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Unconventional Monetary Policies and the

Yield Curve: Estimating Non-Affine Term

Structure Models with Unspanned Macro Risk

by Factor Extraction

Adam Goli�nski

University of York, UK

Peter Spencer

University of York, UK

We show how the Joslin, Singleton, and Zhu (2011) factor extraction approach to estimating the

Gaussian term structure model can be modified to handle the interest rate lower bound without

the approximations used in other approaches. This drastically reduces the computation time and

produces more robust estimates of the lower bound parameter and the shadow rate. It makes

feasible the extensive specification search necessary to allow for unspanned factors as in Joslin,

Priebsch, and Singleton (2014), allowing the term structure model to be used to better assess the

effects of policy on the term premium and market expectations. (JEL G12, C13, E43)

Received June 28, 2022; editorial decision May 12, 2023 by Editor Hui Chen

The Gaussian term structure model (GTSM) is routinely used to analyze the behav-

ior of a wide range of financial markets, including those for commodities as well as

those for government and corporate bonds. Its popularity has been enhanced in

recent years by a series of innovations that greatly reduce the need for numerical

optimization methods. Instead of using the Kalman filter to estimate the latent

variables underpinning the yield curve, these newmethods restrict the measurement

error covariance structure in a way that allows them to be extracted directly from

yields or, perhaps, principal components of yields. This allows the likelihood func-

tion to be concentrated, helping to deal withmultiple local optima and other difficult

numerical problems as well as greatly speeding up the estimation procedure.

The Gaussian model, however, violates the zero lower bound constraint on

interest rates. Although this may not be a problem at historical levels of the interest
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rate, it is a serious problem at the near-zero interest rates seen in the developed

economies since the onset of the financial crisis. This confronts the modeler with

new numerical challenges.

In this situation, the Black (1995) shadow rate term structure model, which

represents the spot interest rate using a truncated distribution, has a great deal of

appeal. Unfortunately, this truncation introduces a sharp nonlinearity into this

system, making the usual approach based on the partial differential equation sol-

ution infeasible when there are more than two factors. However, the formula

proposed by Priebsch (2013) offers an exact closed-form solution for three or

more factors when the underlying shadow rate is Gaussian. Simpler formulae

based on close approximations to this Gaussian shadow rate term structure model

(SRTSM) have been proposed by Krippner (2012) and Wu and Xia (2016). Other

models that deal with the nonnegativity of the interest rate include the quadratic

term structure model (QTSM), in which the short rate depends upon squared

Gaussian factors.1,2

The nonlinearities in these various formulae mean that researchers have resorted

to the use of the extended Kalman filter (EKF) and other methods that have been

superseded by the new likelihood-concentration methods in the standard Gaussian

setting. However, this paper shows how the factor extraction approach of Joslin,

Singleton, and Zhu (2011), with all of its well-known computational advantages,

can be readily applied to Gaussian shadow rate term structure models, allowing the

researcher to estimate these without any approximation almost as easily and

quickly as the simple GTSM. In the case of a well-known U.S. Treasury bond

yield dataset, we find that the approximation error in using the commonly usedWu

and Xia (2016) approximation to estimate the SRTSM is negligibly small, allow-

ing the solution to be found in four to eight minutes. The Priebsch (2013) model

naturally takesmuch longer, but we use it here as a benchmark to evaluate the error

implied by the Wu and Xia (2016) approximation. Our approach is applicable to a

broader class of Gaussian models, including the QTSM, which we also analyze in

this paper.

These techniques open the way to research with shadow rate models that use

daily and other large data sets or problems that require large numbers of different

model estimations. Moreover, we find that, because they restrict the measurement

error structure, these algorithms have the added advantage of producing more

precise and robust estimates of the lower bound parameter and the path of the

1 The origins of the quadratic model can be traced back to Longstaff (1989), Beaglehole and Tenney (1991, 1992), and

Constantinides (1992). This model was fully developed by Ahn, Dittmar, and Gallant (2002) and Leippold and Wu

(2002) in continuous time, and Realdon (2006) in discrete time.

2 There are other approaches in the term structure literature that tackle the problemof nonnegativity of the interest rates that

are based on non-Gaussian processes—e.g., Cox, Ingersoll, and Ross (1985) and Dai and Singleton (2000) proposed a

class of models based on square-root processes in continuous time. Its discrete-time counterpart based on the autore-

gressive gamma process was developed by Gourieroux, Monfort, and Polimenis (2002) and Le, Singleton, and Dai

(2010). Unfortunately, these processes make the lower bound a reflecting barrier and so do not allow the policy rate to

remain at the bound for any length of time. However,Monfort et al. (2017) proposed a term structuremodel based on the

autoregressive gamma process that overcomes this problem and allows for a point-mass at zero.
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shadow rate than the EKF. This aside, the fit and parameter estimates are econom-

ically indistinguishable from those obtained with the EKF.

Our factor extraction approach is similar to the sequential regression procedure

(SR) proposed by Andreasen and Christensen (2015) and implemented in the the

context of a term structure model of interest rates by Andreasen and Meldrum

(2019). They use nonlinear least squares to find the factors that optimize the fit of

the cross-section of yields and then use these factors to fit the time-series dynamics

using ordinary least squares (OLS). This method focuses on the cross-section

without taking into account the time-series fit, and we find that the overall fit,

reflected in the likelihood, is considerably worse than for our method.

To illustrate the ability of our factor extraction approach to handle problems that

cannot feasibly be tackled using the EKF, we update the work of Joslin, Priebsch,

and Singleton (2014) using a shadow rate version of their macrofinance model to

analyze theway thatmacroeconomic shocks affect term premia. Thismodel allows

macroeconomic variables to influence the future evolution of the yield curve

through the real-world dynamics even though they do not affect its current position

and are in that sense “unspanned” (Duffee 2011). Unfortunately, introducing

macro variables into the P-dynamics greatly increases the number of parameters

in the model. Moreover, as Joslin, Priebsch, and Singleton (2014) emphasize,

many of these parameters, and hence the risk adjustments, are very poorly defined.

Elimination of the insignificant price of risk parameters increases the precision of

the P-parameters by pushing them closer to the Q-dynamics, which are defined

with a very high degree of precision. However, as pointed out by Bauer (2018),

imposing zero restrictions based on their individual or joint significance might

result in the identification of a suboptimal model because it is generally path

dependent. We follow Joslin, Priebsch, and Singleton (2014), who deal with

this problem by searching over all possible combinations of exclusion restrictions

to find the best combination and ensure that the model does not lead to misleading

inferences. In our case, this involves searching over 218 possible combinations,

which would be infeasible using the EKF or similar techniques.

This analysis is of particular importance to monetary policy makers seeking to

influence the economy through the yield curve. They routinely use term structure

models to decompose yields into the contributions of market expectations and risk

premia.3 We show that the macrofinance model with the optimal set of price-of-

risk restrictions (MFEopt, described in detail in Section 4) views the behavior of the

yield curve since the financial crisis in a very different light to the standard unre-

stricted yield-only model (FE). Figure 1 shows the way that these two models

decompose the 10-year yield (continuous line) into the risk-neutral yield (panel A),

which reflects market expectations, and the risk premium (panel B), which is the

difference between the fitted and risk-neutral yields.

3 See, e.g, https://www.newyorkfed.org/research/data_indicators/term-premia-tabs and https://www.federalreserve.gov/

pubs/feds/2005/200533/200533abs.html
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Figure 1

10-year risk-neutral yields and risk premia

The figure shows 10-year risk-neutral yields (panel A) and term premia (panel B) generated by different models. The FE

model is a yield-only model and does not impose any restrictions, FEopt is a yield-only model with optimal price-of-risk

restrictions, and the MFEopt is a macrofinance model with optimal price-of-risk restrictions. The 10-year yield is plotted

as a reference.
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FE suggests that the 10-year risk-neutral yields were relatively smooth over the

period 2009–2021 and that the variations in observed yields were largely due to

variations in the risk premium. This is consistent with the finding of Gagnon et al.

(2011) using an affine term structure model that the QE policy announcements that

followed the Lehman default in September 2008 affected the term premium rather

than market expectations. However, we find that this conclusion is due to the

presence of insignificant parameters in the time-series dynamics. When these are

eliminated, this gives the optimal yield-only model FEopt . The risk-neutral yields

from thismodel are also shown in the figure. The two restrictedmodels suggest that

the variation in observed yields was much less due to the risk premium than

implied by the standard model FE. We show that these variations still match

announcements of changes in QE nicely.

