by Haware et al. [149]
to improve the accuracy of quantifying API concentration in a mix-
ture of pharmaceutical powders. The efficiency of Fusion of Pre-
processed Data (FPD) and Fusion of Principal Component Scores
(FPCS) were compared. PLS model developed based on FPD did
not improve the prediction error, while a PLS model built on FPCS
yielded a better accuracy prediction than PLS models based on
individual FTIR and PXRD datasets which could be attributed to
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the noise removal and data reduction associated with using PCA
as a pre-processing tool. Raman spectroscopy, image analysis and
combined Raman and image analysis were compared against each
other by Sekulovic et al. [150] to characterize the solid form com-
position of a particulate raw material. It was found that integration
of image analysis and Raman spectroscopy datasets using PLSDA
classification models had the potential for accurate detection of
low amounts of unwanted solid forms in particulate raw material
samples.

In another study, Tahir et al. [151] utilized a real-time process
monitoring and fault detection scheme for a pharmaceutical hot-
melt extrusion process. Hybrid soft sensor and Raman-based PLS
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calibration model were utilized for the prediction of Paracetamol
concentration. Detection of process faults and raising alarms were
successfully implemented using the prediction models, along with
PCA and Statistical Process Control (SPC). The results of Tahir et al.
[151] showed that a PLS calibration model to predict API concen-
tration based on only in-line Raman spectra on its own was not
sufficient to detect the related faults in the process. Therefore, they
integrated a back-up soft sensor [42,122] with PLS calibration
model obtained from Raman spectra to predict the API concentra-
tion. Predictions based on the two independent sources, along with
process data, were then fed into the developed PCA and SPC mon-
itors (Fig. 11). Implementation of two-sensor approach facilitated
the early detection of common process faults which could other-
wise remained undetected by applying single-sensor monitoring
scheme.

Table 4 summarises further available research on the applica-
tion of data fusion for powder and granule characterisation. As
can be observed in Table 4, a wide range of studies was done on
soil characterisation for the determination and classification of
both physical and chemical properties owing to a wide range of soil
sensors that are available in market. However for other powder
sectors, only a few research has been conducted which investi-
gated only the chemical properties of the powder samples (e.g.
composition of pharmaceuticals, coffee, milk and flour powder
mixtures). Therefore for other powder sectors such as food, cos-
metic, paint, metal, agriculture, etc., further studies and opportuni-
ties could be provided to investigate the performance of data
fusion for measuring the CQAs, including the physical properties
such as density, porosity, surface texture which could significantly
influence the flowability and handling properties of powders. Sev-
eral future perspectives for the application of multi-sensors data
fusion in powder and granule characterisation based on authors’
view are described in section 4.
4. Future perspectives of data fusion for powdered and granule
characterisation

The research area of closed-loop controlling systems by means
of multi-sensors data fusion is in its infancy, and is an open area of
research for academics and technology providers. Implementation
of multi-sensors data fusion could potentially avoid delays in the
process monitoring and control. With respect to this, following
opportunities may be brought in the field of PAT for the assessment
of physicochemical attributes of powders and granule materials.
Fig. 11. Process monitoring
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4.1. Multi-sensors data fusion for the prediction of CQAs

By applying multi-spectroscopic data fusion, homogeneity eval-
uation of a wider range of powders could be possible (Fig. 12). The
accuracy of concentration estimation could be increased for com-
pounds with similar or nonselective spectral bands, but different
in other properties such as fluorescent or MIR bands. For instance,
greater than 60 % of pharmaceutical powders have a degree of flu-
orescence property that particularly could be detected by LIF spec-
troscopy only [172]. Several advantages of LIF over absorption
spectroscopy such as NIR spectroscopy are: (i) excellent detection
sensitivity because a signal is observed against a dark background;
and (ii) making it possible to obtain two and three dimensional
images as the emitted radiation can be collected at various angles
with respect to the collimated laser beam [173]. Therefore, the
results of LIF can be complementary to those obtained from other
spectroscopic systems such as NIR. Multi-block methods [26] could
potentially be applied to fuse the spectral data, after applying the
optimum pre-processing techniques on each spectral range [27].

