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Abstract
The spatio-temporal distribution of O and H radicals in a 90 ns pulsed discharge, generated in a
pin–pin geometry with a 2.2 mm gap, in He + H2O (0.1% and 0.25%), is studied both
experimentally and by 1D fluid modelling. The density of O and H radicals as well as the
effective lifetimes of their excited states are measured using picosecond resolution two-photon
absorption laser induced fluorescence. Good agreement between experiments and modelling is
obtained for the species densities. The density of O and H is found to be homogenous along the
discharge axis. Even though the high voltage pulse is 90 ns long, the density of O peaks only
about 1 µs after the end of the current pulse, reaching 2 × 1016 cm−3 at 0.1% H2O. It then
remains nearly constant over 10 µs before decaying. Modelling indicates that the electron
temperature (Te) in the centre of the vessel geometry ranges from 6 to 4 eV during the peak of
discharge current, and after 90 ns, drops below 0.5 eV in about 50 ns. Consequently, during the
discharge (<100 ns), O is predominantly produced by direct dissociation of O2 by electron
impact, and in the early afterglow (from 100 ns to 1 µs) O is produced by dissociative
recombination of O2

+. The main loss mechanism of O is initially electron impact ionisation and
once Te has dropped, it becomes mainly Penning ionisation with He2∗ and He∗ as well as
three-body recombination with O+ and He. On time scales of 100–200 µs, O is mainly lost by
radial diffusion. The production of H shows a similar behaviour, reaching 0.45 × 1016 cm−3 at
1 µs, due to direct dissociation of H2O by electron impact (<100 ns) followed by electron–ion
recombination processes (from 200 ns to 1.5 us). H is dominantly lost through Penning
ionisation with He∗ and He2∗ and by electron impact ionisation, and by charge exchange with
O+. Increasing concentrations of water vapour, from 0.1% to 0.25%, have little effect on the
nature of the processes of H formation but trigger a stronger initial production of O, which is not
currently reproduced satisfactorily by the modelling. What emerges from this study is that the
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built up of O and H densities in pulsed discharges continues after electron-impact dissociation
processes with additional afterglow processes, not least through the dissociative recombination
of O2

+ and H2
+.

Keywords: two-photon absorption laser induced fluorescence, nanosecond discharge,
radical density/distribution, 1D fluid modelling

(Some figures may appear in colour only in the online journal)

1. Introduction

Pulsed non-thermal atmospheric pressure plasmas (NT-APPs)
combine valuable features for industrial applications in fields
as varied as surface processing, assisted combustion, or plasma
medicine [1–5]. They have proven that they could be very
stable even at atmospheric pressure and can even cover large
diffuse volumes of activated gas when a very strong over-
voltage is applied (voltage above breakdown voltage) [6–10].
More commonly, pulsed discharges can greatly improve the
energy efficiency of the production of reactive species com-
pared to the use of continuous or AC discharges [11]. The
plasma chemistry and the pathways of production of the key
reactive species can vary critically depending on the plasma
parameters. Detailed knowledge of the plasma chemistry is
usually required to control and optimise the use of plasma
sources for applications. O and H are highly reactive and are
key precursors of long-living species such as NOx, O3 and
H2O2. Their quantification is therefore necessary to unravel
the chemical pathways in pulsed APPs.

Pulsed APPs can be run both in noble gases (He, Ar, Xe,
… with or without admixtures or molecular gases) and in
molecular gases (air, air and combustible admixtures (meth-
ane/ethane, …), CO2, …) [12–16]. For biomedical purposes,
discharges generated in Helium and Argon can be easily main-
tained at room temperature (in particular He) and ignited at
lower voltages than for other feed gases. With an addition of
up to a few percent of molecular species in the feed gas or by
mixing with ambient air, NT-APPs produce significant con-
centrations of reactive oxygen and nitrogen species (RONS).
Numerous studies were undertaken to unravel the very com-
plex chemistry of APPs in He with molecular species admix-
ing and ambient air mixing [17–26]. To efficiently produce
oxygen containing species (e.g. O, O(1D), O(1S), O2(v), O2(a),
O2(b), O3, …), molecular oxygen or air is often added to
the feed gas. Other works focused on admixing water vapour
which is quasi ubiquitous in plasma medicine and leads to the
production of some of the most reactive species (OH, H2O2,
HO2, …). Despite the additional complexity of the chemistry,
numerical studies gave a hint of the evolution of major react-
ive species in mixtures of He + O2 + H2O [13, 17, 27]. In
[28], the ground state O density experimentally measured in
the channel of a RF COST-like jet run in He + H2O was two
orders of magnitude lower than that measured in a related con-
figuration in He + O2 [19] or in a cylindrical RF plasma jet in
He + O2 in [29]. This is because the production of O from O2

is more efficient than from H2O in these discharges. In regard
with this difference in production efficiency, the work of [28]

also highlighted that the common presence of impurities such
as O2 [20, 28], can play a significant or even dominant role in
the production of O compared to the molecular species inten-
tionally introduced like H2O, when the later are introduced in
low concentrations. In the effluent of APPJs, various processes
can take place that consume or generate RONS downstream
and even in the far effluent. In [30, 31], VUV radiation was
detected far in the effluent region of two He + O2 APPJs in
a helium controlled atmosphere and is believed to maintain a
relatively high O density in the far effluent (∼1014 cm−3). In
the channel, O is mainly produced by electron impact reac-
tions and lost by heavy species particle recombination [31].
When water vapour is introduced, H-based reactive species are
also produced. OH kinetics in He + H2O pin–pin pulsed dis-
charges was studied by Verreycken et al in both a low electron
density mode, as in this work, and a high density mode, for
which the strong ionisation leads to important charge exchange
and dissociative recombination processes in the highly ionised
plasma core [32]. In He + H2O, the role of secondary species
such as HO2 has also been studied in capacitively coupled dis-
charges and plasma jets [19, 33]. In particular, HO2 plays a
role in the acidification of plasma treated liquids due to the
low dissolution reaction of HO2 in water (HO2 →H+ +O2

−).
Its production is fostered by the presence of O2 through:
He + H + O2 → He + HO2. With increasing water vapour
concentration, the impact on the production of reactive spe-
cies is manifold since it also affects the electron properties
and discharge development with competing effects. In the pin–
pin negative pulse discharge studied in [34], it was observed
that the discharge propagation is slower than in dry conditions
probably due to a lower initial electron density left by the pre-
vious pulse, but the channel conductivity becomes higher at
the instant of breakdown due to higher ionisation rates of water
thanHe, leading to a faster returnwave in the presence of water
vapour and consequently leading to a faster current rise. The
effect on electron properties also significantly affects reaction
rates. In RF He + H2O discharges at atmospheric pressure,
the electron density lowers with increasing water concentra-
tion, while the mean electron temperature increases, leading
to complex behaviours of reactions by electronic impact with
increasing water concentration (e.g. OH production by elec-
tron impact dissociation of water [18]). Consequently, the rise
of the species density with increasingwater vapour can be non-
linear. In [34], the electron density was shown to drop by a
factor about 2 with the introduction of 0.25% H2O to a He
feed gas and the electron recombinationwasmuch faster due to
dissociative recombination with ions and water clusters (O2

+,
H2O3

+, etc). In [35], a nanosecond pulsed diffuse discharge
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is generated over liquid water in He with or without O2. ne
and Te were measured by incoherent Thomson scattering. The
maximum electron density reached ∼5 × 1014 cm−3 during
the pulse. The electron temperature measured soon after at the
beginning of the pulse was about 4 eV and dropped quickly
with voltage down to less than 0.5 eV at the end of the pulse.
In general, in streamer discharges, the mean electron temper-
ature in the streamer head is about 4–10 eV [32, 36, 37], while
the electron temperature during the conduction phase is down
to 1–2 eV at most. At such electron densities and temperat-
ures, in He+H2O, it is expected that electron impact reactions
dominate the production of ROS during the discharge and that
recombination processes dominate in the early and late after-
glow as will be demonstrated in this paper through comparison
of experimental and numerical simulation.

