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Abstract
WepresentWaveletMonteCarlo (WMC), a newmethod for generating independent samples fromcomplex target distributions.
The methodology is based on wavelet decomposition of the difference between the target density and a user-specified initial
density, and exploits both wavelet theory and survival analysis. In practice, WMC can process only a finite range of wavelet
scales. We prove that the resulting L1 approximation error converges to zero geometrically as the scale range tends to
(−∞,+∞). This provides a principled approach to trading off accuracy against computational efficiency. We offer practical
suggestions for addressing some issues of implementation, but further development is needed for a computationally efficient
methodology. We illustrate the methodology in one- and two-dimensional examples, and discuss challenges and opportunities
for application in higher dimensions.

Keywords Monte-Carlo integration · Statistical sampling algorithm · Survival analysis · Wavelet decomposition

1 Introduction

Accurately and efficiently calculating functionals of prob-
ability distributions is central to the majority of statistical
applications. Such calculations, particularly in a Bayesian
context, can be intractable, requiring integration over com-
plex and high-dimensional distributions. To address this
problem, a variety of methods have been developed, such
as Importance Sampling, Rejection Sampling, and Markov
Chain Monte Carlo (MCMC); see for example Robert
and Casella (2004). These methods, collectively known as
Monte-Carlo methods of integration, produce either inde-
pendent or dependent samples from a distribution of interest.
Under regularity conditions specific to each method, theoret-
ical quantities of interest are then approximated by averages
over the sampled points.We henceforth refer to a distribution
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of interest as the target distribution, and sampled values as
particles.

Methods of Monte-Carlo integration each have their
advantages and disadvantages in terms of accuracy, com-
putational efficiency and human demands. All methods
benefit from a good initial sampling distribution that well-
approximates the target distribution, but such a sampling
distribution may be elusive especially when the target is
irregular: perhaps multimodal with intricate, convoluted or
concentrated density contours. Such problems are exacer-
bated in high dimensions, but can be challenging even in
low-dimensional settings. Large sample sizes or run lengths
may be required to compensate for a poor initial sampling
distribution, but even then may produce misleading results,
in particular when regions of the target are under-represented
or entirely missed by the generated samples.

Here we present a new method of Monte-Carlo integra-
tion:Wavelet Monte Carlo (WMC)1, first introduced by one
of us in Cironis (2019). OurWMCmethodology is built upon
a novel combination of the theories ofwavelet decomposition
and survival analysis. Particles are independently sampled
from the initial distribution and then undergo a sequence of

1 Unrelatedmethodologywith the samenameand acronymhas recently
been introduced by Xiaohui and Guiding (2022) specifically for gener-
ating Gaussian white noise using the wavelet transform.
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transitions based on a wavelet approximation to the differ-
ence between the initial and target distributions. The resulting
set of particles is an independent sample approximately from
the target. For computational efficiency, the level of this
approximation can be explicitly controlled by the user, and
can be sequentially improved using particles generated in
previous runs. WMC has potential for parallel implementa-
tion on computer arrays.

Like other Monte-Carlo samplers, WMC benefits from a
well-located initial sampling distribution but, unlike some,
it does not rely on ad hoc or bespoke methods to accommo-
date awkward or unusual features of the target distribution.
Rather, it relies only on wavelet approximations, these being
well-defined as a consequence of themultiresolution analysis
of wavelet decomposition (Meyer 1992).

Wavelets are functions that resemble wave-like oscilla-
tions. Subject to regularity conditions, a function of interest
may be decomposed into a linear combination of location-
and scale-adjusted wavelets. Efficient algorithms for this
decomposition have led to their widespread use in appli-
cations of signal processing and image analysis; see for
example Percival and Walden (2000), Nason (2008). From a
probabilistic point of view, wavelets have been used in den-
sity estimation and statistical modelling (Donoho et al. 1996;
Kerkyacharian and Picard 1992; Percival and Walden 2000).
However, to our knowledge, wavelets have not previously
been used in random-variate-generation algorithms.

For ease of exposition, we present the theory and methods
of WMC mainly in the context of one-dimensional target
distributions. In Sect. 2, before describing our methodol-
ogy in detail, we review relevant elements of the exten-
sive mathematical theory of wavelets. In Sect. 3 we intro-
duce WMC and present a preliminary algorithm, precon-
ditioned WMC (pWMC). In Sect. 4, to remove an awkward
and restrictive precondition of pWMC, we present a modified
and multistage algorithm, n-step WMC (nWMC). Section5
presents our final algorithm, survival WMC (sWMC), which
finesses nWMC into a simple recursive algorithm by appeal to
the theory of survival analysis. We extend the methodology
to multiple dimensions in Sect. 6. Sections7 and 8 discuss
practical issues and present some simple low-dimensional
examples. Section9 contains some concluding remarks, and
the Appendix contains proofs of assertions made in the main
body of the paper.

Our aim is to present only the concepts, theory and basic
algorithms of WMC. Further work is required to develop
the method to compete with other established methods of
Monte-Carlo integration in terms of applicability, computa-
tional efficiency and ease of use.

2 Wavelet theory

Wavelet theory is extensive, developed primarily to approx-
imate signals and images. In this section we present only
those elements of the theory relevant to our methodology.
There are many texts which present the theory more compre-
hensively; see for exampleDaubechies (1992),Meyer (1992)
and Mallat (2009).

We first introduce the notion of a mother wavelet ψ , a
function on the real lineR. The simplest example of a mother
wavelet is the Haar wavelet

ψHaar(x) :=

⎧
⎪⎨

⎪⎩

−1, 0 ≤ x < 1
2

1, 1
2 ≤ x < 1

0, otherwise,

(1)

which has compact support and its integral over the real line
is zero. We require mother wavelets ψ to have the following
properties.

(i) The support of ψ = [0, a], where ψ(0) = ψ(a) = 0,
a > 1, and a ∈ Z, where Z denotes the set of all
integers.

(ii) ψ has a number rψ ≥ 1 of vanishing moments. That is,

∫

xkψ(x) dx = 0, 0 ≤ k ≤ rψ − 1. (2)

Here and below, unless otherwise stated, integration is
understood to be over R.

(iii) ψ and its first rψ derivatives exist, are continuous and
bounded. That is, there exists a constant Cψ < ∞ such
that for all x ∈ R

|ψ(k)(x)| ≤ Cψ, 0 ≤ k ≤ rψ, (3)

where ψ(k)(x) denotes the kth derivative of ψ at x .
(iv) Translated and dilated wavelets ψ j i , defined as

ψ j i (x) := 2 j/2ψ(2 j x − i), j ∈ Z, i ∈ Z (4)

are orthonormal, that is

∫

ψ j i (x)ψ�k(x) dx =
{
1, i = k, j = �

0, otherwise.

These conditions are slightly more restrictive than those gen-
erally given. Specifically, it is not generally assumed that
waveletψ has compact support, aswe assume in condition (i)
above. Instead, condition (i) is generally replaced by one of
fast-decay in ψ .
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It is easily verified that the Haar wavelet (1) satisfies con-
ditions (ii)–(iv) with rψ = 1, but not condition (i) which is
needed for the proofs in Appendix A.1. Many other wavelet
systems satisfying all four conditions have been developed,
in particular the compactly supported wavelet family of
Daubechies (1988) which have rψ ≥ 1 with minimum sup-
port length given rψ and which we exploit in Sect. 8. See
also Daubechies (1992), Meyer (1992) andMallat (2009) for
discussion of other systems, including those that relax the
orthonormality condition (iv).