Reflecting this, we show that the countercyclical nature of risk premiums found

by Joslin, Priebsch, and Singleton (2014) in the pre-crisis period is also a feature of

the post-crisis period. For example, the correlation between the 10-year term

premium and expected inflation goes up from 4:4% in FE to 13:3% in FEopt

and to 20:05% in MFEopt, while the correlation with economic growth falls

from �4:6% to �8:3% in the FE and MFEopt models, respectively. The latter

estimate is consistent with the conventional view that risk premium tends to

increase during an economic downturn. These findings support the argument of

Joslin, Priebsch, and Singleton (2014) that it is important to eliminate insignificant

time-series parameters and to allow for the effect of macroeconomic variables on

risk premia in term structure models.

1. The Gaussian Term Structure Model

1.1 The model structure

Assume that we can write the n-period zero coupon bond yield as:

yn;t ¼ yðxt; n;WÞ; (1)

where W is a vector of relevant parameters.

The dynamics of the state vector under the physical (P) and risk-neutral measure
(Q) are:

xt ¼ lP þU
Pxt�1 þ uPt ; (2)

xt ¼ lQ þU
Qxt�1 þ uQt ; (3)

respectively, with uPt ; u
Q
t � Nð0;RÞ under their respectivemeasure.We adopt the

parameterization scheme proposed by Joslin, Singleton, and Zhu (2011), that is,

U
Q is determined by K roots, which we can collect in a vector kQ and

lQ ¼ ½lQ1; 0; . . .�0. The physical dynamics, lP ; UP , and R, are unrestricted.

This parameterization plays a crucial role in our estimation scheme, as in the
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original Joslin, Singleton, and Zhu (2011) Gaussian scheme, since it allows one to

estimate the P-parameters by OLS regression.

The observed short-rate is a function ofK-dimensional state vector xt and short-

rate parameters collected in a vector Wr:

rt ¼ rðxt;WrÞ; (4)

whereWr is a subset ofW. We now present some examples of Gaussian models.

1.1.1 The standard Gaussian model. The standard Gaussian term structure

model (GTSM) was first proposed by Vasicek (1977) and since then, due to its

analytical tractability, has become the most popular model in the literature. In the

GTSM the short rate is linear in the state variables:

rt ¼ d0 þ d01xt (5)

and, as such, the short-rate and other yields are unrestricted and can become

negative. Following Joslin, Singleton, and Zhu (2011) we parameterize the model

as Wr ¼ fd0 ¼ 0; d1 ¼ 1Kg.

1.1.2 The shadow rate model. The shadow rate term structure model

(SRTSM)was first proposed byBlack (1995)with the observed short rate specified

as:

rt � maxðst; rÞ; (6)

where r is the lower bound and the shadow short rate st is driven by underlying the

K dimensional process:

st ¼ d0 þ d01xt: (7)

In his descriptive paper Black (1995) did not specify the nature of the process xt,

but virtually all empirical implementations of the model assume Gaussian dynam-

ics, as in Equation (2).4 Our parameterization of the short rate is similar to the

GTSM, in that we specify d0 ¼ 0 and d1 ¼ 1K , with the additional lower bound

parameter r , which can be estimated or set to a prespecified value.

If the short rate is well above the lower bound, it is reasonable to use the GTSM,

which assumes: rt¼ st. However, as the short rate approaches the lower bound, the

Gaussian model gives a significant probability mass to negative interest rates,

which makes it impractical for many purposes, such as monetary policy analysis

and pricing fixed income derivatives. Shadow rate models deal with this incon-

venience by treating the forward rates of the Gaussian model as “shadow forward

rates” and thenmap them into the Black forward rates. Unfortunately, Equation (6)

introduces a sharp discontinuity into this mapping, making it difficult to estimate

the model using the usual partial differential equation approach when there are

4 See, e.g., Kim and Singleton (2012), Christensen and Rudebusch (2015), Bauer and Rudebusch (2016) among others.
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more than two factors. However, Priebsch (2013) shows that a formula that uses

the first two cumulants offers a tractable closed-form solution for the Gaussian

shadow rate model. Simpler formulae based on close approximations have been

proposed by Krippner (2012) and Wu and Xia (2016).

1.1.3 The quadratic model. The short-rate equation in the QTSM is given by:

rt ¼ d0 þ d01xt þ x0tDxt; (8)

where D is a positive semi-definite parameter matrix.

The lower bound in the QTMS is given by r ¼ d0 �
1
4
d01Dd1,

5 which implies

that we can reparameterize this as:

rt ¼ r þ
1

4
d01Dd1 þ d01xt þ x0tDxt: (9)

The short rate parameters Wr need to be restricted to achieve the model iden-

tification. We set d1 ¼ 1K and D ¼ 1K;K . Although this parameterization means

that the model is overidentified, the model has the same number of parameters as

the shadow rate model and, if r is set to a prespecified value, the same as the

GTSM.6

1.2 Fitting errors

If the yield model in Equation (1) is fitted without error, then, conditional on the

model parameters, we could in principle invert any K of these relationships to

identify the state vector xt. However, to allow for measurement and misspecifica-

tion effects, we augment this specification with an additive error vn;t to get an

empirical model of the observed yield yon;t:

yon;t ¼ yðxt; n;WÞ þ vn;t; (10)

where vn;t � Nð0; r2v;nÞ. Stacking Equations (10) gives a system of J nonlinear

yield equations:

yot ¼ yðxt;WÞ þ vt; (11)

where vt � Nð0;RvÞ.

1.3 Current estimation strategies

Current estimation strategies are based on the EKF, which approximates the

pricing function y in Equation (1) using a first-order Taylor expansion around

5 See Realdon (2006, p. 282).

6 Andreasen and Meldrum (2019) claim that a similarly overidentified model with d1 ¼ 0K and D ¼ 1K;K achieves a fit

close to a maximally flexible quadratic model.
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the expectation of the state under the physical measure P; xtjt�1 ¼ EP
t�1xt, such

that:

yn;t ¼ y xt; n;Wð Þ

�y xtjt�1; n;W
� �

þ y0 xtjt�1; n;W
� �

xt � xtjt�1

� � (12)

This introduces approximation errors that bias the model estimates. The iterated

extended Kalman filter advocated by Krippner (2013) handles this problem, and it

can be shown that, under the observability restriction (Equation (13)), this techni-

que is equivalent to our factor extraction technique. However, both the EKF and

iterated EKF require knowledge of the parameters lP and U
P to extract xtjt�1,

which rules out the use of the likelihood concentration techniques discussed in the

next section.7

2. Estimation by Factor Extraction

In this section we show how the factor identification and likelihood-concentration

methods currently used in estimating the GTSM can be used to estimate an

SRTSM in a general Gaussian framework.

2.1 Nonlinear factor extraction

The GTSM literature suggests ways of inverting this relationship to extract the

latent factors xt from the yields yot . Following Duffie and Kan (1996) and many

others, we can assume that there are K < J � 1 yields or fixed combinations (or

“portfolios”) of yields, given by a fixed J � K weighting matrix W, that are

nevertheless fitted without error:

qt � W0yot ¼ W0yt (13)

for all t. Substituting Equation (11) into Equation (13) shows that this is equivalent

to assuming:W0vt ¼ 0. We will refer to this as the observability restriction (OR)

and assume that the observable factors qt are the first K principal components

obtained from the covariance matrix of yields, Covðyot Þ. In this case, the weights

W are given by the eigenvectors of this matrix. Denote by qðxt;WÞ the vector-
valued function in RK that maps the latent state vector xt to the observable

principal components qt, and the inverse of this function by q�1ðqt;WÞ, that is:

qt ¼ qðxt;WÞ ¼ W0yðxt;WÞ () xt ¼ q�1ðqt;WÞ ¼ xðyot ;WÞ: (14)

This is the basis of our extraction procedure, which we call the factor extraction

estimator.8 Either way, substituting xt back into Equation (11) gives a nonlinear

econometric model of the cross-section of J observed yields:

yot ¼ yðxðyot ;WÞ;WÞ þ vt: (15)

7 For more detail on the extended Kalman filter, see Durbin and Koopman (2001) .

8 In practical application, the speed of this inversion can be improved by the use of the analytical gradient to the

observability condition in Equation (13) with respect to xt .
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Our estimation strategy is to use this nonlinear solution technique to recover xt,

conditional on the risk-neutral parameters using Equation (14) and use it to fit the

observed yields as in Equation (15). Further details regarding implementation are

set out in Section 2.2.

The FE method is similar in spirit to the sequential regression (SR) estimator

(see Andreasen and Christensen, 2015). As its name suggests, the sequential

regression uses a sequence of regressions to fit the model. This method first finds

the values of xt andW that minimize the sum of squares in Equation (11) without

using the observability condition in Equation (13). Then, given the factors, we

estimate the parameters of the physical dynamics, including R, which also con-

tributes to the cross-sectional fit of themodel. Finally, given the state vector and the

updated estimate of R, the risk-neutral parameters are reestimated by minimizing

the cross-sectional sum of squares.

