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Abstract

This work presents a coupled approach, based on Finite Fracture Mechanics

(FFM), to preliminarily investigate hydraulic fracturing of rocks. The novelty

of the criterion relies on the assumption of a finite crack extension and on the

simultaneous fulfillment of a stress requirement and the energy balance. Two

material constants are involved, namely, the tensile strength and the fracture

toughness. The FFM unknowns are represented by the critical crack advance,

which results a structural parameter and not a simple material one, and the

breakdown pressure. The study investigates the longitudinal failure behavior

of both impermeable and permeable rocks by supposing that growing cracks

are loaded by a pressure proportional to that acting on the borehole wall. The

stability growth of hydraulic fractures is discussed case by case. The approach

is validated against experimental data available in the literature by considering

the effect of rock permeability, fluid viscosity and flow rate.
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Highlights

• The FFM criterion is applied to preliminarily assess hydraulic fracturing in

rocks.

• The pressure of the penetrating fluid is assumed to be constant around the

borehole.

• The breakdown pressure is governed by a competition between strength and

toughness.

• It is reasonable to suppose that the crack onset is stable for nonpenetrating

fluids.

1 | INTRODUCTION

Hydraulic fracturing (or fracking) is a common tech-

nique for productivity enhancement in conventional oil

and gas reservoirs by inducing high-conductivity frac-

tures from reservoir to wellbore. Since hydraulic fractur-

ing has become increasingly strategic, the importance

of factors effecting tensile crack development in rock
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subjected to fluid pressures needs to be thoroughly

understood.

Several theoretical, numerical, and experimental ana-

lyses have been carried out to evaluate the break-down

pressure in different rock types, under different in situ

conditions with different fracturing fluids.1–3 The process

is extremely complex, since it is dependent on several fac-

tors4,5 such as in situ horizontal stresses, pressure rate,6

rock mass properties,7 fracture-fluid properties,8 and

wellbore size and orientation.9

An interesting overview of the most important studies

in this framework has been recently presented.10 Accord-

ingly, common theoretical approaches can be classified

into strength-based, energy release rate-based, stress

intensity factor-based, or shear failure criteria.

In their pioneering work, Hubbert and Willis11 devel-

oped in 1957 the first realistic model relating the hydrau-

lic fracturing test variables to the in situ state of stress in

rock. The approach is based on the simple concept of

stress concentration at the borehole edge. Haimson and

Fairhurst12 improved the criterion in 1967 by taking

Biot's poroelastic theory into account. However, the

model still assumes that the breakdown occurs at a point

on the wellbore wall. Therefore, the actual fluid pressure

distribution—depending on many factors as outline

above—is neglected. In order to overcome this drawback,

criteria based on a critical length were then devised and

somehow validated. Particularly, the point stress method

proposed by Ito and Hayashi6 assumes that break-down

occurs when the maximum effective stress reaches the

rock tensile strength at a certain distance (inside the rock

mass) from the wellbore surface. The critical distance is

assumed to be a material parameter, function of the ten-

sile strength itself and of the rock fracture toughness.

Similar nonlocal criteria were successively proposed,

based on the average normal stress7 or on the stress

intensity factor function.13 On the other hand, laying on

a number of basic assumptions, shear-based approaches

were seen to be oversimplified and therefore unable to

provide accurate results.10

The body of knowledge briefly described above

recalls, on a methodological level, what happened in the

framework of fracture mechanics of homogenous mate-

rials. Basically, the theory of critical distances (TCD)14,15

was proposed to overcome the limits of linear elastic frac-

ture mechanics (LEFM) in assessing the failure behavior

of notched elements under either static or fatigue load-

ing. In some cases, however, the idea of a length that is a

material property is characterized by some draw-

backs.16,17 In this setting, the Finite Fracture Mechanics

(FFM) approach16,18 provides a convincing alternative

suitable for overcoming the above limitations. FFM

works by coupling a stress condition with the energy

balance, and it involves a structural length, dependent on

the geometrical parameters and the loading conditions

too. This allows, for instance, a better description of the

failure size effect on plain, cracked, or notched structures

at small scales. In this framework, the FFM criterion has

recently been applied to circular holes under different far

field loading conditions19–21 and under internal pressure

for nonpenetrating fluids.22,23

The novelty of the present paper is the extension of

FFM to fracking by focusing on longitudinal fracture

(taking place when the out-of-plane stress results the

maximum compressive principal stress) and considering

both nonpenetrating and penetrating fluids. To this end,

some simplifying assumptions are made as follows:

(i) The rock is treated as a linear, elastic, isotropic, and

homogeneous medium; (ii) the pressure of the penetrat-

ing fluid is assumed to be constant around the hole;

(iii) the effect of propagation is described by a unique

dimensionless parameter λ ranging from 0 to 1.