Conditions (i)–(iv) are a special case of those given by
Meyer (1992), p.72, which admit the Haar wavelet. Meyer
(1992) shows that the collection of functions

B = {
ψ j i ; j ∈ Z, i ∈ Z

}
(5)

forms an orthonormal basis for L2(R), the space of square-
integrable functions on R. That is, any function h ∈ L2(R)

can be expressed as a homogeneous wavelet expansion:

h(x) =
∑

j∈Z

∑

i∈Z
h̃ j iψ j i (x), (6)

where h̃ j i is the coefficient of wavelet ψ j i given by

h̃ j i =
∫

h(x)ψ j i (x) dx, j ∈ Z, i ∈ Z. (7)

Moreover with the same conditions, for suitably large rψ ,
decomposition (6) holds also for functions h in the more
general homogeneous Triebel-Lizorkin and Besov spaces,
Ḟ s
p,q(Rn) and Ḃs

p,q(Rn), as shown in Proposition 4.2 of
Kyriazis (2003). The definitions of these spaces are quite
technical; see for example Triebel (1983). Of particular
concern here is the homogeneous Besov space Ḃ0

1,1(R).

Informally, all functions h ∈ Ḃ0
1,1(R) are integrable in

absolute value over R and have roughness that decays
over increasingly large intervals. Proposition 4.2 of Kyri-
azis (2003) shows that the norm of h ∈ Ḃ0

1,1(R) has the
equivalence

‖h‖Ḃ0
1,1

≈
∑

j∈Z

∑

i∈Z
2− j/2|h̃ j i | < ∞. (8)

For the methodology we describe below, in addition to the
conditions (i)–(iv), we require (8) to hold, as we demonstrate
in Sect. 3.3 and illustrate in Sect. 3.4. That is, we require func-
tions h of interest to belong to Ḃ0

1,1(R).
We use the homogeneous wavelet expansion (6) exclu-

sively, rather than the more commonly encountered decom-
position which additionally involves translations and dila-
tions of a father wavelet φ (see for example Meyer (1992),
Daubechies (1992), Mallat (2009)). Note that here the finest

levels of detail in h are provided by j � 0, while the coars-
est are provided by j 	 0. Some authors adopt the opposite
convention wherein j is replaced by − j .

The principal practical purpose of wavelet theory is to
produce optimal approximations to a function h of interest,
for efficient representation of sounds and images, etc. For
given j1 ∈ Z, omitting the finest levels of detail j > j1 in
equation (6) gives

ĥ j1(x) =
∑

j≤ j1

∑

i∈Z
h̃ j iψ j i (x). (9)

The set of approximations {ĥ j1, j1 ∈ Z} is termed a multi-
resolution analysis (MRA) of h. Regularity conditions (i)–
(iv) ensure that ĥ j1 converges geometrically in L2-norm to
h at rate rψ as j1 → ∞ (Meyer 1992; Daubechies 1992).
For practical implementation of themethodologywe develop
below,weworkwith approximations that omit bothfinestand
coarsest levels of decomposition (6):

ĥ j0, j1(x) =
j1∑

j= j0

∑

i∈Z
h̃ j iψ j i (x). (10)

For such an approximation to converge geometrically to h we
require further regularity conditions, similar to those above,
but where the roles of h and ψ are partially interchanged:

(v) h has a single vanishing moment

∫

h(x) dx = 0. (11)

(vi) h has rapiddecay: that is, there exist real-valued constants
Ch < ∞ and sh > 1 such that for all x ∈ R

|h(k)(x)| ≤ Ch (1 + |x |)−sh , k ∈ {0, 1}. (12)

Weshow inCorollary 5ofAppendixA.1, subject to regularity
conditions (i)–(vi), that ĥ j0, j1 converges geometrically to h in

L1 norm at rate 2−rψ with increasing j1 and at rate 2−(1−s−1
h )

with decreasing j0.

3 Wavelet Monte Carlo-preliminaries

In this section we prepare the groundwork for WMC, and
present a preliminary algorithm which, for reasons that will
become clear, we call pre-conditioned WMC, or pWMC for
short.
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For any real value z, let z+ and z− denote its positive and
negative parts

z+ =
{
z, z ≥ 0

0, z < 0,
z− =

{
0, z ≥ 0

−z, z < 0,
(13)

whence

z = z+ − z−, |z| = z+ + z−. (14)

Define

A0 := ∫
ψ+(x) dx = ∫

ψ−(x) dx

where the right-hand equality follows from (2),(14). Also
define

A j :=
∫

ψ+
j i (x) dx =

∫

ψ−
j i (x) dx = 2− j/2A0, (15)

where the right-hand equality follows from (4).
Let g0 be an initial unnormalised density from which

independent samples can be easily generated. Let g1 be an
unnormalised target density from which we would like to
obtain independently sampled particles. For now, we assume
the normalising constant cg of g0 is equal that of g1: that is,∫
g0(x) dx = ∫

g1(x) dx = cg . In Sect. 7.1, we propose a
method for estimating the ratio:

∫
g1(x) dx/

∫
g0(x) dx and

adjusting g0 accordingly.
In our preliminary algorithm pWMC, and in each of the

algorithms presented subsequently, h will be taken as the
difference between the unnormalised target and initial den-
sities

h(x) = g1(x) − g0(x). (16)

Assuming that h satisfies conditions (i)–(vi) of Sect. 2, which
ensure that expansion (6) holds, each run of pWMC will
independently generate a particle y ∈ R from the target
distribution g1. Note that condition (v) implies that the nor-
malising constants of g0 and g1 are equal. If they are not, they
can be adjusted as noted above. Condition (vi) is unlikely
to be of practical consequence since it holds even for dif-
ferences between heavy-tailed densities such as scale- and
location-shifted t3 distributions, and pathological behaviour
in the tails of g0 or g1 would be unusual.

Central to pWMC is the move mass function H , defined as

H(x) :=
∑

j∈Z

∑

i∈Z

[
h̃ j iψ j i (x)

]−
, (17)

which is assumed to satisfy the following precondition (for
which pWMC is named):

H(x) ≤ g0(x), for all x ∈ R. (18)

3.1 The pWMC algorithm

Here we present the algorithm for pWMC. We discuss it in
Sect. 3.3.

Step p0: Sample a real value x ∈ Rwith probability density

p0(x) = g0(x)/cg. (19)

Step p1: With conditional probability

p1(Stay | x) = 1 − H(x)

g0(x)
, (20)

set y = x then stop and return the value y. Other-
wise, continue.

Step p2: Sample a pair of integers ( j, i) ∈ Z
2 with condi-

tional probability

p2( j, i | x) =
[
h̃ j iψ j i (x)

]−

H(x)
. (21)

Step p3: Sample y ∈ Rwith conditional probability density

p3(y | j, i) :=
{

ψ+
j i (y)/A j , h̃ j i ≥ 0

ψ−
j i (y)/A j , h̃ j i < 0,

(22)

then stop and return the value y.

3.2 Proof of principle of pWMC

Lemma 1 The particle delivered by one run of the pWMC
algorithm has the target density, g1/cg, provided that regu-
larity conditions (i)–(vi) and precondition (18) all hold.