2.2 The separability of the likelihood function

LetH � ðlP ;UP ; lQ1; kQ;R;Wr;RvÞ denote the parameters to be estimated. The

conditional log-likelihood function is:

logLðHÞ ¼
XT

t¼2

‘ðyot jy
o
t�1;HÞ: (16)

The first advantage of the factor extraction schemes is that, in contrast to the

EKF, they allow the parameters of the measurement errors Rv to be concentrated

out of the likelihood function. Second, they allow for the separation of parameters

in the conditional likelihood. In particular, the logarithm of the t-period conditional

density can be decomposed into the log-likelihood of observing the yields given

the noiseless yield portfolios, ‘Qðyot jqt;HÞ, and the log-likelihood of observing the
latter given the lagged fitted portfolios, ‘Pðqtjqt�1;HÞ:

‘ðyot ; qtjqt�1;HÞ ¼ ‘Qðyot jqt; l
Q
1; kQ;R; r ;RvÞ þ ‘Pðqtjqt�1; l

P ;UP ;RÞ;

(17)

allowing the latent state vector to be recovered independently of theP-parameters.

Conditional upon the risk-neutral parameters and the latent factors, the parameters

of the physical dynamics that maximize the likelihood function can be obtained by

the OLS estimates of Equation (2). They can be concentrated out of the likelihood

function and recovered subsequently, as in the GTSM put forward by Joslin,

Singleton, and Zhu (2011). This leaves us with only K � ðK þ 1Þ=2þ 1 param-

eters (lQ1; kQ, and RÞ that need to be found numerically.9 The mapping between

the observable principal components and the latent factors requires an adjustment

to the likelihood function through the application of the change-of-variable tech-

nique. Further details on this are provided in the Appendix.

9 As in Andreasen and Meldrum (2019), we set r ¼ 0.
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In the GTSM the mapping between the observed and latent factors is linear

given the OR in Equation (13). As Joslin, Singleton, and Zhu (2011) note, the no-

arbitrage restrictions used to estimate the risk-neutral dynamics from the cross-

section are irrelevant to the estimation of the physical dynamics of the observable

factors qt in this case. Moreover, as Joslin, Le, and Singleton (2013) show,

this irrelevance proposition carries over to a macrofinance model in which the

macro factors are unspanned (i.e., they do not have an immediate effect on

the term structure, but drive the dynamics of the term structure factors).

However, the mapping from the observed to the latent factors is nonlinear in

models with a lower bound, which means that the irrelevance proposition does

not hold. Indeed, we need to use the model of the cross-section of yields in order to

extract the underlying latent factors from the yield observations and find their time-

series dynamics.

2.3 Alternative factor normalization of the shadow rate model

The parameterization in terms of the dynamics of the Gaussian factors xt is con-

venient from the point of view of econometric modeling, but unlike the classic

level, slope, and curvature factors of conventional term structure models, they lack

intuition and a clear economic interpretation.10 To this end, since the factors can be

arbitrarily rotated, we can transform them to interpretable quantities. As such, we

followLemke andVladu (2017) and rotate the latent factors xt to Gaussian shadow

principal components (qst ):

qst ¼ W0yGt ; (18)

whereW are the loadings of the principal components of yields and yGt are shadow

Gaussian yields—that is, hypothetical yields that would prevail if the lower bound

did not exist:

yGt ¼ aþ Bxt; (19)

where a and B are affine coefficients that follow well-known recursions (see, e.g.,

Wu and Xia, 2016) and are found from the risk-neutral parameters kQ, lQ, and R.

The shadow principal components preserve the Gaussian dynamics:

qst ¼ ls
P þU

P
s q

s
t�1 þ uPs;t; (20)

qst ¼ ls
Q þU

Q
s q

s
t�1 þ uQs;t; (21)

where Var½uPs;t� ¼ Var½uQs;t� ¼ Rs and

U
Q
s ¼ W0Bð ÞUQ W0Bð Þ

�1
;

ls
Q ¼ W0Bð ÞlQ þ ðI�U

Q
s ÞW

0a;

10 We are grateful to a referee of this journal for suggesting this.
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and similar expressions for UP
s and ls

P . The rotated system for the shadow

Gaussian yields is:

yGt ¼ as þ Bsq
s
t ; (22)

where

as ¼
�
I� ðW0BÞ�1

W0
�
a;

Bs ¼ BðW0BÞ�1:

In particular, the shadow short rate is given by

st ¼ ds;0 þ d0s;1q
s
t (23)

with

ds;0 ¼ d0 � d
0
1 W0Bð Þ

�1
W0a;

d0s;1 ¼ d01 W0Bð Þ
�1
:

Note that the risk-neutral dynamics of the shadow principal components are still

parameterized only in terms of kQ; lQ, and R. The parameters kQ are the roots of

the autoregressive matrix of the factors and, as such, determine factor persistence

under the risk-neutral probability measure. Importantly, the roots are invariant to

linear transformation. Moreover, following Zellner (1962), the estimates of UP
s

and ls
P are independent of the covariance matrix of uPs;t, which allows us to

parameterize the model in terms of Rs rather than R since

R ¼ ðW0BÞ�1
RsðW

0BÞ: (24)

Apart from an intuitive interpretation of the factors, the advantage of the model

normalization in terms of shadow principal components is that, if the principal

components and shadow principal components are highly correlated (which we

find in practice), the estimate of the covariance matrix of shocks from the OLS

regression of the dynamics of principal components can be used as a reliable

starting value in the numerical search for Rs.

In the case of a fully Gaussian model (i.e., without a lower bound) this normal-

ization is identical to that proposed by Joslin, Singleton, and Zhu (2011). In their

model, the parameters of the real-world dynamics UP
s and lPs can be estimated

from theOLS regression of the VAR for principal components qt independently of

the numerical optimization of the likelihood function. For the shadow rate model,

shadow principal components are conditional on the risk-neutral parameters and,

as such, the estimation of the real-world dynamics has to be implemented inside the

numerical optimization routine. Since they can be estimated byOLS, however, this

adds only marginally to the computational burden of the optimization. Thus, the

conditional log-likelihood function for the shadow rate model is:

‘ðyot ;qtjqt�1;HÞ¼ ‘Qðyot jqt;l
Q
1;kQ;Rs;r ;RvÞþ‘Pðqtjqt�1;l

P ;UP ;RsÞ: (25)

Unconventional Monetary Policies and the Yield Curve

129

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
p
s
/a

rtic
le

/1
4
/1

/1
1
9
/7

2
0
3
8
2
1
 b

y
 g

u
e
s
t o

n
 2

1
 F

e
b
ru

a
ry

 2
0
2
4



3. Empirical Evaluation of the Factor Extraction Approach

3.1 Data and model specifications

We estimate these various models using Treasury yields constructed by

Gurkaynak, Sack, and Wright (2007).11 We use the same maturities as Wu and

Xia (2016)—that is 3 and 6 months, and 1, 2, 5, 7, and 10 years—but we use a

longer sample period, from January 1981 to December 2021. We follow Krippner

(2013), Christensen and Rudebusch (2015), Coroneo and Pastorello (2020), and

most of the literature on the term structure modeling within the Gaussian frame-

work by estimating the model using yields rather than the forward rates fitted by

Wu and Xia (2016).

Before we apply our factor extraction method to the analysis of monetary policy

in the next section, we first examine its performance and compare its efficiency to

other popular estimationmethods.We test it on two nonnegative Gaussianmodels:

the shadow rate model and the QTMS. These models are estimated both with a

zero restriction on the lower bound parameter (r ¼ 0) and with r estimated as a

free parameter (r ¼ br). We estimate the shadow rate model using the exact func-

tional form derived by Priebsch (2013) and the approximation proposed by Wu

and Xia (2016). The QTMS is described in detail in Realdon (2006), and in the

implementationwe adopt the same parameterization as inAndreasen andMeldrum

(2019).

The first benchmark against which we compare our factor extraction method is

the extended Kalman filter (henceforth EKF), arguably the most common in the

literature. This estimation approach is based on the state-space system. For non-

linear systems, such as those that we consider here, it requires linearization of the

measurement equation, which introduces an approximation error. For a direct

comparison of the EKF with the factor extraction method, we first estimate the

model with the OR imposed: W0v ¼ 0.12 The difference in the fit of the models

estimated by the EF and this EKFmethod allows us to quantify the approximation

errors due to the linearization in Equation (12) used in the EKF (see Section 3.4).

