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This survey covers recent developments on the geometry and physics of Looijenga pairs, namely

pairs ðX;DÞ with X a complex algebraic surface and D a singular anticanonical divisor in it. I
will describe a surprising web of correspondences linking together several a priori distant classes

of enumerative invariants associated to ðX;DÞ, including the log Gromov{Witten invariants of

the pair, the Gromov{Witten invariants of an associated higher dimensional Calabi{Yau va-

riety, the open Gromov{Witten invariants of certain special Lagrangians in toric Calabi{Yau
threefolds, the Donaldson{Thomas theory of a class of symmetric quivers, and certain open and

closed BPS-type invariants. I will also discuss how these correspondences can be e®ectively used

to provide a complete closed-form solution to the calculation of all these invariants.

Keywords: Gromov{Witten; Donaldson{Thomas; Looijenga pairs; mirror symmetry; topologi-

cal strings.

PACS numbers: 02.10-v, 04.60.Pp, 11.25.-w

1. Overview

1.1. Ancient geometry and modern physics

Enumerative geometry ��� the count of geometric con¯gurations, satisfying a suit-

able set of conditions, inside a given shape ��� is a venerable sub¯eld of Mathematics,

with roots dating back to Greek Antiquity. Some example questions, in chronological

order, are:

Q1 What is the maximal number of circles tangent to three given circles in the

plane?

Q2 How many lines are there on a smooth complex cubic surface?
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Q3 How many rational complex plane curves of given degree pass through a suitable

number of points?

Q4 How many curves of given degree and genus exist on a Calabi–Yau threefold?

While similar in °avor, these problems are dramatically di®erent in their

sophistication. Question Q1 was formulated in lost work of Apollonius of Perga

(III-II BC), with an account of the solution known from a report of Pappus of

Alexandria (II AD): its answer (eight) was given using compass and straightedge

by Vi�ete in his Apollonius Gallus at the end of the XVII century. The answer to

Question Q2 (twenty-seven) was provided by Cayley{Salmon in the mid XIX

century; a proof can be formulated as either an exercise in Schubert calculus or in

the geometry of the blow-up of the plane at six points. Question Q3 is classical and

equal to one for degree one (lines through two noncoincident points) and two

(conics through ¯ve points, no three collinear); however it gets signi¯cantly harder

for higher degrees, with the state-of-the-art stopping at degree ¯ve at least until the

early 90's of the XX century, when a remarkable formula using nonclassical

methods was provided by Kontsevich from the geometry of moduli of space of

curves. Question Q4, ¯nally, is one of the central problems in the modern

enumerative theory of curves, and possibly the most famous also due to its rele-

vance in physics. Calabi{Yau threefolds are supersymmetric backgrounds for four-

dimensional type II string compacti¯cations, and the count of curves in them

simultaneously computes F-terms involving the Weyl supermultiplet in the four-

dimensional low-energy e®ective ¯eld theory (the curve counts being identi¯ed with

worldsheet instanton contributions to the e®ective action as Gromov{Witten

invariants9,13) and encodes the degeneracy of BPS states in the four-dimensional

theory (the counts being recast in the form of BPS degeneracies of D2-branes

wrapped on curves58).

As these examples show, despite the venerable past of the ¯eld and the de-

ceptively innocent-looking °avor of its most basic problems, the ¯eld of enumer-

ative (algebraic) geometry has a present inextricably linked to developments in

Mathematical Physics. In particular, the interaction with String Theory has sent

shockwaves through the subject, giving both unexpected new perspectives and a

remarkably powerful, physics-motivated toolkit to tackle several traditionally

hard questions in the ¯eld: generating functions of curve counting invariants

give rise to �-functions of some very special in¯nite-dimensional dynamical

systems,45,72,102 they are special (quasi)-modular forms,5 and they provide a sur-

prising way to compute sophisticated topological invariants of 3-manifolds and

links in them.59

The purpose of this survey is to cover a web of novel correspondences adding to

this list. It is related to curve counts in complex dimension two, and is motivated by

the physics of topological strings in complex dimension three.
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1.2. Two-dimensional geometry

The central objects of study in this survey will be the enumerative geometry of curves

inside Looijenga pairs: these are pairs ðX;DÞ with X a complex surface, and D a

singular anti-canonical divisor in it. We will be interested in particular in several

classes of enumerative invariants of the pair ðX;DÞ, that \feel" both the geometry of

X and that of the divisor D.

Example 1.1. The running example of a Looijenga pair for us will be given by

X ¼ CP2, the complex projective plane, andD ¼ H [Q, withQ a plane conic andH

a line not tangent to it; see Fig. 1. A special class of enumerative invariants sensitive

to the geometry of the pair ðCP2;H [QÞ is the following. Let Cd be a plane curve of

degree d > 0: by de¯nition, Cd is the zero locus of a nonzero degree d homogeneous

polynomial Pdðx; y; zÞ 2 H0ðCP2;OðdÞÞ. The equation de¯ning Cd is determined by

the coe±cients of the polynomial Pd up to overall scaling: this gives dþ2

2

� �
� 1 degrees

of freedom in specifying Cd. By B�ezout's theorem, the resulting curve will intersect

the line H and the quadric Q at, respectively, d and 2d generically distinct points. It

will furthermore have genus gðCdÞ ¼ d�1

2

� �
by the degree-genus formula, generically

equal to its topological genus. Now we can look at the maximally nongeneric case

when the following two conditions are realized:

Maximal tangency: The intersection points with the line and the conic coalesce

into single (unspeci¯ed) points pH 2 H (respectively, pQ 2 Q) on each of them, with

maximal contact orders equal to d (respectively, 2d);

Rationality: The curve Cd has vanishing geometric genus.

Imposing that d points come together on the line, and 2d on the conic, gives

ðd� 1Þ þ ð2d� 1Þ ¼ 3d� 2 constraints on the coe±cients of Pd. The vanishing

genus condition further imposes d�1

2

� �
(nonlinear) constraints on the coe±cients of

Pd, from the degree-genus formula. The variety of curves satisfying both conditions

will then have dimension

dðdþ 3Þ
2

� ðd� 1Þ � ð2d� 1Þ � dðd� 1Þ
2

¼ 1:

Fig. 1. A real section of the Looijenga pair geometry ðCP2;H [QÞ. The curly line depicts a degree-d

curve, passing through a general point in the plane marked by the blue X, and with maximal contact order

at the line H and the quadric Q.

Enumerative geometry of surfaces and topological strings

2330008-3

In
t.

 J
. 
M

o
d
. 
P

h
y
s.

 A
 2

0
2
3
.3

8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 5

1
.6

.2
4
6
.9

4
 o

n
 0

8
/1

8
/2

3
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



If we further ask that the curve Cd pass through a given (generic) point in the plane,

we are left with a zero-dimensional family ��� a ¯nite number nd���of con¯gurations

satisfying all constraints, and we can then ask what that number is when these

conditions are imposed generically:

nd ¼ #
rational plane degree�d curves through a generic point

and maximally tangent at a line and a conic

� �

: ð1:1Þ

1.3. Three-dimensional physics

The classical-looking surface counts of the previous section turn out to be surpris-

ingly related to certain open amplitudes in a supersymmetry-protected, topological

subsector of a type IIA nongravitational string compacti¯cation, possibly including

D-branes. Counts of curves in a target Kähler manifold Y are known to arise in

physics as instanton numbers of topologically A-twisted 2d topological �-models

coupled to worldsheet gravity: a critical example is given by the case in which the

target space is a Ricci-°at manifold of complex dimension three, where the partition

function is well-de¯ned and nontrivial at all genera. Furthermore, it is possible to

place natural Dirichlet boundary conditions preserving half of the worldsheet su-

persymmetry, which (in the absence of a B-¯eld and the gauge ¯eld of the brane)

amounts to requiring that the boundary of the worldsheet is constrained on a

Lagrangian submanifold L � Y ; counts of curves with boundary on the Lagrangian

are then physically realized as Euler numbers of moduli spaces of open worldsheet

instantons to the Lagrangian pair ðY ;LÞ.
As rami¯cation conditions on a point, such as the one that encodes the tangency

conditions in Example 1.1, are closely modeled on open boundary conditions around

a circle bounding a small disk around the point, one might wonder whether there's a

modern physics story behind the type of classical-looking curve counts inside a

complex Fano surface in (1.1). Two obvious obstructions to establishing a relation

between Looijenga pairs ðX;DÞ and open string counts for (special) Lagrangians

inside Calabi{Yau threefolds are the mismatch in dimension, and the lack of a

Calabi{Yau condition on the surface side. One of the salient points of this survey is to

describe how such a surprising relation may be realized: in particular, under rela-

tively lax conditions, a nef Looijenga pair ðX;DÞ will have an associated special

Lagrangian pair ðY ;LÞ with Y a toric Calabi{Yau threefold, and L a (framed)

Lagrangian in it, whose open topological A-model amplitudes of ðY ;LÞ return curve

counts on the surface pair ðX;DÞ, both at genus zero and at higher genus.

Example 1.2. The basic example to have in mind is Y ¼ C3, the three-dimensional

complex a±ne space, and L an Aganagic{Vafa brane at some framing f. The

relevant open string geometry is described by the toric diagram in Fig. 2. Since ðY ;LÞ
is a toric Lagrangian pair, it has an open B-model mirror described by a curve in

C� � C�.8,23,50,67 In particular, the topological A-model disk amplitude yðxÞ on

ðY ;LÞ, as a function of the open string modulus x 2 H1ðL;CÞ, satis¯es the

A. Brini

2330008-4

In
t.

 J
. 
M

o
d
. 
P

h
y
s.

 A
 2

0
2
3
.3

8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 5

1
.6

.2
4
6
.9

4
 o

n
 0

8
/1

8
/2

3
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



trigonometric equation

1þ ex�fyðxÞ þ eyðxÞ ¼ 0; ð1:2Þ
where f 2 Z is the framing of L. We will see that for f ¼ 1, the Taylor coe±cients of

the disk amplitude yðxÞ encode in a precise way the solution to the counting problem

nd in the previous section.

1.4. The correspondences: Key take-aways

The open topological A-model on a toric CY3 is an extremely well-studied subject in

both geometry and physics, carrying with itself a spectacular array of theoretical

angles and solution methods alike. On the °ip side, curve counts in Looijenga pairs

are a relatively younger subject, with an ever growing list of open questions: the

relation to the topological string on a threefold and its di®erent physical incarnations

becomes then a remarkably powerful means to address them. The three main upshots

are as follows:

(1) there are several classes of enumerative invariants of curves attached to the

datum of a Looijenga pair ðX;DÞ. These include the log Gromov–Witten

invariants of the pair, its local invariants, the open Gromov–Witten theory of an

associated toric Lagrangian pair ðY ;LÞ, the Donaldson–Thomas invariants of

an associated quiver, and a class of open and closed Gopakumar–Vafa-type

invariants;

(2) although their signi¯cance and interpretation varies considerably, these invar-

iants are nonetheless all related;

(3) and furthermore, the problem of computing them is closed-form solvable: there is

a nonrecursive master formula determining them all.

The resulting web of correspondences is depicted in Fig. 3. One practical upshot of

having these correspondences in place, aside from their intrinsic interest, is that often

solution methods are scarce but for a single type of invariants: we can then use the

relations in Fig. 3 to provide closed-form solutions for all of them, in a single go.

Fig. 2. The toric web diagram of the framed vertex ðC3;LÞ at framing one.

Enumerative geometry of surfaces and topological strings
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This survey is conceived as a gentle introduction and broad overview on the

content of Refs. 19{21 and 30, to which the reader is encouraged to turn for addi-

tional details. As these papers were speci¯cally targeted to an algebro-geometric

audience, the presentation here has an additional slant towards physics, in the hope

that a mathematically-minded string theorist can follow through the development of

the arguments with relative ease. Although we will barely be able to scratch the

surface of some of the concepts introduced (for example log Gromov{Witten theory

and its relation to the Gross{Siebert program), and there is essentially no new

material presented here that was not contained in the references above, we will

nonetheless try to be reasonably self-contained, and illustrate the correspondences in

Fig. 3 with many detailed examples along the way. We should mention that after the

appearance of Refs. 19{21 several works have appeared touching on topics closely

related to those of this survey; a nonexhaustive list is Refs. 10, 11, 43, 60, 61 and 87.