Proof Let q(x, y) denote the joint probability density of sam-
pling a value x at Step p0 then returning a value y at either
Step p1 or Step p3. A returned value of y �= x can only
be generated at Step p3. So, for y �= x , marginalising over
the events of Steps p1 and p2, noting that progression to
Steps p2 and p3 implies H(x) > 0 a.s., we have by con-
struction from (19)–(22):

q(x, y) = p0(x)(1 − p1(Stay | x))
×

∑

j∈Z

∑

i∈Z
p2( j, i | x)p3(y | j, i)
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= g0(x)

cg

H(x)

g0(x)

∑

j∈Z

∑

i∈Z

[
h̃ j iψ j i (x)

]−

H(x)

ψ
s̃ j i
j i (y)

A j

= 1

cg

∑

j∈Z

1

A j

∑

i∈Z

{
h̃+
j iψ

−
j i (x)ψ

+
j i (y)

+ h̃−
j iψ

+
j i (x)ψ

−
j i (y)

}
, (23)

where s̃ j i = sign(h̃ j i ). Let p1(y) denote the marginal prob-
ability density of returning the value y from the pWMC
algorithm. The Kolmogorov Forward Equation gives the
update:

p1(y) = p0(y) +
∫

q(x, y) − q(y, x) dx

= g0(y)

cg
+

∫ ∑

j∈Z

1

cg A j

∑

i∈Z

{
h̃+
j iψ

−
j i (x)ψ

+
j i (y)

+ h̃−
j iψ

+
j i (x)ψ

−
j i (y)

− h̃+
j iψ

−
j i (y)ψ

+
j i (x)

− h̃−
j iψ

+
j i (y)ψ

−
j i (x)

}
dx

= g0(y)

cg
+ 1

cg

∑

j∈Z

∑

i∈Z

{
h̃+
j iψ

+
j i (y) + h̃−

j iψ
−
j i (y)

− h̃+
j iψ

−
j i (y) − h̃−

j iψ
+
j i (y)

}

using (15), where we have used Fubini’s Theorem to switch
the order of integration and summations, since

∫ |q(x, y) −
q(y, x)| dx < ∞, as shown in Appendix A.2. Hence,

p1(y) = g0(y)

cg
+ 1

cg

∑

j∈Z

∑

i∈Z
(h̃+

j i − h̃−
j i )(ψ

+
j i (y) − ψ−

j i (y))

= g0(y)

cg
+ 1

cg

∑

j∈Z

∑

i∈Z
h̃ j iψ j i (y)

= g0(y)

cg
+ h(y)

cg
= 1

cg
g1(y),

using (6),(13),(16), where (6) follows from regularity condi-
tions (i)–(vi), as discussed in Sect. 2. �


3.3 Remarks on pWMC

Lemma 1 shows that the pWMC algorithm produces a particle
from the target distribution g1/cg . Repeating the algorithm
L times produces L independent particles from g1.

The intuition behind the pWMC algorithm is as fol-
lows. Function h in (16) is proportional to the difference
between the target density g1/cg and the initially sam-
pled density g0/cg . At the initial particle position x , this
difference may be decomposed into contributions, positive

Fig. 1 The intuition underlying the pWMC algorithm. The jagged line
is the Daubechies waveletψ00 with rψ = 2 vanishing moments at scale
j = 0 and location i = 0. Suppose vehicle ψ00 has been selected for
transition. The arrows illustrate two particles moving from “over-" to
“under-represented" regions. Particle “A" moves if wavelet coefficient
h̃00 > 0, otherwise it does not move. Particle “B" moves if h̃00 < 0,
otherwise it does not move. Thus, since

∫
ψ+
00(x) dx = ∫

ψ−
00(x) dx ,

over- and under-representations are neutralised

and negative, from each term in wavelet expansion (6).
Now consider each contribution h̃ j iψ j i (x) at x in isola-
tion of all others. A negative-valued contribution suggests
that g0(x) over-represents g1(x), while a positive-valued
contribution suggests g0(x) under-represents g1(x). At an
“over-represented" position x , the particlewill transitionwith
probability p2( j, i |x)p3(y| j, i) to an “under-represented"
position y elsewhere. We call ψ j i the vehicle of this tran-
sition. At an “under-represented" position x , the particle
will not move, so y = x . This is illustrated in Fig. 1.
Thus, considering all contributions collectively, in regions
of net over-representation (h(x) < 0) particle transitions
away from x to elsewhere will occur more frequently than
transitions to x from elsewhere, while in regions of net under-
representation (h(x) > 0) the converse is true.

Note that, with probability p1(Stay | x), a particle at x is
not moved and the value y = x is returned. Precondition (18)
ensures that p1(Stay | x) ≥ 0. Integrating (18) over x ∈ R,
using (17) and Tonelli’s Theorem to exchange the order of
integration and summations of the non-negative integrand,
gives

∫

H(x) dx =
∫ ∑

j∈Z

∑

i∈Z

[
h̃ j iψ j i (x)

]−
dx

=
∑

j∈Z

∑

i∈Z
h̃−
j i

∫

ψ+
j i (x) dx + h̃+

j i

∫

ψ−
j i (x) dx

=
∑

j∈Z

∑

i∈Z
|h̃ j i |A j = A0

∑

j∈Z
2− j/2

∑

i∈Z
|h̃ j i |

≤
∫

g0(x) dx = cg < ∞, (24)
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using (14),(15). Hence, implicit in precondition (18) is the
requirement that

∑

j∈Z
2− j/2

∑

i∈Z
|h̃ j i | < ∞. (25)

This is the homogeneous Besov space norm ‖h‖Ḃ0
1,1

given

in (8). Whether the requirement (25) is satisfied depends on
both the wavelet family ψ(x) and the difference function
h(x). The following simple example illustrates failure of this
requirement.

3.4 A pathological example

Suppose thatψ is the Haar wavelet (1) (ignoring for the time
being that it violates condition (i) of Sect. 2). Suppose also
that h(x) = I[0 ≤ x < 1] − I[−1 ≤ x < 0], where I[·] is
the indicator function, taking the value 1 when its argument
is true and 0 otherwise. Then it can be shown that

h̃ j i =
{

−2 j/2, j < 0, i ∈ {−1, 0}
0, otherwise.

Substituting this into precondition (25) gives

∑

j∈Z
2− j/2

∑

i∈Z
|h̃ j i | = ∑

j<0
2− j/2(2 j/2 + 2 j/2)

= 2
∑

j<0
1 = ∞,

which violates the precondition.
This example was constructed so that the total probability

on the positive x-axis differs between distributions g1/cg
and g0/cg . Consequently, for the algorithm to succeed in
delivering a particle sampled from g1, there needs to be a
positive probability that the value y sampled in Step p3 of
pWMC lies on the opposite side of the origin to the value x
sampled in Step p0. However, there exists no translated and
dilated Haar wavelet ψHaar

j i (x) whose support straddles the
origin. Thus the system in this example provides no vehicle
for transiting x → y across the origin, and therefore no way
inwhich the target distribution canbe realised. Thismanifests
itself in the failure of precondition (25). In the multivariate
generalisation of pWMC (see Sect. 6), the Haar system would
provide no mechanism for transiting between the negative
and positive domains of any coordinate axis.