We then estimate the shadow rate model by the EKF without imposing the OR, in

order to examine how the restriction affects model properties. In the context of the

Gaussian model, Joslin, Singleton, and Zhu (2011) show that relaxing this restric-

tion has very little effect on the model, but this conclusion cannot generally be

extended to nonlinear models and in particular the SRTSM, as we demonstrate in

Section 3.5.

The second benchmark for comparison is given by the sequential regression

procedure (SR) employed by Andreasen and Meldrum (2019). Recall that, this

method sequentially fits the model of the cross-section (using nonlinear least

11 The data is available from: http://www.federalreserve.gov/pubs/feds/2006/200628/feds200628.xls.

12 Weadopt the same assumptions as Joslin, Singleton, and Zhu (2011) (see their footnote 24) that the J –KPCs not used to

span the yield curve have an i.i.d. normal distribution. In particular, denote the base for these PCs (i.e., the remaining

eigenvectors of the yield covariance matrix) by W? , which is orthonormal to W. Then, we assume that

W0
?y

o
t � Nð0; r2vIJ�K Þ, or equivalently, the yield measurement errors are vt � Nð0; r2vW

0
?W?).

Review of Asset Pricing Studies / v 14 n 1 2024

130

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
p
s
/a

rtic
le

/1
4
/1

/1
1
9
/7

2
0
3
8
2
1
 b

y
 g

u
e
s
t o

n
 2

1
 F

e
b
ru

a
ry

 2
0
2
4



squares) and the time-series model (using OLS). To implement this procedure, we

need to drop the OR. Importantly, unfortunately, this method is not likelihood-

based, which makes it difficult to compare this method with likelihood-based

methods.

3.2 Fitting a three-factor model

The Joslin, Singleton, and Zhu (2011) parameterization requires the roots of the

model kQ to be specified as real or complex, distinct or repeated.We find that with

our data sample, the model specified in terms of real distinct roots achieves sub-

stantially higher likelihood values for all algorithms; therefore, we report only the

estimates for this case.

Table 1 shows the fit of the three-factor model obtained using these various

algorithms, reporting the likelihood of the model and the cross-sectional root-

mean-square errors (RMSEs) for each maturity. Naturally, since it is designed to

minimize the latter, the SR method does best in this respect. However, these

errors are a tiny fraction of the overall prediction error, which takes into account

the error in forecasting the factors one period ahead. It thus does worse than the

other methods in terms of likelihood. The effect of the poor forecasting perform-

ance of this approach becomes clear when we split the log-likelihood into the

cross-section (logLQ ¼
PT

t¼2 ‘
Qðyot jqt;HÞÞ and time-series components

(logLP ¼
PT

t¼2 ‘
Pðqtjqt�1;HÞ) shown in the last three columns of the table.

The first row of Table 1 shows the fit of the Joslin, Singleton, and Zhu (2011)

GTSM. As we would expect, it has a lower likelihood than models with the lower

bound over this period, except the models estimated by SR. The RMSEs of the

residuals in these models are generally in line with the bid-ask spreads in the

Treasury market, although the RMSEs for the 5-year and 10-year maturities are

higher than those for the other maturities.

In our sample, among maximum likelihood-based methods, we find that the FE

method has a lower average RMSE than other estimators, while the EKF generally

has the worst performance in this respect. The average RMSE is as much as 0.30

basis points below that for the shadow rate model (compare FEwx versus EKFwx
with the estimated lower bound) and 0.32 basis points for the QTSM (see FEqd
versus EKFqd with r ¼ 0). However, because the likelihood-based models opti-

mize the cross-sectional maturity weights, rather than setting them to unity as in the

SR approach, it is best to compare these models in terms of logLQ rather than

average RMSE. In this respect, the cross-sectional fit and indeed the overall fit of

the EKF without the OR and lower bound restrictions is best. However, as we will

see from the discussion of Section 3.5, this is due to overfitting.

A model that estimates the lower bound parameter does not necessarily fit the

cross-section of yields better than one in which it is arbitrarily set to zero, since the

gain in the time-series fit can offset the loss from the cross-sectional fit (as is

illustrated by some of the results for the EKF). Nevertheless, setting the lower

bound as a free parameter is more flexible than setting it to zero and must attain a
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higher likelihood in the case of the likelihood-based methods (FE and EKF),

though not necessarily hold for the SR estimator (compare the two SR results

for the shadow rate model). Similarly, shadow rate models without the OR attain

significantly higher likelihood values, but their cross-sectional fit is noticeably

worse.

Finally, as noted in Section 2.3, we can normalize the shadow rate model in

terms of shadow principal components. This offers the advantage of making the

factors more readily interpretable and allows us to use the variance matrix of

residuals from the VAR(1) system for the principal components as starting values

for Rs in the numerical maximization of the likelihood function. To verify this

conjecture, in Table 2 we report the Cholesky factor of the covariance matrix of

VAR(1) residuals from principal components regression and the estimates ofR1=2
s ,

where, with a slight abuse of notation,R1=2
s denotes a lower triangular matrix, such

that R1=2
s � R

1=20
s ¼ Rs. The two sets of estimates are indeed close to each other.

To complete this analysis, Figure 2 shows the principal components, shadow

principal components and the underlying xt factors from the shadow rate model

estimated by FEwx with r ¼ 0. The principal components have the classic inter-

pretation as level, slope, and curvature factors. We can see that the two sets of

Table 1

Statistics of fit for different estimation methods

Estimation

method

Root-mean-square error Log-likelihood

OR? 3m 6m 1y 2y 5y 7y 10y Av. RMSE logLQ logLP logL

Gaussian model

JSZ Yes 4.80 4.06 5.00 2.91 6.24 2.59 5.76 4.48 11,733.24 6,269.25 18; 002:49

Shadow rate model, r ¼ 0

FEwx Yes 4.62 3.99 4.67 2.79 5.91 2.51 5.48 4.28 11,824.03 6,389.62 18,213.65

FEpr Yes 4.63 3.99 4.70 2.81 5.93 2.53 5.52 4.30 11,815.66 6,387.73 18,203.39

EKFwx Yes 4.74 4.12 4.78 3.03 6.09 2.59 5.54 4.42 11,768.72 6,432.88 18,201.60

EKFpr Yes 4.75 4.15 4.80 3.04 6.12 2.61 5.58 4.44 11,760.34 6,430.50 18,190.84

EKFwx No 5.26 4.10 5.05 3.26 5.89 2.77 5.45 4.54 12,275.15 5,938.63 18,213.78

SRwx No 4.64 4.03 4.75 2.95 5.77 2.53 5.35 4.29 11,829.31 6,163.15 17,992.46

Shadow rate model, r ¼ br
FEwx Yes 4.59 3.98 4.63 2.81 5.84 2.48 5.42 4.25 11,840.31 6,393.85 18,234.16

FEpr Yes 4.58 3.98 4.64 2.83 5.83 2.50 5.43 4.25 11,839.30 6,391.12 18,230.42

EKFwx Yes 5.27 4.47 4.88 3.13 6.02 2.59 5.49 4.55 11,714.03 6,520.52 18,234.55

EKFpr Yes 5.27 4.49 4.91 3.14 6.04 2.61 5.53 4.57 11,709.09 6,514.20 18,223.29

EKFwx No 6.18 4.69 4.86 3.64 5.35 2.62 4.97 4.62 12,246.18 6.158.79 18,404.97

SRwx No 4.45 4.32 4.09 3.63 5.13 2.29 5.06 4.14 11,917.53 5,526.43 17,443.96

Quadratic model, r ¼ 0

FEqd Yes 4.38 3.93 4.36 2.88 5.48 2.42 5.11 4.08 11,930.74 6,494.77 18,425.51

EKFqd Yes 5.10 4.05 4.45 3.32 5.87 2.83 5.17 4.40 11,794.57 6,635.19 18,429.76

SRqd No 4.38 3.89 4.37 3.08 5.31 2.42 4.97 4.06 11,948.54 5,935.61 17,884.15

Quadratic model, r ¼ br
FEqd Yes 4.38 3.93 4.37 2.88 5.47 2.42 5.11 4.08 11,930.90 6,494.62 18,425.52

EKFqd Yes 5.07 4.05 4.45 3.32 5.86 2.82 5.17 4.39 11,797.43 6,635.29 18,432.72

SRqd No 4.36 3.89 4.31 3.21 5.20 2.40 4.84 4.03 11,967.94 5,876.59 17,884.53

The table reports the root mean-square-error (RMSE) for each yield, the cross-sectional average RMSE, and the value of

the log-likelihood function at the estimated maximum. The sample period is January 1981 to December 2021.
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principal components (observed and shadow) indeed move closely together,

except when the interest rates are at the lower bound, 2009-2015 and 2020-

2021, which supports our conjecture in Section 2.3. The same, however, cannot

be said about the latent factors xt; the first factor x1;t exhibits a simple down-trend,

driven by the close-to-unit root behavior, while the other two exhibit more exag-

gerated cyclical and curvature patterns than the principal components do.