This approach will be devised, discussed, and vali-

dated in what follows.

2 | FINITE FRACTURE
MECHANICS

Let us consider the borehole geometry seen in Figure 1

that consists of a circular hole with radius R in an infinite

plate, subjected to internal pressure p and remote com-

pressive loading σ. The reference system of coordinates

xy is fixed at the hole center. As it will be clarified at the

end of the section, the two parameters α and λ are used

to model the loading conditions and the fluid penetra-

tion, respectively.

FIGURE 1 Borehole geometry.
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The coupled criterion based on FFM16,24 makes use of

a finite crack advance of length l (at least at the initiation

stage) and of the simultaneous fulfillment of the follow-

ing two conditions. The first consists of a stress require-

ment, according to which the average normal stress σy in

front of the hole edge must be greater than the tensile

strength, T:

bσ l
� �

¼ 1

l

Z1þl

1

σy xð Þdx ≥T ð1Þ

where l¼ l=R and x¼ x=R.

The second is represented by the energy balance: The

average energy release rate G must be greater than the

fracture energy Gc. Via Irwin's relationship, this condi-

tion can be expressed in terms of stress intensity factor

(SIF) KI (G = KI
2/E', E' being Young's modulus related to

plane strain conditions) and fracture toughness KIc

(Gc = KIc
2/E') as

bK l
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

l

Z l

0

K2
I að Þda

vuuut ≥K Ic ð2Þ

where a is the length of a crack emanating from the hole

edge and a ¼ a=R. Herein, it is supposed that the crack

propagates symmetrically along the x-direction, as done

in conventional theoretical approaches to hydraulic frac-

turing.10,13,25 Note that symmetrical crack propagation

has to be preferred—from an energetic point of view—

when dealing with mode I crack initiation from circular

holes.26,27

In order to implement the FFM approach via

Equations (1) and (2), the distribution along the line of

potential crack growth of the stress field σy and of the SIF

KI need to be known, either analytically (through some

approximating expressions) or numerically (e.g., through

a finite element analysis). In the framework of linear

elasticity, both functions are the sum of two contribu-

tions, one due to the internal pressure p (which is the

sum of the hydraulic pressure and the initial pore pres-

sure) and one due to the remote compressive loading σ.

Accordingly, by referring to the geometry under consider-

ation (Figure 1), we have28

σy xð Þ¼ f
λ
xð Þpþ f

α
xð Þσ ð3aÞ

where

f
λ
xð Þ¼ λþ 1

x2

� �
ð3bÞ

and

f
α
xð Þ¼ 1

2
�2α� 1þαð Þ

x2
þ3 1�αð Þ

x4

� �
ð3cÞ

The maximum normal stress at the hole edge thus

writes as

σy x¼ 1ð Þ¼ σmax ¼ 1þλð Þpþ 1�3αð Þσ ð3dÞ

On the other hand, the SIF can be written in the

following form:

K I að Þ¼
ffiffiffiffiffiffiffiffiffi
πRa

p
p Fλ að Þþσ Fα að Þ½ � ð4aÞ

Approximating expressions for the shape functions

F were proposed in the literature with an accuracy better

than 1% for any a ¼ a=R29:

Fλ að Þ ¼ 1�λð ÞF0 að Þ þλF1 að Þ ð4bÞ

with

F0 að Þ¼ 1

1þa
0:637þ 0:485

1það Þ2
þ0:4

a2

1það Þ3

" #
ð4cÞ

F1 að Þ¼ 1þ 1

1þa

1

2
þ 0:743

1það Þ2

" #( )
ð4dÞ

and

Fα að Þ ¼�F1 að Þþ 1�αð ÞF2 að Þ ð4eÞ

with

F2 að Þ¼ 1

2
3� a

1þa

� �
1þ1:243 1� a

1þa

� �3
" #

ð4fÞ

The case λ = 0 refers to nonpenetrating fluids,

whereas the range 0 < λ ≤ 1 will be investigated in detail

hereinafter to describe the case of penetrating fluids by

supposing that the fluid pressure within the borehole is

proportional to the fluid pressure within the microcracks.