The presentation will be structured as follows. We ¯rst give in Sec. 2.1 a quick

review of the geometry and physics of Gromov{Witten theory and topological

A-model with target an algebraic variety X, and consider extensions involving pairs

ðX;DÞ as above. We then present the ¯rst of our correspondences, relating the genus-

0 log and local Gromov{Witten theories of the pair. An impasse is reached when

trying to uplift the correspondence to higher genera, and a solution for this is pro-

posed by invoking a relation to the all-genus open Gromov{Witten theory of an

associated Aganagic{Vafa pair ðY ;LÞ in the form of a higher genus log-open corre-

spondence. Special care, and a somewhat more extended treatment compared to the

other parts of the manuscript, will be given to the process recasting maximal contact

invariants of surfaces in the form of open Gromov{Witten counts inside Calabi{Yau

threefolds in Sec. 3.4. This then mediates a connection with the Donaldson{Thomas

theory of a quiver via an instance of the \branes{quivers" correspondence of Refs. 47,

75 and 94, as well as to other BPS invariants. Consequences for log Gromov{Witten

theory, and generalizations to singular surfaces and non-nef divisors are ¯nally dis-

cussed in Sec. 5.2.

Local GWLog GW

open GW

quiver DT open BPS

 refined

log/open

log/local

knots/

quivers

KP/IP

LMOV

Fig. 3. The web of correspondences between invariants of Looijenga pairs.
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2. Introduction

2.1. Gromov{Witten theory

2.1.1. Gromov{Witten invariants: The geometry

A typical way to tackle enumerative questions in algebraic geometry is to cast them

as suitable intersection theory problems. In the case of counts of curves this proceeds

by assigning, to a given algebraic variety X (the ambient space of the counting

problem), a suitable moduli space MðXÞ parametrizing curves in X. The answer to

the desired enumerative question can then be phrased as a suitable integration

against the fundamental class of MðXÞ, with the integrand re°ecting the incidence

conditions relevant for the counting problem. The main trouble with this strategy

however is that it is very rarely available: the sought-for moduli space MðXÞ is

almost invariably singular and noncompact, with di®erent compacti¯cations giving

rise to di®erent invariants.

The main type of compact moduli space we will look at arises from seeing curves in

X as parametrized curves���i.e. as maps from a source complex projective curve,

modulo automorphisms of the domain. This leads to considering a moduli space

Mg;nðX; dÞ parametrizing degree-d maps from a smooth stable genus-g pointed

curves ðC; p1; . . . pnÞ; here stability means that either d 6¼ 0, or ðC; p1; . . . pnÞ has

zero-dimensional automorphism group.a Its Kontsevich compacti¯cation Mg;nðX; dÞ
consists of maps from possibly nodal sources, such that each contracted component is

stable in the ordinary sense, counting nodes as marked points. This is a compact

algebraic orbifold (proper Deligne{Mumford stack) of expected dimension

vdimMg;nðX; dÞ ¼ ðdimX � 3Þð1� gÞ �KX � dþ n: ð2:1Þ

Although usually singular, reducible, and of impure dimension, the fact that Mg;n

ðX; dÞ carries a perfect obstruction theory12 implies that it has a virtual fundamental

class in the expected dimension ½Mg;nðX; dÞ�vir 2 H
2vdimMg;nðX;dÞðMg;nðX; dÞÞ; there

are furthermore canonical evaluation morphisms

ev : Mg;nðX; dÞ ! Xn

½� : ðC; p1; . . . ; pnÞ ! X� ! ð�ðp1Þ; . . . ; �ðpnÞÞ:
ð2:2Þ

Given a collection of closed subvarieties Bi, this allows to de¯ne numbers

nX;g;d½B1; . . . ;Bn� ¼ \# degree� d; genus� g curves in X through Bi"

:¼
Z

½Mg;nðX;dÞ�vir

Yn

i¼1

ev �
i ½Bi�_; ð2:3Þ

where ½Bi�_ is Poincar�e-dual to the homology class ½Bi� 2 H�ðX;ZÞ of Bi.

aThat is, n 	 3 for g ¼ 0, and n 	 1 for g ¼ 1.

Enumerative geometry of surfaces and topological strings
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The numbers nX;g;d½B1; . . . ;Bn� are the Gromov{Witten invariants of X. The

scare-quotes in (2.3) are due to the possible existence of multiple cover contributions,

usually preventing these invariants to be directly enumerative.

Example 2.1. Let's go back again to Question Q3 in Sec. 1.1. Heuristically, the

answer to it should be given by the Gromov{Witten count

Kd :¼ nP2;0;d½pt; . . . ; pt
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

3d�1

� ð2:4Þ

and this is, in fact, one of the special circumstances where these invariants return the

actual enumerative count.54 Underlying the relatively classical look of the content of

Question Q3 is a range of surprisingly complex properties satis¯ed by the associated

numbers. First of all, the geometry of boundary divisors on M0;nðP2; dÞ imposes the

existence of a nonlinear recursion in the degree:

Kd ¼
X

dAþdB¼d

KdA
KdB

d2

AdB dB
3d� 4

3dA � 2

� �

� dA
3d� 4

3dA � 1

� �� �

: ð2:5Þ

The resulting sequence (OEIS A013587) grows factorially, Kd 
 ð3d� 1Þ!xd
0 for

some x0 2 R. Despite e®orts dating from the early days of topological ¯eld theory, no

analytic closed-form expression is currently available for either x0 or the numbers

Kd. The genus-0 Gromov{Witten potential of CP2 is de¯ned as the convergent power

series

F CP2

0 ðt1; t2; t3Þ ¼
t21t3

2
þ t1t

2

2

2
þ
X

d>0

Kd

ð3d� 1Þ! e
dt2t3d�1

3 : ð2:6Þ

The recursion (2.5) is the re°ection, at the level of Taylor coe±cients, of the WDVV

equations satis¯ed by F0. Although no closed form expression is known for (2.6), it is

known that this is a special transcendental function, the nonlinear WDVV

recursion (2.5) translating into a special case of Painlev�e VI.44

2.1.2. Gromov{Witten invariants: The physics

The Gromov{Witten counts have a physical interpretation as worldsheet instanton

contributions to A-twisted topological correlators of a N ¼ ð2; 2Þ �-model coupled

with topological gravity,103 having the smooth algebraic variety/Kähler manifold X

as its target. Denoting by �I and gIJ , I; J ¼ 1; . . . ; 2d the local components of,

respectively, a map � : C ! X and the Kähler metric in a real chart for X, the

�-model is described by the N ¼ ð2; 2Þ supersymmetric action

S ¼ 2t

Z

C

dzd�z
1

2
gIJ@�

I�@�J þ i 
�i
�Dz 

i
�gi�i þ i 

�i
þD�z 

i
þgi�i þRi�ij�j 

i
þ 

�i
þ 

j
� 

�j
�

� �

;

ð2:7Þ
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where  þ=� are left/right moving worldsheet fermions valued in the holomorphic/

antiholomorphic tangent bundle of X, Dz=�z are the covariant holomorphic/anti-

holomorphic Dirac operators combining the spin connection on the worldsheet with

the pull-back of the Levi{Civita connection on the target, and R is the Riemann

curvature tensor of the Kähler metric. The theory is invariant under supersymmetry

transformations generated by four worldsheet supercharges living on the worldsheet,

Q�, and Q
�
, and has accordingly left and right classical Uð1Þ R-symmetries. In

particular there is a nonanomalous vector current Uð1ÞV ¼ Uð1ÞL þ Uð1ÞR which

allows to de¯ne a topological twist of the theory: this rede¯nes the Euclidean SOð2Þ
rotation group on the worldsheet by the addition of the generator of the vector

R-symmetry. Under the topologically twisted Euclidean rotation group, the super-

charge QA :¼ Qþ þQ
�

has spin-zero and is therefore akin to a BRST operator;

furthermore, the resulting action SA is QA-exact up to a topological term

SA ¼ �t

Z

C

��ð!Þ þ fQA;V g
� �

; ð2:8Þ

where ! is the Kähler class, and V ¼ i
R

C
dzd�zgIJð@z�I@�z�J � @�z�

I@z�
JÞ. The ex-

plicit QA action on ¯elds gives an isomorphism of graded di®erential modules be-

tween the BRST cohomology and the de Rham cohomology of X, the de Rham

grading being identi¯ed with the vector R-symmetry charge.

The QA-exactness of the action has two main consequences:

. The worldsheet theory, appropriately covariantized with respect to a background

worldsheet metric, with a QA-invariant vacuum and once restricted to the

cohomology of QA, is topological: the QA-exactness of the action implies the

QA-exactness of the energy momentum tensor, implying that vacuum expectation

values of QA-closed operators are constant on the worldsheet.

. For the same reason, the worldsheet theory is semi-classical: an in¯nitesimal

variation in t is a QA-exact operator insertion, which again vanishes in the

QA-closed subsector of the worldsheet Hilbert space.

The last point implies that the worldsheet path integral heuristically localizes,

with probability one, on on-shell/QA-invariant ¯eld con¯gurations: in the scalar

sector, this implies that � : C ! X is holomorphic. The �-model can then be cov-

ariantized and coupled to worldsheet topological gravity on a closed oriented Rie-

mann surface Cg, and its observables calculated as a string path integral modulo

super-di®eomorphisms. In the QA-invariant sector and restricting to matter ¯elds,

i.e. for insertions corresponding to cohomology classes f½Bi�_ 2 H�ðX;CÞgn
i¼1 pulled

back from the target manifold X, the corresponding observables decompose as a sum

over worldsheet instantons (holomorphic maps, modulo worldsheet automorphisms)

with discrete sectors labeled by the genus g and the degree d ¼ ��½Cg� 2 H2ðX;ZÞ:
this is the physical worldsheet realization of the Gromov{Witten invariants in (2.3).

Enumerative geometry of surfaces and topological strings
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When the target X is a Calabi{Yau threefold, a physical target space interpre-

tation of the generating functions of Gromov{Witten invariants is also available as

computing certain F-terms in a type IIA compacti¯cation on R1;3 �X. As the virtual

dimension (2.1) of the moduli space Mg;0ðX; dÞ vanishes to all genera and degree,

generating functions of GW invariants of X can be computed as

F X
g ðtiÞ :¼

X

d2H2ðX;ZÞ
e�tð!;dÞnX;g;d; ð2:9Þ

where ¯xing fCigh1;1ðXÞ
i¼1

a set of generators of the e®ective cone of X we denoted

ti ¼ t
R

Ci
! ¼ ð!; dÞ. Identifying ti with classical background ¯eld values for the

vector multiplets of the type IIA e®ective N ¼ 2 supergravity on R1;3, the

Gromov{Witten generating functions in (2.9) compute, for g > 0, e®ective terms of

the form
Z

d4xd�W2gF X
g
ðtiÞ ¼

Z

d4xF X
g
ðtiÞR2

þF
2g�2

þ ; ð2:10Þ

where R2
þ is a self-contraction of the self-dual part of the Riemann tensor, and

Fþ ¼ F þ �F is the self-dual part of the graviphoton curvature. The genus 0 GW

invariants of X instead determine the prepotential
Z

d4xð@ 2

ijF X
0 ðtÞÞF þ

i ^ F þ
j ; ð2:11Þ

where F þ
i is the self-dual component of the ¯eld strength for the Uð1Þ gauge ¯eld in

the ith vector multiplet, i ¼ 1; . . . ;h1;1ðXÞ.

2.2. Looijenga pairs

We would now like to raise our stakes a little, and consider enumerative invariants

and associated topological string amplitudes that are sensitive not just to the ge-

ometry of a target algebraic variety, but also of a subvariety in it of complex codi-

mension one. We start by giving the following de¯nition.

De¯nition 2.1. A nef log Calabi{Yau (CY) pair is a pair ðX;DÞ with

. X a smooth complex projective variety;

. D 2 j �KXj an e®ective anti-canonical divisor in X with simple normal crossings

singularities, admitting a decomposition D ¼ D1 [ . . .Dl with eachDi irreducible,

smooth, and nef (i.e. C �Di 	 0 for all e®ective curves C in X).

We will further say that ðX;DÞ is toric if X is a toric variety and XnD ’
ðCHÞdimCX is the big torus orbit.

De¯nition 2.2. A nef Looijenga pair is a nef log CY pair with X a surface,

dimCX ¼ 2, and D a singular divisor in X.

A. Brini
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Remark 2.1. Note that, since we require each irreducible component of D to be

smooth, and D itself to be singular, our de¯nition of a nef Looijenga pair requires D

to be reducible (l > 1).

Example 2.2. A few low-dimensional examples of nef log CY pairs are as follows.

. X ¼ CP1, D ¼ f0g þ f1g (l ¼ 2).

. X ¼ CP2, D ¼ E with E a smooth cubic (l ¼ 1).

. X ¼ CP2, D ¼ H [Q with H a line, and Q a conic (l ¼ 2)

. X ¼ CP2, D ¼ the union of the coordinate axes (l ¼ 3)

The ¯rst and the last examples are toric (D being the toric boundary); and the

third and the fourth are Looijenga pairs since D is singular. The second example is

neither a Looijenga nor toric pair.

By Propositions 2.2 and 2.3 of Ref. 19, nefness of D and smoothness of X entail

that there is a ¯nite catalogue of 18 smooth deformation families of nef Looijenga

pairs. We will stick to ðX;DÞ being a Looijenga pair from now on, and consider two

super¯cially di®erent classes of enumerative invariants of a Looijenga pair ðX;DÞ:
the local and the (log) maximal contact invariants.