3.3 Estimation times

The main advantage of the factor extraction method is time efficiency. This results

from its ability both to concentrate the parameters of the measurement error cova-

riance matrix and the real-world dynamics from the likelihood and to extract the

state vector using the analytical gradient of the mapping function yð:Þ. To illustrate
this advantage, Table 3 reports the time needed to estimate these models with

different algorithms using the Joslin, Singleton, and Zhu (2011) parameters as

starting values. Naturally, the exact estimation time depends on many different

factors, such as implementation, hardware, software, etc. Although we used our

best efforts to make the comparison as fair as possible, the numerical optimization

is strongly path-dependent and so our results should be treated as indicative.13

The table shows that there is little difference between the FE and SRmethods in

terms of estimation time. They both find the optimum within a few minutes.

Estimating the shadow rate model with the Wu and Xia (2016) approximation

takes less than 10 minutes with the FE, while it takes about 0.5–1 hour with the

EKF. A much larger gain is obtained for the QTSM. The FE method allows us to

estimate this in about 8–10 minutes, while it takes about 12–13 hours with the

EKF. The sequential regression method is rapid but, as noted earlier, it does not

maximize the likelihood. The Priebsch (2013) solution is more computationally

demanding. The FE is handicapped by the difficulty of extracting the factors from a

highly nonlinear system and the EKF by the large number of parameters. In both

Table 2

Covariance matrix of VAR(1) residuals

Rq Rs

0.0082 0 0 0.0090 0 0

�0.0003 0.0035 0 �0.0005 0.0038 0

�0.0001 �0.0007 0.0014 �0.0002 �0.0008 0.0016

The table reports the covariance matrix of VAR(1) residuals from observed principal components (left panel) and

shadow principal components from the shadow rate model estimated by factor extraction with r ¼ 0.

13 All computations are performed on a PCdesktopWindows 10Enterprise 64-bit operating systemwith the IntelRCoreTM

i5 3.20 GHz processor with 8 GB RAM using Matlab R2018a. As the numerical optimizers we use Matlab functions

“fminsearch” and “fminunc” consecutively, in other words, we start another round of the optimization using

“fminsearch” and “fminunc” with the results from the previous round as the starting values. Typically, the maximum

value of the likelihood function found with this loop routine is much higher than a single-round optimization.We do not

modify the default setting of the optimization routines, but to avoid stalling the routine with micro gains, we stop the

estimation when the improvement of the log-likelihood between loops is smaller than 0.01, which is usually in the small

proximity to the point in which no further progress can be made.
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Figure 2

Principal components and shadow principal components

The figure shows principal components, shadow principal components, and the underlying xt factors from the shadow

rate model estimated by factor extraction with r ¼ 0.
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cases the estimation time can take between 14 to 26.5 hours. As noted, these were

estimated using starting values from the Joslin, Singleton, and Zhu (2011)

Gaussian model, but since the parameters of the Wu and Xia (2016) models are

very close, considerable time can be saved using these as starting values.

In our preliminary analysis we found that the estimates of the Gaussian model

provided reliable starting values for the shadow rate model, but this was generally

not the case for the QTSM. To find the global optimum for the QTSM, we needed

to implement the routine multiple times from different starting values, which

compounds the estimation time considerably.

3.4 Approximation errors

In this section, we analyze two possible types of approximation error: (a) the

linearization in Equation (12), which is necessary in the EKF filtering procedure,

and (b) theWX approximation of the mapping function in Equation (6). This issue

is important from the perspective of using the model for economic inference, such

as measuring term premia or policy expectations.

First, when assessing the effect of the linearization at (a), we take the estimates

of the model at the optimum as reported in Table 1 and examine the difference in

the fitted values between the EKF (with the OR) and the FE estimator, which does

Table 3

Estimation time for different estimation methods

Method OR? Time

Model: Gaussian

JSZ Yes 3s

Shadow rate model, r ¼ 0

FEwx Yes 8m

FEpr Yes 13h:58m

EKFwx Yes 60m

EKFpr Yes 21h:38m

EKFwx No 2h:4m

SRwx No 2m

Shadow rate model, r ¼ br
FEwx Yes 4m

FEpr Yes 26h:38m

EKFwx Yes 35m

EKFpr Yes 16h:59m

EKFwx No 1h:9m

SRwx No 8m

Quadratic model, r ¼ 0

EKFqd Yes 4h:21m

FEqd Yes 8m

SRqd No 4m

Quadratic model, r ¼ br
EKFqd Yes 17h:41m

FEqd Yes 10m

SRqd No 5m

All models in the table are specified with the observability restriction. The sample period is January 1981 to December

2021.
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not involve any linearization. Figure 3 shows these differences for the shadow rate

model with the Wu and Xia (2016) approximation (top row) and the Priebsch

(2013) solution (middle row), and the QTSM (bottom row). We plot the errors for

the 3-month yield (left column) and the 10-year yield, as the errors for other yields

take the intermediate values between these two yields.14 The plots for the shadow

rate model start from January 2000, because before that the interest rates were far

from the lower bound and for that period the linearization error is virtually zero.
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Figure 3

Linearization errors

Linearization errors in the extended Kalman filter for different models. The estimation sample is January 1981 to

December 2021.

14 To save space, all plots are formodels with the lower bound parameter set to zero (r ¼ 0), but the results formodels with

the estimated lower bound are similar.
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It is interesting to note that this particular linearization induces a positive bias in

the fitted values of yields. In the SRTSM, the errors in the short rate basically occur

only when the interest rates were at the lower bound, that is, in the period 2009–

2016 and since 2020. For the long rate, however, the linearization errors are also

present around 2003–2004 and then throughout the whole period since 2008. This

indicates that the shadow rate model gains traction when interest rates are low but

not necessarily at the lower bound. On the other hand, the linearization errors in the

long rate are less prone to taking large values and rarely exceed 5 basis points. The

errors in the QTSM shown in the bottom panel seem to be present over the whole

sample. They also tend to be bigger in magnitude.

We evaluate the distortion (b) introduced by the approximation in the mapping

function proposed byWu and Xia (2016) for the shadow rate model by comparing

it with the estimates obtained by using the Priebsch (2013) formula, which is exact

for the SRTSM. To simulate the practical application, both formulae are evaluated

at the respective maximum likelihood. Figure 4 shows the difference in fitted

values of the 3-month (upper panel) and 10-year (lower panel) yields between

the two schemes (estimatedwith the lower bound parameter set to zero). The figure

makes it evident that the Wu and Xia approximation does a very good job. In our

sample the approximation error is always smaller than 1 basis point, which makes

it negligible for virtually all practical purposes. This is important in light of the

substantial computational burden of the estimation of the model with the Priebsch

mapping function noted in Section 3.3.

Finally, the impact of linearization errors in the context of a shadow rate model

can also be illustrated by its impact on the estimates of the shadow short rate. The

first two panels of Figure 5 show the shadow rate estimated by the EKF and the FE

method with Wu and Xia approximation.15 Although the estimates of the shadow

rate by the EKF and FE methods with the OR are similar for most of the time, a

sudden divergence emerges from time to time. This is more visible when the lower

bound parameter is estimated (middle panel). In general, however, the estimates of

the shadow rate with the estimated lower bound parameter are more likely to

exhibit sudden jumps, which could indicate model overfitting. This observation

makes us favor the more parsimonious model with r set to zero.

3.5 The estimates of the shadow rate and shadow yields

Given its relevance to the analysis of monetary policy, this section focuses on the

way that the choice of estimation method affects the properties of the shadow rate

model. Figure 5 shows the federal funds policy rate alongside the shadow short

rates (SSRs) implied by different estimation methods: the standard EKF, the EKF

with the OR restriction enforced, and the FE method, which is squarely based on

theOR restriction. The top panel presents the SSRs estimatedwith the lower bound

parameter set to zero, while the middle panel shows these when this parameter is

15 Note that the linearization errors shown in the first two panels of Figure 3 for theWu andXia (2016) and Priebsch (2013)

estimators are visually identical. We do not consider the QTMS because it does not have a comparable shadow rate.
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Figure 4

Wu-Xia approximation errors

The figure shows the difference between the fitted 0.25-year (panel A) and 10-year (panel B) yields obtained from the

exact Priebsch (2013) shadow rate formula and its approximation proposed by Wu and Xia (2016).
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Figure 5

Short rate and shadow short rate implied by different estimation methods

The top panel presents the shadow short rates with the imposed restriction r ¼ 0, while in the middle panel the lower

bound is estimated. The bottom panel shows standard errors of the shadow short rate estimated without the observability

restriction. The federal funds rate is plotted for comparison.
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freely estimated. Themiddle panel immediately reveals that unless theORor lower

bound restrictions are applied, the EKF can generate wildly negative values for the

SSR when the federal funds rate is close to the lower bound and that these have

large error bounds.