Non-spectroscopic profiles could also be integrated to spectro-
scopic data to interpret the powder’s homogeneity (Fig. 12). For
instance, on-line electrical capacitance could be installed in the
system for measuring the dielectric permittivity of powder mix-
tures. This technique has been previously investigated by Ehrhardt
et al. [174] to examine the segregation pattern of discharging sili-
con carbide and sugar mixture in funnels, and a drum mixer. How-
ever, it should be stated that electrical capacitance sensors can
only be applicable to those materials with noticeable variations
in dielectric properties. Potentially, the use of feature selection
methods based on mid-level data fusion could be considered in this
case, as a huge amount of information is involved in the spectro-
scopic data compared with electrical capacitance tools. In fact,
mid-level data fusion is preferred when first-order data should
be combined with a zero-order or another first-order dataset to
successfully exclude the uncorrelated variables associated with
spectral data (Table 3).

Physical attributes of powders could also be qualitatively and
quantitatively estimated by vibrational spectroscopy and chemo-
metrics approaches [175]. Table 2 clearly shows that vibrational
spectroscopy such as NIR has been successfully used to determine
several physical attributes of powder and/or granule products
including particle size, bulk density, flowability and hardness.
However, the measurement accuracy of NIR may not be sufficiently
enough to evaluate the physical characteristics of some powder
types on its own. For instance, Wang et al. [176] investigated the
scheme in PAT, [151].



Table 4
Data fusion for powder and granule characterisation in solid samples.

Type of powder/granular
matter

CQAs Fused sensors Data fusion approaches Reference

Pharmaceutical powder APIs authenticity investigation HPLC, NIR spectroscopy, Proton Nuclear Magnetic
Resonance spectroscopy and XRD

Low-level or mid-level [152]

Pharmaceutical powder Quantification of active
pharmaceutical ingredient

NIR spectroscopy, Raman spectroscopy, Colorimetry
and Image analysis

Mid-level data fusion [148]

Pharmaceutical powder Quantification of active
ingredients

FTIR and PXRD FPD and FPCS [149]

Pharmaceutical powder Prediction of solid form
composition of a particulate
raw material

Raman spectroscopy and image analysis Combination of data used in
developing classification model

[150]

Pharmaceutical granules,
polyester resins

Predictions of process
concentration profiles

NIR and process variable sensors Fused process and NIR information
in MSPC models

[153]

Milk powder Skimmed milk powder
authenticity investigation

Hyphenating ultraviolet–visible, fluorescence and
NIR spectroscopy

The fusion of the classification
results

[154]

Coffee powder blends Composition measurement of
coffee blends

NIR spectroscopy
and X-ray fluorescence (XRF)

Low-level and mid-levels [155]

Coffee beans Quality of fresh coffee beans Digital olfation devises electronic nose analysis,
tasting panel

Fusion of electronic devices in
combination with the tasting
panel

[156]

Ground
roasted coffee

Discrimination between
unadulterated and adulterated
coffee samples

Mid-IR spectroscopy with different acquisition
modes: Attenuated Total Reflectance (ATR), and
Diffuse Reflectance (DR)

Data fusion to combine the data
from DR and ATR

[157]

Wheat flour samples Functional properties and
quality of wheat flour

NIR and Mid-IR spectra Low-level and mid-level data
fusion

[158]

Agricultural powders Determination of protein and
starch content in agricultural
powders

NIR and fluorescence
spectroscopy

Low-level data fusion [159]

Botanical powder
samples

Differentiating the origins of
Magnoliae Officinalis Cortex

E-nose measurements, e-tongue measurements, and
chemical analyses

Low-level and mid-level [160]

Clay powder samples Clay mineral identification Laser-induced breakdown and Raman spectroscopies Low-level data fusion [161]
Soil samples (silt to

silt loam texture)
Soil aggregate stability
prediction

Visible NIR (Vis-NIR) and Mid-Infrared (MIR) Spectra fusion and model output
averaging

[162]

Soil samples (paddy soil) Evaluating soil fertility and
quality

Vis–NIR, Mid-IR spectrometer, portable (XRF)
analyser and Laser-Induced Breakdown Spectroscopy
(LIBS)