The general objectives of this work are to study the kin-
etics of reactive species, in particular O and H, in a fast
pulsed discharge (rise rate ∼80 V ns−1) generated at atmo-
spheric pressure in an enclosed chamber wherein pure or
humid Helium (up to 0.25% H2O) is present. Densities of O
and H are obtained experimentally by picosecond resolution
two-photon absorption laser induced fluorescence (ps-TALIF)
and are combined with 1D fluid modelling to investigate the
reaction mechanisms for O and H production.

The measurement of the spatio-temporal evolution of
atomic species in non-homogenous atmospheric plasmas
requires spectroscopic or laser methods. TALIF is based on
the measurement of the fluorescence emitted by a laser pulse
excited state of the probed atomic species. The density of the
atomic species in its ground state is related to the fluorescence
signal through a system of rate equations that depend on the
population/depopulation mechanisms of these states. This sys-
tem of equations is valid under certain excitation conditions
that will be discussed in this paper. Under these conditions,
TALIF requires the precise knowledge of the fluorescence
decay times but at atmospheric pressure, quenching is strong
and these decay times are of the order of a few nanoseconds
or less, while the quenching partners are largely unknown.
Thus, quenching cannot be accurately calculated and the use
of fs or ps laser pulses and detection systems are necessary to
determine the decay time accurately. In this work, TALIF is
performed in the unsaturated regime with a ps pulse to resolve
the fluorescence decay times. Oxygen calibration is performed
with a xenon source and hydrogen with a krypton source. This
method has already been described in a number of sources
[29, 38–44].

One-dimensional plasma fluid modelling was performed to
better understand the reaction kinetics of O and H as meas-
ured in the experiments. The model and chemistry set used
are described and discussed in section 3 and in the appendix
respectively.

2. Experimental setup and method

2.1. The discharge system

The discharge is generated in a 2.2 mm gap pin-to-pin elec-
trode geometry enclosed in a 0.3 l vessel. The electrodes are

Figure 1. Typical voltage and current signals in He + 0.1% and
0.25% H2O for a gap of 2.2 mm.

both made of stainless steel, they are symmetric of conical
shape with a tip which radius of curvature is around 500 µm. A
positive high-voltage nanosecond pulse is applied to one of the
pins by means of a high voltage DC supply coupled to a home-
made switch box delivering a pulse of about 2 kV voltage,
35 ns rise time (10%–90%) and 90 ns duration FWHMat 0.1%
H2O (80 ns at 0.25% H2O), see figure 1. The energy dissip-
ated in the discharge is kept constant at 90 µJ by adjusting the
voltage amplitude. The discharge is run at 5 kHz. The voltage
is measured using a high bandwidth probe (Tektronix P5100A
500 MHz) and the current with a Rogowski coil probe—CM-
100-L, 1.0 V A−1 (Ion Physics). The applied voltage and the
discharge current are recorded with a 1 GHz–10 Gs s−1 digital
oscilloscope (LeCroy wavesurfer 10). The discharge is gener-
ated in helium (99.996% purity) with a total controlled flow
rate of 1 l min−1, injected in the vessel sideways to the axis
of the electrodes (about 3 cm from the discharge axis). Water
vapour is admixed to the gas flow by guiding a fraction of the
total helium flow through a glass bubbler filled with distilled
water as in [18]. The amount of water vapour is calculated
using the vapour pressure at room temperature and the flow
rate through the bubbler. Most of the lines are made of stain-
less steel to limit the level of impurities in the gas. The output
gas of the reactor is guided to an exhaust several metres down-
stream.

2.2. The laser and fluorescence detection setup

The laser and detection setup are illustrated in figure 2. An
Nd:YAG pumped picosecond laser at 1064 nm is coupled
first to an amplifier (APL2100, Ekspla) and second to a
system (PG411, Ekspla) made of (i) a parametric generator
(OPO + OPA), (ii) a second harmonic generator (FSH/SSH)
and (iii) a deep UV extension system. It enables to generate
a 30 ps-laser pulse of up to a few hundreds of µJ that can be
tuned in the range 193–2300 nm with a spectral bandwidth of
about 4 cm−1, at 10 Hz.
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Figure 2. Laser and fluorescence detection setup adapted from [28]. Reproduced from [28]. © The Author(s). Published by IOP Publishing
Ltd CC BY 4.0.

The laser pulse energy is controlled over time with a pair
of rotating attenuators coupled to an energy meter. At every
laser shot, the energy is monitored and compared to the target
energy value and the pair of attenuators is rotated accordingly
by a stepper motor to increase or lower the laser beam energy
of the next shot. A pair of attenuators is used to compensate
for the laser beam deviation across each attenuator and keep a
straight laser beam line. The attenuators are coated CaF2 sub-
strates (Layertec®). The standard deviation of the shot-to-shot
fluctuations in the pulse energy is about 6%.

The laser beam is focused with a 30 cm focal length lens
into the discharge gap plane, the focus point being a few
centimetres after the discharge axis to get a laser beam dia-
meter of 300 µm at the point of TALIF measurement, between
the electrodes. The laser beam diameter is measured by slid-
ing a razor blade across the laser beam while its energy is
recorded. This beam diameter was chosen to get sufficient
TALIF signal and spatial resolution while avoiding satura-
tion of the two-photon transition or laser-plasma interactions
(photo-ionisation and photo-dissociation, here) and to avoid
any damage of the reactor windows and cuvette walls. The
laser beam is then stopped by a beam dump.

The fluorescence emission of the laser pulse excited state
is collected at 90◦ by a doublet of achromatic lenses (dia-
meter 50 mm each, effective focal length 80 mm) and recor-
ded with a 4Picos ICCD camera from Stanford Computer
Optics (780 × 580 array, 8.3 µm2 pixels, S25IR photo-
cathode) equipped with an interference filter placed in front
of the camera (central wavelengths λO = 844.5 ± 0.5 nm,
λH = 656 nm± 5 nm, λXe = 835± 5 nm, λKr = 825± 5 nm)
to eliminate stray light and fluorescence at other wavelengths.
To increase the signal to noise ratio, the fluorescence signal of
30–300 shots has been accumulated on the ICCD. The cam-
era is triggered by a TTL output signal from the laser which
has only 5 ps jitter with the laser pulse, and the internal cam-
era jitter between the gate opening and the reception of the
trigger signal is only 10 ps, allowing the measurement of sub-
nanosecond fluorescence lifetimes (see table 1).

The TALIF technique is performed in the non-saturated
regime using the noble-gas calibration technique [38–44].

In this regime, the density nx of the ground state species
x is related to the density of the gas used for calibration ncal
through:

SF,x
SF,cal

=
η (λF,x)

η (λF,cal)

Tf (λF,x)

Tf (λF,cal)

Tw (λF,x)

Tc (λF,cal)

aik,x
aik,cal

σ
(2)
x

σ
(2)
cal

nx
ncal

×

(

EL,x

EL,cal

λL,x

λL,cal

)2

where SF is the measured fluorescence signal that has been
integrated spatially, temporally and spectrally, η (λF) is the
camera quantum efficiency at the fluorescence wavelength λF,
Tf/w/c are the transmission coefficients of the filter/reactor win-
dow/cuvette wall, aik are the branching ratios of the transitions
(aik =

Aik∑
k Aik+

∑
q k

i
qnq

, where Aik is the Einstein coefficient of

the transition from state i to k, kiqnq is the quenching rate
between state i and q), σ(2) are the cross sections for two-
photon absorption, E is the laser energy at the position of
TALIF measurement and λLiS the laser wavelength.