This effect was first noted by Krippner (2013), who argued that it was largely

spurious, due to the flexibility with which the standard three-factor EKF can

estimate the SRTSM. It occurs because the weights that map the short shadow

rates into the Black estimates are close to zero at the lower bound. Raising the

lower bound parameter effectively reduces these weights to zero. Since the short

rates can be approximated by the lower bound parameter instead of term structure

factors, this leaves the algorithmwith more freedom to fit the long end, resulting in

overfitting. This is clear from Table 1, which shows that if the standard EKF (i.e.,

with noOR) is free to estimate the lower bound, it trades off a small deterioration in

the RMSEs of the short maturities to get a marked improvement in the long

maturities. The log-likelihood components reported in Table 1 show that this

allows it to return a relatively large value for the likelihood of the cross-section,

with smaller deterioration in the time-series component.

This problem can be mitigated by imposing the lower bound constraint, or as

Krippner has suggested, reducing the number of factors. It is clear that the OR also

helps to mitigate the problem. To see the reason for this, recall that the SSR is the

simple sum of the latent xt factors in Equation (7). If the OR is imposed, the factors

and therefore the SSR are effectively observed, since they are determined by

rotating the PCs, which are observed without error. This rotation depends upon

the risk-neutral parameters, which are estimated extremely precisely. Given the

factors, this pins down the short end of the shadow yield curve conditional on the

values of the risk-neutral parameters. Moreover, the OR restriction reduces

the dimension space of the measurement errors, making it more difficult for the

algorithm to generate negative values without a marked deterioration in the fit of

the longer maturities.

The bottom panel of Figure 5 demonstrates the effect of relaxing the OR con-

straint. It shows the standard deviations of the standard EKF model with and

without the lower bound restricted to zero. The small cross-sectional errors

mean that the standard EKF determines the factors with a high degree of precision

in an affine structure like the Gaussian model. This property holds in the SRTSM

for the period before 2008 since the model is essentially Gaussian until then.

However, these properties do not carry over to the zero lower bound (ZLB) period

because, as noted, the weights that map the shadow short rates into the estimates of

xt are close to zero, weakening the links upon which the EKF depends to estimate

the factors, reducing the precision with which they and the SSRs are estimated.

Figure 5C clearly illustrates this effect. The shadow rates are precisely determined

until themid-December 2008 FOMCmeeting, which cut the target fed funds range

to 0–25 basis points. Then the shadow rates turn negative and the variance

increases, especially if the lower bound restriction is not imposed.
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The zero lower bound affects not only the short rate but all other yields through

future interest rates expectations. Figure 6 shows the fitted 1-year, 5-year, and 10-

year yields and their shadow counterparts, as defined in Equation (19), over the

period 2008 to 2021. The top panel shows that the shadow 1-year yield was

negative for most of the time between 2010 and 2015. The shadow 5-year rate

fell to zero in 2012, putting it about 1% lower than the fitted yield, but it recovered

to 1% in 2013. The figure shows a 1% spread between the 10-year yield and its

shadow, but its shadow never reached zero during this episode. The coronavirus

crisis looks particularly interesting in this light. The shadow short rate and 1-year

yield were about –1% at the time. However, both the 5-year and 10-year shadow

yields fell to lower values (below –1.5%) by mid-2020. This suggests that the

market expected a prolonged recession, with shadow short rates remaining neg-

ative for longer than one year.

4. The Macrofinance Shadow Rate Model

Having validated the new factor extraction method, in this section we explore the

implications of themacrofinancemodel pioneered byAng and Piazzesi (2003). For

this purpose we focus on the shadow rate model, since it lends itself to a natural

interpretation for monetary policy purposes.

Term structure models are based on the observation that the cross-section has a

low-dimension factor structure and that the risk-neutral dynamics thus have a

similarly low dimension, as in Equations (3) and (21). However, the real-world

dynamics can be much richer, typically involving macroeconomic variables that

can influence the future evolution of the yield curve even though they do not affect

its current position. In that sense they are “unspanned” (Duffee, 2011). In other

words we need to re-specify the P-dynamics in Equation (20), while keeping

Equation (21) as it is. In Joslin, Priebsch, and Singleton (2014) the P-dynamics

are specified in terms of the PCs (qt), which span the term structure, while the

physical dynamics involve qt, as well as a vector of macroeconomic or other

(unspanned) state variables (mt) that do not. Consequently, the macro variables

do not affect the term structure contemporaneously, but they can influence interest

rate expectations under the P-measure and hence the term premium. Joslin,

Priebsch, and Singleton (2014), assume that under the P-measure the spanned

and unspanned factors can be specified jointly as a Gaussian VAR(1).

Joslin, Priebsch, and Singleton (2014) note that because their VAR includes

only observable state variables (qt and mt), these VAR parameters can be esti-

mated by OLS independently of theQ-dynamics, as in Joslin, Singleton, and Zhu

(2011): the irrelevance proposition. However, in the shadow rate framework, the

mapping from the principal components (qt) to the shadow principal components

(qst ) is nonlinear when interest rates are low. Reflecting this, q
s
t is Gaussian, while

the observed variables yot and hence qt need not be. Unfortunately, as noted at the

beginning of this paper, allowing mt to affect the P-dynamics increases the

number of parameters in the VAR, many of which are insignificant in practice.
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Figure 6

Fitted yields and shadow yields

The figure shows fitted yields and shadow yields with maturities 1-year, 5-years, and 10-years from the shadow rate

model estimated by factor extraction with r ¼ 0.
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Joslin, Priebsch, and Singleton (2014) deal with this problem by using exclusion

restrictions found using a specification search procedure described in the next

section. While it is not strictly necessary to do this, it is important to be confident

aboutmodel properties and in particular the implications for the effects of policy on

the term premium.

Because the shadow principal components are specific to the Blackmodel of the

Q-dynamics, the parameters of this VAR cannot be estimated separately, as they

can in Joslin, Priebsch, and Singleton (2014)—their irrelevance proposition does

not hold. Following Joslin, Priebsch, and Singleton (2014), we assume that under

the P-measure the dynamics can be specified jointly as a Gaussian VAR(1):

qst

mt

" #
¼

lPq

lPm

" #
þ

U
P
qq U

P
qm

U
P
mq U

P
mm

2

4

3

5 qst�1

mt�1

" #
þ

uPq;t

uPm;t

" #
: (26)

Assuming that mt are unspanned, the Q-dynamics in Equation (21) can also be

written in this format as:

qst ¼ lQq þ U
Q
qq 03;2

h i qst�1

mt�1

" #
þ uQq;t: (27)

To remain close to the Gaussian benchmark in Joslin, Priebsch, and Singleton

(2014), we employ similar macroeconomic variables, to account for economic

growth and expected inflation. We use a 3-month moving average of the

Chicago Fed National Activity Index as the growth measure and the Federal

Reserve Bank of Cleveland estimates of the 1-year expected inflation.16 For inter-

est rates, we use the same set of yields as in the previous section. Our sample period

is January 1982 (the beginning of the Cleveland Fed’s expected inflation series) to

December 2021.

Modeling the dynamics of the macro variables jointly with the shadow principal

components allows this specification to be compared directly with those of Joslin,

Priebsch, and Singleton (2014) for the Gaussian model. It is also consistent with

the argument ofWu andXia (2016) andWu andZhang (2016) that estimates of the

shadow rate st rather than the constrained policy rate rt indicate the policy thrust

that the authorities desire and indeed try to achieve using unconventional monetary

policies (UMPs) at the ZLB. This rate is the sum of the latent factors in our

framework, but we use all three shadow factors separately in the FAVAR, on

the argument of Ang et al. (2011) that monetary policy is implemented using

the whole yield curve. They were concerned with the pre-ZLB period, but their

argument holds a fortiori at the ZLB.Once the lower bound is reached, UMPswere

used to lower longer-term yields through forward interest rate guidance, reflected

in the expectations component of the term structure, and open market operations,

reflected in the risk premium (Gagnon et al., 2011).

16 The data are available on the website of the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org.
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A term structure model is able to use the physical factor dynamics in Equation

(26) to decompose a forward rate (or the value implied by the risk-neutral dynam-

ics) into an interest rate expectation and a residual, which is a measure of the risk

premium, throwing light on the way that UMPs affect the yield curve. However,

the existing literature uses the standard Gaussian model to make this decomposi-

tion, without respecting the ZLB.Our shadow ratemodel can allow for the effect of

this constraint on the decomposition, as we show in Section 4.2.

