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Abstract

Activation functions can have a significant im-

pact on reducing the topological complexity of

input data and therefore, improving a model’s

performance. However, the choice of activa-

tion functions is seldom discussed or explored

in Transformer-based language models. As

a common practice, commonly used activa-

tion functions like Gaussian Error Linear Unit

(GELU) are chosen beforehand and then re-

main fixed from pre-training to fine-tuning. In

this paper, we investigate the impact of activa-

tion functions on Transformer-based models by

utilizing rational activation functions (RAFs).

In contrast to fixed activation functions (FAF),

RAFs are capable of learning the optimal ac-

tivation functions from data. Our experiments

show that the RAF-based Transformer model

(RAFT) achieves a better performance than its

FAF-based counterpart (FAFT). For instance,

we find that RAFT outperforms FAFT on the

GLUE benchmark by 5.71 points when using

only 100 training examples and by 2.05 points

on SQuAD with all available data. Analyzing

the shapes of the learned RAFs further unveils

that they vary across different layers and dif-

ferent tasks; opening a promising way to better

analyze and understand large, pre-trained lan-

guage models.1

1 Introduction

Activation functions introduce non-linearity and

increase neural networks’ representational capac-

ity, and therefore, play an essential role in design-

ing deep learning models (Nwankpa et al., 2018;

Sharma et al., 2020; Dubey et al., 2022). Naitzat

et al. (2020) explain the importance of activation

functions by proposing to consider data as a topol-

ogy with its own shape. They empirically show that

activation functions accelerate the data topology

transformation through different layers of a neu-

ral network to simplify its complexity and make

1Code, models, and datasplits are available on GitHub
https://github.com/UKPLab/2022-RAFT.

it linearly separable in the output space. Their ex-

periments show that choosing the right activation

function can have a significant impact on the over-

all performance.

While any activation function can be used with

Transformers (Vaswani et al., 2017), their choice

is made before pre-training and remains fixed af-

terwards. Hence, the inductive bias an activa-

tion function imposes on the model cannot be ad-

justed during pre-training or fine-tuning. As many

Transformer-based models are pre-trained on a

large amount of data, and changing the activation

function for or during fine-tuning may negatively

impact the performance2. Moreover, the simple

case of finding the optimal combination of k differ-

ent activation functions in n different feedforward

layers results in kn possible combinations and be-

comes intractable; e.g., 531,441 experiments for

a 12-layer BERT model and three different acti-

vation functions. As a result, most Transformer-

based pre-trained models adopt the GELU activa-

tion function that has been initially used for the

BERT model (Devlin et al., 2019).

To overcome the limitation of using a potentially

suboptimal activation function that remains fixed

during training, we propose to use a learnable ac-

tivation function, namely, the rational activation

function (RAF, Molina et al. 2020). The RAF is a

universal function approximator that can approxi-

mate any existing activation function. The advan-

tage of using RAFs over fixed activation functions

(FAF) such as ReLU or GELU, is that the model

can learn the optimal activation function from the

data during (pre)training without the need to con-

sider the choice of activation function as an addi-

tional dimension during hyperparameter tuning.3

2In our preliminary experiments, the performance of BERT
becomes worse on downstream tasks when the activation func-
tions are changed after pre-training.

3Liu et al. (2019a) consider different activation functions
during Neural Architecture Search (Zoph and Le, 2017), but
this becomes quickly infeasible for compute-intensive experi-
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To evaluate the effectiveness of RAFs, we pre-train

two encoder-only Transformers using RAF and

GELU respectively, within an academic budget.

In our experiments, we find that:

• The RAF-based Transformer (RAFT) learns

different activation functions at different lay-

ers after pre-training with shapes that differ

from frequently used activation functions.

• During fine-tuning, RAFT outperforms its

fixed activation function counterpart (FAFT)

on the general language understanding bench-

mark (GLUE) and the SQuAD machine read-

ing comprehension dataset in various settings.

• After fine-tuning, the learned RAFs of the top

layers are more task-specific and change the

most, which are corresponding to layer be-

haviors of Transformers according to prior

work (Mosbach et al., 2020; Merchant et al.,

2020; Zhou and Srikumar, 2022). This pro-

vides new opportunities to analyze language

models with respect to their learned activation

functions at different layers for different tasks.

• RAFT boosts the performance when com-

bined with a parameter-efficient fine-tuning

approach, i.e., BitFit (Ben Zaken et al., 2022),

which improves the model performance by

3.08 points in full-data scenario.

2 Related Work

Activation functions. There exists various prede-

fined activation functions such as Sigmoid, Hyper-

bolic Tangent (Tanh), Rectified Linear Unit (ReLU,

Fukushima 1969), and Gaussian Error Linear Unit

(GELU, Hendrycks and Gimpel 2016). There are

also approaches that leverage automatic search to

obtain optimal combinations of several base acti-

vation functions in a predefined search space (Ra-

machandran et al., 2018; Manessi and Rozza, 2018;

Sütfeld et al., 2020; Bingham and Miikkulainen,

2022; Bingham et al., 2020). For instance, Ra-

machandran et al. (2018) discovered the Swish ac-

tivation function by using this method. Bingham

et al. (2020) show that further extending the search

space using evolutionary algorithms can also lead

to an improvement. Finally, several search-based

works investigate how to train a combination of a

set of activation functions to better adapt to spe-

cific tasks and architectures (Manessi and Rozza,

ments such as pre-training large language models.