4 Discrete-timeWMC

In general, precondition (18) will be difficult to verify ana-
lytically. Violation of this precondition for any x would lead
to a negative probability p1(Stay | x) in (20). One approach

would be simply to ignore the problem and hope that no
such x would be encountered while running the algorithm.
However, this would not guarantee that the value y produced
is a particle from the target density, g1/cg . An alternative,
multistage, approach might be considered, at each stage
applying pWMC to initial and target distributions that dif-
fer only slightly, incrementally progressing from g0/cg to
g1/cg . For such an approach, a precondition of the form
of (18) would still be required, but would be weaker due to
the smaller difference function h encountered at each stage.
We present such an algorithm now with n stages, but with an
adjusted initial and final distribution that removes completely
the need for such a precondition. We term this algorithm n-
step WMC, or nWMC for short.

For nWMC, we require that h belongs to the homogeneous
Besov space Ḃ0

1,1 so (8) holds.We introduce an artificial time
axis t ∈ [0, 1]; an adjustment constant δ ∈ (0, 1]; and define
gt,δ to be a density located between an initial density g0,δ
and a target density g1,δ:

gt,δ(x) := g0(x) + th(x) + δH(x), x ∈ R, (26)

where H is given by (17). It is easily verified using (16) that
gt,δ(x) linearly interpolates between g0,δ(x) = g0(x) + δH(x)
and g1,δ(x) = g1(x) + δH(x), fromwhich it is clear that our
original initial and target densities are adjusted by δH(x). For
all t ∈ [0, 1], the normalising constant

∫
gt,δ(x) dx is given

by

cδ =
∫

g0(x) dx + t
∫

h(x) dx + δ

∫

H(x) dx

= cg + δA0

∑

j∈Z
2− j/2

∑

i∈Z
|h̃ j i |,

using (24) and
∫
h(x) dx = 0. Note that our assertion of (8)

ensures that cδ is finite, which is critical to the validity of
nWMC.

We partition the half-open time-interval (0, 1] into n =
1/δ intervals of length δ > 0 indexed by k = 1, . . . , n. Thus
the kth time-interval is the half-open interval ((k − 1)δ, kδ].
For each time-interval k, we will run pWMC taking the initial
density as g(k−1)δ, δ and the target density as gkδ, δ . Thus the
normalising constant cg will become cδ , and the difference
h(x) between the initial and target densities will become
gkδ, δ(x) − g(k−1)δ, δ = h(x)δ. Accordingly, h̃ j i given by
(7) will become h̃ j iδ and H given by (17) will become Hδ.

The nWMC algorithm starts by generating a single parti-
cle at location x0 from distribution g0,δ/cδ . (The practicality
of this is not our concern, as nWMC is merely a staging
post en route to our final algorithm in Sect. 5.) This parti-
cle is then input to Step p1 of pWMC (adapted for k = 1 as
described above), and output to location x1 from Steps p1
or p3. The particle now at x1 is then re-input to Step p1 of
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pWMC (adapted for k = 2) and re-output to location x2
from Steps p1 or p3. This process is repeated for each
time-interval k = 1, . . . , n, producing a sequence of particle
locations x1, . . . , xn , not necessarily all distinct.

4.1 Proof of principle of nWMC

Lemma 2 Provided that h belongs to the homogeneousBesov
space Ḃ0

1,1 and the regularity conditions (i)–(vi) of Sect.2 all
hold, a particle delivered by one run of the nWMC algorithm
will have density g1,δ/cδ .

Proof We first show that nWMC does not require a precon-
dition of the form of (18). With the above adaptations for
time-interval k, precondition (18) becomes

δH(x) ≤ g(k−1)δ(x)

= g0(x) + (k − 1)δh(x) + δH(x)

= (1−(k−1)δ)g0,δ(x)+(k−1)δg1,δ(x)+δH(x), (27)

for all x ∈ R, using (26), where 1 ≤ k ≤ n. But (27) is
necessarily true for all x ∈ R since g0,δ and g1,δ are non-
negative. Thus nWMC requires no precondition of the form
of (18).

We complete the proof with the following inductive argu-
ment, noting that h ∈ Ḃ0

1,1 implies that cδ < ∞, as discussed
above.

Assertion: At time t ∈ {0, δ, . . . , nδ = 1}, an nWMC
particle has marginal density gt,δ/cδ .

Base case: The particle generated at time t = 0 has den-
sity g0,δ/cδ . Thus the assertion holds trivially
for t = 0.

Induction step: Suppose the assertion holds for a given
t ∈ {0, δ, . . . , (n − 1)δ}. Then, on input
to Step p1 of the application of pWMC to
time-interval (t, t + δ], the particle will have
marginal density gt,δ/cδ . By Lemma 1, the
particle output from Steps p1–p3 of this
application of pWMC will have the marginal
density of its target density, gt+δ,δ/cδ .Hence,
the assertion is also true at time t + δ.

Conclusion: The base case shows that the assertion is true
at t = 0. Therefore, by induction, the asser-
tion is true for all times t ∈ {0, δ, . . . , nδ =
1}.

�


4.2 Remarks on nWMC

An nWMC particle may or may not be moved in a given
time-interval k. The foregoing provides a complete and exact

description of nWMC, but greater computational efficiency
might be found by eliding multiple steps together, as we now
describe.

Conditional on being at location x at the start of time-
interval k, let πk(x) denote the probability that the particle is
somewhere else at the end of that time-interval. FromStepp1
of pWMC adapted for time-interval k as described above, the
probability of moving in time-interval k, i.e. of not stopping
at x , is

πk(x) = δH(x)

gkδ(x)
. (28)

Let pk�(x)denote the conditional probability that this particle
survives at x until the start of time-interval � whereupon it
moves elsewhere, or until time 1, whichever is the sooner.
Then, for 1 ≤ k < n, we have for � ∈ {k, . . . , n},

pk�(x) =
{

π�(x)
∏�−1

m=k(1 − πm(x)), � < n,
∏n

m=k(1 − πm(x)), � = n,
(29)

where the product
∏�−1

m=k is understood to take the value 1
when k = �.

The following implementation of nWMC elides all ‘non-
move’ steps into a single step,where the notation “set u ⇐ v"
means “put the value of v into variable u".

4.3 The nWMC algorithm

Herewe present the algorithm for nWMC, as motivated above.

Step n0: Sample a real value x0 ∈ Rwith probability density

p0(x0) = g0,δ(x0)/cδ. (30)

Set x ⇐ x0 and k ⇐ 0.
Step n1: Set k ⇐ k + 1. Sample an integer � ∈ {k, . . . , n}

with conditional probability pk� given in (29). If
� = n, stop and return the value x . Otherwise, set
k ⇐ � + 1 and continue.

Step n2: Sample a pair of integers ( j, i) ∈ Z
2 with proba-

bility p2( j, i | x) given by (21).
Step n3: Sample a new value x ∈ Rwith probability density

p3(x | j, i) given by (22), then return to Step n1.

Note that Steps n2–n3 above are essentially identical to
Steps p2–p3 of pWMC.

In summary a runof thenWMC algorithm, as just described,
first produces a particle at a location x0 sampled from the
initial distribution g0,δ at time t = 0. The particle may then
jump to a new location xt at any number of subsequent times
t , 0 < t ≤ 1. The computational efficiency of the algorithm
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clearly depends on the number of jumps, which will be small
only if πk(x) given in (28) is generally small.