4.1 The 212 and 218 parameter restriction search

In contrast to the risk-neutral dynamic system in Equation (3), which, with r ¼ 0,

has four parameters (three roots and the level parameter lQ1) in addition to those of

R, the system of the physical dynamics for the yield-onlymodel in Equation (2) has

12 time-series parameters, and 30 parameters with macro variables in Equation

(26). Moreover, as Cochrane and Piazzesi (2009) note, the risk-neutral dynamics

are estimated with much greater precision than the physical dynamics, since the

cross-sectional errors are “tiny” compared to the forecasting errors in Equation

(26). Indeed, we find that most of the parameters in the latter are insignificant.

Bauer (2018) argues that this problem of weak identification can be resolved by

writing the parameters of the P-dynamics in terms of those of the Q-dynamics

using:

lPq ¼ lQq þ l0; U
P
qq ¼ U

Q
qq þ L1; (28)

and testing zero restrictions on the risk-adjustment parameters l0 andL1; as well as

U
P
qm, for which the counterpart under the risk-neutral measure is a matrix of zeros,

U
Q
qm ¼ 03;2, as shown in Equation (27).

Exploiting the overwhelming speed advantage of the factor extraction method,

we follow Joslin, Priebsch, and Singleton (2014) and search for the best combi-

nation among all possible zero restrictions on the risk-adjustment parameters. In

order to distinguish between the effects of imposing parameter restrictions and

adding macro variables, we estimate the restricted versions of both the yield-only

and macrofinance models. Thus, in total we estimate 212 and 218 different combi-

nations of restrictions, respectively. We conduct the specification search with the

factor extraction method using parallel computing.

Eliminating insignificant parameters using the BIC leads to the selection of a

specificationwith seven restrictions for the yield-onlymodel and 11 restrictions for

the macrofinance model.17 We label our optimal yield-only model and macro-

finance model FEopt and MFEopt, respectively. The estimates of the risk-

adjustment parameters for the MFEopt are reported in Table 4 (the results for the

yields-onlymodels are available upon request). For the yield-onlymodel the price-

of-risk restrictions related to the shadow PCs are exactly the same as for the

17 As is well known, the AIC generally leads to a less parsimonious model; in our case it suggests eight risk-adjustment

restrictions in the macrofinance model. Since the AIC, as opposed to BIC, is not a consistent model selection criterion,

we rely on the more parsimonious model suggested by the BIC.

Review of Asset Pricing Studies / v 14 n 1 2024

144

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
p
s
/a

rtic
le

/1
4
/1

/1
1
9
/7

2
0
3
8
2
1
 b

y
 g

u
e
s
t o

n
 2

1
 F

e
b
ru

a
ry

 2
0
2
4



macrofinance model (results available upon request). The price of level risk, but

not slope or curvature risk, is influenced by the third factor and themacro variables.

However, the first shadow principal component does influence the price of slope

risk (often interpreted as reflecting the stance of conventional monetary policy) and

curvature risk. The positive sign of the GRO coefficient in the first row implies that

price of level risk is cyclical.

Table 5 reports the estimates of the parameters of the P-dynamics for MFEopt.

By construction, the coefficients in the top right 3� 2 block, showing the effect of

the macro variables on the principal components, are the same as the risk adjust-

ments shown in Table 4. On the other hand, the first and second principal compo-

nents are statistically significant in explaining expected inflation, while none of the

principal components has a significant effect on the growth factor. In the following

section we present a detailed analysis of the yield decomposition.

4.2 The term premium

Given any estimates of the parameters of the P-dynamics, we can decompose the

10-year yield into components that represent market expectations and the risk

Table 5

Estimates of the P-dynamics

lP U
P

const PCs
1 PCs

2 PCs
3 GRO INF

PCs
1 0:0003

0:0019
1:0085
0:0054

0:0700
0:0656

0:0603
0:0838

0:0020
0:0005

�0:0014
0:0005

PCs
2 �0:0015

0:0013
0:0027
0:0018

0:9755
0:0250

0:2799
0:1379

0
�

0
�

PCs
3 0:0008

0:0003
�0:0008

0:0009
�0:0009

0:0036
0:8731
0:0302

0
�

0
�

GRO 0:0508
0:0894

0:9627
0:7616

1:6785
1:7000

�6:0865
6:8097

0:7298
0:0322

�0:0596
0:0548

INF 0:4935
0:0575

5:2689
0:4986

2:0755
1:0463

�1:6099
4:6012

0:0639
0:210

0:5885
0:0358

Maximum likelihood estimates of the P-dynamics for our preferred model with unspanned macro risk, MFEopt .

Standard errors are reported in smaller font. The sample period is January 1982 to December 2021.

Table 4

Estimates of risk adjustment parameters

l0 L1

const PCs
1 PCs

2 PCs
3 GRO INF

PCs
1 0

�
0
�

0
�

0:3514
0:2812

0:0020
0:0005

�0:0014
0:0005

PCs
2 �0:0013

0:0009
0:0117
0:0051

0
�

0
�

0
�

0
�

PCs
3 0:0006

0:0002
�0:0047

0:0013
0
�

0
�

0
�

0
�

Maximum likelihood estimates of the risk adjustments (l0 and L1 in Equation (28)) for our preferred model with

unspanned macro risk, MFEopt . Standard errors are reported in small font. The sample period is January 1982 to

December 2021.
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premium. The expectations component is the so-called risk-neutral yield that

would obtain in a risk-neutral world governed by the physical rather than the

risk-neutral dynamics. Specifically, following Bauer, Rudebusch, and Wu

(2012) we first use the VAR parameters to compute the expected short rate over

the bond maturity and hence, by taking the average, obtain the risk-neutral yields

using Equation (1).

The risk premium for any model and maturity follows by subtracting the risk-

neutral yield from the fitted yield. The 10-year risk-neutral yields for FE, FEopt, and

MFEopt models are shown alongside the 10-year yield in Figure 1A, and the 10-

year yield term premium is shown in Figure 1B. The difference between the

restricted and unrestricted model specifications become more pronounced after

1995 as interest rates begin to fall toward the lower bound. For this reason, the

figure focuses on the period from January 2008 to December 2021. As noted in the

introduction, FE suggests that the 10-year risk-neutral yields were relatively

smooth over this period and that the variations in observed yields were largely

due to variations in the risk premium. However, when the insignificant parameters

in the time-series dynamics are eliminated, the two restricted models suggest that

much of the variation in observed yields was due to variations in the risk premium.

Table 6, left panel, shows how these models decompose the 10-year yield.

According to the unrestricted yield-only model, the term premium constitutes

about 90% of the total variation of the 10-year yield. Imposing zero restrictions

on the insignificant price-of-risk parameters reduces the term premium contribu-

tion in the yield variance to 45% and adding the macro variables to the constrained

model decreases it further to 34%, although we should note a substantial correla-

tion between the risk-neutral yield and the term premium in the restricted models.

Figure 1 makes it clear that most of the difference between the standard and

macromodels is due to the elimination of these insignificant parameters rather than

the introduction ofmacro variables. Nevertheless, ignoring themacro variables can

lead to mismeasurement of the risk premium by as much as 50 bp. Also, impor-

tantly, the model with macro variables substantially increases business cycle var-

iation in the term premium, making it more countercyclical. In the right panel of

Table 6 we report the correlation of the 10-year yield with real economic growth

and expected inflation for the period from January 2009 to December 2021. The

correlation of the term premiumwith real growth for FEopt is –3.63%,while that for

the MFEopt is�8:34%. Similarly, the correlation with expected inflation for FEopt

is 13.30%, and it increases to 20.05% for MFEopt . These findings support the

argument of Joslin, Priebsch, and Singleton (2014) that it is important to eliminate

insignificant time-series parameters and to allow for the effect of macroeconomic

variables on risk premia in term structure models.

4.3 What does the macrofinance model tell us about QE?

In this section, we use MFEopt to analyze the effects of the various episodes of

quantitative easing (QE) that were used by the Federal Reserve to help bring down
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longer-term yields during the financial crisis. We analyze the effect of these pol-

icies on two types of indicators, term premia and cumulative density functions

(CDFs), used in the Wu and Xia (2016) approximation.