This hypothesis was originally proposed when dealing

with experimental tests on granite samples.2 It may be

somehow justified by assuming that the size of the area

affected by fluid penetration is approximately equal to

the critical crack advance. However, the assumption

obviously limits the validity of the proposed model.
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It should be underlined that the use of a single

parameter λ is simplistic to account for the different

aspects affecting fluid penetration. The phenomenon is

influenced, in first place, by the permeability of the rock

(impermeable rocks, such as granite and marble, present

a typical permeability less than 10�18 m2, whereas

permeable rocks, such as sandstone, show a permeability

generally greater than 10�16 m2). Poroelastic models have

been proposed for the last 50 years, by including Biot's

coefficient (function of the ratio between matrix and bulk

compression coefficients) and Poisson's ratio among the

parameters that affect the breakdown pressure. Further-

more, it is well known that the fracturing initiation

pressure decreases with the decrease of fracturing fluid

viscosity and pressurization rate,6,25,30 and it depends on

the damage and micro-cracks that form near the well

when drilling or injecting.2 Thus, the calibration of λ for

FFM application on experimental results needs to be

discussed case by case.

On the other hand, parameter α weighs the contri-

bution of the remote loads in the two perpendicular

directions: α = 0 refers to uniaxial compressive loading,

α = 1 to isotropic biaxial compression. Note that if

α > 1, the fracture propagates along the y-axis. Without

losing generality, we restrict our analysis to the range

0 ≤ α ≤ 1.

By substituting Equations (3a)–(3d) into Equation (1),

it is possible to express the stress condition as

2þ l
� �

�2αl
2�4αlþ1�3α

	 


2 1þ l
� �3

σ

T

	 

þλlþ1þ λ

1þ l

p

T

	 

≥ 1

ð5Þ

Furthermore, inserting Equations (4a)–(4f) into the

energy balance (1) yields

Iαα
σ

T

	 
2

þ 2Iαλ
σ

T

	 
 p

T

	 

þ Iλλ

p

T

	 
2

≥
l

π R=lch
ð6Þ

where lch ¼ K Ic=Tð Þ2 is Irwin's characteristic length of the

rock, and analytical expressions for integrals

Iαα ¼
Rl

0

aF2
α
að Þda, Iαλ ¼

Rl

0

aFα að ÞFλ að Þda, and Iλλ ¼
Rl

0

aF2
λ
að Þda

can be achieved, although not easy to be handled.

Summarizing, the coupled criterion based on FFM is

expressed by the system of inequalities (5) and (6): The

unknowns are represented by the critical advancement of

the crack lc and by the breakdown pressure pf, which

reverts to the initiation pressure in case of stable crack

propagation. Of course, pf is the lowest value of p that

satisfies Equations (5) and (6) as l varies.

3 | EFFECT OF THE INNER
PRESSURE (σ = 0)

Let us start by considering the effect of internal pressure

alone (σ = 0), which has been partially dealt with in the

FFM literature.23 From classical linear elasticity, it is well

known that (Equations 3a–3d)

pf

T
! 1

λ
as

R

lch
! 0 ð7aÞ

pf

T
! 1

1þλ
as

R

lch
!∞ ð7bÞ

In what follows, we will investigate separately the

cases of hydraulic fracture involving penetrating and not

penetrating fluids (λ = 0) according to the FFM approach.

3.1 | Penetrating fluids

Let us start assuming fluid penetration before fracture

initiation (0 < λ ≤ 1; Figure 1). As λ is high enough

(λ > 0.1, otherwise the situation is similar to that

described in Section 3.2), the geometry is such that the

SIF function (2) becomes monotonically increasing

(so-called positive geometry) (Figure 2); consequently,

unstable crack growth will naturally result. Thus, for

penetrating fluids, the initiation pressure coincides with

the breakdown pressure and the crack onset takes place

when both inequalities (5) and (6) are strictly fulfilled,

leading to a system of two equations in two unknowns:

FIGURE 2 Dimensionless SIF as a function of the crack length

for λ varying from 0 to 1 (σ = 0). The dashed line represents the bK
function (Equation 2) versus l/R for λ= 0. [Colour figure can be

viewed at wileyonlinelibrary.com]
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p

T
¼ 1þ l

λ 1þ l
� �

þ1

p

T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

πR=lch

1

Iλλ l
� �

s

8
>>>><

>>>>:

ð8Þ

Once the radius R and the material properties lch are

fixed, system (8) can be faced by equaling the right-hand

sides of both expressions and solving numerically the

implicit equation in l. This allows to get the value of the

critical crack advance lc (first unknown), which can be

then substituted into one of the two equations in (8) to

get the breakdown pressure pf (second unknown).