3. Enumerative Invariants

3.1. Local Gromov{Witten theory

Consider the vector bundle � : EðX;DÞ ! X on X, de¯ned as the total space of the

direct sum of the dual line bundles to the irreducible components Di of D:

EðX;DÞ :¼ Totð� l
i¼1OXð�DiÞÞ ð3:1Þ

EðX;DÞ is a smooth quasi-projective variety of dimension lþ 2, and since D is

anticanonical we have that c1ðEðX;DÞÞ ¼ ��c1ðTXÞ þ ��c1ðOXð�DÞÞ ¼ 0, so that

EðX;DÞ is a noncompact Calabi{Yau (CY) manifold.

Example 3.1. For ðX;DÞ ¼ ðCP2;H þQÞ, we have EðCP2;HþQÞ ¼ TotðOCP2ð�1Þ�
OCP2ð�2ÞÞ. This is a noncompact CY fourfold.

Fig. 4. A depiction of EðX;DÞ ¼ Totð� l
i¼1OXð�DiÞÞ.

Enumerative geometry of surfaces and topological strings
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The class of invariants we will be looking at, informally, should count the number

of degree-d, genus g ¼ 0 curves in the total space EðX;DÞ satisfying a number of point

conditions pulled back from X. Since Di is nef for all i, the image of a stable map

intersecting Di generically will not be allowed to deform holomorphically o® the zero

section. Hence, as a scheme, the moduli space of maps to EðX;DÞ is just the moduli

space of maps to X, and is therefore compact despite EðX;DÞ not being so. However

the corresponding obstruction theories di®er,12 the discrepancy being encoded into a

canonical obstruction sheaf ObX;D;d :¼ R1��f�NX=EðX;DÞ on M0;nðX; dÞ,39,41 where

ð3:2Þ

is the universal curve with its evaluation to X. The virtual fundamental class for the

local theory is de¯ned as the intersection of the usual virtual fundamental class with

the top Chern class of the obstruction bundle

½M0;nðEðX;DÞ; dÞ�vir ¼ ½M0;nðX; dÞ�vir \ ctopðObX;D;dÞ: ð3:3Þ

Since rank ObX;D;d ¼ dimH1ðCP1;�i�
�OXð�DiÞÞ ¼ �KX � d� l, the virtual di-

mension for the local problem is vdimM0;nðEðX;DÞ; dÞ ¼ nþ l� 1. The correspond-

ing local Gromov{Witten invariants of ðX;DÞ, virtually enumerating rational curves

through l� 1 points on the surface X, are de¯ned as

N loc
0;dðX;DÞ :¼

Z

½M0;l�1ðEðX;DÞ;dÞ�vir

Yl�1

i¼1

ev�
i ½pt�: ð3:4Þ

The invariants in (3.4) have the following informal interpretation: let � : Y ! X be a

projective CY ð2þ lÞ-fold containing a rigid surface X with normal bundle

NX=Y ’ EðX;DÞ, and let d be the homology class of the image of a genus zero stable

map to Y which is wholly contained in X. Then N loc
0;dðX;DÞ :¼

R

½M0;l�1ðY;dÞ�vir
Q l�1

i¼1

ev�
i ½��ptX� is the degree-d, genus zero genus GW invariant of Y with l� 1 point

conditions pulled back from X.

3.2. Log Gromov{Witten theory

We can also consider a di®erent set of enumerative invariants attached to the pair

ðX;DÞ, where the counting occurs directly in X, but we use D to impose \boundary"

conditions for our map. We will be interested in virtually enumerating degree-d,

rational curves in the surface X passing through a suitable number of points, and

having maximal tangency with each irreducible component Di of D: note that for

ðX;DÞ ¼ ðCP2;H [QÞ this is exactly the setup of Example 1.1.

An immediate problem one runs into is the inherent noncompactness of such a

moduli space: the reason for this is that a sequence of stable maps with prescribed

A. Brini
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contact orders atDi may be allowed to splinter o® some irreducible components that

fall entirely into the divisor on the boundary of the moduli space, so that the contact

condition does not make sense any longer in the limit. There are multiple dialects of

Gromov{Witten theory that have been devised in order to keep track of the addi-

tional discrete data of the rami¯cation of the divisors while at the same time side-

stepping the issues with lack of compactness highlighted above, whether by

considering stable maps into expanded degenerations of the target,77,95 or by con-

sidering some enhancement of the stable maps by extra combinatorial date using

logarithmic geometry.1,65 We will resort to the latter, viewing X as a log scheme for

the divisorial log structure induced by D: informally, we endow the datum of the

stable map with discrete data tracking the tangency condition in terms of a homo-

morphism of lattice cones supported on the contact points. Referring the reader to

Ref. 65 for an extended survey of the construction, the resulting moduli space of log

stable maps M log
0;l�1ððX;DÞ; dÞ is a proper log Deligne{Mumford stack, which fur-

thermore Refs. 1 and 65 carries (under suitable minimality conditions) a perfect

obstruction theory and a virtual fundamental class of expected dimension nþ l� 1 {

note that this is the same virtual dimension as for the local problem above. The

desired count can then be de¯ned as the log Gromov{Witten invariant

N
log
0;dðX;DÞ :¼

Z

½M log

0;l�1ððX;DÞ;dÞ�vir

Yl�1

i¼1

ev�
i ½pt�: ð3:5Þ

The log invariants (3.5) are often enumerative ��� and indeed coincide with the

corresponding genuine count of curves with tangency conditions for Looijenga pairs

since the interior XnD is a cluster variety.81 In particular, for

ðX;DÞ ¼ ðCP2;H [QÞ, they return the count (1.1) of rational plane curves maxi-

mally tangent at a line and a conic:

nd ¼ N
log
0;dðCP2;H [QÞ: ð3:6Þ

Example 3.2. It is interesting to contrast the calculation of the log and local

invariants of ðX;DÞ with the ordinary GW invariants of X���see Table 1. Even

though the geometric setup is more complex here than in ordinary GW theory owing

to the presence of the background divisor D, the numerology associated to the

sequence of invariants is substantially (and surprisingly) simpler.

. For ðX;DÞ ¼ ðCP2;H [QÞ, the growth of the log invariants N
log
0;d is only expo-

nential, N log
0;d 
 4d, instead of factorial.

. Moreover, unlike the more mysterious sequence of absolute invariants Kd, they do

seem to ¯t a recognizable pattern given by the OEIS sequence A000984 (the

central binomial coe±cients ð 2d
d
Þ). This indicates that, unlike the ordinary GW

invariants of X, the local and log invariants of ðX;DÞ might be amenable to an

explicit, closed-form, nonrecursive solution to all degrees.

Enumerative geometry of surfaces and topological strings
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. Furthermore, even more recognizable is the growth of the ratio N
log
0;d=N

loc
0;d, which

up to a sign factor is given by a quadratic law for this l ¼ 2 component case.

. Finally, the contrast with the ordinary GW theory of the plane is even starker for

ðCP2;L1 [ L2 [ L3Þ, where the log invariants are justN log
0;d ¼ d2, and the ratio with

the local invariants is now given (up to a sign) by a cubic law for this l ¼ 3

component case.

These features are in fact by no means special to the example of ðCP2;H [QÞ. In
particular the power-law behavior of the ratio of log to local invariants was found to

be satis¯ed in a large variety of examples in Ref. 56. This was inferred to a general

conjecture, whose specialization to nef log CY surface pairs and point insertions is

given by the following statement.56

Conjecture 3.1. For a nef log CY surface pair ðX;DÞ,

N
log
0;d ðX;DÞ ¼

Yl

i¼1

ð�1Þd�Diþ1ðd �DiÞ
" #

N loc
0;dðX;DÞ: ð3:7Þ

The proposed equality in (3.7) is a numerical version for point insertions of the

log-local correspondence proposed at the level of virtual classes in Ref. 56.

At face value, the very existence of the equality in (3.7), purporting an identity of

local and maximal contact invariants up to a universal factor, is very unexpected.

The two types of counts are a priori completely unrelated: the local count occurs in

2þ l dimension, since as discussed at the end of Sec. 3.1 they encode the local

contribution to the GW theory of a CY-ð2þ lÞ-fold of a rigid surface X in it with

normal bundle � l
i¼1OXð�DiÞ; the log count instead is genuinely two-dimensional,

and is further enriched with the datum of tangency conditions along the divisors.

Furthermore, the local invariants are known to be rational numbers as they involve

multi-covering contributions,39,71 whilst the log invariants are integers and actually

enumerative for Looijenga pairs.81 Still, evidence in favor of (3.7) comes from the case

l ¼ 1, established in Ref. 56 through a degeneration argument in log GW theory, and

from an explicit solution of both sides of the equality for toric pairs in Ref. 21; and

indeed, a stronger statement can in fact be made for Looijenga pairs.19

Table 1. Log and local GW invariants of ðCP2;H [QÞ (left) and ðCP2;H1 [H2 [H3Þ
(right), compared with the Kontsevich numbers Kd in (2.4).

d N
log
0;d N

log
0;d=N

loc
d Kd d N

log
0;d N

log
0;d=N

loc
0;d Kd

1 2 �2 1 1 1 1 1

2 6 8 1 2 4 �8 1
3 20 �18 12 3 9 27 12

4 70 32 620 4 16 �64 620

5 252 �50 87304 5 25 125 87304

6 924 72 26312976 6 36 �216 26312976
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.
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Theorem 3.1. Conjecture 3.1 holds for nef Looijenga pairs.Moreover, both sides of

the equality are closed-form solvable.

The statement of the theorem claims simultaneously (1) a comparison result and

(2) an explicit nonrecursive solution for both types of invariants. A sketch of the

ideology of the proof, broken down accordingly in these two parts, is as follows.

3.2.1. Theorem 3.1: The comparison

This part of the statement can be proved through a degeneration argument in log

Gromov{Witten theory, imitating the analogous strategy adopted in Ref. 56 for the

smooth case; we just give a sketch of the idea here, referring the reader to Ref. 19 for

details, and to Ref. 55 for a very readable survey. The key idea is to degenerate the

total space EðX;DÞ to a trivial bundle X � Al glued along Dj � Al, j ¼ 1; . . . ; l, to a

rank-l vector bundle over the projective bundle PðODj
�ODj

ð�DjÞÞ, generalizing the
idea of Ref. 56 for smooth divisors. The resulting family admits a log smooth

desingularization, to which the Abramovich{Chen{Gross{Siebert decomposition

formula2 can be applied: this expresses the local invariants N loc
0;dðX;DÞ as a weighted

sum of terms, indexed by tropical curves h : � ! �, where � is the dual intersection

complex of the central ¯ber:

N loc
0;dðX;DÞ ¼

X

h:�!�

mh

jAutðhÞjN
loc;h
0;d ðX;DÞ: ð3:8Þ

The resulting equality would then follow from showing that the right-hand side

reproduces the expected relation (3.7). For l ¼ 2, it was shown in Ref. 19 that if h is a

nonmaximal tangency type, the corresponding contribution can be shown to vanish,

leaving out a single computable contribution from the maximal tangency term

h ¼ hmax, for which

N
loc;hmax

0;d ðX;DÞ ¼
Yl

i¼1

ð�1Þd�Diþ1

ðd �DiÞ2
N

log
0;d ðX;DÞ ð3:9Þ

and the multiplicity mhmax
¼ Q l

i¼1 d �Di yields exactly the expected proportionality

factor in (3.7).

3.2.2. Theorem 3.1: The calculation

Two distinct calculational schemes are available for the local and log invariants. The

local invariants are computed using the Coates{Givental theorem,41 which in

genus zero expresses the local Gromov{Witten invariants of ðX;DÞ in terms of the

ordinary genus zero descendent invariants of X through an explicit hypergeometric

modi¯cation of its J-function (see Ref. 40 for general formulas, and Examples 3.3

and 3.4 for two basic examples). Now all nef Looijenga pairs ðX;DÞ admit

Q-Gorenstein deformations to ðX0;D0Þ with X0 a smooth toric Fano surface,19 for

which JEðX0 ;D0Þðt; zÞ can be determined using Givental-style mirror theorems57;

Enumerative geometry of surfaces and topological strings
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furthermore, it turns out that the mirror map zðtÞ is an explicit rational function of

et. By deformation invariance, the descendent invariants with a single point insertion

can then be computed as

½z1�letd�J 0

EðX0 ;D0Þ ¼
Z

½M0;1ðEðX;DÞ;dÞ�vir
ev�½pt� l�2

1 ; ð3:10Þ

where J0 is the identity component of the J-function. For l > 2, the multi-point,

nondescendent invariants N loc
0;dðX;DÞ can be computed from (3.10) using a small-to-

big quantum cohomology reconstruction theorem; see Refs. 19 and 21 for details, and

Example 3.4 for an instance of the calculation.