2018; Sütfeld et al., 2020; Bingham and Miikku-

lainen, 2022). One substantial drawback of these

search-based methods is that they are computation-

ally expensive. Especially for pre-trained language

models where pre-training is costly, it is infeasible

to perform a hyperparameter search for selecting

the best activation function (even more so their

combination). In contrast, the flexibility of ratio-

nal activation functions (RAFs) allows them to be

trained along with the model parameters in an end-

to-end fashion (Molina et al., 2020). Therefore,

they can learn the optimized activation function

from data during training. RAFs have been suc-

cessfully used in deep reinforcement learning for

improving plasticity (Delfosse et al., 2021), cell

detection models in biology (Prangemeier et al.,

2020), and adapter architectures (Moosavi et al.,

2022).

Model Act. Funct.

BERT (Devlin et al., 2019) GELU

GPT-1 (Radford et al., 2018) GELU

RoBERTa (Liu et al., 2019b) GELU

XLNet (Yang et al., 2019) GELU

ALBERT (Lan et al., 2020) GELU

GPT-2∗ (Radford et al., 2019) GELU

Megatron-LM (Shoeybi et al., 2019) GELU

ELECTRA+ (Clark et al., 2020) GELU

T5 (Raffel et al., 2020) ReLU

T5v1.1 (Raffel et al., 2020) GeGLU

DeBERTa+ (He et al., 2021) GELU

BART (Lewis et al., 2020) GELU

GPT-3∗ (Brown et al., 2020) GELU

Jurassic∗ (Lieber et al., 2021) GELU

Gopher∗ (Rae et al., 2021) GELU

Megatron-Turing NLG∗ (Smith et al., 2022) GELU

Chinchilla∗ (Hoffmann et al., 2022) GELU

CANINE+ (Clark et al., 2022) GELU

LaMBDA (Thoppilan et al., 2022) GeGLU

OPT (Zhang et al., 2022) ReLU

Table 1: Activation functions in different NLP Trans-

former models. Models marked by ∗ do not explic-

itly state the activation function but refer to GPT-1 as

the base architecture (+ refers to BERT respectively).

GeGLU is a variant that combines GELU and GLU.

Frequently used activation functions in NLP.

Table 1 shows a list of 20 different language models

that have been introduced after BERT. As we see,

the vast majority of the works (80%) use the GELU

activation function. Moreover, many works even

do not explicitly state the used activation function

(45%). There are only a few works that investigate

the impact of activation functions on pre-trained

Transformer models. So et al. (2021) leverage au-

tomatic search methods to identify more efficient

Transformer architectures. They find that a combi-
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nation of squared ReLU used in the feedforward

network (FFN) layer and a convolution layer added

in self-attention can lead to a substantial boost in

performance. Shazeer (2020) replace the FFN in

the Transformer with a gated linear unit (GLU,

Dauphin et al. 2017) combined with different acti-

vation functions and find a higher performance dur-

ing pre-training as well as on downstream tasks. In

our work, we do not change the structure of FFNs

and only replace activation functions in them.

Closest to our work is the work by Moosavi

et al. (2022) who investigate the use of RAF in

adapters (Houlsby et al., 2019); i.e., lightweight

layers that are added on top of pre-trained Trans-

former layers. They propose adaptable adapters

that consist of RAFs and learnable switches to se-

lect a subset of adapter layers during training. They

show that using both RAFs and a fewer number of

adapter layers results in considerable performance

gains, especially in low-data settings. However,

only using RAF instead of ReLU does not result in

a considerable gain in their experiments. Further-

more, adapter layers are only added and updated

during fine-tuning, as a result using RAF in adapter

layers has a limited impact compared to already

applying them for pre-training.

In this work, we show that using RAF in Trans-

former layers brings additional flexibility to the

model to learn the optimized activation function

for each of its layers during training, and that this

additional flexibility benefits both pre-training and

fine-tuning steps.

3 RAFT: RAF-based Transformers

We adopt the BERT architecture (Devlin et al.,

2019) where all activation functions in feed-

forward layers Activation(W1X)W2 are replaced

with rational activation functions (illustrated in Ap-

pendix A). The equation of rational activation func-

tion F (x) is as below:

F (x) =
P (x)

Q(x)
=

∑m
j=0 ajx

j

1 + |
∑n

k=0 bkx
k|

(1)

Where a and b are learnable parameters, and m

and n are degrees of F (x), which decide the com-

plexity and fitting ability of rational functions. Fol-

lowing Molina et al. (2020), we use the safe PAU

formulation that further stabilizes training.

Selecting m and n. Similar to Taylor series, the

higher the degrees m and n are, the more precise

is the approximation of rational functions. How-

ever, indefinitely increasing the degrees also means

adding more complexity and increasing training

time. The challenge is to find suitable degrees

that leads to rational functions with a strong fitting

ability while keeping their complexity as low as

possible. As this is still an open question, we set

the search space of m and n to {4, 5}, and evaluate

their ability to approximate the GELU function in

the range of [-3,3]. Our results show that using

m = 5 and n = 4 perfectly fits the GELU function

with a low complexity and thus, are adopted in this

work (cf. Figure 5, Appendix B). This matches

the findings in previous work (Telgarsky, 2017;

Molina et al., 2020; Delfosse et al., 2021) as well.