Models using PLSR based on fused
sensor data, and Bayesian Model
Averaging

[163]

Soil samples with a wide
range of soil texture

Assessment of soil bulk density Frequency domain reflectometry and visible and NIR
spectroscopy

PLS and ANN data fusion [164]

Soil samples with a wide
range of soil texture

Measurement of soil bulk
density

Frequency domain reflectometry and Vis-NIR
spectroscopy

ANN data fusion [165]

Soil samples (soil
textures ranging from
sand to clay loam)

Characterization of the spatial
complexity of soils

Gamma ray, electrical conductivity, Vis-NIR spectra PLS Fusion of data [166]

Polluted soil samples Prediction of toxic elements in
soil

Vis-NIR and X-ray fluorescence Low-level and mid-level [167]

Fine-grained sieved and
homogenized soil
samples

The compositional
discrimination of geological
materials

XRF spectroscopy, Raman spectroscopy, and LIBS PCA and PLS-DA Mid-level [168]

Soil samples of arable
fields

Estimation of key soil
attributes

Vis-NIR and XRF Spectra fusion [169]

Large variety of soil
samples

Prediction of soil physical and
chemical properties

Vis–NIR and portable XRF spectra Mid-level [170]

Soil samples collected
from the cropland

Prediction of toxic elements in
soil

Portable XRF and Vis-NIR sensors Low- and Mid- and high-level
fusion

[171]
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application of diffuse reflectance in the Vis-NIR region to deter-
mine physicochemical attributes of dairy powders. Moderate to
good performance was achieved for tapped density, insolubility
index, surface free fat, moisture content and bulk density
(R2

P:0.65–0.88, 0.80–0.85, 0.77–0.87, 0.71–0.86 and 0.71–0.72,
respectively). Therefore, prediction efficiency of physical attributes
of some type of powders using only vibrational spectroscopy may
not be adequate enough.

On the other hand, physical attributes of powders can be inter-
preted using other sensory instruments including acoustic emis-
sion profile as shown in Table 2. Hansuld et al. [50] showed that
increases in particle size and density could affect the observed
acoustic emission profile. Moreover, it was found that the flowabil-
ity of bulk of powders could be determined using data from the
acoustic emission [177,178]. In addition, both NIR and Ultrasonic
14
Pulse Velocity were successfully implemented by other researchers
to non-destructively estimate hardness [20,116]. Acoustic emis-
sion has the capability to monitor changes in physical properties
of particulate materials while vibrational spectroscopic instru-
ments could provide some information about chemical properties
of powder materials and their spectral band variations at different
conditions [175]. Coupling of these two techniques could therefore
be a useful method for the estimation of physical attributes of
powders such as particle size, flowability, bulk density and
hardness.

For the measurement of physical properties of particles such as
size, flowability and bulk density, several parameters can be deter-
mined using digital imaging technique and integrated to those data
obtained from vibrational spectroscopy and acoustic emission.
Adequate powder flowability characterisation technique for a



Fig. 12. Opportunity of the implementation of multi-sensors technology for composition and homogeneity assessment of powders.
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powder-bed based metal additive manufacturing process based on
digital imaging technique was investigated by Spierings et al. [56]
which gave valuable information about the significance of inter-
particle forces. Powder avalanche angles (angle of a linear regres-
sion of the free powder surface just before an avalanche started)
and powder surface fractal (defined by the resolution of the
recorded image (pixel size)) were evaluated using digital imaging
and image processing techniques in a rotating drum. These param-
eters were shown to be correlated to optically evaluated flowabil-
ity results obtained from an independent assessment of five
experienced people. It can be expected that flowability will corre-
late with other powder properties such as powder layer density,
particle size distribution and particles shape. These parameters
can further be recorded and evaluated using digital imaging tech-
nique [52,179–183]. Overall, Fig. 13 schematically represents the
opportunity of implementation of data fusion for vibrational spec-
troscopy such as NIR (which provides spectra data of absorbance
by time), acoustic emission profiles (which provides the acoustic
emission by time), and digital imaging tools (which evaluates the
desired optical property by time). Data can be integrated using a
low- or mid-level data fusion strategy, and compared for the final
decision.

