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Abstract
Social animals can use the choices made by other members of their groups as cues in decision
making. Individuals must balance the private information they receive from their own sensory cues
with the social information provided by observing what others have chosen. These two cues can be
integrated using decision making rules, which specify the probability to select one or other options
based on the quality and quantity of social and non-social information. Previous empirical work
has investigated which decision making rules can replicate the observable features of collective
decision making, while other theoretical research has derived forms for decision making rules
based on normative assumptions about how rational agents should respond to the available
information. Here we explore the performance of one commonly used decision making rule in
terms of the expected decision accuracy of individuals employing it. We show that parameters of
this model which have typically been treated as independent variables in empirical model-fitting
studies obey necessary relationships under the assumption that animals are evolutionarily
optimised to their environment. We further investigate whether this decision making model is
appropriate to all animal groups by testing its evolutionary stability to invasion by alternative
strategies that use social information differently, and show that the likely evolutionary equilibrium
of these strategies depends sensitively on the precise nature of group identity among the wider
population of animals it is embedded within.

1. Introduction

Animal groups exhibit complex collective behaviours
that emerge from interactions between social animals
[1, 2], such as patterns of collective movement or
decision-making. It has been proposed that those
groups can be approached as self-organised systems at
criticality [3–5], while many collective phenomena—
ranging from conflict resolution [6] and rational
decision-making [7], to opinion dynamics and social
spreading [8]—have been modelled using frame-
works originally developed in physics; the main
focus of this manuscript (collective decision-making,
i.e. on the phenomenon where the majority of an
originally undecided group of agents commits to a
single option) corresponds to symmetry breaking

in physics, a phenomenon often studied with spin
models [9].

A substantial body of research has established
that relatively simple interactions between individu-
als can produce cohesive groups able to perform
complex tasks like self-organised motion [10, 11],
group migration [12], conflict resolution [13], or
consensus decisions [14]. Substantial effort has been
made to identify what these ‘rules of interaction’
are from two perspectives. In one, models are pro-
posed and demonstrated to exhibit the required col-
lective behaviour [10, 11, 13, 15–23]. This fulfils a
necessary but not sufficient condition for identify-
ing the appropriate rules, since other models may
also exhibit similar collective behaviour. A second
approach is to collect empirical data on animal
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movements and behaviours and use this to directly
infer the form of interactions [24–27]. Combining
these two approaches creates a powerful framework
for identifying the rules governing interactions [28].

However, even if one can specify precisely what
interactions occur between individuals, this leaves an
open question: from among the set of plausible inter-
actions, why do animals use these rules and not oth-
ers? Although simple interactions between individu-
als can clearly lead to functional group behaviours,
less is known about their evolution and stability on
an individual level in groups of unrelated individu-
als who cannot be assumed to behave according to
a single collective goal. Instead, such animals should
evolve to make decisions that serve their own selfish
interests such as acquiring food and safety. Making
informed decisions depends on reliable information
about the world. That information comes in the form
of cues, which indicate the state of the environment:
is there a desired resource over here? Is there a pred-
ator over there? As individual sensory abilities are lim-
ited, social animals can make use of ‘social inform-
ation’, i.e. information provided by the actions of
their conspecifics, as a source of indirect informa-
tion about the state of the environment [29, 30].
But not all social information is relevant or accurate
[31, 32], and relying too heavily on imitating oth-
ers can potentially lead to poor information cascades
[33]. Therefore we can expect that natural selec-
tion will drive animals to adopt specific weightings
of private and social information depending on the
environment they inhabit so as to maximise the qual-
ity of their decisions.

In the area of collective migration, large-scale
evolutionary simulations have explored the evolu-
tion of interaction rules within a model based on
social ‘forces’ [12], with selection on the individual
level based on navigational accuracy. This not only
demonstrated the evolution of rules sufficient to keep
a group of agents together as a single ‘flock’, but also
showed the emergence of distinct strategies within
the group, characterised by ‘leaders’ and ‘followers’.
Importantly, these strategies emerged as a result of
individual adaptation under natural selection, rather
than being specified in the model itself. Models of
collective movement are complex due to the con-
tinuous nature of the observable behaviour (motion)
and the iterated interactions between individuals over
time. As such, it is difficult to make reasoned a priori
arguments about how animals ought to interact on
the move so as to accomplish individual goals, and
even evolutionarymodels such as that above generally
work within a heuristic framework of ‘social forces’—
assuming that agents exhibit force-like attraction,
repulsion and alignment interactions, and allowing
the strength of these forces to be determined by
evolution. A more mathematically tractable area of