So overall, each rational activation function adds

nine parameters, resulting in a total of 108 addi-

tional parameters in a 12-layer Transformer model

(less than 0.000098% of its original parameters).

The weights of F (x) can further be initialized to

approximate any existing activation functions. In

our experiments, we initialize it with weights that

approximate GELU.

4 Pre-training

To evaluate the viability of RAFT, we pre-train

two comparable Transformer models from scratch—

one using the common fixed GELU activation func-

tion (FAFT), and another one using RAFs (RAFT).

Model architecture. For our experiments, we

use a frequently considered model configuration

and train 12 Transformer encoder layers with a

hidden size of 768 and 12 attention heads (Devlin

et al., 2019; Liu et al., 2019b; Rae et al., 2021;

Zhang et al., 2022). The only difference between

RAFT and FAFT is the use of RAFs instead of

GELUs as activation functions.

Data. We use English Wikipedia as our pre-

training data.4 The dataset consists of 3.8 × 109

tokens from which we select 50k sentences con-

taining 6.4× 106 tokens as the validation data.

Pre-training objective. Following RoBERTa

(Liu et al., 2019b), we use dynamic masked lan-

guage modeling (MLM) as our learning task and

randomly mask tokens in the input sentences at

each step before feeding them into the model. We

use the same masking probabilities and mask 15%

of the tokens with an 80% chance of replacing them

4https://dumps.wikimedia.org
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Model Validation loss Validation PPL

FAFT 1.645 5.18

RAFT 1.611 5.00

Table 2: Performance of the models on the validation

set after pre-training.

with the [MASK] token, a 10% chance of replacing

them with a randomly selected different token, and

a 10% chance of not replacing them at all.

Training parameters. As our primary goal is to

validate the effectiveness of RAFs in Transformers

rather than releasing a RoBERTa-like model, we

focus on training two comparable models within a

limited training budget. Both models are optimized

using AdamW (Loshchilov and Hutter, 2019) with

β1 = 0.9, β2 = 0.98 and a weight decay of 0.01.

The learning rate lrθ is set to 7E-4 for both mod-

els while the learning rate lrRAF for the RAF co-

efficients is set to 5E-3. Both learning rates are

warmed up over the first 1% steps, then lrθ decays

linearly while lrRAF remains constant.5 The batch

size is set to 4096. Tuning hyperparameters during

pre-training is expensive, to conduct hyperparame-

ters tuning of both models with limited resources,

we follow up 24hour BERT (Izsak et al., 2021) to

pre-train the model for 23k steps equipped with

various methods to accelerate training, including

mixed-precision, sparse output prediction, fused

linear layer, and tied embeddings (Press and Wolf,

2017). Detailed parameters and results of hyperpa-

rameter tuning are provided in Appendix C. It takes

∼16 hours for RAFT and ∼12 hours for FAFT us-

ing four A100 GPUs.

Results. Table 2 shows the MLM validation

losses and validation perplexity of the best per-

forming hyperparameter configuration for RAFT

and FAFT. We observe that RAFT achieves a bit

lower perplexity than FAFT during pre-training.

The learned RAFs vary across different layers af-

ter pre-training (cf. Figure 6, Appendix E). More

analysis is conducted in Section 6.

5 Fine-tuning

We conduct experiments on the General Lan-

guage Understanding Evaluation (GLUE) bench-

mark (Wang et al., 2019) and SQuAD (Rajpurkar

5We find in our preliminary experiments that a constant
rational learning rate with warm up leads to better results.

et al., 2016) to see how well pre-trained RAFs can

adapt to downstream tasks. Dataset descriptions

are provided in Appendix D. We further investigate

the flexibility of the pre-trained RAFs by consid-

ering different training data sizes especially in a

low-data regime. We fine-tune RAFT in two differ-

ent settings:

• RAFTfull: We fine-tune the whole model, i.e.,

all model parameters including the RAFs.

• RAFTfixed: We fix the pre-trained RAFs and

only tune the rest of the parameters.

5.1 Evaluation on the GLUE Benchmark

We evaluate pre-trained models on GLUE bench-

mark in different data settings: (a) the full-data

scenario, and (b) two low-data scenarios when only

100 or 300 labelled examples are available.

Experimental Setup. We split 75% of the train-

ing dataset as the training set and use the remaining

25% as the development set in the full-data sce-

nario. Following previous works, we use the pro-

vided development set as the test dataset. For our

low-data scenarios, we randomly sample 100 or

300 examples with ten different random seeds and

report the average and standard deviation across

all runs. For the full-data scenario, we report the

average and standard deviation of the results across

six runs with different random seeds. We use the

same evaluation metrics as proposed in the GLUE

benchmark; more specifically, for MRPC, QQP,

and STSB, we use the average of the two corre-

sponding metrics as the final score.6

Results. Table 3 shows the performance of RAFT

and FAFT on the GLUE benchmark. We observe

that on average, RAFT achieves consistent im-

provements in all data settings. We further find that

especially in the low-data scenarios, the flexible

activation functions of RAFT substantially outper-

form their static GLUE counterparts of the FAFT

model. For 100 examples, RAFT achieves better

results in seven out of eight tasks, outperforming

FAFT by 5.31 points (RAFTfull) and 5.71 points

(RAFTfixed) on average, respectively. While the

performance gap becomes smaller as the number

of examples increases, the tendency remains the

same with an average performance gain of 0.98

6Note that the full-data scenario is computationally more
expensive to run, but also more stable as the training instances
experience less variability.
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Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low-data 100 examples1