In Fig. 13, process variables have also been shown as a unique
source of data which can potentially change the powder and gran-
ule properties. For instance, Ryckaert et al. [53] observed that the
process variables including torque was an indication of the degree
in granule growth, with the potential of being used as an in-
process control parameter for granule size during twin-screw
wet granulation. In another study, different approaches for mois-
ture content monitoring based on soft sensor model development
have been investigated by Roseberry et al. [184], where manipu-
lated input process variables of a fluidized bed process were uti-
lized to successfully develop models for moisture prediction. In
terms of tablet hardness, Table 2 shows that the process variables
could be successfully implemented for the prediction of tablet
hardness. Thapa et al. [69] reported that impeller speed, liquid
addition rate, and wet massing time could impact the granule
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hardness, Carr’s index, tablet tensile strength in a high shear
wet granulations. Thus, process data could be complementary to
other in-line sensory information such as vibrational spectroscopy
to evaluate the physicochemical attributes of an end-point
powdered-based product such as particle size, hardness and mois-
ture. Opportunities could be created to study the fusion results of
collected sensory data from vibrational spectroscopy and process
data (e.g. flow rate, temperature, pressure, impeller speed, torque)
to investigate whether it could provide more accurate information
and predictions with less uncertainty than an individual sensor in
powder and granule production processes. For data fusion, spectral
data, as an extra block of correlated variables, could be integrated
to the process data measurements using data augmentation tech-
nique, or they can be treated as separate blocks of information,
and processed individually to develop a final model using a
multi-block analysis, [185] (Fig. 14). Vibrational spectroscopic sys-
tems such as NIR or Raman spectroscopy can be used as a spectral
data block.

As previously shown in Table 2, vibrational spectroscopy such
as NIR is a relatively suitable technique not only for the physical
characterisation of powders (e.g., particle size, flowability, hard-
ness and density), but also for the measurement of the moisture
content. For moisture prediction, the opportunity of fusing the data
of microwave sensors (Table 2) along with process and vibrational
spectroscopic data can also be considered as microwave sensors
diagnose a very good contrast between water and most other
materials [115], which could potentially complement the results.

If acquiring spectral data from a process is not applicable,
opportunities could be created to explore the feasibility of using
morphology metrics along with process variables to develop an
in-line/on-line approach for the prediction of physical properties
of powders and granules (Fig. 15). For instance, flowability is an
important quality indicator for many powdered products which
is affected by not only process variables [186], but also the mor-
phology of the powders [187]. Other model outputs can also be
tested to check the feasibility of combining process and shape fac-
tors for predicting them. For instance, bulk or tap density, com-



Fig. 13. Opportunity of the implementation of multi-sensors technology for the assessment of physical properties of powders such as bulk density, particle size, and
flowability.

Fig. 14. Fusion of process and spectral data: I is time, J1 is the number of variables for block A (process data) and J2 is the number of variables for block B (spectra data).
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pressibility, dissolution rate and tablet hardness in the case of
pharmaceuticals can all be tested as model outputs (Fig. 15). In a
recent study, Wang et al. [188] investigated the correlation
between the powder particle morphology of microcrystalline cellu-
lose and its tablet performance. Circularity was reported to be the
most important shape factor affecting the tablet performance,
which correlated well with tablet hardness and disintegration/dis-
solution rates [188]. It also affected the powder compressibility
(the greater the circularity, the closer the particle shape to the
spherical, and the lower the powder compressibility). Wang et al.
[188] also concluded that the particle shape affected the powder
flowability for the measured samples of interest.