FFM unknowns are depicted in Figures 3 and 4 by

considering lc and pf, respectively. For a vanishing radius,

Equation (7a) holds and the energy balance only provides

the crack advance, lc=lch ! 2=π’ 0:637. On the other

hand, for sufficiently high radii, the breakdown is gov-

erned by the stress concentration factor (Equation 7b):

Accordingly, lc=lch ! 2= π1:122ð Þ’ 0:507. The solution

related to intermediate radii is ruled out by both strength

and toughness.

3.2 | Nonpenetrating fluids (λ = 0)

Consider now the case of impermeable rocks (λ = 0;

Figure 1); that is, the fluid is present only in the borehole.

Accordingly, the geometry is locally positive and globally

negative,32 since the SIF (4) is first increasing (starting

from zero) and then tending again to zero as a tends to

infinite (Figure 2). The resulting function bK l
� �

(Equation 2) attains a maximum at l
� ¼ l=R’ 1:29, from

which it follows via Equations (1) and (2):

R� ¼ R

lch
¼

bσ2 l
�	 


1:29 bK l
�	 
’ 0:40 ð9Þ

Two FFM scenarios are now possible (Figure 5) as

follows.

Scenario (i): For R/lch below R*, the crack onset is

provided by the minimum of the discrete energy balance,

being the stress requirement (1) trivially (over) fulfilled

(Figure 5A).

In formulae:

pf

T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:29

πR=lch

1

Iλλ l
�	 


vuut ’ 1:45ffiffiffiffiffiffiffiffiffiffiffi
R=lch

p ð10aÞ

from which it follows

pf ¼
1:45ffiffiffi
R

p KIc ð10bÞ

Accordingly, the crack propagation reveals to be

stable (dK I=da<0), and the infinitesimal crack onset at

FIGURE 4 FFM (σ = 0): Breakdown pressure according to

nonpenetrating (λ = 0, stable propagation) and penetrating fluids.

The dashed blue line represents the FFM predictions according to

Equations (10a) and (10b) for R/lch < 0.40. Experimental data

(λ = 0) are related to limestone31 (solid circles), granite31 (empty

circles), and Kofu andesite6 (empty squares). [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 3 FFM (σ = 0): crack advance according to

nonpenetrating fluids (λ = 0, dashed + continuous blue line) and

penetrating fluids (λ > 0.1, colored lines). [Colour figure can be

viewed at wileyonlinelibrary.com]
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the subsequent steps will be described by LEFM

(KI=KIc): Subsequent increases in pressure are required

to cause continued crack propagation. Note that

Equations (10a) and (10b) satisfy the limit condition pro-

vided by Equation (7a);

Scenario (ii): For R/lch larger than R*, the crack onset

takes place when both inequalities (5) and (6) are strictly

verified (Figure 5B), leading again to system (8) with

λ = 0. The generated cracks could be either unstable or

stable, depending on the value of the crack extension20

(Figure 2).

For nonpenetrating (or slightly penetrating, λ < 0.1)

fluids, in any case, it is reasonable to suppose that the ini-

tial growth of the hydraulic cracks is stable because of

large pressure drops in the narrow fractures. Subsequent

increases in pressure cause however unstable propaga-

tion, which correlates with the pressure at which break-

down is observed.

FFM results are presented in Figures 3 and 4, which

show the critical crack advance and the initiation

pressure, respectively. For sufficiently high R, the

solution is stress governed (pf =T! 1, Equation 7b), and

the energy balance only provides the crack advance,

lc=lch ! 2= π1:122ð Þ’ 0:507.24 Below R*, the FFM crite-

rion reverts to Equation (10), and lc becomes a linear

function of R, lc= 1.29 R.20,33 Note that, in this range, the

deviation from the solution obtained by the coupled

system (8) is significant only for the crack extension

(Figure 3), the critical pressure being significantly higher

only for very small radii (see subplot in Figure 4).

Experimental data taken from the literature and refer-

ring to Kofu andesite,6 Lac du Bonnet granite, and

Indiana limestone31 are also reported in Figure 4. The

material properties implemented in the present work are

summarized in Table 1: In the case of granite and lime-

stone, the fracture toughness KIc was extrapolated from

FIGURE 5 Dimensionless pressure (σ = λ = 0) for R/lch = 0.1 (A) and 1.6 (B). FFM solution coincides with the minimum value (black

circle) satisfying both the stress requirement (area above the blue line) and the energy balance (area above the green line). [Colour figure

can be viewed at wileyonlinelibrary.com]

TABLE 1 Mechanical properties

and parameters implemented in the

present FFM analysis.