The atomic species probed are oxygen and hydrogen and
the associated calibration gases used for TALIF analysis are
respectively xenon and krypton. The TALIF schemes for these
species are as illustrated in figure 3 of [28]. The ground
state of atomic oxygen O(2p4 3PJ), as well as the excited
states O(3p 3PJ), are triplet states with J = 0,1,2. The laser
wavelength for two-photon absorption of this transition from
J= 2 is 225.6 nm. Relaxation of the triplet upper state happens
through quenching and radiative emission at 844.6 nm. To get
the total density of the ground triplet state of O, it is necessary
to correct the density of the level J = 2 measured (n2) with
the Boltzmann factor: nO = n2

g2

∑

J=0,1,2 gJe
−EJ/(kBTB), where

the spectral parameters can be found on the NIST database.
The gas temperature was estimated from [34]. With a linearly
polarised laser at 205.1 nm, the ground state of atomic hydro-
gen H(1s 2S1/2) can be excited to the two sub-levels H(3s 2S1/2)
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Table 1. Parameters for TALIF analysis.

Pressure λL (nm) λF (nm) ratio of σ(2) Aik (s
−1) τik (ns) EL (µJ)

O 1 atm 225.6 844.6 σ

(2)
Xe

∑
J ′ σ

(2)

O,J→J ′

= 1.02± 0.2 2.88 × 107 9 ± 0.5 19.6
Xe 200 Pa 224.3 834.9 3.08 × 107 13 0.64

H 1 atm 205.1 656.3 σ

(2)
Kr

σ

(2)
H

= 0.62± 0.31
4.41 × 107 1.7 ± 0.1 7.9

Kr 200 Pa 204.1 826.3 2.79 × 107 14 0.55

Reference for σ(2)
Xe [1]:—reference for σ(2)

O [2]:—reference for Aik [3]. The uncertainty of the measured fluorescence lifetime of O and H is given by the
standard deviation of repeated measurements.

and H(3d 2D3/2,5/2) of 0.15 cm−1 spectral separation, much
lower than the laser spectral width. Relaxation of these three
upper states happens mostly through quenching and radiative
emission at 656.3 nm with a natural lifetime of the weighted
combination of the 3s and 3d sublevels of 17.6 ns [45]. Selec-
tion rules prevent the sub-level 3p 2P1/2,3/2 to be excited by the
laser. However, L-mixing, i.e. the redistribution of the popu-
lation in the three mentioned higher excited levels of atomic
hydrogen, can lead to a loss of fluorescence signal. However,
since the work of Preppernau et al [46], the significance of
that process was not established clearly and the experimental
measurement of the lifetime of H (n = 3) is used for calib-
ration. The TALIF schemes considered for the rare gases are
simpler. The ground state of Xenon Xe(5p6 1S0) is excited to
the single upper state Xe(6p′[3/2]2). It relaxes through quench-
ing and radiative emission to several lower states, in particular
Xe(6s′[1/2]1) at 834.91 nm, with an optical branching ratio
of 0.733 [47]. The ground state of Krypton (Kr(4p6 1S0) is
excited to the single upper state Kr(5p′[3/2]2), that radiates
to the lower state Kr(5s′[1/2]1) at 826.32 nm with an optical
branching ratio of 0.953 [48].

The parameters used for the TALIF measurement of oxy-
gen, hydrogen, xenon and krypton densities are given in
table 1. In particular, it should be noted that the value of the
two-photon cross section of Xenon used in this work is the
recently measured value given in [49].

3. Modelling and numerics

A one-dimensional plasma fluid model was employed in this
work, which is based on a system of differential equations,
comprised of the equations of continuity of the flux density of
electrons, electron energy, ions, and neutral species, and Pois-
son’s equation (as in e.g. [50–52]):

∂ne
∂t

+∇· Je = Se −
Γe

R
, Je =−De∇ne + neµe∇ϕ ; (1)

∂nε
∂t

+∇· Jε = eJe · ∇ϕ − Sε, Jε =−Dε∇nε + nεµε∇ϕ ;

(2)

∂nip
∂t

+∇· Jip = Sip −
Γip

R
, Jip =−Dip∇nip − nipµip∇ϕ ;

(3)

∂nin
∂t

+∇· Jin = Sin −
Γin

R
, Jin =−Din∇nin + ninµin∇ϕ ;

(4)

∂nn
∂t

+∇· Jn = Sn − nn
(

Dn/Λ
2
)

+
χ iQT

Mj
, Jn =−Dn∇nn;

(5)

ε0∇
2ϕ =−e(nip − nin − ne) , (6)

where n, J, D, µ, S are the number densities, transport
fluxes, diffusion coefficients, mobility coefficients, and reac-
tion source terms, respectively. The subscripts e, ε, ip, in, n
refer to electrons, electron energy density, positive ions, neg-
ative ions, and neutrally charged species, respectively. The
electron energy density is defined as nε = neε̄ where ε̄ is
the average electron energy. ϕ is the electrostatic potential;
ε0 is permittivity of free space; and e is elementary charge.
Neutral species are assumed to radially diffuse away from
the discharge into the remaining vessel through a loss term
nn(Dn/Λ2), where Λ is the characteristic diffusion length, with
(1/Λ)2 = (2.4/R)2 + (π/L)2, and R is the discharge radius, con-
sistent with optical emission spectroscopy as 0.25 mm, and
L is the inter-electrode gap length [53]. An ambipolar diffu-
sion of charged species into the remaining vessel is assumed.
The radial ambipolar flux of positive species, −Dipnip/R−
nipµipEr, is set equal to the radial flux of negative species,
−Dni,enni,e/R+ nni,eµni,eEr, along the discharge axis, with the
ambipolar field, Er, solved for in the course of the simula-
tions. The loss term was added to the charged species con-
tinuity equations of Γ/R where Γ corresponds to a species
ambipolar flux. The total mass flow rate of species radially
diffusing away from the discharge is matched by a mass flow
rate of species from the remaining vessel diffusing into the dis-
charge. The species diffusing into the discharge are assumed
to have the mass fraction corresponding to the initial condi-
tions. The production term χ jQT/Mj was added to the con-
tinuity equation of vessel species j (O2, H2, H2O, and He).
Where Mj is the mass of vessel species j, QT is the total
mass flow of all species diffusing away from the discharge,
∑

(Dn/Λ
2)nnMn +

∑

(Γ/R)nni,np,eMni,np,e, and χ j being the
fraction of the total mass flow rate into the discharge of species
j, (Dj/Λ