Example 3.3. Let ðX;DÞ ¼ ðCP2;H [QÞ; note that X is already toric, and

Givental mirror symmetry can be applied directly to it. Consider the diagonal

C�-action on the ¯bers of EðCP2;H[QÞ ¼ TotðOCP2ð�1Þ �OCP2ð�2ÞÞ: the mirror map

in this case is trivial, and the corresponding equivariant J-function equates the

equivariant I-function, which is given as

JEðCP2 ;H[QÞðt; zÞ ¼ zetH=z
X

d2Z	0

etd
Qd�1

m¼0ð��þH þmzÞQ2d�1

m¼0 ð��þ 2H þmzÞ
Qd

m¼1 ðH þmzÞ3
;

ð3:11Þ

where H ¼ c1ðOCP2ð1ÞÞ is the class of a line. From (3.10) we get

N loc
0;dðCP2;H [QÞ ¼ ½z�1etd�JEðCP2 ;H[QÞ jH¼0 ¼

ð�1Þd
2d2

2d

d

� �

; ð3:12Þ

which recovers a direct calculation by virtual localization in Ref. 71.

Example 3.4. Let ðX;DÞ ¼ ðCP2;H [H [HÞ. As for the case of the ordinary

quantum cohomology of CP2, it is not di±cult to prove that
Z

½M0;2ðEðX;DÞ;dÞ�vir
ev�

1½pt�ev�
2½pt� ¼

Z

½M0;3ðEðX;DÞ;dÞ�vir
ev�

1½pt� 1ev
�
2½H�ev�

3½H�

expressing the fact that the small quantum cohomology product Hn
HHm is equal to

the cup product Hnþm if nþm < 3 (see Ref. 21). Applying twice the Divisor Axiom

to the right-hand side, the 2-pointed local GW invariants of ðCP2;H [H [HÞ are
then related to the J-function,

JEðCP2 ;H[H[HÞ
ðt; zÞ ¼ zetH=z

X

d2Z	0

etd
Qd�1

m¼0 ð��þH þmzÞ3
Qd

m¼1 ðH þmzÞ3
; ð3:13Þ

N loc
0;dðCP2;H [H [HÞ ¼ ½z�1etd�@ 2

tJEðCP2 ;H[H[HÞ
jH¼0

¼ d2½z�1etd�JEðCP2 ;H[H[HÞ
jH¼0; ð3:14Þ
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from which we deduce that

N loc
0;dðCP2;H [H [HÞ ¼ d2

ð�1Þdþ1

d3
¼ ð�1Þdþ1

d
: ð3:15Þ

For the maximal tangency log invariants N log
0;d ðX;DÞ, a systematic computational

framework is provided by their associated scattering diagrams.62{64 To a Looijenga

pair ðX;DÞ one can (nonuniquely) construct pairs ð ~X ; ~DÞ and ðX ;DÞ ¯tting into a

diagram63

where � is a sequence of blow-ups at nodes of D and � is a toric model, meaning that

ðX ;DÞ is toric and � is a sequence of blow-ups at distinct smooth points of D.

The log GW invariants of ðX;DÞ can be related to the more easily computed

invariants of ðX ;DÞ, as follows. First of all, by the log-birational invariance result of

Ref. 4, we haveN log
0;d ðX;DÞ ¼ N

log

0; ~d
ð ~X ; ~DÞ, where ~d denotes the total transform. For a

suitable divisor F ¼ A1ð ~XÞ, the pair ð ~X ; ~DÞ can be degenerated to the normal cone

of F into a reducible pair with two components, one of which is the toric pair ðX ;DÞ.
The degeneration formula of Ref. 2 then expresses N log

0;dðX;DÞ as a linear combina-

tion, with computable coe±cients cm 2 Q, of the log GW invariants of N log
0;d;mðX ;DÞ

with maximal contact d �Di over ��ðDiÞ and arbitrary rami¯cation pro¯le over

��ðF Þ speci¯ed by a partition m ‘ d � ��ðF Þ:

N
log
0;d ðX;DÞ ¼

X

m‘ðd��ðF ÞÞ
cmN

log
0;d;mðX ;DÞ: ð3:17Þ

The toric log GW invariants on the right-hand side can then be computed by

correspondence theorems with tropical geometry in terms of a count of certain

tropical curves in the fan of X ; see Refs. 81, 82, 86 and 90, and also Ref. 55 for a

nice survey.

It is helpful to consider the l ¼ 2 and l > 2 cases separately. For the former, as

discussed at the end of Sec. 3.2.1, Theorem 5.1 of Ref. 19 provides a proof of the

equality in (3.7); and Proposition 3.2 and Theorem 3.3 of Ref. 19 give a general closed

formula for the local invariants via local mirror symmetry techniques, thanks to the

fact that the mirror map is closed-form invertible for all ðX;DÞ. As the number of

components l increases, the degeneration to the singular ¯ber becomes increasingly

singular, and the comparison argument accordingly more involved; however, the

separate calculation of the local and log invariants simpli¯es considerably in this

more degenerate setting, meaning that a closed formula can be found for both sides

of (3.7), from which the sought-for equality can be deduced.
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Example 3.5. Consider again the case ðX;DÞ ¼ ðCP2;H [QÞ. Since l ¼ 2, the

comparison result of Theorem 5.1 in Ref. 19 for 2-component Looijenga pairs gives

N
log
0;d ðCP2;H [QÞ ¼ ð�1Þd2d2N loc

0;dðCP2;H [QÞ; ð3:18Þ

and using (3.12) we obtain that the maximal tangency log invariants, returning the

curve count nd in (1.1), are given by

nd ¼ N
log
0;d ðCP2;H [QÞ ¼ 2d

d

� �

: ð3:19Þ

Example 3.6. Consider now the 3-component Looijenga pair ðX;DÞ ¼ ðCP2;

H [H [HÞ. In this case, given that l > 2, it is more expedient to compute the log

invariants directly, and deduce the correspondence with the local invariants by direct

comparison with (3.15). Note that since X is toric, and D is the toric boundary, the

pair ðX;DÞ coincides with its toric model ðX ;DÞ, and the log invariants are then

directly computed as a tropical count. In particular,

N
log
0;d ðCP2;H [H [HÞ ¼

X

�

Multð�Þ; ð3:20Þ

where the sum on the right-hand side runs over genus 0, degree d maximally tangent

tropical curves � through 2 points in FanðCP2Þ. These are trivalent trees in the fan of

CP2 whose edges e have rational slope and carry an integer weight wðeÞ, such that

there exist exactly three unbounded edges decorated with weight d parallel to the

rays of the fan, and the compact edges satisfy the balancing condition
P

e3vwðeÞ
uðv;eÞ ¼ 0 where uðv;eÞ is the primitive outgoing vector parallel to e. The multiplicity

Multð�Þ is de¯ned as

Multð�Þ :¼
Y

v2�
wðeÞwðe0Þj detðuðv;eÞuðv;e0ÞÞj ð3:21Þ

with e 6¼ e0 3 v; this is well-de¯ned by the balancing condition. In the case of ðCP2;

H [H [HÞ there is only one such tropical curve �, depicted in Fig. 5, for which

Multð�Þ ¼ d2. Hence,

N
log
0;dðCP2;H [H [HÞ ¼ d2 ¼ ð�1Þdþ1d3N loc

0;dðCP2;H [H [HÞ ð3:22Þ

as expected.

3.3. A higher genus puzzle

The above discussion was entirely con¯ned to genus zero; a natural question is thus

how much of it could be transferred to the setting of higher genus GW theory. From

the virtual dimension formula (2.1), for dimX ¼ 2 the expected dimension of the

moduli space of genus-g stable maps to X is g higher than the genus-0 virtual

dimension, and the same occurs for the virtual dimension of the log moduli space

A. Brini
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M
log
g;n ðX;D; dÞ:

vdimM
log
g;n ðX;D; dÞ ¼ vdimM

log
0;nðX;D; dÞ þ g ¼ gþ nþ l� 1: ð3:23Þ

Usually, a zero-dimensional virtual count in higher genus is de¯ned by compensating

the increase in virtual dimension by additional incidence conditions pulled back from

the target. Alternatively, in this case one could cap the virtual class with the top

(degree-g) Chern class of the Hodge bundle, �g :¼ ctopðR1��OCg;nÞ where � : Cg;n !
M log

g;nðX;D; dÞ is the universal curve, as already suggested in Ref. 64. The corre-

sponding higher genus log GW invariants are then de¯ned as

N
log
g;d ðX;DÞ :¼

Z

½M log

g;l�1ðX;D;dÞ�

Yl�1

i¼1

ev�
i ½pt�ð�1Þg�g: ð3:24Þ

It will be convenient to pack these into an all-genus generating function, de¯ned as

N
log
d ðX;DÞ :¼ �h

2 sinð�h=2Þ

� �
l�2X

g	0

ð�hÞ2gN log
g;d ðX;DÞ: ð3:25Þ

The enumerative signi¯cance of the higher genus invariants (3.25) with �g insertions

was elucidated by Bousseau in Ref. 18, building upon in Refs. 17 and 52: as in genus

zero, these invariants can be related to a weighted count of tropical curves in the

corresponding toric model, with the tropical multiplicity being replaced with

½Mult��q, where q ¼ ei�h and ½n�q :¼ qn=2�q�n=2

q1=2�q�1=2 is the symmetric q-analogue of n 2 Z	0.

In particular, the same calculations for the log invariants in g ¼ 0 can be leveraged to

give all-genus results for the generating function in (3.25).

Example 3.7. Let ðX;DÞ ¼ ðCP2;H [QÞ. In this case, the q-deformed version of

the tropical calculation of the log-invariants gives the q-analogue of (3.19),

N
log
d ðCP2;H [QÞ ¼ 2d

d

	 


q

; ð3:26Þ

T2

T3

T1

•

•

P1

P2

d

d

d

d
2

Fig. 5. The unique genus 0, degree d, maximally tangent tropical curve in FanðCP2Þ passing through two

general points P1 and P2. It carries weight d
2.
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where ½m
n
�q is the q-binomial coe±cient ½m�q!=ð½n�q!½m� n�q!Þ, and ½n�q :¼

Qn
i¼1 ½i�q is

the symmetric q-factorial.

An obvious question then is how the log-local correspondence of Theorem 3.1 can

be extended to all genera. The question is actually moot in itself: the expected

dimension of the virtual class for stable maps into a CY ð2þ lÞ-fold is ðl� 1Þð1� gÞ,
which is negative for g > 1 and no marked points, and in particular there are no

nonvanishing local GW invariants for higher genus.

3.4. Log versus open invariants and QFT engineering

A solution to the resulting impasse was proposed in Ref. 19 by proposing that the

CYð2þ lÞ-fold local GW invariants N
log
0;dðX;DÞ coincide with some open GW

invariants virtually counting open stable maps into a local CY3-fold, with bound-

aries lying on special Lagrangian submanifolds L1 [ � � � [ Ll�1. There is both a to-

pological and a physical rationale for this. Geometrically, and from the log

perspective, a stable map with a contact condition at a point on a divisor D can be

naturally seen as a limiting version of an open stable map with an open boundary

condition on a special Lagrangian L with a homologically nontrivial S1 which bounds

a holomorphic disk emerging fromD: as the Lagrangian is pushed against the divisor,

boundaries close up into punctures, and the winding number around the circle gives

the rami¯cation around the contact point (see Fig. 6). Physically, and from the local

perspective, the proposed identi¯cation of log and open invariants is a higher di-

mensional version of the geometric engineering of quantum ¯eld theories of Refs. 69,

70 and 89: genus zero closed topological string amplitudes in a CY fourfold are

known to compute certain superpotential F-terms in an e®ective compacti¯cation of

type IIA to two dimensions, with four supercharges,66 in the same vein as the four-

dimensional protected terms discussed in Sec. 2.1.2. At the same time, the same type

of F-terms can be engineered as a topological disk amplitude on a threefold by

wrapping D4-branes around special Lagrangians in a CY3-fold.93 It was realized in

Ref. 85 (see Refs. 79 and 80 for a recent in-depth mathematical study) that for

some local geometries the same e®ective theories can sometimes be engineered in

P

Fig. 6. Tangency conditions on divisors versus open conditions on Lagrangians.
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either way: therefore, whenever this physical equivalence occurs we obtain a

geometrical identity between the corresponding (closed 4-dimensional and open

3-dimensional) enumerative invariants! Indeed, for l 	 2 and under relatively mild

conditions,19 it is possible to show that

(1) for the local geometries associated to a nef Looijenga pair ðX;D1 [ � � � [DlÞ, one
can systematically associate a corresponding open string CY3 geometry

ðY ;L ¼ L1 [ � � �Ll�1Þ, where Y is a quasi-projective CY3 variety and Li � Y ,

i ¼ 1; . . . ; l� 1 are special Lagrangian submanifolds;

(2) the ðl� 1Þ-holed open GW counts on Y with boundaries ending on L1; . . . ;Ll�1

are equal to closed string counts with point insertions on the local Calabi–Yau

ð2þ lÞ-fold EðX;DÞ;
(3) unlike the closed string invariants, the open ones admit a zero-dimensional

virtual fundamental class at all genera, corresponding to gravitational F -terms

involving higher powers of the Weyl multiplet and the gaugino super¯eld. We

propose that those are exactly what \re¯nes" the local invariants of EðX;DÞ, and
the correspondence of Theorem 3.1 with the log invariants, at higher genus.