Experimental test K Ic MPa
ffiffiffiffiffi
m

pð Þ T MPað Þ lch mmð Þ λ

Falkenberg granite2 1.80 17.0 11.2 0.95

Honkomatsu andesite6 1.10 12.1 8.26 0.00

Indiana limestone31 0.37a 9.60 1.48 0.00

Kofu andesite6 1.50 11.1 18.3 0.00

Lac Du Bonnet granite31 0.35a 8.10 1.87 0.00

Pennant sandstone34 0.32 15.1 0.45 0.15–0.35

Strathbogie granite35 1.40 6.60 44.9 0.90

Tablerock sandstone36 0.55b 4.40 15.6 0.50

Whitby mudstone34 0.37 3.21 13.3 0.40

aDerived from the analysis carried out in the corresponding reference.31

bTaken from the literature,30 since it is not provided in the related analysis.
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the critical distance used by Cuisiat and Haimson31 to fit

the data through the point method.6 The global matching

between FFM initiation predictions and experimental

results is satisfactory.

Finally, let us underline the hole size effect; that is,

the failure pressure decreases as the borehole radius

increases. This trend will be recovered also in next sec-

tions, as it plays a major role in rock fracture mechanics.

The behavior is not limited to the presence of a hole but

also of common defects such as cracks or notches.37

4 | EFFECT OF REMOTE
COMPRESSION

In the following, we will analyze separately two

additional conditions related to the bore under pressure:

Uniaxial (α = 0) and isotropic biaxial (α = 1) compres-

sion; see Figure 1. For each of them, we will comment on

the cases of nonpenetrating (λ = 0) and penetrating

(λ = 1) fluids, comparing FFM predictions with the data

available in the literature.

4.1 | Uniaxial compression (α = 0)

For a given value of ratio σ/T, from linear elasticity

(Equations 3a–3d), we have

pf

T
! 1

λ
as

R

lch
! 0 ð11aÞ

pf

T
! 1�σ=T

1þ λ
as

R

lch
!∞ ð11bÞ

The uniaxial compression thus provides a positive

contribution to breakdown (at least for sufficiently large

radii), the limit by Equation (11b) being lower than that

by Equation (7b).

In case of positive geometries, starting from

Equations (5) and (6), the FFM system can be rewritten as

p

T
¼ 1þ l

λlþ1þ λ
� 2þ l

2 1þ l
� �2

λlþ1þ λ
� �

σ

T

p

T
¼
� σ

T
Iαλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

T

� �2
I2
αλ
� σ

T

� �2
Iλλ Iαα� l

π R=lch

	 
h ir

Iλλ

��������
α¼0

8
>>>>>>>><

>>>>>>>>:

ð12Þ

which can be solved numerically analogously to the

procedure described in Section 3.1 (see Equation 8).

By taking σ/T = 0.4 (each case has to be faced sepa-

rately), the FFM solutions are reported in Figures 6 and 7

for lc and pf, respectively, for different values of λ. Note

that the behavior of the lc versus R relationship is qualita-

tively similar to that of the pressurized hole (Figure 3).

Indeed, the solution from system (12) can be accepted

rigorously only for positive geometries. This is not the

case of nonpenetrating fluids (λ = 0). Accordingly, the

geometry is again locally positive and globally negative.

The average function bK (Equation 2) is reported in

Figure 8 for different p/T values ranging from 1 to 5 (note

FIGURE 6 FFM (α = 0, σ/T = 0.4): Dimensionless crack

advance for different λ values. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 FFM (α = 0, σ/T = 0.4): Dimensionless failure

pressure for different λ values. The dashed blue line represents the

FFM energy solution for R/lch < 0.53 and λ = 0 (stable

propagation). Experimental data31 (empty symbols) refer to λ = 0.

[Colour figure can be viewed at wileyonlinelibrary.com]
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that the function is now plotted in dimensionless form

with respect to the tensile strength T). The dashed line in

Figure 8 represents the locus of maxima, from which,

through a relationship similar to Equation (9), the critical

radii versus p/T function can be estimated. Its inter-

section with the solution of the coupled system (12) —see

Figure 7, λ= 0— provides the critical radius R*= 0.53.

Note that this value lies in between those corresponding

just to internal pressure, R*= 0.40 (Equation 8), and to

compressive loading, R*= 1.44.20 Consequently, the

threshold crack advance can be estimated from Figure 6:

l
�
= 0.977. This estimation depends obviously on the

loading σ/T at hand.

The situation is now similar to that described in

Section 3.2.