2)njiMk/
∑

(Dj/Λ
2)njiMk, where nji corresponds with

the initial densities of background species j.
The local mean energy approximation is used, where the

macroscopic electron swarm characteristics vary only with the
local average electron energy. Electron transport and reac-
tion coefficients are determined by the solution of the local
steady state two-termBoltzmann equation, parameterised over
a range of average electron energies [54]. The validity of the
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local mean energy approximation becomes imprecise at cer-
tain times in the discharge evolution. It was found in the mod-
elling that for a short period of time, while the discharge
channel spans from the cathode to the anode, and the applied
voltage is still high, the sheath electrons become hot (up to
160 eV), and so would ‘run away’ [54]. Further, the fast time
scales of the discharge lead to a greater significance of transi-
ent features in the EEDF. As a result of employing the steady
state approximation when deriving the electron Boltzmann
equation, these transient features of the EEDF were not mod-
elled. It was shown that the rapidly varying electric fields
in pulsed discharges, without space charge being considered,
can lead to transient EEDF structures that, for example, alter
the density of O by around 15% in comparable discharges
[55]. Other time-dependent EEDF effects in atmospheric pres-
sure pulsed discharges, for example, occurring as a result of
electron–electron collisions, to the authors knowledge, remain
uninvestigated in these conditions. The simulations performed
here reveal excitation degrees for electronically excited spe-
cies greater than 1× 10−4 during the pulse, which is sufficient
to alter the EEDF by super-elastic collisions [54]. Finally, the
Maxwellianisation of the electron energy distribution func-
tion by electron–electron collisions could have a quantitative
effect on radical species densities produced during the pulse
[53]. Solving the model self-consistently with a more general
approach to the electron kinetics would improve the accur-
acy of the modelling in such discharges. Other considerations
relevant to electron kinetics could include gas hydrodynamic
effects, as well as a more detailed description of the elec-
tron emission from cathode, and the role of gas phase vibra-
tional energy. However, we believe the basic plasma model
employed in this work does qualitatively capture the domin-
ant channels of production and losses of O and H.

The reaction kinetic scheme is presented in the appendix
with the electron collision cross sections used to determine
the transport and reaction coefficients for the electrons. Trans-
port coefficients for ions and electrically neutral heavy species
were obtained from [53, 56].

The computation domain used corresponds to the interelec-
trode dimension, with a length of 2.2 mm. Boundary condi-
tions at the anode describe the absorption of a thermal flux
of plasma species and the electron energy density, and a con-
dition describing applied voltage pulses. The boundary con-
ditions used for the plasma species (equations (7)–(9) and
(11)–(13) were derived in [57], or can be derived from the
same article assuming De = 5/3 Den [54]:

Je = n
(

1
2

)

√

8kBTe
πme

ne; (7)

Jε = n
(

5
6

)

√

8kBTe
πme

nε; (8)

Jip,in,n = nSip,in,n
1
4

√

8kBTg
πmip,in,n

nip,in,n; (9)

ϕ = 0.5V0 (tanh(νrise (t−Pstart))− tanh(νfall (t−Pend))) ,
(10)

where m is the species mass, n is the unit vector facing out-
wards of the vessel, kB is the Boltzmann constant, S is the
sticking coefficient (with values from [13]). Te is the electron
temperature defined as 2/3ε̄, and Tg is the gas temperature,
set to 300 K. The voltage pulse waveform shape parameters
(V0, νrise, νfall, Pstart, Pend) were chosen to fit the experiment-
ally measured pulses, where V0 is the voltage pulse amplitude,
νrise is the pulse rise time rate, νf is the pulse fall time rate,Pstart

is the pulse start time, and Pend is the pulse end time.
The boundary conditions at the grounded electrode

describes the absorption of a thermal flux of plasma species
and electron energy density, secondary electron emission, and
zero electrostatic potential:

Je = n
(

1
2

)

√

8kBTe
πme

ne − γJip; (11)

Jε = n
(

5
6

)

√

8kBTe
πme

nε − γ (I− 2W)Jip; (12)

Jip,in,n = nSip,in,n
1
4

√

8kBTg
πmip,in,n

nip,in,n; (13)

ϕ = 0, (14)

where the secondary emission coefficient, γ, is assumed to
characterize all mechanisms of electron emission (due to ion,
photon, and excited species bombardment), andwas set to 0.25
(by matching modelling and experiment); I corresponds to the
energy required for ionisation of a given ion, andW is the work
function of the cathode material, set to 4.1 eV [58].

Modelling revealed the build-up of O2 and H2 over success-
ive pulses until a quasi-steady state was reached. The steady
state values of the presented results of O2 and H2 were found
by changing the initial conditions of O2 and H2 such that the
initial and final values of O2 and H2, measured in the centre of
the discharge, were within 0.5% of each other after a voltage
pulse. The initial conditions were 170 ppm of O2, and 70 ppm
of H2, for 0.1% H2O, and 190 ppm of O2, and 75 ppm of
H2 for 0.25% H2O. The remaining mole fraction was made
up by Helium, with trace amounts of the other species. Ten
pulses were modelled with the final pulse used in the results
presented. The final pulse voltage pulse width was slightly
altered in the last pulses (not by more than 3 ns), to achieve
a pulse energy of 90 µJ, to match the pulse energy from the
experiment.

The plasma model was implemented using the commercial
finite element analysis software COMSOL Multiphysics.

4. Spatial and temporal evolution of the density of
O and H

The temporal evolution of the density of the ground states of
O and H obtained by ps-TALIF and by 1D fluid modelling
at mid-gap in He + 0.1% and 0.25% H2O are presented in
figure 3. They demonstrate a reasonable agreement between
experiment and modelling, within around a factor of 3 for O
and H densities.
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Figure 3. Experimental and numerical results of the temporal evolution of the density of O (left) and H (right) at mid-gap (U = 2 kV,
P = 1 atm, gap = 2.2 mm). Experimental error is based on standard deviation determination only. The other major uncertainties come from
the uncertainty of the TALIF cross sections of O and H which are 20% and 50% respectively and of the fluorescence lifetimes determination
and the total experimental error is estimated to be 60% and 64% respectively.

4.1. He + 0.1% H2O

Atomic oxygen is mainly produced during the early post dis-
charge. In the experiments, the density builds up over the first
1–2 µs, then remains nearly constant at about 2 × 1016 cm−3

over 10 µs before decreasing on a time scale of 100 µs. The
density of H shows a strong production during the discharge
followed by a moderate decrease over 200 ns and then, simil-
arly to O, remains constant at about 0.45 × 1016 cm−3, over
10 µs, before decreasing on a time scale of 100 µs. While the
density evolution of H in the post discharge is well reproduced
by modelling, the fast rise and fall of H during the discharge
phase, between 0.1 and 0.4µs, is underestimated by themodel.
The authors speculate the rotational and vibrational energy
of H2O, which is not captured by the model, may lead to an
increased rate of dissociation of H2O by electron impact, lead-
ing to the faster rise of the H density than is currently predicted
in the model.

At increased water vapour concentration, the production of
O is enhanced during the pulse, which is reproduced to a lesser
extent by modelling. The production processes governing the
evolution of H density seem similar at increased water content,
only the absolute density of H increases by nearly 40% from
0.1% to 0.25% H2O.

The production and loss reaction rates of O and H in
He + 0.1% H2O according to the modelling are given in
figure 4. They show that the four most significant kinetic pro-
cesses happen during the discharge and in the early post dis-
charge (<1 µs). Since the relative importance of these pro-
cesses is quite similar at 0.25% H2O according to the model,
only processes at 0.1% H2O are shown here. The temporal
evolution of the electron temperature obtained by modelling
is given in figure 5.

According to the simulation, at 0.1% H2O, atomic oxygen
is dominantly formed through two different processes. As the
electron temperature remains high (4–6 eV) during the voltage

pulse (up to∼100 ns), electron impact dissociation of O2 dom-
inates, with molecular oxygen being produced during the pre-
vious discharges (density of O2 at the beginning of the pulse
is around 4 × 1021 m−3). As the electron temperature drops
down below 0.5 eV, O is then formed through a two-step pro-
cess: formation of O2

+ (during the discharge, mainly by charge
transfer of He2+ and H+ with O2), followed by electron–ion
dissociative recombination with O2

+. This process lasts until
O2

+ is totally consumed and is responsible for most of the pro-
duction of O. It was already pointed out in Bruggeman and
Schram [59] that dissociative recombination was an import-
ant process for the production of radicals (in that case OH) in
atmospheric pressure glow discharges where the electron tem-
perature ranges in 1–2 eV at low gas temperature. The same
applies here for O and H (see below for H), all the more as the
electron temperature decays down below 0.5 eV since the rate
for dissociative recombination is proportional to the inverse of
the electron temperature.