3.4.1. Genus zero: From local to open invariants

So how is the special Lagrangian pair ðY ;LÞ constructed from ðX;DÞ? The idea here

is to employ a mixture of the heuristic expectations linking (log) invariants with ¯xed

rami¯cation to

(1) on the one hand, open invariants with winding number equal to the contact order

at the divisor;

(2) on the other, local invariants of the surface geometry twisted by the total space

of the canonical bundle.

So suppose, for simplicity and to simplify notation in the following, thatX is toric,

l ¼ 2, and that D1 is a prime toric divisor: for example take our running example of

the projective plane X ¼ CP2 with D1 ¼ H, D2 ¼ Q a line and a quadric. What we

would like to do is to trade the maximal contact conditions along Di, i ¼ 1; 2 with

(1) for i ¼ 1: an open condition on a special Lagrangian near D1.

(2) for i ¼ 2: a twist by Oð�D2Þ, as in Ref. 56;

Now, since X is a compact symplectic toric manifold, it is a Lagrangian torus

¯bration � : X ! ðuð1Þ�2Þ� ’ R2 over a convex, bounded, and (up to scaling of the

symplectic form) integral re°exive moment polygon �, given by the convex hull of

lattice vectors fvi 2 Z2g b2ðXÞþ1

i¼0
: the ¯bers over the codimension-m stratum of the

moment polygon are 2�m dimensional tori. Likewise, given that D 2 j �KXj, the
total space Y :¼ TotðOð�D2ÞjXnD1

Þ is a quasiprojective toric CY3, given by a T2 � R

Enumerative geometry of surfaces and topological strings
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(Harvey{Lawson) ¯bration over an R-bundle over the polarization of the moment

polytope ofXnD1; in physics parlance, this is the \pq-web" or \toric diagram" of Y ,6

see Fig. 7.

Now suppose fv1; v2g is an integral basis of Z2, and let fv�
1; v

�
2g be its dual basis for

the Lie algebra of Hamiltonian vector ¯elds associated to the ¯bration. Then the one

parameter group generated by exp tða1v�
1 þ a2v

�
2Þ, ai 2 Z, acts trivially on the ¯bers

lying above the edges of � with slope ða2;�a1Þ. Let's further denote ‘ ’ T2 � X the

torus ¯ber over an interior point p 2 Intð�Þ near the edge E :¼ �ðD1Þ of the moment

polytope of X corresponding to the toric divisor D1, and let L be the corresponding

¯ber of the Harvey{Lawson ¯bration of Y : note that L is a trivial R-bundle over ‘.

The ¯rst homology of ‘ (and hence L) can be presented as Z½C jj
E� � Z½C?

E �: here C jj
E is

the equator of D1 ’ CP1, and C?
E ¼ exp tv is the circle ¯ber generated by the Lie

algebra element associated to the primitive outward pointing vector normal to the

edge Ei: in particular, C?
E is the boundary of a disk intersecting D1 at a point.

Example 3.8. Let's cast the above de¯nitions in the context of ðX;DÞ ¼
ðCP2;H [QÞ, where CP2 is equipped with the canonical symplectic form

! :¼ �2!FS, where !FS is the Fubini{Study form. Then the moment map associated

to the T2-action ½z0 : z1 : z2� ! ½z0 : e�1z1 : e�2z2� is

�½z0 : z1 : z2� ¼
1

jz0j2 þ jz1j2 þ jz2j2
ðjz1j2; jz2j2Þ: ð3:27Þ

The moment polytope � in this case is the convex hull of v1 ¼ ð1; 0Þ, v2 ¼ ð0; 1Þ and
v0 ¼ ð0; 0Þ (see Fig. 7). The divisor given by the pre-images under the moment map

of the edge connecting vi and vj corresponds to the toric divisor zk ¼ 0, k 6¼ i; j: in

particular any edge represents the homology class of the line D1 ¼ H 2 H2ðCP2;ZÞ.
To see what ‘ and its homology generators look like is in this case, take for

de¯niteness E to be the diagonal edge connecting v1 and v2. We have that C
jj
E and

Fig. 7. The moment polytope of CP2 (left) with a depiction of the generators C
jj
E and C?

E (respectively,
C

jj
E0 and C

jj
E00 ) of the homology of the torus ¯ber ‘; and the corresponding toric diagram of C3 (right) with a

toric brane on the edge E0 at framing f ¼ 1. Note that the framing vector w ¼ v1 � fv2 ¼ v1 � v2 is

parallel to E.
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C?
E are, respectively, the orbit associated to v�

1 � v�
2 and �v�

1 � v�
2, i.e.

C
jj
E : ½z0 : e�z1 : e��z2�; C?

E : ½z0 : e�z1 : e�z2� ¼ ½e��z0 : z1 : z2�; ð3:28Þ
where jzij 6¼ 0 and jz0j  1 (i.e. ‘ is \near" the divisor).

The corresponding toric Calabi{Yau threefold is

Y ¼ TotðOXð�D2ÞjXnD1
Þ ¼ TotðOCP2ð�2ÞjCP2nHÞ ’ TotðOC2Þ ¼ C

3: ð3:29Þ

The corresponding web diagram is obtained from the moment polytope of CP2 by

removingb the edge E, giving the moment polygon of C2, and by completing the

origin into a balanced trivalent vertex with an edge pointing in the direction ð�1;�1Þ.
The heuristic physics expectation of Ref. 85 can then be phrased as

N loc
0;dðX;DÞ ¼ O0;	ðdÞðY ;LÞ; ð3:30Þ

where the right-hand side is a Gromov{Witten count of disks in a relative

2-homology class 	ðdÞ, described as follows. Let i : XnD1,!X be the open inclusion

map. Consider the embedding of lattices

	 : H2ðX;ZÞ ! H2ðXnD1;ZÞ � H1ð‘;ZÞ
d ! ði�ðdÞ; ðd �D1Þ½C?

E �Þ;
ð3:31Þ

Then (3.30) identi¯es the 4-fold Gromov{Witten invariant of EðX;DÞ in class d with a

virtual count of disks in Y in class i�ðdÞ and with boundaries wrapping L with

winding number 0 along ½C jj
E� and ðd �D1Þ along C?

E . Although the de¯nition of open

Gromov{Witten counts is notoriously daunting, we can take advantage here of the

fact that Y is toric, and consider a limit where the Lagrangian L is deformed to a

singular Harvey{Lawson ¯ber with topology R2 � S1 (i.e. an Aganagic{Vafa brane8).

To this end, let E0, E00 be edges of the moment polygon � incident to E, and let f 2 Z

be such that

½C?
E � ¼ ½C jj

E0 � þ f½C jj
E00 � 2 H1ðL;ZÞ: ð3:32Þ

By standard toric arguments, note that f equates the self-intersection number

��1ðEÞ2 ¼ D2

1 ¼ degND1=X. Consider now a degeneration of ‘ whereby its image on

the moment polytope hits E0, so that L ’ R2 � S1 is an Aganagic{Vafa brane, where

the S1 is homotopic to C
jj
E0 , the equator of ��1ðEÞ. Since the corresponding toric

Lagrangian L in Y is the zero-locus of an anti-holomorphic involution, the moduli

space of genus zero, 1-holed stable maps to ðY ;LÞ in absolute homology class 
 2
H2ðY ;ZÞ ’ H2ðXnD1;ZÞ and boundary class �½C 0

E�jj 2 H1ðL;ZÞ ’ Z admits a

C�-equivariant virtual class in virtual dimension zero, and the corresponding

invariants can be de¯ned as

O0;ð
;�ÞðY ;LÞ ¼
Z

½M0;
;�ðY ;LÞ�vir
1: ð3:33Þ

bOr rather by pushing it to in¯nity, corresponding to the in¯nite rescaling of the symplectic form that

realizes C2 as a decompacti¯cation of CP2.
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Two comments are in order:

. ¯rst of all, in this toric limit, the map (3.31) turns into a lattice isomorphism

H2ðX;ZÞ ’ H2ðY ;L;ZÞ ’ H2ðY ;ZÞ �H1ðL;ZÞ ’ H2ðXnD1;ZÞ �H1ðC jj
E0 ;ZÞ with

	ðdÞ ¼ ð
; �Þ and 
 ¼ i�ðdÞ, � ¼ d �E; the second in the string of isomorphisms

here comes from the splitting of the relative homology sequence since H2ðL;ZÞ ¼ 0

for a toric brane, and the third by homotopy invariance upon retraction to the

base;

. secondly, the attentive reader will notice at this point that, naively, (3.33)

reconstructs the disk invariants in the right-hand side of (3.30) only for

½C?
E � ¼ ½C jj

E0 �, i.e. when f ¼ 0. However, the invariants are known to be a®ected by

an integer framing ambiguity in the choice of C�-action in the localization, which

in fact precisely re°ects the framing relation between the class of the bounding

holomorphic disk, ½C?
E �, and ½C jj

E0 �!

We will henceforth denote L½f� for the datum of an Aganagic{Vafa brane with a

choice of framing f. and O0;ð
;�ÞðY ;L½f�Þ the corresponding disk Gromov{Witten

invariant.

N loc
0;dðX;DÞ ¼ O0;	ðdÞðY ;L½D 2

1
�Þ: ð3:34Þ

Example 3.9. In the setting of Example 3.8, we have D2

1 ¼ H2 ¼ 1, so the toric

Lagrangian pair associated to ðX;DÞ ¼ ðCP2;H [QÞ is ðY ;LÞ ¼ ðC3;LÞ where L ’
R2 � S1 is an Aganagic{Vafa brane at framing one. The isomorphism 	 :

H2ðCP2;ZÞ ! H2ðC3;L;ZÞ ’ H1ðL;ZÞ ’ Z in this case simply sends H ! ½S1�.
The construction generalizes with only minor modi¯cations to higher l, by

replacing tangency conditions alongDi with special Lagrangian open conditions near

it ��� we refer the reader to Ref. 19 for a more di®use discussion. The general

expectation, for any l > 1, is that there exist framed toric Lagrangians L ¼ ti<lL
½fi�
i

in a toric Calabi{Yau threefold Y ’ TotðOð�DlÞjXn[i<lDi
Þ and a canonical identi¯-

cation of H2ðX;ZÞ’
	
H2ðY ;ZÞ�iH1ðL ½fi�

i ;ZÞ such that the following correspondence

holds:

Conjecture 3.2. For ðX;DÞ and ðY ;LÞ as above, we have

N loc
0;dðX;D1 þ � � � þDlÞ ¼ O0;	ðdÞðY ;L ½f1�

1
t � � � t L

½fl�1�
l�1

Þ: ð3:35Þ

Example 3.10. As an example with l ¼ 3, take X ¼ CP1 � CP1, and D ¼
D1 [D2 [D3 with D1 ¼ H1, D2 ¼ H2 (Hi being the class of the ith CP1-factor),

and D3 a smooth member of the linear system generated by the diagonal H1 þH2.

Then we have that Y ¼ TotOð�D3ÞjXnfD1;D2g ¼ TotOð�1;�1ÞjCP1�CP1nfH1;H2g ’ C3,

and Li are Aganagic{Vafa Lagrangians on the edges v1 ¼ ð0; 1Þ and v2 ¼ ð1; 0Þ of the
vertex with framing 0 and �1, respectively ��� see Fig. 8. Denoting ½S 1

ðiÞ� the

generator of H1ðLi;ZÞ, absolute homology classes of X and relative homology classes
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of ðC3;L1 t L2Þ are identi¯ed as

H2ðCP1 � CP1;ZÞ !	 H1ðL ½0�
1
;ZÞ �H1ðL ½�1�

2
;ZÞ

d1H1 þ d2H2 !
	
d1½S 1

ð1Þ� þ d2½S 1

ð2Þ�
ð3:36Þ

and so (3.35) becomes

N loc
0;d1H1þd2H2

ðCP1 � CP
1Þ ¼ O0;d1½S 1

ð1Þ�þd2½S 1

ð2Þ�ðY ;L
½0�
1
;L

½0�
2
Þ: ð3:37Þ

Remark 3.1. Central to our construction was the fact that the surface X itself, as

well as the divisors Di with i < l, are toric. It turns out that there is always a smooth

deformation whose central ¯ber has these properties, and we can then use

deformation invariance of Gromov{Witten invariants to specialize to this toric

setting. In doing so, however, attention must be paid to the fact that the nefness of

the divisor Dl we utilize for the twisting in the construction of the Calabi{Yau

threefold geometry TotðOð�DlÞjXnfDigi<lÞ is preserved under deformation to the toric

model. There are in fact a handful of special cases in higher Picard number that don't

satisfy this property, and which we won't consider further in this survey: the reader

may ¯nd an extensive discussion in Ref. 19.