Lemma 2 shows that nWMC delivers a particle x1 at time
t = 1 with marginal density g1,δ/cδ , where from (26) we
have g1,δ = g1 + δH . This only approximates the desired
target g1/cg , the approximation error being proportional to δ.
This error will be small for δ close to zero, but the number of
time-intervals n = 1/δ will then be large. The computational
demands of nWMC for large n would be burdensome, but we
now adapt it to produce an algorithm, for arbitrarily large n,
that is simple, practical and accurate.

5 Continuous-timeWMC

For a particle at location x at a time t = kδ, where 0 ≤ k < n,
the probability πk(x) of moving away from x in the (k+1)th
time-interval of nWMC is

πt/δ(x) = δH(x)

gt,δ(x)

= δH(x)

g0,δ(x) + th(x) + δH(x)

= δH(x)

g0,δ(x) + th(x)
+ O(◦), (31)

from (26),(28). Note that g0,δ(x) + th(x) is a linear time-
interpolation between g0,δ(x) and g1,δ(x), as already noted
in connection with (26), and g0,δ and g1,δ are both strictly
positive by construction, so the denominator of (31) is nec-
essarily strictly positive.

As δ → 0, the initial density g0,δ → g0; the target density
g1,δ → g1; and the number of intervals n = 1/δ → ∞. Then
the length of time that the particle remains at a location x
can be characterised as a continuous-time survival process
with a position-dependent hazard rate at time t of λt (x) =
limδ→0 πt/δ(x)/δ. From (31), for t ∈ [0, 1), this is

λt (x) = H(x)

g0(x) + th(x)
. (32)

Suppose the particle arrives at location x at a time s ∈
[0, 1). Let t be the subsequent time at which the particle
departs from x . From (32), if g0(x) = 0 and t = 0 or if
g0(x) = g1(x) = 0, then departure is immediate: t = s.
Otherwise, let F(t | x, s) denote the conditional cumulative
distribution function (CDF) of departure-time t given s and
x . From the theory of survival analysis (see, for example,
Cox and Oakes (1984)), for s < t ≤ 1

F(t | x, s) = 1 − exp

{

−
∫ t

s
λu(x)du

}

= 1 − exp

{

−
∫ t

s

H(x)

g0(x) + uh(x)
du

}

=

⎧
⎪⎨

⎪⎩

1−
(
g0(x)+sh(x)
g0(x)+th(x)

) H(x)
h(x)

, h(x) �=0,

1− exp
{
−(t−s) H(x)

g0(x)

}
, h(x)=0.

(33)

Thus, the probability of not departing from x by time t = 1
is, from (33),

p(t > 1 | x, s) =

⎧
⎪⎨

⎪⎩

(
g0(x)+sh(x)
g0(x)+h(x)

) H(x)
h(x)

, h(x) �=0,

exp
{
−(1−s) H(x)

g0(x)

}
, h(x)=0.

(34)

We note in passing that the first case of (33) is the CDF of
a scale-location-shifted generalised Pareto distribution, and
the second case is the CDF of a location-shifted exponential
distribution. In either case, sampling the time t of departure
from x is straightforward using the inverse-CDF method,
as follows. Sample a random variate u from the Standard
Uniform distribution. Then set

t =
⎧
⎨

⎩

s+
(
g0(x)
h(x) +s

) (

(1−u)
− h(x)

H(x) −1

)

, h(x) �=0

s− log(u)
g0(x)
H(x) , h(x)=0.

(35)

If the sampled t is greater than 1, the particle does not move
from x .

We can now implement the continuous-time survival-time
version of nWMC which we call survival WMC(sWMC). The
major difference between nWMC and sWMC is in Step s1.

5.1 The sWMC algorithm

Step s0: Sample a real value x0 ∈ Rwith probability density

p0(x0) = g0(x0)/cg. (36)

Set x ⇐ x0 and t ⇐ 0.
Step s1: If g0(x) = 0 and t = 0 or if g0(x) = g1(x) = 0,

then departure from x is immediate: go to Step s2.
Otherwise, set s ⇐ t ; sample u from the Standard
Uniform distribution; then set t as in (35). If t ≥ 1,
stop and return the value x . Otherwise, continue.

Step s2: Sample a pair of integers ( j, i) ∈ Z
2 with proba-

bility p2( j, i | x) given by (21).
Step s3: Sample a new value x ∈ Rwith probability density

p3(x | j, i) given by (22), then return to Step s1.

Note that Steps s2–s3 above are essentially identical to
Steps p2–p3 of pWMC and to Steps n2–n3 of nWMC.

In summary, a run of sWMC first produces a particle at a
location x0 sampled from the initial density g0/cg at time t =
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0. The particle may then jump to a new location xt at any
number of subsequent times t , 0 < t ≤ 1. The computational
efficiency of the algorithm clearly depends on the number of
jumps, which will be small only if λt (x) given in (32) is
generally small.

As discussed at the end of Sect. 4.3, Lemma 2 shows that
nWMC delivers a particle x1 at time t = 1 with marginal
density (g1 + δH)/cδ . Since sWMC is the continuous limit of
nWMC and gt,δ(x)/cδ → gt (x)/cg as δ → 0 for all x ∈ R, it
follows that sWMC delivers a particle x1 at time t = 1 with
marginal density g1/cg , the original target density.

6 Multiple dimensions

As noted above, the set of wavelets B given in (5) forms
an orthonormal basis for L2(R). Therefore, an orthonormal
basis for the d-dimensional space L2(R

d) is given by the d-
fold Cartesian product of B with itself, Bd . Accordingly, our
d-dimensional generalisation of the homogeneous wavelet
expansion (6) is

h(x) = ∑
j∈Zd

∑
i∈Zd h̃jiψji(x), (37)

where x = (x1, . . . , xd) ∈ R
d , j = ( j1, . . . , jd) ∈ Z

d ,
i = (i1, . . . , id) ∈ Z

d . Here the multivariate wavelet ψji is
simply the product of univariate wavelets ψ j1i1 , . . . , ψ jd id :

ψji(x) = ∏d
k=1 ψ jk ik (xk), j ∈ Z

d , i ∈ Z
d; (38)

and h̃ji is the coefficient of wavelet ψji, given by

h̃ji = ∫

Rd h(x)ψji(x) dx. (39)

Note that expansion (37) involves products of wavelets (38)
at different scales in different dimensions, unlike the more
usual d-dimensional wavelet expansion given for example in
Meyer (1992), which additionally involves father wavelets.

Let g0(x) and g1(x) denote the multivariate initial and
target densities at location x. Let h(x) = g1(x) − g0(x)
denote the difference function, generalising (16). Then the
d-dimensional version of sWMC is exactly as described
in Sect. 5.1, replacing functions g0, g1, h and the univari-
ate quantities x0, x, j, i, ψ j i , h̃ j i , H , A j used and refer-
enced therein in equations (17),(21),(22),(35) with their
d-dimensional counterparts, which for A j is

∏d
k=1 A jk .

7 Practical considerations

In this section we discuss several practical issues confronted
when running sWMC. For ease of exposition, we return to

the univariate setting for most of this discussion, but include
some brief comments on the multivariate setting at the end.

Applications of Monte-Carlo methods typically generate
large sample sizes, sometimes dependently, as in MCMC.
However, there are potential advantages for methods such
as WMC that generate independent samples, in terms of
both statistical and computational efficiency. In particular,
they allow parallel and distributed implementation on mul-
tiple independent processors. Below, we use the notation
SL = {x [�], � = 1, . . . , L} to denote a sample of L parti-
cles independently drawn from the same distribution.