The main loss mechanisms of O also vary with the electron
temperature. As the latter is still high, 4–6 eV, O is ionised by
electron impact to form O+. Only few O+ ions will recom-
bine to atomic oxygen, most O+ ions are lost in the formation
of O2

+. From 100 to 400 ns, charge transfer with He+ and
ionisation by excited Helium states dominate but the dens-
ity of O still rises due to electron–ion recombination. After
400–600 ns, radial diffusion losses largely dominate and lead
to the drop of O density after 1–2 µs when the production
of O nearly stops. The situation is rather similar for H. Dur-
ing the discharge, H is mainly produced by electron impact
dissociation of H2O and OH and by electron impact disso-
ciation of H2

+ (density of H2 at the beginning of the pulse
is around 1.7 × 1021 m−3 according to modelling). During
the early post-discharge, H production is almost entirely due
to electron–ion recombination with H2

+ and H+. Losses are
mainly governed by Penning ionisation and charge transfer
reactions with O+, then by radial losses.
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Figure 4. Temporal evolution of the four largest production and loss reaction rates for O (top) and H (bottom) in He + 0.1% H2O, and rate
of radial losses for O and H. HeS and He2S represent the excited states of He and He2, treated as an effective excited state in the chemistry
set.

Figure 5. Temporal evolution of the mean electron temperature at mid gap obtained by 1D fluid modelling at 0.1% H2O.

Neutral kinetics involving O and H happen on longer time
scales than radial diffusion. The fastest processes are recom-
bination of O and H with OH, to form O2 + H and H2 + O

or H2O, respectively. However, from 1 to 20 µs, the dens-
ity of OH drops down from 5 × 1020 to 2 × 1019 m−3

and the recombination time scale in these conditions is about

8
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60 µs and 1500 µs, respectively. Therefore, once the ion
chemistry is finished, the densities of O and H remain rel-
atively constant until it drops due to radial diffusion. This
large time window may therefore provide an opportunity to
use O and H radicals to produce long-lived species tailored
to specific applications. Increased repetition frequency up to
50 kHz would trigger the next discharge before the decrease
of the density of O and H radicals, possibly fostering their
production.

Finally, we can note that in the conditions presented here,
the impact of impurities seems negligible on the formation of
atomic oxygen. The concentration of water vapour is sufficient
to form significantlymoreO2 thanwhat comes from impurities
coming from the bottle and the gas lines. Similarly, effects of
impurities on an RF atmospheric discharge in He+H2Owere
shown to affect the density ofO forwater concentrations below
0.1% only [19].

4.2. He + 0.25% H2O

As the water vapour concentration in the feed gas increases,
both the discharge properties and the kinetics are affected.
Competing effects due to the loss of electrons by attachment
processes and increasing electron temperature due to energy
losses in inelastic collisions with water molecules, can lead to
a complex evolution of the discharge development and reac-
tion rates of electron impact induced reaction. For instance,
in He + H2O RF discharges, changes in the electron proper-
ties induce the non-linear rise of OH density with increasing
water content [18]. Also, in the negative ns-pulsed discharge
studied in [34], humidity affects the discharge ignition due to a
competition between a slower discharge propagation at lower
initial electron density (left by the previous pulse), leading to a
higher channel conductivity at breakdown and a faster return
wave and consequently a faster current rise. A similar beha-
viour may characterise this work (see figure 1).

Figure 3 (left) shows a strong enhancement of the pro-
duction of O during the discharge phase at 0.25% H2O. It
is reproduced to a lesser extent by modelling. The increased
production of O during the discharge is consistent with the
dissociation of O2 by electron impact being the dominant
production reaction of O, since the O2 density produced by
the previous pulses increases significantly with H2O concen-
tration (4.7 × 1021 m−3 according to modelling). Also, the
modelling suggests an increased reaction rate for the disso-
ciation of OH by electron impact relative to the other pro-
cesses. The earlier rise of the density of O at 0.25% H2O
is only due to the earlier rise of the current as explained
above.

The density of H increases by about 50% as the water
concentration increases from 0.1% to 0.25%, while the tem-
poral evolution of the density is unchanged. This could be
explained by the fact that H is mainly produced by dir-
ect interaction of electrons with water molecules and by
He∗ induced reactions with H, the density of He∗ being

Figure 6. Evolution of the O density along the discharge axis at
4 µs. Grey zones are impacted by loss of TALIF signal by
interaction with the electrodes (solid angle of detection, beam
profile truncation) and are not studied in detail here.

weakly affected by the increase of humidity according to
the modelling work of Murakami et al [60] in helium–
oxygen plasmas with humid-air impurities at atmospheric
pressure.

The build-up of O2 over successive pulses occurs more
quickly with increased H2O water vapour. The reported mod-
elling finds a factor of 1.2 increase in the average O2 density
at the start of the final pulse, with 0.25% H2O as opposed to
0.1% H2O. Given that direct electron impact of O2 is the main
source of O, the build-up O2 is an important aspect when con-
sidering the controllability of O production.

The results and the analysis of the kinetics of O and H
done at mid gap are valid along the discharge axis. Indeed,
the experimental determination of the density of O along
the axis of the discharge at 4.0 µs (done at 0.1% H2O) is
illustrated in figure 6. It demonstrates that the production of
O is quasi homogenous within experimental error along the
gap.

It should be noted that water clusters are not yet considered
in the currentmodel while they could allow for additional path-
ways to O and H production in the afterglow, similar in nature
to the ones identified in this work [28]. This effort will be the
topic of a future publication.

5. Conclusion

The spatio-temporal distribution of O and H radicals in a
He + H2O (0.1%–0.25%) nanosecond pulsed discharge was
studied experimentally by ps-TALIF and by 1D fluid model-
ling. The model indicates which reaction pathways achieve the
O and H production seen in the experiment, particularly in the
afterglow. Most O and H radicals are produced in the early
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afterglow (up to 1 µs) through recombination processes of O2
+

and H2
+. The accurate prediction and optimisation of these

radical densities in pulsed discharges therefore requires the
consideration of both electron-impact dissociation during the
plasma pulse and the additional afterglow processes, mainly
dissociative recombination.
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Appendix

The kinetic scheme used in this work was based on [61], which
had reactions involving nitrogen removed. The reactions that
involved H2 and H and the non-nitrogen species from [13],
were also included.
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Reaction number Reaction formula Reaction coefficient Energy cost (eV) References

R1 e + He→ e + He f (xgas, εavg) Calc. [62]
R2 e + He→ e + He

∗

f (xgas, εavg) 19.80 [62]
R3 e + He

∗

→ e + He 1.7633 × 10−16 εavg
0.31

−19.80 [63]
R4 e + He→ 2e + He+ f (xgas, εavg) 24.58 [62]
R5 e + He

∗

→ 2e + He+ 1 × 10−13 εavg
0.6 exp(−7.175/εavg) 4.78 [63]

R6 e + O2 → e + O2 f (xgas, εavg) Calc. [64]
R7 e + O2 → 2e + O2

+ f (xgas, εavg) 12.06 [64]
R8 e + He2

∗

→ 2e + He2+ 7.28 × 10−16 εavg
0.71 exp(−5.1/εavg) 3.4 [63]