FAFT 1.88±2.27 71.02±5.61 74.88±0.23 55.19±5.96 57.57±8.32 32.86±1.50/32.92±1.46 53.34±3.24 53.14±1.67 48.07

RAFTfull 4.38±3.2 73.28±3.95 75.89±1.39 62.65±2.86 70.30±3.44 38.31±1.87/39.06±2.35 63.58±3.74 53.0±1.91 53.38

RAFTfixed 7.25±4.77 72.04±5.04 75.76±0.65 62.15±4.09 71.39±3.56 39.3±1.60/40.4±1.73 63.13±3.05 52.6±2.99 53.78

low-data 300 examples1

FAFT 13.12±5.29 77.67±3.07 79.37±1.56 66.63±1.35 76.70±1.89 43.74±2.20/45.33,2.29 69.17±2.25 55.45±2.66 58.58

RAFTfull 12.36±5.07 78.22±2.10 77.84±1.09 68.25±1.01 79.77±2.34 45.70±1.69/47.27±1.86 71.92±1.10 54.70±2.26 59.56

RAFTfixed 17.34±3.23 78.95±2.33 76.97±0.96 68.20±0.76 80.32±0.1 45.35±1.62/46.53±1.63 72.07±1.56 55.78±2.72 60.17

Full data2

FAFT 43.18±1.52 89.2±0.63 86.42±1.37 88.08±0.08 87.08±0.21 80.92±0.21/81.78±0.22 89.42±0.38 62.22±1.35 78.70

RAFTfull 45.84±1.47 89.85±0.45 87.21±0.54 88.27±0.10 86.96±0.29 80.88±0.22/81.85±0.23 89.32±0.20 64.44±2.49 79.40

RAFTfixed 45.66±1.55 90.06±0.70 86.36±1.03 88.21±0.06 86.64±0.24 81.10±0.22/82.06±0.21 89.36±0.34 63.90±2.85 79.28
1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 3: The performance of RAFT and FAFT on the GLUE benchmark across different data sizes. RAFTfull

fine-tunes all model parameters including RAFs. RAFTfixed instead fixes the RAFs pre-training.

points (RAFTfull) and 1.59 points (RAFTfixed) for

300 examples. In the full data scenario, RAFT

still outperforms FAFT by 0.7 (RAFTfull) and 0.58

(RAFTfixed) points on average.

Our experiments indicate that fixing the RAFs

is a better choice for the GLUE benchmark in the

low-data scenarios. We conjecture that one reason

for this may be that the number of instances to tune

all parameters of the model are insufficient. On

the contrary, we find that in the full-data scenario

tuning RAFs can lead to better results. The increas-

ing number of instances especially benefit RAFs

as they can better adapt to different downstream

tasks and learn better features. We provide further

analysis in Section 6.

5.2 Evaluation on SQuAD

Similar to GLUE, we evaluate models on SQuAD

v1.1 in different data settings: (a) the full-data sce-

nario, and (b) four low-data scenarios with 100,

300, 500, and 1000 training examples.

Experimental Setup. We split the official train-

ing data into separate training (75%) and develop-

ment sets (25%)7 and use the official development

set as the test data. We evaluate the results by com-

puting the F1 score over the word overlap of the

predicted answer and the gold answer. The hyper-

parameters search space is provided in Appendix C.

Results. Table 4 shows our results of RAFT

and FAFT. Compared to GLUE, that consists of

sentence-level text matching tasks, SQuAD is a

more complex task in which the model needs to

comprehend a longer text sequence to predict an

answer span. The increased task difficulty is es-

pecially reflected in the low-data scenarios, as the

7Again, we use the development set to identify the best
performing model across all epochs.

100 examples1 300 examples1 500 examples1 1000 examples1 full data2

FAFT 12.72±1.54 22.11±2.46 26.46±1.42 34.58±1.68 72.33±0.23

RAFTfull 11.81±0.95 19.49±2.01 26.68±1.91 36.69±1.56 74.45±0.47

RAFTfixed 12.19±1.08 19.00±2.68 26.27±1.39 35.98±1.81 74.38±0.25

1 Results are averaged over ten random seeds: 5309, 202206, 20220602, 2259, 49, 2022, 1046, 622, 320, 53
2 Results are averaged over six random seeds: 5309, 202206, 20220602, 2259, 49, 2022

Table 4: Results of RAFTs and FAFT on SQuAD.

Validation Loss Validation PPL.

Identity Divergent Divergent

RELU 1.626 5.08

GELU 1.611 5.00

Table 5: Different initializations of RAF.

performances of both models are below 25 points

when only 100 or 300 annotated examples are avail-

able. As a result, when there are not enough an-

notated examples available to learn the task, the

use of RAFs instead of GELU is not beneficial for

the Transformer model. However, we again see

that RAFT outperforms the FAFT model as enough

training examples become available.

In addition, we observe that tuning RAFs during

fine-tuning (RAFTfull) is more beneficial compared

to fixing RAFs (RAFTfixed) when the task is more

complex. Considering our findings on the GLUE

benchmark, we conjecture that the task difficulty

may play an additional role besides the amount

of available training data for the performance of

RAFTfull vs. RAFTfixed; however, this remains to

be investigated in future work.