7.1 Estimating the normalising-constant ratio

Suppose the normalising constants cg0 = ∫
g0(x) dx and

cg1 = ∫
g1(x) dx are unknown or unequal. We can estimate

the ratio ρ = cg0/cg1 as follows. Let pdom denote a conve-
nient probability density which dominates both g0 and g1.
Draw a sample SL from pdom, then estimate ρ as follows:

ρ̂L =
∑L

�=1
g1(x [�])
pdom(x [�])

∑L
�=1

g0(x [�])
pdom(x [�])

. (40)

Using ρ̂L , we can adjust g0 to produce an unnormalised den-
sity g̃0 for which cg̃0 = cg1 for use in WMC, thus

g̃0(x) = ρ̂L g0(x). (41)

7.2 Estimating wavelet coefficients

Methods of Monte-Carlo integration replace explicit compu-
tation of integrals on a target distribution with averages over
particles sampled from that distribution. sWMC is one such
method, but its implementation involves calculation of many
wavelet coefficients h̃ j i , each of which is itself an integral
(7), typically not of closed form. This feature would seem
self defeating, but we now show that it is sufficient, for each
particle, to replace each h̃ j i encountered in the algorithm
with an independent unbiased estimate of it. From regularity
condition (i) of Sect. 2, the mother wavelet ψ has support
[0, a] for some integer a > 1 so, from (4), the support ofψ j i

is [2− j i, 2− j (i + a)]. A simple unbiased estimate of h̃ j i is
obtained by averaging the value of h(u)ψ j i (u) obtained from
N ≥ 1 values of u sampled independently from the Uniform
distribution with the same support as ψ j i .

Let h̃[�]
j i N denote such an unbiased independent estimate of

h̃ j i for particle �. For each particle � ∈ {1, . . . , L}, replacing
each h̃ j i encountered in running sWMC by its estimate leads
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to approximating h by an empirical version of equation (6):

h̄LN (x) = L−1
L∑

�=1

∑

j∈Z

∑

i∈Z
h̃[�]
j i Nψ j i (x), x ∈ R, (42)

which is unbiased for h̃ j i with variance proportional to
L−1N−1. However, inaccurate estimates of h̃ j i will likely
increase the number of jumps at Step s3 of sWMC.

7.3 Range of scales j

As described in Sect. 5.1, the sWMC algorithm assumes an
unbounded range of scales j . However, for practical compu-
tation, we must restrict scales j to a finite range [ j0, j1], as
in (10). As noted above, the support ofψ j i is [2− j i, 2− j (i +
a)). At any given location x and scale j , there are there-
fore exactly a wavelets supported at x : {ψ j i : 2 j x − a <

i ≤ 2 j x}, and Step s2 of sWMC requires a coefficient h̃ j i to
be calculated for each of these wavelets. Consequently, for
a particle arriving at x , the total number of wavelet coeffi-
cients to be calculated is ( j1 − j0 + 1)a, which will need to
be repeated after every jump (Step s3 of sWMC).

With the regularity conditions (i)–(vi) of Sect. 2, Lemma 3
of Appendix A.1 shows that omitting scales j > j1 produces
an L1 error in the wavelet approximation (10) of h propor-
tional to 2−rψ j1 . So choosing a wavelet family with compact
support and large rψ would ensure rapid convergence to h as
j1 → ∞. However, orthogonal wavelets with rψ vanishing
moments have support length a ≥ 2rψ − 1 (Mallat 2009),
so increasing rψ will proportionately increase the amount of
computation in sWMC. A computationally efficient choice of
wavelet family ψ and upper scale-range limit j1 will depend
on the magnitude of fine-scale details in h, and would need
to be decided on a case-by-case basis, possibly by trial and
error. Setting the finest level j1 too low could result in blur-
ring some fine-scale details of the target distribution.

Lemma 3 of Appendix A.1 shows that omitting scales
j < j0 produces an L1 error in the wavelet approxima-

tion ĥ j0, j1 of h in (10) proportional to 2− j0(1−s−1
h ). Thus,

unfortunately, the rate of convergence to h as j0 → −∞
depends on the rate of decay sh in the tails of h, and not on
the choice of wavelet family ψ with rψ vanishing moments,
which is under the control of the user. Wavelets in WMC
act as vehicles that transition particles from one location to
another, but each wavelet h̃ j i can only perform such a tran-
sition within its support. To reduce the average number of
jumps per particle, the coarsest resolution level j0 should be
chosen to ensure that a particle will generally be able tomove
from its initial location to all regions of high target density
in a single jump. Running sWMC restricting j ∈ [ j0, j1] will
produce a particle with output density g0 + ĥ j0, j1 . Setting
the coarsest level j0 too high could miss some coarse-scale

features of the target distribution and could potentially lead
to negative values of this theoretical output density at certain
locations, which would clearly invalidate regularity condi-
tion (vi) of Sect. 2. If such a problem is suspected or detected,
sWMC should be rerun with a reduced setting of j0.

As a rule of thumb, the more irregular or complex the
target, the wider should be the range [ j0, j1]. To improve
the approximation to target g1 of the particle output density
g0+ ĥ j0, j1 from a run of sWMC, the particle’s location can be
input to Steps1 of a second run of sWMC, this time restricting
j ∈ [ j1 + 1, j	1 ], where j	1 > j1. The particle will then on
output have density g0 + ĥ j0, j	1

. Inputting the particle to a
third run of sWMC, this time restricting j ∈ [ j	0 , j0 − 1],
where j	0 < j0, will produce a particle output density of
g0 + ĥ j	0 , j	1

. Repeating this process in parallel on an entire
particle-set SL provides amultistage version of sWMCwhich
will improve the approximation to g1 at each stage. Such
an algorithm could be useful in determining iteratively an
adequate range for scale j .

7.4 Multivariate practical considerations

All of the practical considerations discussed above apply
equally in the multivariate setting, replacing the univariate
quantities x0, x, j, i, ψ j i , h̃ j i , H , A j with theird-dimensional
counterparts, as described in Sect. 6. In particular, an unbi-
ased estimate of multivariate wavelet coefficient h̃ji can be
obtained by averaging h(u)ψji(u)over N values ofu sampled
independently from the d-dimensional Uniform distribution
whose support is that of ψji. The total number of wavelet
coefficients h̃ji to be calculated for each particle, initially
and after each jump, will be ( j1 − j0 + 1)dad .

8 Examples

This paper is essentially a proof-of-concept of sWMC. How-
ever, as a limited exploration of the strengths andweaknesses
of the method, we compare its performance in 1- and
2-dimensional examples with three well-established Monte-
Carlo samplers: Rejection Sampling (von Neumann 1951);
Importance Sampling (Kahn and Harris 1951); and the Ran-
dom Walk Metropolis algorithm (Metropolis et al. 1953).
Each of these methods involves an initial sampling distribu-
tion g0 and a target distribution g1. Letw(x) = g1(x)/g0(x).

To be practically useful, a method should be highly com-
putationally efficient. For each Monte-Carlo sampler, we
define its computational efficiency as

E = pkeep × ESS/n̄eval, (43)

where pkeep is the proportion of generated particles that are
retained, ESS is the effective sample size per retained parti-
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cle (which compares the informational content of a sample
of retained particles with that of an equal-sized i.i.d. sample
from the target), and n̄eval is the average number of calls to
the function g1 per particle. Our focus on n̄eval rather than
CPU time per se is motivated with applications to computa-
tionally expensive targets inmind, although the toy examples
presented below are not of this nature.