R9 e + He2+ → He + He
∗

6.1382 × 10−15 εavg
−0.5 [63]

R10 2e + He+ → e + He 7 × 10−32 Teg
−4.5 [65]

R11 2e + He2+ → e + 2He 7 × 10−32 Teg
−4.5 [65]

R12 e + He + He2+ → 3He 2 × 10−39 Teg
−2.5 [65]

R13 e + He+ → He 2 × 10−18 [65]
R14 e + He2+ → 2He 1 × 10−14 [65]
R15 e + O2

+
→ 2O 7.762 × 10−15 εavg

−1
−6.91 [63]

R16 e + He + He+ → He + He
∗

1 × 10−39 [65]
R17 e + He + He2+ → 2He + He

∗

5 × 10−39/Teg [65]
R18 e + He + He2+ → He + He2

∗

1.5 × 10−39 [65]
R19 2e + He+ → e + He

∗

6 × 10−32 Teg
−4 [65]

R20 2e + He2+ → He + He
∗

+ e 1 × 10−32 Teg
−4 [65]

R21 2e + He2+ → He2
∗

+ e 3 × 10−32 Teg
−4 [65]

R22 e + He+ → He
∗

6.76 × 10−19 Te
−0.5 [65]

R23 e + He2+ → He + He
∗

8.9 × 10−15 Teg
−1.5 [65]

R24 e + H2O → e + H2O f (xgas, εavg) Calc. [65]
R25 e + O2 → O2

− f (xgas, εavg) [65]
R26 e + H2O →e + H + OH f (xgas, εavg) 9 [65]
R27 e + H2O → O+

+ H2 + 2e f (xgas, εavg) 19 [66]
R28 e + H2O → OH + H+

+ 2e f (xgas, εavg) 16.9 [66]
R29 e + H2O → O + H2

+
+ 2e f (xgas, εavg) 20.7 [66]

R30 e + H2O → H + OH− f (xgas, εavg) [13]
R31 e + H→ H+

+ 2e f (xgas, εavg) 13.6 [66]
R32 e + H2 → H2

+
+ 2e f (xgas, εavg) 15.96 [66]

R33 e + H2 → 2H + e f (xgas, εavg) 14.68 [66]
R34 e + H2

+
→ e + H + H+ 1.89 × 10−7 Te

0.5 exp(−2.3/Te) [66]
R35 e + H+

→ H 2.62 × 10−13 Te
0.5 [66]

R36 2e + H+
→ e + H 8.8 × 10−27 Te

−4.5 [66]
R37 e + H2

+
→ 2H 5.66 × 10−8 Te

−0.6 [66]
R38 e + OH→ e + O + H 2.08 × 10−13 Te

−0.76 exp(−6.9/Te) 6.9 [65]
R39 2e + O2

+
→ e + O2 7 × 10−32 Teg

−4.5 [65]
R40 e + O2 + O2

+
→ 2O2 2.49 × 10−41 Teg

−1.5 [65]
R41 e + O3 → O + O2

− 5.87 × 10−15 Te
−1.5 exp(−1.59/Te) [65]

R42 e + O3 → O2 + O− 2.12 × 10−15 Te
−1.06 exp(−0.93/Te) [65]

R43 e + O−
→ O + 2e 5.47 × 10−14 Te

0.324 exp(−2.98/Te) 2.98 [65]
R44 e + O2 → 2O + e 1.41 × 10−15 Te

0.22 exp(−12.62/Te) 12.62 [65]
R45 e + O2 → O + O− 1.07 × 10−15 Te

−1.39 exp(−6.26/Te) 6.26 [65]
R46 e + O2 + H2O → H2O + O2

− 1.4 × 10−41 [65]
R47 e + He + O → He + O− 1 × 10−43 [65]
R48 e + He + O2 → He + O2

− 3.6 × 10−43 Te
−0.5 [65]

R49 e + He + O3 → He + O3
− 1 × 10−43 [65]

R50 e + O + O2 → O + O2
− 1 × 10−43 [65]

R51 e + O + O2 → O2 + O− 1 × 10−43 [65]
R52 e + 2O2 → O2 + O2

− 3.6 × 10−43 Te
−0.5 [65]

R53 e + O2 + O3 → O2 + O3
− 1 × 10−43 [65]

R54 e + O+
→ O 4 × 10−18 [65]

(Continued.)
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(Continued.)

Reaction number Reaction formula Reaction coefficient Energy cost (eV) References

R55 e + O2
+
→ O2 4 × 10−18 [65]

R56 2e + O+
→ O + e 7 × 10−32 Teg

−4.5 [65]
R57 e + He + O+

→ He + O 6 × 10−39 Teg
−2.5 [65]

R58 e + O2 + O+
→ O2 + O 6 × 10−39 Teg

−2.5 [65]
R59 e + O → 2e + O+ 9 × 10−14 Te

0.7 exp(−13.6/Te) 13.6 [65]
R60 e + O2 → 2e + O + O+ 5.4 × 10−16 Te

0.5 exp(−17/Te) 17 [65]
R61 e + O2 → O−

+ e + O+ 7.1 × 10−17 Te
0.5 exp(−17/Te) 17 [65]

R62 e + H → e + H f (xgas, εavg) Calc. [66]
R63 e + H2 → e + H2 f (xgas, εavg) Calc. [66]
R64 e + OH → OH− 1 × 10−21 [65]
R65 e + OH + He → He + OH− 3 × 10−43 [65]
R66 He

∗

+ 2He→ He2
∗

+ He 1.3 × 10−45 [63]
R67 2He + He+ → He + He2+ 1 × 10−43 [63]
R68 2He

∗

→ He + e + He+ 2.7 × 10−16 [65]
R69 O2 + He+ → He + O2

+ 3.3 × 10−17 Tg
0.5 [65]

R70 He
∗

+ He2+ → 2He + He+ 1 × 10−16 [65]
R71 O2 + He2+ → 2He + O2

+ 1 × 10−15 Tg
0.5 [65]

R72 2O2 → 2O + O2 6.6 × 10−15 T0
−1.5 exp(−59 000/Tg) [65]

R73 He
∗

+ He + O2 → 2He + e + O2
+ 1.6 × 10−43 [65]

R74 He
∗

+ O2 → He + e + O2
+ 2.6 × 10−16 [65]

R75 2O → O2 9.26 × 10−40 T0
−1 [65]

R76 3O → O2 + O 9.21 × 10−46 T0
−0.63 [65]

R77 2O + O2 → 2O2 2.56 × 10−46 T0
−0.63 [65]

R78 2O + H2O → O2 + H2O 1.7 × 10−44 T0
−1 [65]

R79 O2
−
+ He+ → O2 + He 2 × 10−13 T0

−1 [65]
R80 O2

−
+ He2+ → 2He + O2 1 × 10−13 [65]

R81 O2
−
+ O2

+
→ 2O + O2 1 × 10−13 [65]

R82 O2
−
+ O2

+
→ 2O2 4.2 × 10−13 T0

−0.5 [65]
R83 O2

−
+ He + He2+ → 3He + O2 2 × 10−37 T0

−2.5 [65]
R84 O2

−
+ O2 + He2+ → 2He + 2O2 2 × 10−37 T0

−2.5 [65]
R85 He + O2

−
→ He + O2 + e 3.9 × 10−16 exp(−7400/Tg) [65]

R86 He
∗

+ O2
−
→ He + O2 + e 3 × 10−16 [65]

R87 He2
∗

+ O2
−
→ 2He + O2 + e 3 × 10−16 [65]