6 Analysis

Impact of RAF initialization. To investigate

how initialization affects the performance of RAFT,

we train RAFT models initialized with GELU,

RELU, and the identity function. Other hyperpa-

rameters are the same as those in section 4. Table 5

shows the performance of different initialization
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SNLI
Trivia QA

verified-web verified-wiki

FAFT 74.22±0.19 24.62±1.48 21.01±0.75

RAFTfull 74.80±0.29 25.40±1.84 21.50±0.76

RAFTfixed 74.76±0.25 25.40±1.25 21.78±0.87

Table 6: Zero-shot performance of FAFT and RAFT.

Models evaluated on SNLI are trained on MNLI. Results

on TriviaQA are based on models trained on SQuAD.

(a) Pre-training (b) Fine-tuned on SQuAD

(c) Fine-tuned on MNLI (d) Fine-tuned on SST2

Figure 1: Rational activation functions of RAFTfull

among different layers after pre-training and fine-tuning.

methods during pre-training. As we can see, choos-

ing common activation functions such as ReLU

or GELU leads to a similar performance while us-

ing the identity function for initialization leads to

divergence.

Zero-shot generalization. To investigate if the

higher performances of RAFT vs FAFT come from

overfitting on the in-domain data, we conduct cross-

domain zero-shot experiments. We use the models

that have been fine-tuned on MNLI and SQuAD

in the full-data scenario and evaluate them on the

same tasks but for different data, namely, SNLI

(Bowman et al., 2015) and TriviaQA (Joshi et al.,

2017), respectively. MNLI and SNLI are both

datasets that aim to evaluate natural language in-

ference while SQuAD and TriviaQA contain ex-

amples for evaluating reading comprehension in

different domains. Table 6 shows the results of our

zero-shot evaluation. We observe that the increased

flexibility and adaptivity of RAFT does not nega-

tively impact its generalization capabilities. In fact,

both variants of RAFT consistently achieve better

performance than the corresponding FAFT model.

Visualizing learned RAFs. Next, we analyze

how the shapes of RAFs change after pre-training

and fine-tuning. First, we analyze the learned RAFs

in different layers of RAFT after pre-training. As

shown in Figure 1a, rational functions have differ-

ent shapes across different layers, none of which

are similar to GELU, or other commonly used ac-

tivation functions in Transformers (cf. Table 1).

This indicates that different layers may need dif-

ferent activation functions to achieve the optimal

performance. Moreover, we see that some features

like monotonicity that often are deemed to be good

for predefined activation functions are not neces-

sary, which is in line with the findings of the Swish

activation function (Ramachandran et al., 2018).

Second, we analyze how the learned RAFs

during pre-training change after fine-tuning in

RAFTfull. Figures 1b–1d show learned RAFs after

fine-tuning RAFTfull on SQuAD, MNLI and SST2

datasets. We observe that some of the learned RAFs

trained on these three tasks differ from each other

and the RAFs after pre-training. We further see

that several RAFs between both tasks have similar

shapes but different slopes across many layers.

To better understand the behavior of learned

RAFs after fine-tuning in different layers on various

tasks, we plot RAFs from the same layer together

across all tasks. Figure 2 shows the learned RAFs

in layer 1 (the bottom layer), layer 6, and layer 12

(the top layer) after pre-training and fine-tuning on

different tasks. We observe that after fine-tuning,

the RAFs in the top layer are more task-specific

and change the most, compared to those in bot-

tom layers. This is in line with prior work that

analyzed the behavior of BERT layers during fine-

tuning, which showed that higher layers exhibit

more changes compared to lower layers (Mosbach

et al., 2020; Merchant et al., 2020; Zhou and Sriku-

mar, 2022). Our results confirm this finding from

the perspective of learned activation functions. It

also demonstrates that RAFs can self-adapt to dif-

ferent layers and tasks during fine-tuning. In addi-

tion, an interesting observation is that the output

ranges of the RAFs of MNLI and QQP in the top

layer are very close to zero. The output of the FFN

layer Layernorm(FFN(x) + x) consists of two

parts: the feedforward branch FFN(x) and the skip

connection branch x. The very small output of acti-

vation functions may indicate that the FFN branch

of the top layer does not contribute much to the

final model performance on MNLI and QQP and
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Figure 2: Learned rational activation functions of RAFTfull in layers 1 (bottom), 6, and 12 (top) among different

tasks.

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itFAFT 1.44±2.85 63.33±9.63 68.82±1.74 55.49±3.94 46.04±24.69 32.92±1.33/32.95±1.24 51.95±3.50 52.20±2.82 45.02

BitF itfull 4.39±3.41 76.49±1.90 74.11±1.04 61.53±3.09 50.41±20.20 33.75±1.38/33.81±1.30 57.22±6.15 50.83±2.74 49.17

BitF itfixed 6.25±3.68 75.96±1.24 74.71±0.34 61.35±3.42 49.91±26.88 33.73±1.40/34.04±1.71 53.19±4.02 51.63±2.26 48.97

Full data1

BitF itFAFT 37.75±1.26 87.80±0.67 82.94±1.20 81.35±0.13 59.29±33.04 71.94±0.38/73.57±0.38 85.38±1.07 55.89±1.70 70.66

BitF itfull 38.46±1.37 88.19±0.16 86.73±1.00 81.03±0.12 85.28±0.33 70.23±0.41/72.53±0.33 80.51±10.75 60.72±1.88 73.74

BitF itfixed 39.96±1.95 88.46±0.28 84.91±5.10 81.02±0.14 85.55±0.44 71.25±0.19/73.26±0.36 77.23±14.23 60.15±0.90 73.53

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 7: Comparison between RAFT and FAFT combined with BitFit.

thus could be pruned. We leave this as future work.