Scenario (i): For R/lch below R*, the crack propagation

is stable and the onset is provided by the minimum of the

discrete energy balance (2) by forcing l/R to equal to

0.977. The subsequent propagation will be stable.

Scenario (ii): For R/lch larger than R*, the crack initia-

tion starts when both FFM inequalities are strictly

verified, leading to the solution provided by Equation (12)

with λ = 0. Although the propagation may result initially

unstable, from a theoretical point of view, it is reasonable

to suppose that the initial growth of the hydraulic cracks

is stable as discussed after point (ii) of Section 3.2.

Once more, as evident from the subplot of Figure 7,

the procedure described in (i) leads to significant devia-

tions in the initiation pressure values only for very small

radii.

Experimental data available in the literature are

reported in Figure 7. Wellbores were machined in dry

cubical specimens and jacketed with an impermeable

membrane.6 Distances among the wellbores and speci-

men surfaces were kept 10 times larger than the wellbore

radius to avoid elastic interactions. Hydraulic tests were

carried out under a compressive loading σ equal to

4.91 MPa on two different types of low permeable andes-

ite, namely, Kofu andesite and Honkomatsu andesite,

whose material properties6 are reported in Table 1. Note

that the tensile strength values are similar, so that

σ/T ≈ 0.4 for both materials. Experimental results refer

to the initiation pressure and are in excellent agreement

with FFM predictions (Figure 7).

We can now remove the hypothesis of a fixed σ/T and

plot the failure pressure as a function of the ratio σ/T,

both for λ = 0 and λ = 1 (Figure 9). In the former case,

FFM prediction are reported disregarding the energy

driven solution: Note that R* can be reasonably supposed

to increase as σ/T increases.

FIGURE 9 FFM (α = 0): dimensionless failure pressure related to (A) nonpenetrating (λ = 0) and (B) penetrating (λ = 1) fluids. [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Dimensionless bK function (Equation 2: α= 0,

σ/T= 0.4). Circles represent the maximum of each curve. [Colour

figure can be viewed at wileyonlinelibrary.com]
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In Figure 10, we plotted the safety domain for R/lch
equal to 2, 4, and ∞, the last value coinciding with

classical linear elasticity along with Rankine criterion.

The domain is (weakly) nonlinear according to FFM, the

nonlinearity increasing for decreasing R/lch. This is a

consequence of the discrete energy balance (2), which is

quadratic in the load.

It is clear that the situation presented above describes

the extreme situations of nonpenetrating fluids and pene-

trating fluids with regard to the crack onset: Note that

the initiation pressure always reveals lower in the second

case (for a given radius and material), in good agreement

with experimental observations.5

4.2 | Isotropic compression (α = 1)

The case of isotropic biaxial compression is more compli-

cated to address than the previous one. This is because

the effect of the loading σ is now negative upon the stress

field and the SIF in front of the borehole wall. For the

sake of simplicity, let us fix again ratio σ/T. From

Equations (3a)–(3d), we have

pf

T
! 1þσ=T

λ
as

R

lch
! 0 ð13aÞ

pf

T
! 1þ2σ=T

1þλ
as

R

lch
!∞ ð13bÞ

Note that the limits provided by Equations (13a) and

(13b) are higher than the corresponding ones by

Equations (11a) and (11b).

Starting from Equations (5) and (6), for positive

geometries, the FFM system can be rewritten as

p

T
¼ 1þ l

λlþ1þ λ
þ 2þ l

λlþ1þ λ

σ

T

p

T
¼
� σ

T
Iαλþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

T

� �2
I2
αλ
� σ

T

� �2
Iλλ Iαα� l

π R=lch

	 
h ir

Iλλ

��������
α¼1

8
>>>>>>><

>>>>>>>:

ð14Þ

which can be solved as already discussed (see Equation 8).

FFM solutions are plotted in Figure 11A for different λ

(σ/T = 0.4) and in Figure 12 for different σ/T (λ = 1)

values.

FIGURE 11 (A) FFM (α = 1, σ/T = 0.4): dimensionless breakdown pressure for different λ values; (B) dimensionless bK function

(Equation 2) for λ= 0. Circles represent the maximum of each curve. The dashed lines represent the SIFs (Equation 4) versus a/R. [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Safety domains according to FFM (α = 0) for both

nonpenetrating (λ = 0, continuous lines: initiation pressure) and

penetrating (λ = 1, dashed lines: breakdown pressure) fluids.

[Colour figure can be viewed at wileyonlinelibrary.com]
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On the other hand, for negative geometries, one has

to check first of all the sign of the SIF and the stress field.