For each Monte-Carlo sampler, we also compute its dis-
crepancy. For this, we first construct a finite mesh M
covering the main support of the target distribution, and for
each cell k ∈ M compare the observed proportion of sam-
ples ok falling into that cell with its expected value ek under
the target distribution, where both ok and ek are normalised
over the mesh. The simple form of the target distributions in
the examples below allows ek to be calculated exactly. We
then compute discrepancy as:

D =
(

∑

k∈M
(ok − ek)

2

)1/2

. (44)

We compare and contrast the following four Monte-Carlo
samplers:

Wavelet Monte Carlo (sWMC) As described above, all
samples are retained and are independent, so pkeep = 1
and ESS = 1. Thus E = 1/n̄eval. The number of target
evaluations for a particle is related to its number of its
jumps en route, the number of wavelet coefficients that
must be computed before each jump, and the method
of computing them. In the examples below, we evaluate
wavelet coefficients numerically on a fine grid, but gain
a substantial reduction in this overhead by caching and
reusing coefficients previously computed during the run.
Rejection Sampling (RS) assumes the existence of a finite
upper bound M on w(x). Independently sampled pro-
posed particles x from g0/cg are retained as samples from
the target with probability a = w(x)/M and discarded
with probability 1−a. Here pkeep = 1/M ; ESS= 1; and
n̄eval = 1. Thus E = 1/M .
Importance Sampling (IS) requires the variance
Varg0 [w] of w(x) under g0(x) to be finite. Indepen-
dently sampled particles x from g0/cg are retained as
weighted samples from the target with weight w(x).
Here pkeep = 1; ESS is estimated as 1/Eg0 [w2(x)]; and
n̄eval = 1. Thus E = 1/Eg0 [w2(x)].
Random-walkMetropolis (RWM)Froman initial point x[1]
sampled from g0, subsequent particles x[i], i > 1, are
generated by first sampling a particle y from a symmetric
proposal distribution qprop centered at x[i−1], then assign-
ing to x[i] either the value y with probability α or the
value x[i−1] with probability 1 − α, where α = min(1,
g1(y)/g1(x[i−1])). After discarding particles generated
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Fig. 2 A one-dimensional example where the initial density g0, shown
with a broken line, is the Normal distribution N (−2, 22) and the target
density g1, shown with a solid line, is a weighted mixture of Nor-
mal, Uniform and shifted-Exponential distributions: N (−20, 0.52)with
weight 1/8; U (25, 26) with weight 1/8; N (30, 92) with weight 1/4;
U (40, 41)withweight 1/4; andExpon(0.2)with origin at 43 andweight
1/4. The shaded histogram is of L = 100 000 independent particles gen-
erated by sWMC

during the burn-in of the Markov chain, all particles are
retained as autocorrelated samples from the target. Here
pkeep is therefore the proportion of the chain remaining
after discarding the burn-in; n̄eval = 1; and we esti-
mate ESS using the Mahalanobis step-distance measure
of Sherlock and Roberts (2009).

8.1 Example 1

To lower the computational cost of the algorithm, one would
ideally choose a convenient initial distribution g0/cg that is
similar to the target g1/cg . However, the final result of a run
of sWMC should change little if the chosen initial distribu-
tion is far from the target in location, spread and shape. This
is demonstrated in Fig. 2, where the initial univariate Nor-
mal distribution g0 has extremely low probability within the
main mass of the target mixture g1 of Normal, Exponential
and Uniform densities. Daubechies wavelets ψ with 4 van-
ishing moments were used, setting the scale-range [ j0, j1]
to [−7, 12]. Numerical integration was used to calculate
wavelet coefficients. An average of 7.4 jumps per particle
was recorded. We see that sWMC has recovered the target
distribution well despite its multimodality, with no tendency
to get stuck in local modes.

In this example, the regularity conditions for RS and IS
are not met as g0 does not dominate the tails of g1. Thus
M = ∞ and Varg0 [w] = ∞, implying in (43) that numer-
ical efficiency ERS = EIS = 0. This might seem an easy
win for sWMC but perhaps not a fair comparison as prac-
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Table 1 Example 1: Monte-Carlo sampler efficiency calculations (43)
for a sequence of scalings of the initial/proposal t5 distribution

Iterations Scale Efficiency E × 103

sWMC RS IS RWM

1–20000 5 0.6 0.1 2.6 71.5

20001–40000 10 1.6 1.4 4.3 91.0

40001–60000 20 2.0 10.4 33.8 118.8

60001–80000 40 2.2 19.9 54.4 105.1

80001–100000 80 3.4 15.7 39.1 64.1

1–100000 3.4 4.4 7.2 90.1

Table 2 Example 1: Monte-Carlo sampler discrepancy calculations
(44) for a sequence of scalings of the initial/proposal t5 distribution

Iterations Scale Discrepancy D
sWMC RS IS RWM

1–20000 5 .014 – .292 .078

20001–40000 10 .025 .007 .102 .020

40001–60000 20 .029 .006 .042 .036

60001–80000 40 .019 .007 .015 .034

80001–100000 80 .017 .007 .020 .068

1–100000 .018 .003 .043 .022

titioners of RS and IS would avoid using this g0 in this
example. To address this point, for sWMC, RS and IS, we
performed a single simulation of L = 100 000 iterations
progressing through a sequence of five initial distributions
g0 of 20000 iterations each, using t5-distributions located
at −2.0 with increasing scale from 5.0 to 80.0 (sd 6.45
to −103.3). For RWM, we set x [1] = −2 and used the
same sequence of t5-distributions as proposal distributions
qprop, centering them at the current point x [i−1] instead of
at −2. For sWMC, we used Daubechies wavelets2 ψ with
rψ = 4 vanishing moments and scale-range [ j0, j1] =
[−9, 12], and at each scale we estimated the normalising-
constant ratio ρ̂L (40) from L = 20 000 samples drawn
from a pdom which comprised an equally weighted mix-
ture of the five initial distributions g0. For RS, the upper
bound M was determined theoretically; this would not
generally be an option for more complex targets. The dis-
crepancy mesh M in (44) covered the interval (−25, 55)
with cell width 0.5. The results are reported in Tables 1
and 2.

Table 1 shows that optimal efficiency E is obtained for
each samplerwith an initial distribution (or proposal distribu-
tion) scaling of≈40.0. For sWMC, efficiency is progressively
aided by the caching of wavelet coefficient as they are calcu-

2 Daubechieswavelets haveminimal support length given rψ , thusmin-
imising the number of wavelet coefficients contributing to H(x) in (17)
at each x .

lated. The efficiency of RS is abetted by the pre-calculation
of an exact upper bound M on w(x) at each stage; in gen-
eral this would not be practical and a much larger M might
be adopted, implying smaller E . These efficiency calcula-
tions appear to suggest that sWMC is the least desirable of
these methods. However, the discrepancy calculations D in
Table 2 tell a different story. Theoretically, RS delivers sam-
ples exactly from the target g1, provided M is suitably large;
(iterations 1–20000 were skipped to avoid an excessive run
time due to their extremely large value ofM , see Supplemen-
tary Table 5). Although D is more discrepant for sWMC than
RS, we see that RWM and IS can be much worse depending
on scaling, due to poor mixing of RWM and the large standard
deviation in weights w for IS (see Supplementary Table 5).
Supplementary Figs. 4–7 show, for sWMC and RS, excellent
fits of simulated particles to the target distribution, but for
IS the fit is rough with a spurious peak, while for RWM the
heights of the sharp peaks in the target distribution are poorly
estimated.