RAFTfixed vs. RAFTfull. In our experiments on

GLUE and SQuAD (Tables 3 and 4), we observe

that fixing the RAFs after fine-tuning (RAFTfixed)

often achieves the best or second best performance

compared to the full-tuning model (RAFTfull) and

FAFT. Fine-tuning RAFs results in higher perfor-

mances when (a) more data is available, i.e., the

full-data scenario in GLUE, or (b) the input task is

more complex such as in SQuAD. We hypothesize

that training RAFs during fine-tuning will be more

effective when evaluated on more complex tasks

and datasets than the ones used this work.

Efficiency comparison between RAFT and

FAFT. In RAFT, RAFs are polynomial ratios and

their coefficients are learned during training, which

adds extra computation overhead. We use RAFs

library with CUDA extension to accelerate. As

shown in Table 8, RAFT is slower than FAFT dur-

ing training since RAFs need to be updated (36.8%

slower at pre-training, 14.8% slower at fine-tuning).

However, RAFT is faster when doing inference due

to the CUDA implementation (13.8% faster at pre-

training, 3.9% faster at fine-tuning).

Parameter-efficient fine-tuning with RAFTs.

In contrast to fine-tuning all parameters in a

pre-trained language model, parameter-efficient

tuning techniques that freeze the majority of

steps/second Pre-training Fine-tuning

Train Inference Train Inference

RAFT 0.38 3.3 12.54 71.05

FAFT 0.52 2.9 14.4 68.38

Table 8: Number of steps per second for training and

inference for RAFT and FAFT.

pre-trained parameters and only fine-tune a small

set can be promising alternatives (Ding et al.,

2022). One such method is BitFit (Ben Zaken

et al., 2022) which only updates the bias terms

in the Transformer model. To investigate the

effectiveness of RAFT in a parameter-efficient

fine-tuning paradigm, we fine-tune the FAFT and

RAFT models with BitFit on the GLUE bench-

mark. We use the same settings as in our previous

experiments and test RAFT and FAFT in three

configurations in the low-data 100 and full-data

scenario: (a) BitF itFAFT uses BitFit with FAFT,

(b) BitF itfull uses BitFit with RAFTfull, and (c)

BitF itfixed uses BitFit with RAFTfixed. As shown

in Table 7, RAFT-based BitFit achieves higher

performance than the FAFT on average in both

data settings: BitF itfixed achieves 3.95 points

improvements and BitF itfull gets 4.15 points

improvements in the low-data scenario while

BitF itfixed performs better with a 2.87 points

boost and BitF itfull performs better with a 3.08

2388



0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80
Av

er
ag

e 
m

et
ric

 o
n 

G
LU

E 
be

nc
hm

ar
k

Full Fine-Tuning

RAFRAFT
BitFitsubRAFT

BitFitsubFAFT
BitFitfull
BitFitfixed
BitFitFAFT
RAFTfull

RAFTfixed

FAFT

(a) Comparison performance in low-data 100 scenario

0.000106% 0.09%
Number of tuned parameters

40

45

50

55

60

65

70

75

80

Av
er

ag
e 

m
et

ric
 o

n 
G

LU
E 

be
nc

hm
ar

k

Full Fine-Tuning

RAFRAFT
BitFitsubRAFT

BitFitsubFAFT
BitFitfull
BitFitfixed
BitFitFAFT
RAFTfull

RAFTfixed

FAFT

(b) Comparison performance in full-data scenario

Figure 3: The number of parameters vs. the perfor-

mance for fine-tuning of RAFT and FAFT.

points boost in the full-data scenario. It is worth

noting that in some tasks, the reported results have

a very large standard deviation (e.g., 33.04 for

BitF itFAFT on STSB) due to several random seed

runs not converging. In our experiments, BitFit is

not as stable as fine-tuning the whole model.

How much can we achieve by only fine-tuning

RAFs? To see to what extent the model can

learn from different tasks by only updating RAFs,

we conduct experiments to only tune RAFs on

the GLUE benchmark in low- and full-data set-

tings. We call this setup where only 1178 param-

eters of the RAFs are updated during fine-tuning,

RAFRAFT.

For comparison, we tune our models with the

BitFit setting using the same amount of parameters,

8Including RAF in the pooling layer for classification

i.e., 117.9 BitF itsubFAFT represents tuning the sub-

set of BitFit of FAFT, and BitF itsubRAFT represents

tuning the subset of BitFit of RAFT. The result is

presented in Appendix F (Table 13). To compare it

from a broader view, we plot Figure 3 based on Ta-

ble 3, Table 7 and Table 13. We observe that if only

a few annotated examples are available (100 ex-

amples), BitF itfixed and BitF itfull can achieve

better performance than full fine-tuning of FAFT.

Only fine-tuning 117 parameters (BitF itsubFAFT,

BitF itsubRAFT and RAFRAFT) —i.e., a negligible

number of parameters compared to 110M parame-

ters in FAFT—results in a comparable performance

as fine-tuning all the parameters with only a drop

of 4.21–6.68 percentage points. In the full-data

scenario, the performance of BitFit (BitF itfull,

BitF itfixed and BitF itFAFT ) lags behind full

fine-tuning of both models. Only tuning RAFs

or a subset of BitFit cannot achieve comparable re-

sults as well. However, RAFRAFT outperforms

BitF itsubFAFT by 7.8% and performs better than

BitF itsubRAFT by 2.94% in this setting.