Due to the high number of parameters, let us set again

σ/T equal to 0.4 (each situation has to be investigated

separately). Equation (2) is plotted in Figure 11B for

different p/T values. The geometry is again globally

negative. Furthermore, for low p/T, the SIF vanishes at a

specific length and then becomes negative. Basically,

attention has to be paid that the crack onset cannot take

place in this case. For λ = 0, we get a critical radius

R* = 0.58 (l
�
= 0.86), which however does not influence

consistently the FFM predictions on initiation pressure

(Figure 11A). The same applies for λ= 0.2: R*= 0.21

(l
�
= 2.5).

Finally, we compare FFM predictions with experi-

mental results available in literature2,34,36 and referring

to thick walled hollow cylinders with an external to inter-

nal radius ratio comprised between 8 and 20.

The first data set refers to experiments carried out

under low volume rate on samples (R = 0.6 mm) made of

Pennant sandstone.34 The material has a low permeabil-

ity (around 10�18 m2), and its mechanical properties

were evaluated experimentally (Table 1), resulting in

R/lch � 1.34. Varying the confining pressure, tests were

performed with two different injected fluids, a high

viscosity (2 � 103 Pa s) one and a low viscosity

(2.4 � 10�2 Pa s) one. In the second case, the recorded

breakdown pressures were slightly higher (Figure 13).

The comparison with FFM predictions reveals satisfac-

tory by choosing, as a fitting parameter, λ = 0.15 and

0.35, respectively. Identical tests were carried out with

the low viscosity fluid on other rocks with similar perme-

abilities34: Mancos shale, Penrhyn slate, and Whitby

mudstone. The FFM fitting involves λ estimations close

to the present one: The comparison with results on

mudstone (R/lch � 0.045) is reported in Figure 14.

The second data set is related to hydraulic fracturing

of Tablerock sandstone.36 Tests were carried out on

unjacketed samples and the fluid viscosity was 2.5 Pa s.

The material has a high permeability (10�13 m2), and the

mechanical properties are reported in Table 1: note that

the fracture toughness was not evaluated in the original

work and a typical value for sandstone is implemented.30

Consequently, since R = 6.5 mm, R/lch � 0. 42. Results

are presented in Figure 15: FFM predictions reveal

satisfactory by choosing λ = 0.50. Despite the greater

permeability of Tablerock sandstone with respect to that

of mudstone, the fluid viscosity (see above) and the pres-

surization rate (15 MPa s�1) were higher in this test: This

justifies a λ value just slightly higher than that obtained

for mudstone (Figure 14). It should be mentioned also

that, different from previous experimental data, the

initial pore pressure in this case was not zero but equal to

the confining stress: This behavior is implicitly described

by the value estimated for λ. Note that the breakdown

pressure is the sum of the hydraulic pressure and the ini-

tial pore pressure. Moreover, it is important to mention

that, according to classical poroelastic models, the pore

pressure affects both the poroelastic contribution to fluid

penetration and the strength decrease of the rock.38

Let us now consider the hydraulic fracturing experi-

ments on Strathbogie granite.35 The material has a low

permeability (10�18 m2). Considering that R was equal

1.5 mm and implementing the mechanical properties

reported in Table 1 (again a typical value for the fracture

toughness is taken into account, since not reported in the

FIGURE 13 FFM (α = 1) dimensionless breakdown pressure

vs. experimental data referring to Pennant sandstone.34 Results

refer to low viscosity (green) and high viscosity (blue) injected fluid.

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 FFM (α = 1): dimensionless breakdown pressure

for λ = 1. [Colour figure can be viewed at wileyonlinelibrary.com]
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corresponding reference), it follows that R/lch � 0. 03.

FFM predictions match experimental data by implement-

ing λ = 0.9 (Figure 16): This can be justified by consider-

ing the low viscosity of the water (�0.9 Pa s) as injection

fluid. The fluid flow rate was 5 mL/min. Note that similar

results are obtained for tests on Harcourt granite

presented in the same analysis.35

Finally, the last considered data set refers to hydrofrac-

ture tests carried out on Falkenberg granite minicores2

(R = 1.25 mm, R/lch � 0.11). The permeability of granite

was low (10�18 m2), as well as the viscosity of the injected

oil and the pumping rate (0.5 MPa s�1). The existence of

pre-existing microdefects was underlined before failure,

whereas symmetrical axial fractures were observed after

failure. FFM predictions are seen to be very accurate by

setting λ = 0.95 (Figure 17). This assumption looks

reasonable according to what was outlined before. Note

that in this case, the hypothesis that the fluid pressure

within the borehole is proportional to that within micro-

cracks was put forward in the corresponding reference.2

FIGURE 17 FFM (α = 1) dimensionless breakdown pressure

vs. experimental data on Falkenberg granite.2 The black line refers

to classical linear elasticity, Equation (13b). [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 14 FFM (α = 1) dimensionless breakdown pressure

vs. experimental data referring to referring to Whitby mudstone.34

The black line refers to classical linear elasticity, Equation (13b).