R88 O2 + O2
−
→ 2O2 + e 2.7 × 10−16 T0

0.5 exp(−5590/Tg) [65]
R89 H2O + O2

−
→ H2O + O2 + e 5 × 10−15 exp(−5000/Tg) [65]

R90 2He
∗

→ e + He2+ 1.05 × 10−15 [65]
R91 He2

∗

+ He
∗

→ 2He + e + He+ 5 × 10−16 [65]
R92 He2

∗

+ He
∗

→ He + e + He2+ 2 × 10−15 [65]
R93 2He2

∗

→ 3He + e + He+ 3 × 10−16 [65]
R94 2He2

∗

→ 2He + e + He2+ 1.2 × 10−15 [65]
R95 2He + He

∗

→ He + He2
∗

1.5 × 10−46 [65]
R96 2O + He→ O2 + He 1 × 10−45 [65]
R97 O2

−
+ He + O2

+
→ He + 2O2 2 × 10−37 T0

−2.5 [65]
R98 O2

−
+ O2 + O2

+
→ 3O2 2 × 10−37 T0

−2.5 [65]
R99 He2

∗

+ O2 → 2He + e + O2
+ 3.6 × 10−16 [65]

R100 OH + O → O2 + H 2.2 × 10−17 exp(120/Tg) [65]
R101 O + H2O → 2OH 2.5 × 10−20 T0

1.14 exp(−8624/Tg) [65]
R102 2OH → H2O + O 4.2 × 10−18 exp(−240/Tg) [65]
R103 H + OH + H2O→ 2H2O 2.46 × 10−42 T0

−2 [65]
R104 H + OH + O2 → H2O + O2 6.88 × 10−43 T0

−2 [65]
R105 O + H + H2O → H2O + OH 2.76 × 10−44 T0

−1 [65]
R106 H + OH + He → H2O + He 1.56 × 10−43 T0

−2.6 [65]
R107 O2 + H → O + OH 3.7 × 10−16 exp(−8455/Tg) [65]
R108 O−

+ He + O2
+
→ O + O2 + He 2 × 10−37 T0

−2.5 [65]
R109 O−

+ O2 + O2
+
→ O + 2O2 2 × 10−37 T0

−2.5 [65]
R110 O−

+ O2 + O2
+
→ O2 + O3 2 × 10−37 T0

−2.5 [65]

(Continued.)
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(Continued.)

R111 2O3 → O + O2 + O3 1.6 × 10−15 exp(−11 400/Tg) [65]
R112 O3 + H2O → O + O2 + H2O 1.6 × 10−15 exp(−11 400/Tg) [65]
R113 O3 + H → O2 + OH 7.78 × 10−17 T0

0.25 exp(−327.8/Tg) [65]
R114 O3 + O2 → O + 2O2 1.6 × 10−15 exp(−11 400/Tg) [65]
R115 O3 + O → 2O + O2 9.4 × 10−17 exp(−11 400/Tg) [65]
R116 O3 + O → 2O2 8 × 10−18 exp(−2060/Tg) [65]
R117 2O + O2 → O3 + O 3.4 × 10−46 T0

−1.2 [65]
R118 O + 2O2 → O3 + O2 6 × 10−46 T0

−2.8 [65]
R119 O + O2 + O3 → 2O3 2.3 × 10−47 exp(−1057/Tg) [65]
R120 O + O2 + He→ He + O3 3.4 × 10−46 T0

−1.2 [65]
R121 O−

+ O2
+
→ 3O 1 × 10−13 [65]

R122 O−
+ O2

+
→ O + O2 1 × 10−13 T0

−0.5 [65]
R123 O−

+ He+ → O + He 2 × 10−13 T0
−1 [65]

R124 O−
+ He2+ → O + 2He 1 × 10−13 [65]

R125 O−
+ He + He+ → 2He + O 2 × 10−37 T0

−2.5 [65]
R126 O−

+ O2 + He+ → He + O + O2 2 × 10−37 T0
−2.5 [65]

R127 O−
+ He + He2+ → 3He + O 2 × 10−37 T0

−2.5 [65]
R128 O−

+ O2 + He2+ → 2He + O + O2 2 × 10−37 T0
−2.5 [65]

R129 O−
+ He → He + O + e 2.5 × 10−24 T0

0.6 [65]
R130 O−

+ He
∗

→ He + O + e 3 × 10−16 [65]
R131 O−

+ He2
∗

→ 2He + O + e 3 × 10−16 [65]
R132 O−

+ O → O2 + e 2 × 10−16 T0
0.5 [65]

R133 O−
+ O2 → O + O2

− 1.5 × 10−18 [65]
R134 O−

+ O2 → O3 + e 5 × 10−21 T0
0.5 [65]

R135 O−
+ O3 → 2O2 + e 3.01 × 10−16 T0

0.5 [65]
R136 O−

+ H → OH + e 5 × 10−16 [65]
R137 O2

−
+ O → O2 + O− 1.5 × 10−16 T0

0.5 [65]
R138 O2

−
+ O → O3 + e 1.5 × 10−16 T0

0.5 [65]
R139 He + O3 → He + O + O2 1.56 × 10−15 exp(−11 400/Tg) [65]
R140 He

∗

+ O3 → He + O + e + O2
+ 2.6 × 10−16 [65]

R141 He2
∗

+ O3 → 2He + O + e + O2
+ 3.6 × 10−16 [65]

R142 O−
+ O3 → O + O3

− 1.99 × 10−16 T0
0.5 [65]

R143 O2
−
+ O2 → O + O3

− 3.5 × 10−21 [65]
R144 O2

−
+ O3 → O2 + O3

− 6 × 10−16 T0
0.5 [65]

R145 O3
−
+ He→ He + O + O2 + e 3 × 10−16 [65]

R146 O3
−
+ He

∗

→ He + O3 + e 3 × 10−16 [65]
R147 O3

−
+ He2

∗

→ 2He + O + O2 + e 3 × 10−16 [65]
R148 O3

−
+ O → 2O2 + e 1 × 10−17 [65]

R149 O3
−
+ O → O2 + O2

− 2.5 × 10−16 T0
0.5 [65]

R150 O3
−
+ O2

+
→ 2O + O3 1 × 10−13 [65]

R151 O3
−
+ O2

+
→ O2 + O3 2 × 10−13 T0

−1 [65]
R152 O3

−
+ He + He2+ → 3He + O3 2 × 10−37 T0

−2.5 [65]
R153 O3

−
+ O2 + He2+ → 2He + O3 + O2 2 × 10−37 T0

−2.5 [65]
R154 O3

−
+ O3 → 3O2 + e 1 × 10−16 [65]

R155 O−
+ 2O2 → O2 + O3

− 1.1 × 10−42 T0
−1 [65]

R156 O−
+ He + O2 → He + O3

− 1 × 10−42 T0
−1 [65]

R157 O + He+ → He + O+ 5 × 10−17 T0
0.5 [65]

R158 O2 + He+ → He + O + O+ 1.07 × 10−15 T0
0.5 [65]

R159 O3 + He+ → He + O2 + O+ 1.07 × 10−15 T0
0.5 [65]

R160 OH + He+ → He + H + O+ 1.1 × 10−15 [65]
R161 O + He2+ → 2He + O+ 1 × 10−15 T0

0.5 [65]
R162 O2 + He2+ → 2He + O + O+ 1.05 × 10−15 [65]
R163 O3 + He2+ → 2He + O2 + O+ 1 × 10−15 T0

0.5 [65]
R164 O2 + O+

→ O + O2
+ 2 × 10−17 T0

−0.4 [65]
R165 O3 + O+

→ O2 + O2
+ 1 × 10−16 [65]