Moreover, an opportunity can be created to indirectly predict
difficult-to-measure variables from the information of existing
real-time analysers measuring other quality attributes of powder
products in a process (Fig. 16). As an example, bulk density can
be reliably predicted by real-time measurement of particle size
[189], moisture content [190] and process data (e.g. torque)
16
[191] using MSMs [16] and different data fusion approaches. Size
analysers and spectroscopic data could allow the clear distinction
between different stages of a powder process. For instance, FBRM
has been designed to measure real-time changes of particle size
and distribution in the process by tracking the rate and degree of
change to particle count and size. This technique is particularly
important for harsh condition processes. In high shear wet granu-
lation processes, materials may be adhesive and are prone to get
sticky during granulation stage causing probe fouling. Based on
advanced FBRM design, a mechanical scraper could be utilized on
the sapphire window to prevent probe fouling [192]. Therefore,
combining of a size analyser such as FBRM (for the measurement
of PSD, D90, D10 and D50), vibration spectroscopy such as NIR
(for the measurement of moisture content) and process data such
as torque (for the measurement of system power), and integration
of all the real-time data could facilitate determination of the bulk
density of powdered-based products. It should be stated that the
number of variables could be significantly different for spectro-



Fig. 15. Opportunity of the implementation of process variables and shape metrics for developing a predictive model for estimating physical properties of powders/granules.

Fig. 16. Opportunity of the data fusion of process sensors, particle size analysers and spectral data for predicting difficult-to-measure physical properties of powders/granules
(Images licenses:‘‘Near-infrared spectrum of EM170817 at 4.5 days after binary neutron star merger” by M. M. Kasliwal et al., is licensed under Creative Commons Attribution
2.0 Generic license.‘‘Work-torque” by Svjo is licensed under Creative Commons Attribution-Share Alike 4.0 International license.).
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scopic, FBRM and process datasets. In this case, data fusion based
on a mid-level approach should be potential as it could provide a
more balanced representation of variability captured in datasets.
Therefore feature selection techniques may be suitable here to
extract the valuable variables of particle size in size analyser and
spectra in spectroscopy, to complement the low dimension process
dataset. Another example of a difficult-to-measure variable is pow-
der flowability. It depends on particle lubrication, particle size and
moisture content [94,193]. To this respect, the combined use of a
17
vibrational spectroscopy and a size analyser/image analysis tool
can be highly beneficial for a data fusion application. Vibrational
spectroscopy such as NIR could accurately predict the lubrication
and moisture content of particles, whereas the size analyser/image
analysis tool could provide accurate particle size distributions. Fus-
ing these data can potentially deliver a more accurate estimation of
flowability compared to a single instrument.

Finally, potential advantages of saving both experimental time
and cost can be achieved if a number of literature data and mate-
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rial database from historical datasets merged into the obtained col-
lected data at laboratory. Wang et al. [194] demonstrated that
incorporating a small number of literature data into the multivari-
ate calibration model could help significantly reduce the prediction
error in a high shear wet granulation process for manufacturing of
oral solid dosage.

4.2. Multi-minisensors as an alternative for expensive sensors data
fusion

Normally, monitoring and controlling of CQAs are performed
using expensive in-line or on-line analysers or time-consuming
off-line/at-line techniques in a continuous process. Thanks to
advances in technology today, miniaturised yet inexpensive sen-
sors reached to mass production. As an instance, Fig. 17 shows
how NIR spectroscopy has been evolved from being expensive
and massive in size to a cheap and portable equipment. Therefore,
in-line miniaturized analytical instruments could be embedded
within the system and used along with the process sensors to
acquire the complementary data for monitoring CQAs. Yin e al.
[195] reviewed the soil sensors for smart and precision agriculture
application which enable capturing real-time physical and chemi-
cal signals in the soil, such as temperature, moisture, pH, and pol-
lutants. Miniaturized sensors for smart and precision agriculture
including miniaturized wireless system for sensing soil water con-
tent and conductivity, on-chip piezoresistive soil temperature sen-
sor and miniaturized optical moisture sensor [195] could
potentially be designed and investigated for characterising other
powder mixtures. Principles and applications of miniaturized NIR
Spectrometers [196], miniaturization of fluorescence sensing
Fig. 17. Substitution of analytical instruments with chea
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[197], and other optical spectrometers [198] could also give valu-
able insights on the minimization opportunities for spectroscopic
instruments which could revolutionize the powder manufacturing
processes.