3.4.2. Higher genus: From open to log invariants

The relation (3.35) generalizes Mayr's open/closed string dualityc in Ref. 85 to higher

dimension and arbitrary framing, by relating the closed A-model on a class of CY-

ðlþ 2Þ-fold local surfaces to the open topological A-model with Dirichlet boundary

conditions on l� 1 Lagrangians in a toric Calabi{Yau threefold: in that light, the

cThis is very di®erent from a duality in the usual sense of the gauge/string correspondence: There is no

large N in Ref. 85, the open theory being a Uð1Þ theory on a ¯xed worldsheet (a disk).

Fig. 8. (Color online) The moment polytope of CP1 � CP1 (left), with the edges corresponding toD1 and

D2 depicted in blue and red; and the corresponding toric diagram of C3 (right) with two toric branes
corresponding to contact conditions along D1 and D2. Note that the framing vectors run parallel to the

edges �ðD1Þ and �ðD2Þ that have been deleted from the polytope.
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local surface GW invariants of ðX;DÞ are just a disguised form of genus zero open

GW invariants on a CY threefold. One immediate advantage of the identi¯cation

with the invariants of the associated threefold open string geometry is that, unlike

N loc
0 ðX;DÞ, the theory of open stable maps to a toric special Lagrangian pair ðY ;L ¼

ti<lL
½fi�
i Þ has a moduli space carrying a virtual fundamental class of dimension zero

at all genera, out of which we can de¯ne

Og;ð
;�ÞðY ;LÞ :¼
Z

½Mg;
;�ðY ;LÞ�vir
1; ð3:38Þ

and as in (3.25) we can form an all-genus generating function

Oð
;�ÞðY ;LÞ :¼
�h

2 sinð�h=2Þ

� �
l�3X

g	0

�h2gOg;ð
;�ÞðY ;LÞ; ð3:39Þ

re¯ning simultaneously the genus zero open and the local invariants in (3.35) to

higher genera.

So how can this be used to re¯ne the log-local correspondence to a higher genus

log-open correspondence? Note that in genus zero, by (3.35) and Theorem 3.1, it

would follow that

N
log
0;d ðX;D1 þ � � � þDlÞ ¼

Yl

i¼1

ð�1Þd�Diþ1d �Di

 !

O0;	ðdÞðY ;L ½f1�
1

t � � � t L
½fl�1�
l�1

Þ:

ð3:40Þ

In the right-hand side, the factors ð�1Þd�Diþ1d �Di can be heuristically interpreted as

follows: for i < l, this arises from trading point conditions in X by point conditions

on Di, with the latter corresponding to ¯xing a special Lagrangian condition near it:

the sign factor is an intrinsic ambiguity in the open theory associated to the framing

change fi ! �1� fi; for i ¼ l, this is just the predicted relative factor of the log-local

correspondence in the irreducible case, arising from the twist by Oð�DlÞjXn[i<lDi
.

While the former is genus-independent, the latter is corrected in higher genus as

described by the higher genus log-local theorem in the irreducible case.22 The main

result of Ref. 22 consists of a beautiful (and intricated) relation between invariants

of smooth projective Fano surfaces relative to a smooth anticanonical curve and

the local invariants of the surface, expressed in terms of the invariants of the

elliptic curve. Since Xn[i<lDi is quasi-projective, a heuristic extrapolation of the

arguments of Ref. 22 indicates that the corresponding relation between (equivariant,

under a Calabi{Yau torus action) relative and local invariants dramatically

simpli¯es, and is expressed in terms of the higher genus �g-invariants of the point: at

the level of generating functions, this is simply obtained by replacing d �Dl by its

q-deformation.19 Piecing everything together, this leads to the following

Conjecture 3.3. Let ðX;DÞ be a nef Looijenga pair admitting a deformation to a

pair ðX0;D0Þ with X0 toric, D 0
i prime toric divisors for i < l, and D 0

l nef denoting
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ðY ;LÞ the corresponding Aganagic{Vafa pair. Then,

N
log
d ðX;D1 þ � � � þDlÞ ¼

Y

i<l

ð�1Þd�Diþ1d �Di

 !

ð�1Þd�Dlþ1½d �Dl�q

�O	ðdÞðY ;L ½f1�
1

t � � � t L
½fl�1�
l�1

Þ; ð3:41Þ

where q ¼ ei�h.

In the discussion getting us to Conjecture 3.3 we've been mainly guided by

expectations (and slight generalizations) of the physics equivalence between local

and open invariants, and some heuristics of the possible relation between open

conditions on Lagrangians versus contact conditions on divisors. It turns out that our

fantasy can be vindicated,19 with a full higher genus analogue of Theorem 3.1.

Theorem 3.2. Conjecture 3.3 holds, and moreover, both sides of the equality are

closed-form solvable.

The proof follows from an explicit comparison of the calculation of N log
d and O	ðdÞ

using, respectively, the q-deformed tropical vertex formalism18,17 and the topological

vertex,6,78 carried out in Refs. 19, 20 and 30. By taking the genus zero limit, q ! 1,

and using Theorem 3.1, we immediately obtain that the generalized version of Mayr's

duality holds.

Corollary 3.1. Let ðX;DÞ be a nef Looijenga pair as in Conjecture 3.3. Then

Conjecture 3.2 holds, and moreover, both sides of the equality are closed-form

solvable.

Example 3.11. Consider once again our pet example of ðX;DÞ ¼ ðCP2;H [QÞ.
From Examples 3.8 and 3.9, the corresponding open string geometry ðY ;LÞ is given
by C3 with a toric brane at framing 1. The generating function of all-genus, 1-holed

Gromov{Witten invariants at winding d is given from the topological vertex6 as

OdðY ;LÞ ¼
1

d

X

R

�RððdÞÞqðRÞ=2ð�1ÞdsRðq�Þ; ð3:42Þ

where R is an irreducible representation of the symmetric group Sd labeled by a

Young diagram with d-boxes, sRðq�Þ is the corresponding Schur function in the

principally stable specialization sRðxi ¼ q�iþ1=2Þ, ðRÞ is its second Casimir

invariant, and �RðcÞ denotes the character of the conjugacy class ½c� of Sd in the

representation R. Since ½c� ¼ ðdÞ is labeled by a full permutation cycle, the

Murnaghan{Nakayama rule gives �RððdÞÞ ¼ ð�1Þs if the Young diagram of R is a

hook diagram with d boxes and sþ 1 rows, and zero otherwise. Using that (see e.g.

Ref. 98)

sðd�s;1sÞðq�Þ ¼
q
1

2
ðð d
2
Þ�dsÞ

½d�q½d� s� 1�q!½s�q!
;
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we get that

OdðY ;LÞ ¼
ð�1Þd
d½d�q

Xd�1

s¼0

ð�1Þsq
3

2
ð
d

2
Þ d� 1

s

	 


q

ð�qdÞsq�ds=2

¼ ð�1Þd
d½2d�q

2d

d

" #

q

; ð3:43Þ

where in the last line we have used the Cauchy binomial theorem. Comparing

with (3.26) returns exactly the expected relation in (3.41).

4. Applications

Theorems 3.1 and 3.2 have a host of nontrivial applications for the enumerative

geometry of ðX;DÞ. We explore some of these below.

4.1. Logarithmic invariants from the topological vertex

The ¯rst application of Theorem 3.2 is the proof itself: as stated above, and as

evidenced in Example 3.11, the methods employed in Refs. 19, 20 and 30 rely on a

direct manu militari calculation of both sides of the equality (3.41), which give

explicit formulas for the log and the open invariants separately. In some cases these

formulas agree on the nose: this occurs when either l > 2, or l ¼ 2 andD2

i > 0. But in

general the two expressions are super¯cially very di®erent, and the proof of (3.41)

turns into a combinatorial problem in its own right.

Example 4.1. Let dP3 :¼ Bl3ptsCP
2 be the blow-up of the plane at three points. We

write H for the total transform of the line, and Ei, i ¼ 1; 2; 3 for the exceptional

divisors. The anticanonical class has a decomposition D ¼ D1 þD2 with D1 ¼
H � E1 and D2 ¼ 2H � E2 � E3, both having smooth e®ective representatives. By

blowing up nongenerically, we get the toric Fano surface with moment polytope

� : dP3 ! R2 depicted in Fig. 9: in particular the torus ¯bration of the top edge in

the polytope is in the classD1, which in this case is a prime toric divisor withD 2

1 ¼ 0.

Writing d ¼ d0ðH �E1 � E2 � E3Þ þ
P

diEi for the class of an e®ective curve in

dP3, the generating function of all-genus logarithmic invariants can be computed as

Fig. 9. (Color online) The moment polygon (left) and the toric diagram of the associated open string

geometry (right) forX ¼ dP3, D1 ¼ H � E1, D2 ¼ 2H �E2 �E3. The edge E4 corresponding to �ðD1Þ is
highlighted in red; note that the framing vector, corresponding to f ¼ �1, runs parallel to the deleted edge.
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the following intricate-looking multi-variate q-hypergeometric sum30

N
log
d ðdP3;D1 þD2Þ ¼

X

8 ði;nÞ2f1; 2; 3; 4g � Z>0 : ki;n 	 0

d0 ¼
X

n	1

X
4

i¼1
ðnþ �i;1Þki;n

d1 ¼
X

n	1

X
4

i¼1
ki;n

d0� d2 ¼
X

n	1
ðk1;n þ k4;nÞ

d0� d3 ¼
X

n	1
ðk1;n þ k3;nÞ

Y

n	1

Y2

i¼1

ci;nðqÞdi;nðqÞ; ð4:1Þ

with

ci;n ¼
d2 þ d3 �

X

m	1

ð2mðk1;nþm þ k2;nþmÞ þ ð2m� 1Þðk3;nþm þ k4;nþmÞÞ

ki;n

2

4

3

5

q

;

di;n ¼
d2 þ d3 �

X

m	0

ðð2mþ 1Þðk1;nþm þ k2;nþmÞ þ 2mðk3;nþm þ k4;nþmÞÞ

k2þi;n

2

4

3

5

q

:

ð4:2Þ
On the other hand, the corresponding open string geometry ðY ;LÞ obtained by

deleting the divisor D1 and replacing the contact condition with a Lagrangian one is

obtained on the right-hand side of Fig. 9, with a toric brane attached to an outer

vertex at framing �1. A straightforward topological vertex calculation leads to

O	ðdÞðY ;LÞ ¼
ð�1Þd1þd2þd3 ½d1�q

d1½d0�q½d1 þ d2 þ d3 � d0�q
d3

d0 � d1

" #

q

�
d3

d0 � d2

" #

q

d0

d3

" #

q

d1 þ d2 þ d3 � d0

d3

" #

q

; ð4:3Þ

where, in terms of the generators ½��1ðEiÞ� 2 H2ðY ;ZÞ, i ¼ 1; 2; 3, and ½S1� 2
H1ðL;ZÞ we have

	½H � E1 � E2 � E3� ¼ ½C3� � ½C1�; 	½E1� ¼ ½C1 þ C2�;
	½E2� ¼ ½C1�; 	½E3� ¼ ½S1� þ ½C1� � ½C3�:

ð4:4Þ

Then (3.41) turns into a new conjectural q-hypergeometric summation formula

N
log
d ðdP3;D1 þD2Þ ¼

½d1�q½d2 þ d3�q
½d0�q½d1 þ d2 þ d3 � d0�q

d3

d0 � d1

" #

q

d3

d0 � d2

" #

q

�
d0

d3

" #

q

d1 þ d2 þ d3 � d0

d3

" #

q

: ð4:5Þ

An inductive proof ex post, based on the knowledge of the open invariants, was given

in Ref. 30, adapting arguments due to Krattenthaler in Ref. 74.
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In general, the vertex calculation provides a closed form resummation of higher

genus log GW generating functions for all nef Looijenga pairs under the conditions of

Conjecture 3.3.

4.2. Open/closed BPS invariants, quivers, and integrality

A second application concerns the integral structure underlying the local invariants

of ðX;DÞ. Recall that EðX;DÞ is a (noncompact) Calabi{Yau ð2þ lÞ-fold. For these, a
higher dimensional version of the genus zero Gopakumar{Vafa invariants of CY3 can

be de¯ned by the divisor sum

KPdðX;DÞ ¼
X

kjd

�ðkÞ
k4�l

N loc
0;d=kðX;DÞ: ð4:6Þ

mimicking the Aspinwall{Morrison multiple covering formula of the three-

dimensional case. In (4.6), �ðkÞ is the M€obius function

�ðkÞ ¼
1 k is square-free and with an even number of prime factors;

�1 k is square-free and with an odd number of prime factors;

0 k has repeated prime factors:

8

<

:

ð4:7Þ
When l ¼ 2, these were conjectured to be related to a count of BPS states, and are

therefore integers, in the work of Klemm and Pandharipande.71 This integrality

statement was generalized to higher dimensional Calabi{Yau varieties by Ionel and

Parker, and proved in the compact case using symplectic methods, in Ref. 68.