R166 OH + O+
→ H + O2

+ 3.6 × 10−16 [65]
R167 He

∗

+ O2
+
→ O + He + O+ 1 × 10−26 [65]

(Continued.)
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Reaction number Reaction formula Reaction coefficient Energy cost (eV) References

R168 He2
∗

+ O2
+
→ O + 2He + O+ 1 × 10−16 [65]

R169 He2
∗

+ He → 3He 4.9 × 10−22 [65]
R170 He

∗

+ O → He + e + O+ 2.6 × 10−16 [65]
R171 O + He + O+

→ He + O2
+ 1 × 10−41 T0

0.5 [65]
R172 O + O2 + O+

→ O2 + O2
+ 1 × 10−41 T0

0.5 [65]
R173 He + He

∗

+ O → 2He + e + O+ 1 × 10−43 [65]
R174 He + He

∗

+ O3 → 2He + O + e + O2
+ 1.6 × 10−43 [65]

R175 He + O + H→ He + OH 3.2 × 10−45 T0
−1 [65]

R176 O−
+ O+

→ 2O 2.7 × 10−13 T0
−0.5 [65]

R177 O2
−
+ O+

→ O + O2 2 × 10−13 T0
−1 [65]

R178 O3
−
+ O+

→ O + O3 2 × 10−13 T0
−1 [65]

R179 O−
+ He + O+

→ He + 2O 2 × 10−37 T0
−2.5 [65]

R180 O−
+ O2 + O+

→ O2 + 2O 2 × 10−37 T0
−2.5 [65]

R181 O−
+ O2 + O+

→ 2O2 2 × 10−37 T0
−2.5 [65]

R182 O2
−
+ He + O+

→ He + O + O2 2 × 10−37 T0
−2.5 [65]

R183 O2
−
+ O2 + O+

→ 2O2 + O 2 × 10−37 T0
−2.5 [65]

R184 O2
−
+ O2 + O+

→ O2 + O3 2 × 10−37 T0
−2.5 [65]

R185 O3
−
+ He + O+

→ He + O + O2 2 × 10−37 T0
−2.5 [65]

R186 O3
−
+ O2 + O+

→ O3 + O + O2 2 × 10−37 T0
−2.5 [65]

R187 O3
−
+ He + O2

+
→ O3 + He + O2 2 × 10−37 T0

−2.5 [65]
R188 O3

−
+ O2 + O2

+
→ O3 + 2O2 2 × 10−37 T0

−2.5 [65]
R189 OH−

+ He → He + OH + e 2 × 10−15 exp(−24 030/Tg) [66]
R190 OH−

+ H → H2O + e 1.8 × 10−15 [66]
R191 O−

+ H2O → OH + OH− 1.4 × 10−15 [66]
R192 OH−

+ He2+ → OH + 2He 1 × 10−13 [66]
R193 OH−

+ O2
+
→ OH + O2 2 × 10−13 T0

−0.5 [66]
R194 M + OH−

+ He2+ → 2He + OH + M 2 × 10−37 T0
−2.5 [66]

R195 H + O+
→ O + H+ 6.8 × 10−16 [66]

R196 H+
+ O−

→ O + H 2 × 10−13 T0
−0.5 [66]

R197 O−
+ H2 → H2O + e 6 × 10−16 T0

−0.24 [66]
R198 He+ + H→ H+

+ He 1.9 × 10−21 [66]
R199 He+ + H2 → H+

+ H + He 3.7 × 10−20 exp(−35/Tg) [66]
R200 He+ + H2 → H2

+
+ He 7.2 × 10−21 [66]

R201 He+ + H2O → H+
+ OH + He 2.04 × 10−16 [66]

R202 He2+ + H → H+
+ 2He 3.5 × 10−16 [66]

R203 He2+ + H2 → H2
+
+ 2He 3.5 × 10−16 [66]

R204 He2+ + H2O → O+
+ H2 + 2He 2.1 × 10−16 [66]

R205 He2+ + H2O → H+
+ OH + 2He 2.1 × 10−16 [66]

R206 He2+ + H2O → H2
+
+ O + 2He 2.1 × 10−16 [66]

R207 H+
+ H + M→ H2

+
+ M 2.1 × 10−44 [66]

R208 H+
+ O→ O+

+ H 7 × 10−16 exp(−232/Tg) [66]
R209 H+

+ O2 → O2
+
+ H 2 × 10−15 [66]

R210 H + H2
+
→ H+

+ H2 6.39 × 10−16 [66]
R211 O2 + H2

+
→ O2

+
+ H2 8 × 10−16 [66]

R212 H2 + O−
→ OH−

+ H 3.6 × 10−16 [66]
R213 H+

+ OH−
+ M→ H2O + M 2 × 10−37 T0

−2.5 [66]
R214 H2

+
+ O−

→ H2O 2 × 10−13 T0
−0.5 [66]

R215 H2
+
+ O2

−
→ H2 + O2 2 × 10−13 T0

−0.5 [66]
R216 H2

+
+ OH−

→ H2O + H 1 × 10−13 [66]
R217 He

∗

+ H → H+
+ He + e 1.1 × 10−15 [66]

R218 He
∗

+ H2 → H2
+
+ He + e 2.9 × 10−17 [66]

R219 He2
∗

+ H → 2He + H+
+ e 2.2 × 10−16 [66]

R220 He2
∗

+ H2 → 2He + H2
+
+ e 2.2 × 10−16 [66]

R221 He
∗

+ H2 → He + 2H 1.4 × 10−17 [66]
R222 He + 2H→ He + H2 5.8 × 10−45 T0

−1 [66]
R223 He + H + OH→ He + H2O 1.56 × 10−43 T0

−2.6 [66]
R224 2H → H2 6.04 × 10−39 T0

−1 [66]

(Continued.)
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(Continued.)

R225 H + O → OH 4.36 × 10−38 T0
−1 [66]

R226 H + OH→ O + H2 8 × 10−27 Tg
2.8 exp(−1950/Tg) [66]

R227 H + OH→ H2O 8 × 10−27 Tg
2.8 exp(−1950/Tg) [66]

R228 3H → H + H2 6 × 10−43 T0
−1 [66]

R229 2H + H2 → 2H2 8.1 × 10−45 T0
−0.6 [66]

R230 2H + H2O → H2O + H2 1.32 × 10−43 T0
−1.25 [66]

R231 H + O + H2 → OH + H2 9.19 × 10−45 T0
−1 [66]

R232 H + OH + H2 → H2O + H2 4.92 × 10−43 T0
−2 [66]

R233 O + H2 → OH + H 3 × 10−20 Tg exp(−4480/Tg) [66]
R234 2O + H2 → H2 + O2 2.65 × 10−45 T0

−1 [66]
R235 H2 + OH → H + H2O 5.3 × 10−22 Tg

1.47 exp(−1761/Tg) [66]
R236 H2 + H2O → OH + H + H2 5.8 × 10−15 exp(52 900/Tg) [66]

All rate coefficients have volume units of m3 s−1 for two body reactions and m6 s−1 for three body. εavg, defined as 3/2Te, is the average electron energy in
eV, xgas is the initial mole fraction, Te is the electron temperature in eV, Teg is the electron temperature normalized to the gas temperature (Teg = Te/Tg), and
T0 = T[K]/300 K is the normalized gas temperature. Rate coefficients for O2 and H2 electron impact reactions were calculated assuming a Maxwellian
EEDF. Electronically excited states of O2 and O were assumed to instantaneously deexcite. He

∗

represents the groups He(23S) and He(21S). He2
∗

represents
He2(a3

∑+
u ).
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