Term premia are informative because, as Figure 1B shows, they account for

most of the variation in long-term yields. Moreover, Gagnon et al. (2011) maintain

that changes in asset supplies should affect term premia rather than market interest

rate expectations, and so, as they argue, a sharp fall in the term premium upon the

announcement of an asset purchase program indicates that this had the effect of

reducing yields via the scarcity effect. To measure the term premium, however,

Gagnon et al. (2011) use a GTSM (Kim and Wright, 2005). Term premia are also

important because they tend to increase when policy interest rates fall, blunting the

effect on long yields (the so-called conundrum effect; see Hanson, Lucca, and

Wright 2018). The Fed’s QE policies can be seen as a way of mitigating this effect

and allowing long rates to fall too. On the other hand, it could be argued that the

risk-neutral yields, which reflect market expectations, show the effect of the Fed’s

forward guidance on interest rates.

The CDFs from our shadow rate model provide another type of monetary policy

indicator. Recall that oneminus the CDF is the weight that the yield model gives to

the effect of the lower bound. Thus, a sharp fall in the CDF upon a policy

announcement indicates that the policy has pushed the yield closer to zero, because

either the long-term rate expectation or the term premium have fallen, or perhaps

both. Figure 7 shows the periods covered by the various policy episodes alongside

the term premium and the CDF for the 2-year (top panel) and 10-year (bottom

panel) yields, both from our optimal MFEopt model.

Figure 7 shows an increase in the term premium as policy rates were cut back

following the Lehman bankruptcy in September 2008, which is largely reversed

following the announcement of the Fed’s first Long TermAsset Purchase program

(QE1) announced in November 2008. This is visible particularly for the indicators

based on the 2-year yield (top panel). The fall in the 2-year term premium from

0.54% in October to virtually zero in November is accompanied by a a fall in the

CDF from 0.9 to 0.7, pushing the 2-year rate closer to zero. The announcement of

the expansion of the QE program in March 2009 also coincided with dips in the

term premium and CDFs. The 10-year term premium fell from 2:28% in February

Table 6

Variance decomposition and term premium variability

Variance decomposition Business cycle correlation

Var½yQ
10
�

Var½y10 �
Var½TP10 �
Var½y10 �

2�Cov½yQ
10
;TP10 �

Var½y10 �
Corr(TP10,GRO) Corr(TP10,INF)

FE 0.1870 0.9039 –0.0909 –0.0465 0.0438

FEopt 0.1279 0.4513 0.4208 –0.0363 0.1330

MFEopt 0.1921 0.3418 0.4661 –0.0834 0.2005

Variance decomposition of the 10-year yield and correlation of the the 10-year term premium with macro variables for

three different models over the period from January 2009 to December 2021.
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2009 to 1:97% inMarch, while the 10 year CDF fell from 0:82 to 0.75. The 2-year
term premium became negative at the end of the first phase of QE, in May 2010,

and stayed below zero until February 2015. The indicators for the 10-year yield

were moving slower, reaching a minimum at the beginning of 2013. On May 22,

2013 Ben Bernanke’s testimony to Congress triggered the so-called Taper

Tantrum, upon which the 2-year CDF moved up from 0.35 in April to 0.52 in

May and 0.60 in June, while the 10-year term premium moved up from 1:13% to

1:44% to 1:66%. This speech marked the beginning of a sustained increased in the
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Figure 7

Quantitative easing and the macrofinance model

The continuous graph shows the term premium (as in Figure 1B) and the dashed graph the CDF from MFEopt for the

2-year (panel A) and 10-year (panel B) yields. The dashed vertical lines show the announcement and end dates for each

episode of quantitative easing (QE) as well as Operation Twist (OT) on an end-month basis. The continuous vertical

lines indicate the announcement of major contractionary policy changes. TT marks the beginning of the Taper Tantrum

following Ben Bernanke’s testimony to Congress in May 2013. Lift-off marks the first increase in the fed funds rate in

December 2015.
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CDF. The fed funds rate was finally increased in December 2015. Our results,

which extend those of Gagnon et al. (2011), suggest that new policy initiatives and

reversals of policy do appear to have immediate effects upon announcement, but

extensions of existing programs seem to have little immediate effect.

It is clear from the charts that the onset of the Covid pandemic pushed the risk

premia and CDFs to historic lows right along the curve, with a sharp reversal

occurring as the economy recovers in 2021.

5. Conclusion

This paper shows how the factor extraction and likelihood concentration techni-

ques developed for the Gaussian term structure model can be applied to non-affine

pricing models. This allows the researcher to estimate these models almost as

easily and quickly as the simple Gaussian model, while avoiding the various

approximations used by previous approaches, arguably providing a more reliable

assessment of the thrust of monetary policy.

We illustrate these advantages by estimating two models that eliminate insig-

nificant time-series parameters. This involves searching over large numbers of

different parameter combinations. The traditional filtering approach makes such

exercises infeasible. Exploiting the speed and consistency of our factor extraction

algorithm makes it feasible to conduct such exercises.

The first of these models is a standard yield-only model, and the second intro-

duces two unspanned macro variables. This macrofinance model views the behav-

ior of the yield curve since the financial crisis in a very different light to the

standard model: its term premium explains less of the total variation in yields

and is more countercyclical. The macrofinance model with optimal price-of-risk

restrictions suggests that after the financial crisis of 2008–2009 the risk premium

fluctuated around 2% per annum until about 2019, while the standard model

implies a steady decline of the term premium to below 1%.

Other applications that involve the estimation of large numbers of alternatives

include policy simulations such as those of Bauer and Rudebusch (2014) and

international bond market models such as those of Egorov, Li, and Ng (2011)

and Bauer and de los Rios (2012), which potentially involve many different

combinations of common and idiosyncratic factors. Central bank and other practi-

tioners, who need models of the yield curve fitted to daily data for analysis and

pricing and still rely on the standard Gaussian term structure model to provide

these, can now use these methods to deal effectively with the lower bound.

Appendix. The Likelihood Function

We maximize the joint log-likelihood conditional in Equation (16). As explained in Section 2.2, when

using the nonlinear factor extraction technique, with the exception of theRmatrix, the ‘Q and ‘P parts of

the log-likelihood will have disjoint sets of parameters. In the following, to keep the notation simple, we

suppress the conditioning set of parameters in the likelihood function.
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The part of the log-likelihood function with the risk-neutral parameters ‘Q has the standard form:

‘Qðyot jqtÞ ¼ �
J � K

2

�
1þ logð2pÞ

�
�
J � K

2
logr2v ; (A-1)

where r2v is the (homoscedastic) variance of measurement errors vn;t in Equation (10) calculated as:

r2v ¼
1

ðT � 1Þ � ðJ � KÞ

XT

t¼2

XJ

j¼1

bv t;j: (A-2)

The dynamics of qt are generally nonlinear, and thus qt needs to be rotated to the latent state vector xt
or a linear transformation of it. Hence, ‘P , the part of the log-likelihood that describes the time series of
the latent factor dynamics, needs to be adjusted accordingly. Recall the relation between qt and xt from

(26). The yields-only model examined in Section 3 we estimate with respect to the P-dynamics for the
latent state vector as in the Joslin, Singleton, and Zhu (2011) parameterization. To write down the P-

likelihood in terms of the probability density function of xt , we apply the change-of-variable technique:
18

‘Pðqtjqt�1Þ ¼ ‘Pðxtjxt�1Þ � log jdetðJtÞj; (A-3)

where Jt is the Jacobian term resulting from the change of variables:

Jt �
@qt
@x1;t

; . . . ;
@qt
@xK;t

� �
: (A-4)

The logarithm of the P-likelihood is then:

‘P qtjqt�1ð Þ ¼ ‘P xtjxt�1ð Þ � log jdet Jtð Þj

¼ �
K

2
log 2pð Þ �

1

2
log det RR0ð Þð Þ

�
1

2
xt � lP �U

Pxt�1

� �0
RR

0ð Þ
�1

xt � lP �U
Pxt�1

� �
(A-5)

�log jdetðJtÞj: (A-6)

In our application of macrofinance model in Section 4, where we apply further a linear rotation of the

state vector xt to the shadow principal components qst as in Equation (18). Applying the change-of-

variable technique once more, we can write the log-likelihood in terms of qst :

‘Pðqt jqt�1Þ ¼ ‘Pðqst jq
s
t�1Þ � log jdetðJtÞj þ log jdetðJÞj; (A-7)

where

J ¼
@qst
@x1;t

; . . . ;
@qst
@xK;t

� �
¼ W0B: (A-8)

Adding macro variables does not add any further complication. In particular, define zt ¼ qs0t ;m
0
t

� 	0
.

Then, the part of the log-likelihood that describes the time series of the latent factor dynamics is:

‘Pðqt ;mt jqt�1;mt�1Þ ¼ ‘Pðzt jzt�1Þ � log jdetðJtÞj þ log jdetðJÞj; (A-9)

where the dynamic system for zt is given in Equation (26).

Declarations of interest: none.

18 See Greene (2011), Appendix B.
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