7 Conclusion and Future Work

In this work, we propose to utilize rational activa-

tion functions (RAF) in Transformers to directly

learn optimal activation functions from data dur-

ing pre-training and fine-tuning. To evaluate the

effectiveness of rational activation functions, we

pre-trained a Transformer-based language model,

namely, RAFT. RAFT achieves a lower validation

perplexity than FAFT during pre-training. Our ex-

perimental results show that RAFT performs better

than FAFT in general language understanding tasks

and reading comprehension tasks across different

data size scenarios. We further visualize and ana-

lyze rational activation functions across different

layers and tasks after pre-training and fine-tuning

and find that they can substantially vary across dif-

ferent layers and tasks. This provides us a new

way to analyze and better understand Transformer-

based language models. For instance, we can inves-

tigate whether layers with similar rational activa-

tion functions encode similar linguistic properties.

We further find that some layers exhibit a close to

zero throughput of the rational activation function

which indicates that the corresponding feedforward

layer does not contribute too much to a model’s

prediction. We consider these as our future work.

9Note that we also update the classification head in all
models and experiments.
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Limitations

Limited training resources. This work evaluates

the effectiveness of rational activation Transform-

ers using limited GPU resources. To provide a

fair comparison, we train and release RAF- and

GELU-based models for a reduced GPU budget;

hence, they are not comparable to publicly avail-

able large pre-trained models such as RoBERTa-

base etc. Still, a fully pre-trained RAFT could be

released once more GPU resources are available.

We furthermore note that we use GELU activation

functions and the original FFN architecture as our

baseline as it is dominantly used in existing models.

Societal impact. The main focus of this work

is the evaluation of trainable activation functions.

While our visualization of the learned activation

functions show that they exhibit substantial differ-

ences depending on the downstream task, further

analysis is necessary to better understand and in-

terpret the shapes. Moreover, it is unclear if the

additional flexibility of the models may increase

their susceptibility towards capturing biases in the

data. At the same time, we conjecture that espe-

cially susceptible models could also be used as

good indicators to detect such biases.
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A Model Architecture

Figure 4 shows the difference part of RAFT and

FAFT.

Figure 4: Rational activation function in the feed-

forward layer (left) and the vanilla GELU counterpart

(right).
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B Fitting abilities of different degrees of

Rational Functions

Figure 5 show the approximate functions of GELU

using rational functions with different degrees. As

we can see, when m = 5 and n = 4 or n = 5,

rational function fit GELU very well in the same

shape. Finally, it is important to note that rational

functions are an universal approximator in a lim-

ited range, e.g., [-5,5]. Especially for out-of-bound

inputs (i.e., values that are not guaranteed by ra-

tional functions), the output of rational functions

may result in values very different from the approx-

imated function (e.g., GELU). While pre-training a

model from scratch with RAFs does not lead to any

problem, directly replacing activation functions in

pre-trained models with RAFs only for fine-tuning

may lead to divergence due to out-of-bound inputs.

C Hyperparameters Tuning

C.1 Pre-training

In our preliminary experiments that some hyperpa-

rameter configurations can lead to instability dur-

ing training due to diverging model updates (e.g.,

for lrθ =7E-4 and batch size of 2048). To stabi-

lize the training without having to rely on a larger

warmup phase (e.g., 6% of the training steps), we

instead adopt the DeepNorm (Wang et al., 2022)

to initialize both models. DeepNorm stabilizes

training by bounding the updates and further scal-

ing the residual branches in Transformers. Using

DeepNorm makes both models, FAFT and RAFT,

achieve lower validation loss and leads to a more

stable training.

We tune the learning rate lrθ for model parame-

ters and lrRAF for RAFs, batch size, warmup steps,

and learning rate scheduler as hyperparameters for

both models separately. The hyperparameter search

space for pre-training stage is as follows:

• Learning rate lrθ for model parameters: 1E-4,

4E-4, 7E-4, 1E-3

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,

1E-2

• Batch size: 2048, 4096

• Warmup ratio: 0%, 1%, 6%

Some results of hyperparameters tuning are pro-

vided in Table 9.

Table 10 shows final hyperparameters we used

for pre-training RAFT and FAFT.

lrθ lrRAF Batch Size Validation Loss

RAFT 1E-4 0.005 2048 2.217

RAFT 4E-4 0.005 2048 1.808

RAFT 7E-4 0.005 4096 1.732

RAFT 7E-4 0.005 4096 1.611

RAFT 1E-3 0.005 4096 1.638

Table 9: Part of Hyperparameters Tuning Results of

RAFT

Hyperparameters FAFT RAFT

Peak lrθ 7E-4 7E-4

Peak lrRAF n/a 5E-3

Learning rate decay linear constant

Gradient clipping 0 0

Batch size 4096 4096

Sequence length 128 128

Adam_beta1 0.9 0.9

Adam_beta2 0.98 0.98

Attention dropout 0.1 0.1

Warmup ratio 1% 1%

Training steps 23k 23k

Table 10: Hyperparameters for pre-training RAFT and

FAFT

C.2 Fine-tuning

The hyperparameters search space for GLUE dur-

ing fine-tuning stage is as follows:

• lrθ: 2E-5, 5E-5

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 3, 10, 20

We further tune the learning rates and number of

training epochs for RAFT and FAFT separately

on a single random seed. For our low-data experi-

ments we fix the number of training epochs to 20

and use early stopping with a patience of 10 epochs.