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 FFM (α = 1) dimensionless breakdown pressure

versus experimental data referring to Tablerock sandstone.36 The

black line refers to classical linear elasticity, Equation (13b).

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 16 FFM (α = 1) dimensionless breakdown pressure

versus experimental data on Falkenberg granite.2 The black line

refers to classical linear elasticity, Equation (13b). [Colour figure

can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSIONS

Different from either stress or energy approaches based

on a critical distance,14 FFM requires the simultaneous

fulfillment of a stress requirement and the energy

balance.16,18 Thanks to this peculiarity, the criterion is

able to distinguish between unstable and stable crack

propagation when passing from strength to toughness-

governed failure regimes, as for instance when the charac-

teristic size of the stress-concentrator decreases. In this

context, the coupled criterion was preliminarily applied to

assess hydraulic fracturing in rock materials. The analysis

focused on longitudinal fracture and was based on some

simplifying assumptions. In particular, (i) rock is modeled

as isotropic and homogeneous and (ii) for penetrating

fluids, the area surrounding the borehole is subjected to a

pressure proportional to that acting on the borehole wall.

It was shown that, for nonpenetrating fluids (λ = 0),

the crack onset is energy governed below a critical radius

R*, whose value increases as far as additional compres-

sive loading conditions are taken into account. In this

region, the crack propagation is seen to be stable. For

increasing values of R/lch, fracturing is governed by both

strength and toughness, and, in the limit, it is described

by the stress concentration factor. Theoretically, depend-

ing on the crack length, the propagation could be initially

unstable. Practically, it is reasonable to suppose that the

initial growth of hydraulic cracks is stable because of the

large pressure drop in fractures with narrow widths. In

any case, a subsequent increase in pressure can cause

unstable propagation, which correlates with the pressure

at which breakdown is observed (thus higher than the

corresponding initiation pressure).

For fully penetrating fluids (λ = 1), there are two

significant differences: (i) The breakdown is strength-

governed at small size and (ii) the crack propagation

always results unstable, independently of the radius.

In situations of practical interest, the pressure in the

cracks represents something between the two cases

(0 < λ < 1) and the breakdown is affected by many

parameters. Each data set must be then investigated sepa-

rately. Indeed, FFM failure predictions were compared

with some experimental data available in the literature

and concerning different rock materials, showing a

general good agreement.

We would like to remark that the present approach

reveals simplistic to account for different factors affecting

fluid penetration through the only parameter λ. Further

efforts should be spent to improve it, showing a clear

correlation with matrix permeability, pressurization rate,

and viscosity, for example, similar to what Zhang et al.30

proposed.

Future investigation steps include the FFM generaliza-

tion to anisotropic loading conditions (α < 1), which might

be applied to fracture on horizontal wells; the extension to

transverse fracture8 (taking place when the out-of-plane

stress is the minimum compressive principal stress) by

modeling the borehole surface as a Penny-shaped crack39;

the employment of a pressure distribution inside the rock

which reveals more physically sound10; and the removal of

the material isotropy hypothesis.7 In this latter case, both

the stress field and the SIF depend on orientation,40 and

the FFM approach requires the involvement of the angle

between the bedding plane and potential crack advance.

NOMENCLATURE
a length of a crack at the hole edge

a dimensionless crack length with respect to the hole

radius R

Fα shape function related to the SIF for compressive

loadings

Fλ shape function related to the SIF for internal

pressure

fα shape function related to the stress field for

compressive loading

fλ shape function related to the stress field for the

internal pressure

l crack advance

l dimensionless crack advance with respect to the

hole radius R

lc critical crack advance

lch Irwin's length

G energy release rate

Gc fracture energy

p internal pressure

pf breakdown pressure

R borehole radius

R* dimensionless radius corresponding to the maxi-

mum of bK
T tensile strength

KI stress intensity factor

KIc fracture toughness
bK square root of the averaged energy release rate

α loading parameter

λ permeability parameter

σ remote compressive loading

σy normal stress field

bσ averaged normal stress field

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are

available from the corresponding author upon reasonable

request.
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