In our noncompact setup we can give an algebro-geometric proof of the integrality

of Klemm{Pandharipande invariants as a direct corollary of Corollary 3.1, as follows.

From the pioneering work of Ooguri and Vafa93 and Labastida{Mari~no{Vafa,76 open

GW invariants are also conjectured to have an underlying integral structure, in

terms of a count of open BPS bound states of M2-branes ending on M5-branes that

wrap the framed toric Lagrangians L ¼ [iL
½fi�
i . The open version multi-covering

formula for ðl� 1Þ-holed amplitudes on a CY3 has structurally the same form of (4.6)

on a CY-ð2þ lÞ:

LMOVð
;�ÞðY ;LÞ ¼
X

kjð
;�Þ

�ðkÞ
k4�l

O0;ð
=k;�=kÞðY ;LÞ: ð4:8Þ

By (3.35), for a nef Looijenga pair, the associated local and open invariants coincide

upon identifying ð
; �Þ ¼ 	ðdÞ; and by (4.6) and (4.8), the associated BPS invariants

are de¯ned through the same multi-covering formula. Therefore we immediately ¯nd

that

KPdðX;DÞ ¼ LMOV	ðdÞðY ;LÞ: ð4:9Þ

On top of establishing a new link between open/closed BPS states living in di®erent

dimensions, (4.9) has also an immediate practical consequence as there is a lot more
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that is known about LMOV invariants than we know about KP invariants. For

example, for l ¼ 2 the work of Refs. 47, 75 and 94 associates to ðY ;LÞ a symmetric

quiver QðY ;LÞ, which physically encapsulates the datum of a three-dimensional

N ¼ 2 Abelian Chern{Simons-matter theory, which describes the dynamics on the

worldvolume of an M5 brane wrapping the conormal bundle to the homologically

nontrivial circle in L, and whose vortex partition function of this theory gives the

generating series of numerical Donaldson{Thomas invariants of QðY ;LÞ. In partic-

ular, under the 3d{3d correspondence, the open BPS invariants of (4.8) coincide (up

to sign) with the Donaldson{Thomas invariants of the corresponding quiver:

Theorem 4.1. Let ðX;D1 þD2Þ be 2-component a nef Looijenga pairs satisfying

the assumptions of Conjecture 3.3, and let ðY ;LÞ be the associated Aganagic{Vafa

special Lagrangian pair. Then there exists a symmetric quiver and an embedding of

� : H2ðY ;L;ZÞ,!Z½QðY ;LÞ0� into the free abelian group generated by the vertices of

the quiver such that

jLMOVð
;�ÞðY ;LÞj ¼ DT�ð
;�ÞðQðY ;LÞÞ; ð4:10Þ

where DTDðQðY ;LÞÞ denotes the numerical Donaldson{Thomas invariant of the

quiver for the dimension vector D 2 N½QðY ;LÞ0�.
The assignment of a quiver to ðY ;LÞ is nonunique, but for L a toric brane there

exist canonical minimal choices with number of vertices equal to the topological

Euler characteristic of Y , and for which the identi¯cation of relative homology

degrees with dimension vectors of the quiver is an actual isomorphism.

Example 4.2. Let ðX;DÞ ¼ ðCP2;H [QÞ, so that ðY ;LÞ is given by C3 with a toric

brane at framing one. In this case, since �ðY Þ ¼ 1 the minimal quiver QðY ;LÞ has
only one vertex, and the integral framing equal to one translates into the fact that

QðY ;LÞ is the 2-loop quiver94 ��� see Fig. 10. From Ref. 96, these invariants are equal

to

fDTdðQðY ;LÞÞgd2Z>0 ¼ f1; 1; 1; 2; 5; 13; 35; 100; 300; 925; 2915; 9386; . . .g ð4:11Þ

reproducing the (absolute value of the) Klemm{Pandharipande invariants in Sec. 3.2

of Ref. 71.

C
d α∈End(Cd)�β

Fig. 10. The quiver associated to ðX;DÞ ¼ ðCP2;H [QÞ.
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For toric branes, the equality (up to sign) between LMOV invariants and quiver

DT invariants can be rigorously established by a combined use of the topological

vertex and CoHA methods to match the corresponding (higher genus versus motivic)

q-hypergeometric series in the q ! 1 limit.94 The integrality of the DT invariants

follows from a theorem of Ref. 46: this implies immediately, via (4.9) and (4.10), that

the LMOV invariants and especially the KP invariants of the local geometry of the

associated Looijenga pair are integral, proving the conjecture of Ref. 71 for local

surfaces. At the same, not only are the N
log
0;d ðX;DÞ integers, since they are enu-

merative, but the open BPS/DT integrality gives a ¯ner integrality statement for the

corresponding log invariants:

Theorem 4.2. We have that

KPdðX;DÞ ¼
X

kjd

�ðkÞ
k4�2l

Y

i�l

ð�1Þd=k�Diþ1

d �Di

N
log

0;d=kðX;DÞ 2 Z: ð4:12Þ

Furthermore, the existence of a nontrivial higher genus theory of the logarithmic

and open invariants allows to make a re¯ned statement in that setup. The prediction

of Ref. 76 is that the BPS generating function

LMOVð
;�1;...;�l�1ÞðY ;LÞ :¼
Y

i<l

�i
½�i�q

X

kjð
;�1;...;�l�1Þ

�ðkÞ
k
Oð
;�1;...;�l�1Þ=kðY ;LÞðqkÞ; ð4:13Þ

is an integral Laurent polynomial in q. This can be proved directly (including for

l > 1) for all nef Looijenga pairs satisfying the assumptions of Conjecture 3.3.19 In

particular, the fact that the higher genus log generating functions N
log
d ðX;DÞ are

integral Laurent polynomials (see e.g. (3.26)), which is a consequence of q-deformed

tropical correspondence argument, is re¯ned here to a priori unexpected, stricter

integrality statement.

Theorem 4.3. For all nef Looijenga pairs, we have that

Yl

i¼1

1

½d �Di�q

 !
X

kjd

ð�1Þd=k�Dþl�ðkÞ
½k�2�l

q k2�l
N

log

d=kðX;DÞðqkÞ 2 Z½q; q�1�: ð4:14Þ

The relation to BPS invariants echoes very similard statements relating log GW

theory to DT and LMOV invariants in Refs. 16 and 18, and in particular it partly

demysti¯es the interpretation of log GW partition functions as related to some

putative open curve counting theory on a Calabi{Yau 3-fold in §9 of Ref. 18 by

realizing the open BPS count in terms of actual, explicit special Lagrangians in a

toric Calabi{Yau threefold.

dA nontrivial di®erence is that here the log Gromov{Witten invariants are not interpreted as BPS

invariants themselves, unlike in Refs. 16 and 18, but are instead related to them via (3.41) and (4.13).
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4.3. Further applications

The open Gromov{Witten theory of toric Calabi{Yau 3-folds has been the subject of

huge interest in the last couple of decades from many di®erent communities. As a

result, its identi¯cation with the higher genus log GW theory of surfaces brings with

itself an immense range of implications for the latter, three of which were explored

above (the topological vertex formalism being an e®ective means of closed-form

resummation of the q-tropical counts; the integrality of KP invariants from the

branes-quivers correspondence; and the open BPS integrality property of the log

invariants as a result of the properties of LMOV partition functions). The list does

not end here, and we just highlight a few other connections that are immediate

corollaries of Theorem 3.2.

. The log invariants are naturally given by certain vacuum expectation values of a

statistical mechanical model/topological quantum ¯eld theory: this can take the

shape of either the resolvent of a random matrix ensemble,29,83 or as a melting

crystal/free fermion vertex operator,88,92,97 or yet again as Wilson loop in Chern–

Simons theory59,93);

. Their generating functions are also related to �-functions of a classical integrable

hierarchy, which is always a rational reduction of the 2-Toda hierarchy,24–26,99,100

. Their genus expansion is computed by the Eynard–Orantin topological recursion,

via the remodeled-B-model proposal15,49,51,84;

. Finally for l ¼ 2, when they are related to disk superpotentials, their generating

functions in genus zero are related to twisted superpotentials/vortex partition

functions associated to surface operator insertion in a four-dimensional N ¼ 2

theory.42,73

The range of these fascinating implications are certainly worthy of further anal-

ysis, which we defer to future work.

5. Generalizations

The previous section saw a multitude of di®erent curve counting theories (and

corresponding physical theories) being nontrivially identi¯ed, starting from the

datum of a nef Looijenga pair ðX;DÞ. An obvious question is how rare is this web

of correspondences ��� how easy is it to build a pair ðX;DÞ with the required

properties? In particular, in De¯nition 2.1 we made no comments on how restrictive

our assumptions are, especially the smoothness and nefness of each irreducible

component Di. It turns out that there are only ¯nitely many (18) smooth defor-

mation families of nef Looijenga pairs, for which representatives will share the same

Gromov{Witten invariants by deformation invariance. A key question is therefore

to see how much the philosophy of Fig. 3 carries through to as general a setup as

possible.
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5.1. Orbifolds

The ¯rst requirement we may want to drop is that the surfaceX itself be smooth, and

allow it to have orbifold (canonical quotient) singularities.20,21 In particular we

can consider pairs ðX ;D ¼ D1 þ � � � þDlÞ where X is a smooth complex

Deligne{Mumford stack with coarse moduli space a normal Gorenstein projective

surface X, ðX;DÞ is log-smooth (in particular, the singularities are concentrated

along the codimension 2 strata of D), D 2 j �KXj, and the irreducible components

Dj are nef and Q-Cartier for all j ¼ 1; . . . ; l. The log-smoothness guarantees

properness and existence of a virtual fundamental class for the moduli space of basic

stable log maps,1,38,65 and the corresponding log Gromov{Witten invariants.

Likewise, we may de¯ne local orbifold Gromov{Witten invariants of the noncompact

Calabi{Yau orbifold EðX;DÞ :¼ Totð� l
i¼1ðOX ð�DiÞÞÞ with coarse space the Goren-

stein quasi-projective Calabi{Yau ðlþ 2Þ-fold EðX;DÞ :¼ Totð� l
i¼1ðOXð�DiÞÞÞ,3 and

compute them using the orbifold version of the quantum Riemann{Roch theorem.101

Example 5.1. Let X ¼ CPð1; 1;nÞ be the weighted complex projective plane with

weights ð1; 1;nÞ. This is a Gorenstein toric surface which has one torus ¯xed point

given by an orbifold singularity, which is locally a quotient of C2 by the ¯nite cyclic

group �n. The singularity is joined to either of the other (smooth) torus-¯xed points

by a toric divisor Hn: extending Hn to an anticanonical divisor by adding a general

member Qn of j �KY �D1jgives the Looijenga orbi-pair ðCPð1; 1;nÞ;D ¼
Hn þQnÞ. For n ¼ 1, this gives back our pet example ðX;DÞ ¼ ðCP2;H [QÞ in

the smooth case.

So by playing with the order of the singularities, we can generate an in¯nite list of

nef Looijenga orbi-pairs, for which the log and local theories make sense. Moreover,

and strikingly, the existence of an open string special Lagrangian pair ðY ;LÞ also

carries through to this setting ��� and with it, the open BPS integrality statements of

Sec. 4.2. In general, ðY ;LÞ may be an Aganagic{Vafa orbi-pair,27,28 and a slight

re¯nement of the log-open correspondence may be required in that case ��� we refer

the reader to Ref. 20 for a more extensive discussion.

Example 5.2. Let ðX;DÞ ¼ ðCPð1; 1;nÞ;Hn þQnÞ be as in Example 5.1. Note that

X is toric,Hn is a prime toric divisor, andQn is ample: this puts us squarely in the set

of assumptions of Conjecture 3.3. Running the same heuristic strategy of Sec. 3.4,

we replace the divisor Hn with a special Lagrangian condition near it, Qn with a

twisting of XnHn by Oð�QnÞjXnHn
, and then degenerate to a toric limit for

the Lagrangian all the while remembering the datum of the compacti¯cation of

XnHn by adding back Hn through a framing shift ��� see Fig. 11. The associated

threefold special Lagrangian pair in this case is given by Y ¼ TotðOð�QnÞjXnHn
Þ ¼

TotðOCPð1;1;nÞð�QnÞjC2Þ ’ C3, and L is an Aganagic{Vafa Lagrangian at framing n.

In particular, although X is singular, the pair ðY ;LÞ is smooth in this case.