Supplementary Table 5 gives the mean number of parti-
cle moves at each stage of the sWMC simulation, showing
that the number of moves increased in the mid-scale range.
Supplementary Fig. 8 shows the position–time tracks of
eight particles from the mid-scale of the simulation. Some
of these particles moved only a few times, while oth-
ers moved many times, sometimes briefly visiting far-off
places. Supplementary Table 5 also shows that the estimated
normalising-constant ratio ρ̂L (40) remained close to its true
value, in this example ρ = 1.0. Further simulations revealed
that setting ρ̂L = 1.0 had little effect on the results (not
shown).

8.2 Example 2

A two-dimensional application of sWMC is illustrated in
Fig. 3,where the target distribution is amixture of four bivari-
ate Normals, one being highly concentrated, scattered within
the main support of the initial bivariate Normal. Daubechies
wavelets ψ with 3 vanishing moments were used, setting the
scale-range [ j0, j1] to [−2, 4]. Numerical integration was
used to calculate wavelet coefficients. Again we see that
sWMC has recovered the target distribution well. Around the
point (-2,3), the black (particle) contours are more spread out
than the red (target) contours; this is due to the smoothing
effect of the kernel-density estimate of the particles around
this highly concentrated point of the target.

Tables 3 and 4 compare the performance of sWMC with
that of RS, IS and RWM, for different scalings of the initial
distribution. Preliminary runs suggested setting the burn-in
for RWM to zero. Scale 4 corresponds to the initial distribu-
tion of Fig. 3, for which we see in Table 3 that sWMC is less
efficient than the other methods, but in Table 4 that it also
has low discrepancy D. However, the discrepancy statistic
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Fig. 3 A two-dimensional example where the initial
density g0, shown with dotted contours, is a bivariate

Normal distribution N

([
3
0

]

, 42
[
1 0
0 1

])

and the tar-

get density g1, shown with broken contours, is an equally
weighted mixture of four bivariate Normal distributions

N

([
1
1

]

,

[
2 2
2 3

])

,N

([
4
4

]

,

[
7 2
2 3

])

,N

([ −2
3

]

,

[
.004 .001
.001 .003

])

,

N

([
5

−5

]

,

[
6 2
2 3

])

. The solid contours are those of a kernel density

estimate based on 10000 independent particles generated by sWMC

Table 3 Example 2: Monte-Carlo sampler efficiency calculations (43)
for scalings of the initial/proposal bivariate normal distribution

Scale Efficiency E × 103

sWMC RS IS RWM

1 0.02 – 10.9 0.7

2 0.06 0.05 19.0 53.9

4 0.05 0.29 2.9 202.0

6 0.00 0.23 325.8 218.5

does not tell the whole story. Supplementary Fig. 11 shows
that both sWMC and RS recover the target well, but there are
serious problems with the IS and RWM solutions; both miss
the concentrated target peak at (-2,3). At scale 2, a similar
picture emerges (Supplementary Fig. 10). At scale 1, we find
that sWMC has not performed well but IS and RWM have
performed much worse, the latter due to slow mixing (Sup-
plementary Fig. 9), while RSwas not performed at all due to
its long predicted run time (≈ 85000 × that for scale 2, see
Supplementary Table 6). Compared to scale 4, at scale 6 the
performance of sWMC has deteriorated, while that of IS and
RWM has improved (Supplementary Fig. 12).

8.3 Summarising results

Examples 1 and 2 provide a snapshot of how the methodol-
ogy might perform in practice in comparison to other Monte
Carlo methods. In particular we see that sWMC can provide

Table 4 Example 2: Monte-Carlo sampler discrepancy calculations
(44) for scalings of the initial/proposal bivariate normal distribution

Scale Discrepancy D
sWMC RS IS RWM

1 0.06 – 0.31 0.38

2 0.12 0.09 0.25 0.24

4 0.06 0.09 0.04 0.24

6 0.06 0.01 0.23 0.14

good precision with low-dimensional but highly irregular
targets. Unlike RS, IS and RWM, we found that sWMC was
better able to cope with under-dispersed initial distributions
relative to the target, while the other methods performed bet-
ter when over-dispersed. These examples also illustrate that
sWMC can provide reasonable efficiency when measured in
terms of numbers of target-function evaluations, which is
appropriate when such evaluations are computationally bur-
densome. Clearly, the target functions in these examples are
easily evaluated, and in terms of CPU-time there are rela-
tively large overheads in running sWMC. For example, in the
mid-scale range of Table 1, the CPU-time of sWMC was 7 ×
that of RS and 280 × that of RWM.

These examples are intendedonly to illustrate the behaviour
of sWMC. They do not provide thorough comparisons with
other methods, each of which could benefit from tailored or
adaptive initial/proposal distributions depending on the form
of target distribution.Anymethod, includingsWMC, will ben-
efit from an initial distribution that is close to the target. Other
methods might be more appropriate; indeed, in each of the
toy examples presented above, the target distribution can be
simulated directly!

9 Conclusions

We have presented here the theory and methodology of
WMC, a new method for Monte-Carlo integration which
independently samples particles from a potentially complex
target distribution. Independence of the particles opens the
possibility of implementation on parallel computing arrays,
for computational speed. For computational efficiency, the
user can control the accuracy of approximation to the tar-
get distribution through the settings of the coarsest and finest
scales j0 and j1. As discussed in Sect. 7, the choice ofwavelet
familyψ , with its attendant number of zeromoments rψ , con-
trols inaccuracy due to omitting scales finer than j1, but this
has no effect on inaccuracy due to omitting scales coarser
than j0, which depends on the differential tail decay-rate sh
between the initial and target densities, g0 and g1. As dis-
cussed in Sect. 7, sWMC can be run to sequentially improve
approximations in previously obtained sWMC particles.
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Our emphasis in this paper has been on developing the the-
ory andmethodology of sWMC. The computational efficiency
of sWMCwill dependheavily on the number ofwavelet coeffi-
cients to be calculated before each jump and on the expected
number of jumps, which in turn depend on the choice of
mother wavelet ψ , the scale range [ j0, j1], the initial distri-
bution g0, the method of evaluating wavelet coefficients; and
the number of dimensions d. The number of jumps will be
reduced substantially if an initial distribution is chosen to be
close to the target, but in general this will be infeasible. As
suggested in Sect. 7, wavelet coefficients may be estimated
rather than directly calculated, with potential computational
savings. Inaccurate estimatesmay however increase the num-
ber of jumps. Much remains to be done to explore the impact
of these factors on computational efficiency and accuracy
in different settings. New methods for accurate and compu-
tationally efficient evaluation of wavelet coefficients could
hugely improve the practicality of sWMC.

The number of wavelet coefficients increases exponen-
tially with the number of dimensions d, as shown at the
end of Sect. 7. The ‘curse of dimensionality’ is common to
most if not all methods of Monte Carlo integration, and is
unavoidable unless the target distribution has a structure that
is decomposable in someway, as in the case of graphicalmod-
els (see, for example, Jordan (2004)). Further development of
sWMC would be required to exploit such target-distribution
decomposability.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10256-
w.
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