4.3. Data fusion for real-time monitoring and control schemes of CQAs

Study on real-time process monitoring, fault detection scheme
and process control using prediction models build on data fusion
techniques is an area that lacks sufficient investigations and has
the potential to be implemented within a continuous system to
monitor and control the quality of powdered and granule products
(Fig. 18). Developing a robust soft-sensor from multi-sensors can
be used as a backup sensor when the hardware sensor is in fault
or removed [200]. In this case, if one sensor is malfunctioned dur-
ing the process, monitoring and controlling of the process is feasi-
ble using the developed soft sensor. Therefore, measurements by
various process sensors, in-line PAT and applying an efficient data
fusion approach could not only allow detection of faulty operation
of a system in real-time, but also precise control and optimisation
of complex processes.

By adopting advanced control techniques, such as Model Predic-
tive Control (MPC), process constraints and multivariate interac-
tions can be taken into account in the process [201]. The MPC
control scheme could manipulate the manipulated variables to
control a CQA to its desired set-point which could be predicted
from an efficient MSM and data fusion approach (Fig. 19). After
some initial online tuning, the MPC could be able to control a
CQA to its desired set-point by manipulating the manipulated vari-
ables in the process. Therefore, finding an accurate data fusion
p/miniaturized sensors in PAT platforms, [198,199].



Fig. 18. Implementation of multi-sensors data fusion (in this case fusion of process and spectral data) for process monitoring and control schemes.

Fig. 19. Controlling a CQA to its set-point based on an MPC model.
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approach to precisely predict the CQA is an important prerequisite
to develop a robust MPC model, particularly for the cases when a
suitable hard sensor is not available, malfunctioned or removed
from the process. A PCA monitor model can also be developed
based on data fusion calibration model and other process data
for obtaining Hotelling’s T2 and Squared Prediction Error (SPE)
metrics, to accurately detect faults within the system (e.g. probe/
sensor faults, feeding issues, powder impurities/degradation, hea-
ter fault, etc.) [151].

One opportunity that can be created for developing a robust
MPC model based on multi-sensors data fusion is investigation of
the potential of spectral data fusion with other sources of data
(shape metrics and process variables) (refer to section 4.1) to pre-
dict various physicochemical properties of powders during manu-
facturing processes. Overall, models could be constructed from (a)
process variables only, (b) shape metrics variables only, and (c)
spectroscopic instruments variables only, and (d) process variables
combined with shape factors and spectroscopic variables, and
compared to evaluate the most important variables in developing
soft sensors for predicting the CQAs. The same approach as De Oli-
veira et al. [153] could be investigated for the development of SPC
and PCA monitor models by combining the collected data. De
Oliveira et al. [153] combined all the available process related
19
information along with spectroscopic data to develop a robust
SPC model and concluded that an accurate data fusion methodol-
ogy has a high performance at detecting on– and off-specification
batch situations, and identifying the sources of process
abnormalities.
5. Conclusions

Today’s processes implement many sensors and analytical
instruments which can provide more information and opportunity
to monitor, control and optimize CQAs. This correspondingly
increases the complexity of the systems in terms of interpreting
the data to capture process understanding. While data acquisition
process can be achieved much faster due to progress in instrumen-
tal methods, interpretation of data and data analysis process still
demand long time. Data fusion strategies can be utilized for the
performance improvement of PAT platforms to facilitate exploiting
the advantages of datasets created from various sources while
improving the model accuracy and robustness. By adopting an effi-
cient data fusion technique and integrating various datasets gener-
ated frommultiple sources, more useful knowledge about a sample
could be obtained than using a single source instrument. In this
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paper, current status and future perspectives regarding the appli-
cation of multi-sensors data fusion for accurate in-line measure-
ment and on-line controlling of CQAs in powdered and granule
products were discussed. Some ideas regarding the integration of
multi-sensors data using different data fusion approaches were
proposed with the hope to improve the model performance for
assessing a wide range of CQAs. Finally, the possibilities of real-
time process monitoring, fault detection and process control
schemes using prediction models build on data fusion techniques
were described. Overall, calibration models developed for an accu-
rate real-time prediction of CQAs based on multi-sensors data
fusion, designing a robust MPC and process monitoring schemes
to control CAQs to the desired set-points, and detecting process
faults based on data fusion are among important research areas
that could have a high impact on the quality assurance of pow-
dered and granule products.
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