By Ref. 94, the associated quiver is the ðnþ 1Þ-loop quiver (see Fig. 12). For the

corresponding invariants, the calculation of the open invariants is fundamentally
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identical to that of Example 3.11, and we get

OdðY ;LÞ ¼
ð�1Þd

d½ðnþ 1Þd�q
ðnþ 1Þd

d

	 


q

ð5:1Þ

which agree with the q-scattering calculation20 of the higher genus log invariants

of ðCPð1; 1;nÞ;Hn þQnÞ up to a factor of ð�1Þdd½ðnþ 1Þd�q, as predicted by

Conjecture 3.3:

N
log
d ðCPð1; 1;nÞ;Hn þQnÞ ¼

ðnþ 1Þd
d

	 


q

: ð5:2Þ

Furthermore, (5.1) gives, in the limit q ! 1, the local orbifold Gromov{Witten

invariants of the orbifold CY4-fold geometry EðCPð1;1;nÞ;HnþQnÞ. The (minimal) quiver

associated to a single toric brane in C3 with framing n is the ðnþ 1Þ-loop vertex

Qðnþ1Þ�loop,
94 see Fig. 12. The corresponding numerical Donaldson{Thomas invar-

iants are related to the Klemm{Pandharipande invariants of EðCPð1;1;nÞ;HnþQnÞ as

KPdðEðCPð1;1;nÞ;HnþQnÞÞ ¼ ð�1Þn; 1
4
ðð2nþ 1Þ � ð�1ÞnÞ; 1

2
ð�1Þnnðnþ 1Þ;

�

1

3
nðnþ 1Þð2nþ 1Þ; 5

24
ð�1Þnnðnþ 1Þð5nðnþ 1Þ þ 2Þ; . . .

�

d

¼ ð�1Þnþdþ1DTdðQðnþ1Þ�loopÞ 2 Z: ð5:3Þ

Fig. 11. The moment polytope of CPð1; 1;nÞ (left) for n ¼ 2, with a depiction of the generators C
jj
E and

C?
E (respectively, C

jj
E0 and C

jj
E00 ) of the homology of the torus ¯ber ‘; and the corresponding toric diagram

of C3 (right) with a toric brane on the edge E0 at framing f ¼ n. The framing vector w ¼ v1 � fv2 ¼
v1 � nv2 is parallel to E.

C
d

Fig. 12. The ðnþ 1Þ-loop quiver Qðnþ1Þ�loop associated to X ¼ CPð1; 1;nÞ, D ¼ Ln þQn.
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5.2. Non-nef and singular divisors

A second, heavily constraining requirement in De¯nition 2.1 was that each smooth

component Di, i ¼ 1; . . . ; l be nef. This places very strong constraints on X and D:

for example, when ðX;DÞ is a toric pair, it forces X to be a product of projective

spaces. Recall that the nefness condition was chosen to ensure the generic com-

pactness of the moduli space of stable maps to the noncompact geometry EðX;DÞ. But
instead of imposing this as a condition on D, we can force that as a condition on our

stable maps, by requiring that the class of their images lands in the nef cone of X.

This vastly enlarges the catalogue of pairs ðX;DÞ amenable to the same analysis as

the nef Looijenga pairs.

Given a Looijenga pair ðX;DÞ there are two main birational operations that

produce another Looijenga pair ðX0;D0Þ

. X0 is the blow-up of X at a node of D, and D0 is the inverse image of D in X0

(a corner blow-up of ðX;DÞ);
. X0 is the blow-up of X at a smooth point of D, and D0 is the strict transform of D

in X0 (an interior blow-up of ðX;DÞ);

A corner blow-up does not change the complement XnD, whereas an interior

blow-up does; accordingly corner blowups do not change log Gromov{Witten

invariants.4 By Ref. 53, every Looijenga pair ðX0;D0Þ dominates by a sequence of

corner and interior blow-ups a minimal Looijenga pair ðX;DÞ with X a minimal

rational surface. These can be classi¯ed, up to deformation, in four series, according

to the number l of irreducible components of D.

(1) for l ¼ 1, there are two isolated cases:

. X ¼ CP2 and D is an irreducible nodal cubic;

. X ¼ CP1 � CP1 and D is a nodal bisection;

(2) for l ¼ 2, there are three cases:

. X ¼ CP2, D ¼ H [Q;

. X ¼ Fn, n 6¼ 1 is the nth Hirzebruch surface, with D1 ¼ C�n being the nega-

tive section and D2 a smooth member of j2f þ Cnj, with f the ¯ber class and

Cn the positive section;

. X ¼ CP1 � CP1 and D1 ¼ D2 is the class of the diagonal;

(3) for l ¼ 3, there are two cases:

. X ¼ CP2, D ¼ H [H [H;

. X ¼ Fn, D1 ¼ C�n, D2 ¼ f, D3 2 jf þ Cnj;
(4) for l ¼ 4, X ¼ Fn, D is the toric boundary.

The above examples with X ¼ Fn, n > 0 are not nef, and we therefore have an

in¯nite class of Looijenga pairs for each l ¼ 2; 3; 4.
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Let's then restrict to stable map degrees in the nef cone of X, which is a full-

dimensional subcone of the cone of e®ective curves. How do Theorems 3.1 and 3.2

generalize to non-nef geometries? For l > 2, it turns out that the explicit solution

methods of the local, log, and open Gromov{Witten theories associated to ðX;DÞ
presented in Secs. 3.2.2 and 4.1 can be applied seamlessly to the non-nef setting as

well, and the resulting invariants satisfy the expected relations (3.7), (3.30)

and (3.41).31 For l ¼ 2, the comparison argument presented in Sec. 3.2.1 only relies

on the fact that the stable map degree d satis¯es d �Di > 0 for i ¼ 1; 2, regardless of

whether Di is nef, and it therefore holds unaltered in the non-nef setting, as does the

comparison theorem of Refs. 79 and 80 for the local and open theory. Furthermore, in

this case an all-degree calculation of the log and local invariants is computationally

completely out of reach: because D1 is not nef, the local mirror symmetry compu-

tations require a Birkho® factorization of the I-function to extract the J-function,

and the scattering calculation of the log invariants exhibit wall crossings with dense

sets of walls in some sectors, thus making calculations in all degrees unfeasible. On

the other hand, a topological vertex solution for the open theory can be determined

in terms of the planar solution of a unitary matrix model37,48: the log-local-open

comparison then produces, in a single shot an explicit algebraic formula for the

generating functions of the log, local, and open invariants in genus zero in terms of

the planar resolvent of the chiral part of q-deformed two-dimensional Yang{Mills

theory (qYM2).
7,36,37,84

Example 5.3. For the case of F2 with D1 ¼ C�2, D2 2 j2f þ C2jwe have that

Y ¼ TotðOF2
ð�D2ÞjF2nC�2

Þ ¼ TotðOCP1ð2Þ �OCP1ð�4ÞÞ, L is a canonically framed

special Lagrangian on the outer edge corresponding to the Oð2Þ ¯ber, and

N
log
0;d0C2þd1f

ðF2;C�2 þ ð2f þ C2ÞÞ ¼ ½Qd0zd1 �ð4Q@Q þ z@zÞlog�ðz; �ðQÞÞ; ð5:4Þ

Fig. 13. (Color online) The moment polytope of Fn (left) for n ¼ 2 with the divisorD1 ¼ C�n depicted in

red, and the corresponding toric diagram of TotðOCP1 ðnÞ �OCP1 ð�n� 2ÞÞ (right), with a toric brane on an

outer edge. Note that the toric diagram is nonplanar, re°ecting the non-nefness of C�n.
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where �ðQÞ is the unique root of �ðQÞð1� �ðQÞÞ8 ¼ Q which vanishes at Q ¼ 0, and

�ðz; �Þ :¼
ð1� �Þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

z
� 1

ð
ffiffi
�

p
�1Þ2ð

ffiffi
�

p
þ1Þ4

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

z
� ð

ffiffi
�

p
þ1Þ2

ð��1Þ4

r !�2

ðð� � 1Þ3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� � 1Þ6 þ z2 � 2ð� þ 1Þð� � 1Þ2z
p

� zÞ4
: ð5:5Þ

Remarkably, not only the resolvent, but also the partition function of the unitary

matrix model arising from qYM2 has an interpretation in terms of log and local

Gromov{Witten counts. Upon relating log Gromov{Witten counts into ðCP2;DnodalÞ
where Dnodal is a nodal cubic to counts in the complement CP2npt ’ TotðOCP1ð1ÞÞ of
the node, an all-genus comparison statement can be made in terms of the

equivariantly Calabi{Yau Gromov{Witten theory of EðCP2npt;DnodalnptÞ ’ TotðOCP1

ð1Þ �OCP1ð�3ÞÞ (equivalently, the local Gromov{Witten theory of the quasi-

projective surface given by the total space of OP1ð1Þ):

N
log
d ðCP2;DnodalÞ ¼ ð�1Þ3dþ1½3d�qN loc

d ðOP1ð1ÞÞ: ð5:6Þ

The right-hand side is then computed from the degree-expansion of the topological

vertex partition function on the toric CY3 EðCP2npt;DnodalnptÞ. The details will be

presented in Ref. 31.

6. Conclusion and Outlook

The results presented in this survey tie together several disconnected strands of

development in the study of enumerative invariants of log CY surfaces and allied

geometries. One particularly attractive spin-o® of the discussion is the construction

of a wide array of theoretical methods to determine the corresponding invariants in a

uni¯ed way. We conclude here with a brief discussion of their relation to similar

questions in enumerative geometry and physics, highlighting along the way some

important avenues of future research.

. The connection between log GW invariants to DT invariants of quivers and to

open BPS invariants has appeared in previous related work,16,18 which invoked a

relation between log GW counts on surfaces with some putative open topological

string on a CY3 and LMOV-type counts. This speculation is made fully explicit in

our study of Looiejnga pairs through the lens of the log-open correspondence of

Sec. 3.4. This bears an immediate consequence for the local invariants, by iden-

tifying KP invariants of local surfaces with quiver DT invariants, and proving

algebro-geometrically the integrality of the former via the latter. This opens, inter

alia, a glimpse of a possible pathway to establish a Calabi–Yau 4-fold Gromov-

Witten/Donaldson-Thomas correspondence statement as suggested in Refs. 33

and 34, at least in the simplest case of local surfaces, which would be most

interesting to further develop.
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. Our discussion in Sec. 2.2 imposed a set of rather stringent conditions (X being

a surface, X and the irreducible components Di being smooth, nefness of Di,

maximal contact along Di) which we only partly lifted in the description of the

generalizations of Sec. 5. It would be very interesting, for example to consider

the log/open correspondence beyond the context of maximal tangency: splitting

the contact order across multiple points on Di would be mirrored, accordingly, by

considering multiple Lagrangian boundary conditions near the same divisor Di.

The topological vertex computes these just as e±ciently as the single-winding

amplitudes, as would the \remodeling" technology of Ref. 15. This expectation can

already be put on ¯rm grounds and seen to be satis¯ed in the basic case of a

canonically framed Lagrangian on an outer edge of C3 and arbitrary windings,

which would correspond to the log GW theory of CP1 � C relative to the toric

boundary, with maximal contact along the zero ¯ber ½0 : 1� � C and arbitrary

tangency along ½1 : 0� � C. Given all that is known about the theory of the to-

pological vertex, it would be fascinating to explore how much this could tell us

about the log counts on ðX;DÞ, and the construction of quantum SYZ mirrors as

in Ref. 18.

. Recently,33–35 a theoretical understanding of KP invariants was sought using

sheaf-counting theories for Calabi–Yau 4-folds,14,91 which have led to conjecture

relations between genus 0KP invariants and stable pair invariants on Calabi–Yau

4-folds: their veri¯cation for local surfaces in Ref. 32 relied on the solution of the

Gromov–Witten/Klemm–Pandharipande side given by Theorem 3.1. It would be

extremely interesting to pin down the exact role of the appearance of the sym-

metric quiver QðY ;LÞ in this context: for example, for ðX;DÞ ¼ ðCP2;H [QÞ, the
moduli space of representations of the corresponding quiver Q2�loop is isomorphic

to the moduli space of rank-d Oð1Þ-twisted Higgs bundles on CP1, which in turn is

an open part of the moduli space of one-dimensional coherent sheaves on the CY4-

fold local geometry TotðOCP2ð�1Þ �OCP2ð�2ÞÞ. It would be fascinating to ham-

mer out a precise virtual comparison statement between the sheaves and the

quiver perspective, and work out its implications for the corresponding D-brane

realizations in string theory.

. Finally, the existence of a natural re¯nements separately for the DT theory of the

quiver and the open BPS invariants raises the question of the nature of the possible

re¯nement of the CY-4 fold DT invariants for the local surface geometries coming

from Looijenga pairs with l ¼ 2, in terms of some putative re¯ned version of DT

theory for CY4-folds.
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