For our full-data experiments, we train the large

datasets (QQP, MNLI, and QNLI) for 3 epochs and

the others for 10 epochs.

The hyperparameters search space for SQuAD

during fine-tuning is as below:

• lrθ: 2E-5, 5E-5, 1E-4
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(a) Approximate function with degrees m = 4 and n = 4 (b) Approximate function with degrees m = 4 and n = 5

(c) Approximate function with degrees m = 5 and n = 4

Rational Function is overlapping with GELU
(d) Approximate function with degrees m = 5 and n = 5

Rational Function is overlapping with GELU

Figure 5: Approximate Functions of GELU using rational functions

• lrRAF: 1E-4, 5E-4, 1E-3, 5E-3

• Batch size: 32

• Weight decay: 0.1

• Number of epochs: 10, 20

For our experiments, we fine-tune both models with

their best performing lrθ =1E-4 for 10 epochs in

the full-data scenario and 20 epochs in the low-data

scenario.

The hyperparameters search space for BitFit is

as below:

• Learning rate lrθ for model parameters: 5E-5,

1E-3, 5E-3, 1E-2

• Learning rate lrRAF for RAFs: 1E-3, 5E-3,

1E-2

• Batch size: 32

• Training epochs: 3, 10, 20 epochs

We use 3 training epochs for large dataset(QQP,

MNLI, QNLI), 10 epochs for other datasets and 20

epochs for low-resource scenarios. Both models

can converge in the above settings.

D Data Statistics

GLUE is a collection of nine different language

understanding tasks: CoLA (Warstadt et al., 2019),

SST2 (Socher et al., 2013), MRPC (Dolan and

Brockett, 2005), QQP 10, STSB (Cer et al., 2017),

MNLI (Williams et al., 2018), RTE (Dagan et al.,

2005), and WNLI (Levesque et al., 2012). We

exclude WNLI due to the adversarial nature of its

development set and the still unbeaten majority

vote upper bound.11

Table 11 show data statistics of GLUE bench-

mark.

10https://quoradata.quora.com/First-Quo

ra-Dataset-Release-Question-Pairs
11Cf. (12) in https://gluebenchmark.com/faq
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Task CoLA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE

|Train| 8,551 67,349 3,668 363,846 5,749 392,702 104,743 2,490

|Dev| 1,043 872 408 40,430 1,500 9,815/9,832 5,463 277

Metric Matthews corr. acc. acc./F1 acc./F1 Person/Spearman corr. acc. acc. acc.

Table 11: Dataset statistics of the GLUE benchmark

SQuAD is a reading comprehension task where

each example consists of a question, a context,

and the respective span from the context that an-

swers the question. Table 12 show data statistics of

SQuAD.

E Learned RAFs during pre-training and

after fine-tuning

Figure 6 and Figure 7 show learned RAFs in 12

layers after pre-training and fine-tuning on different

tasks, respectively.

F Results of only tuning RAFs

Table 13 shows comparison results between only

tuning RAFs and BitFit with the same parameters

with RAFT and FAFT.
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|Train| |Dev| |Test|

SQuAD v1.1 66,236 21,530 10,789

Table 12: Statistics of SQuAD: the official training dataset is split into training and development sets, and the official

development dataset is used as the test data.

Figure 6: Learned RAFs of different layers after pre-training

Model ColA SST2 MRPC QQP STSB MNLI-matched/mismatched QNLI RTE Avg.

low data 100 examples1

BitF itsubFAFT 1.49±1.87 62.82±7.56 74.80±0.00 52.57±3.83 14.71±7.21 32.73±1.41/32.76±1.30 49.77±0.40 50.83±1.86 41.39

BitF itsubRAFT 2.45±3.58 72.34±3.41 74.67±0.68 55.61±2.35 23.99±10.41 35.32±0.67/35.66±1.05 51.08±0.71 51.70±1.85 44.75

RAFRAFT 4.33±3.02 72.91±2.82 74.47±0.88 51.92±5.03 17.27±10.60 35.24±0.61/35.69±0.92 51.12±0.48 50.47±1.63 43.71

Full data1

BitF itsubFAFT 6.61±7.08 79.52±0.52 71.32±0.22 70.48±0.66 37.33±5.70 53.33±1.13/55.30±0.75 64.04±2.03 54.88±1.42 54.76

BitF itsubRAFT 8.78±5.54 82.02±0.57 71.76±0.77 70.88±1.17 71.40±0.52 51.57±0.54/53.27±1.20 69.87±1.20 57.04±1.19 59.62

RAFRAFT 9.71±12.04 81.70±0.12 74.81±3.09 73.57±0.48 80.79±0.60 57.34±0.19/60.69±0.51 67.89±8.64 56.53±1.83 62.56

1 Results are averaged over five random seeds: 5309, 202206, 20220602, 2259, 49

Table 13: Comparison between fine-tuning RAFs and a subset of 117 BitFit parameters with RAFT and FAFT.
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Figure 7: Learned RAFs in 12 layers across different tasks after fine-tuning

2398