collective behaviour can be considered in the form
of simple sequential decision-making between dis-
crete options. Recent research has focused on deriv-
ing likely interaction rules in such a scenario by con-
sidering the behaviour of rational agents [34–36].
One such model, developed in references [34, 35]
has had a considerable influence on empirical work,
being used to interpret the observed collective beha-
viour of fish [37–40], birds [41, 42] and even humans
[43, 44]. However, aspects of this model (described
in the next section) remain unspecified by theoretical
arguments and must in each case be fitted to the data
available. Furthermore, various assumptions made
in the model development allow for the possibility
that these rules may be vulnerable to exploitation by
animals employing a different strategy. Establishing
whether the strategy derived in this model is stable
is crucial as foundation for the interpretation of the
empirical studies which assume its use by the animals
under study.

In this paper we take the model of [34] as start-
ing point for considering collective decision making,
based on its widespread use in interpreting empirical
data. We describe the conceptual and mathematical
basis of this model, highlighting potential vulnerabil-
ities due to non-rational assumptions.We identify the
key parameters of the model that are left unspecified
in theory, and show that these obey necessary rela-
tionships under the assumption that animals make
decisions optimally, thus reducing the number of
degrees of freedom in the model. We then specify
alternative strategies an animal might employ using
the same conceptual framework, and explore the sta-
bility of the baseline model to invasion by these
alternatives.

2. Method

We consider a commonly used setting of a binary
decision [34–36, 45–47], where a group of agents
needs to decide between two options. One of the
options represents the correct decision, be it a safe
resting place, the location of a resource etc. The agents
choose consecutively, so each focal agent is able to
observe two things: the environment and the choices
made by the previous agents. The focal agent will then
process this available information and use it to make
an informed decision about what choice to make.

2.1. Bayesian estimationmodel
We use a version of the Bayesian estimation model
as developed by Perez-Escudero & de Polavieja [34].
The model refers to the above-mentioned setting,
and considers each individual making a Bayesian
estimation of the probability that each option is the
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best choice. Each individual estimates the probabil-
ity that each choice is the best one based on its non-
social information C, and the behaviour of the other
individuals I, in order to decide what behaviour to
perform.

Let a,b be the two available options the individu-
als choose from; then, the probability of b being the
best location is P(B|C, I), and the probability that a is
the best location isP(A|C, I) = 1− P(B|C, I). By using
Bayes’ theorem, P(B|C, I) is given by:

P(B|C, I) = P(I|B,C)P(B|C)
P(I|A,C)P(A|C)+ P(I|B,C)P(B|C)

,

(1)

which can be expressed in the following simplified
form:

P(B|C, I) = 1

1+ aS
(2)

where:

a=
P(A|C)
P(B|C)

(3)

and

S=
P(I|A,C)
P(I|B,C)

. (4)

In this model a is defined as the non-social para-
meter as it depends only on the non-social informa-
tion C while S depends on the actions of other indi-
viduals; in other words, a describes the uncertainty
of the environment and S describes the level of the
agents’ sociality. By definition both parameters are
constrained to be a,S⩾ 0. Increased values of a cor-
respond to increase in uncertainty, while increase in
the value of S corresponds to increase in social beha-
viour. More specifically, a= 1 is the case where none
of the two available options are favoured over the
other, a⩽ 1 is the case where option A is favoured
over B when A is the best, and a⩾ 1 is the case
where option B is favoured over A when A is the
best. Additionally, S= 1 is the case where the focal
agent ignores the available social information, S⩽ 1
is the case where the focal agent avoids the avail-
able social information, and S⩾ 1 is the case where
the focal agent follows the available social inform-
ation. Since in this manuscript we are considering
the social behaviour of decision-making agents, we
will be considering values of a ∈ [0,1] as this corres-
ponds to cases where P(B|C)⩽ P(A|C) (i.e. option b
is favoured when that option is the best), and S⩾ 1
as this corresponds to the case where the focal agent
actively follows the available social information.

In the supplementary appendices of [34] the
authors show that in general Smay depend on the full
ordered sequence of previous decisions. However, in

the focal analysis (which has been utilised in the large
majority of subsequent studies utilising this model),
a simplified version of the model is presented which
makes the simplifying assumption that all decisions
prior to the focal agent are independent. In this case,
P(I|A,C)/P(I|B,C) reduces to simple product:

S=
P(I|A,C)
P(I|B,C)

= snA−nB , (5)

where s is a parameter that indicates the relative prob-
ability that each agent chooses correctly (i.e. s= 2
means that the focal agent assumes each previous
decision was twice as likely to be correct as to be
wrong). This independence assumption significantly
simplifies the form of the calculation, but at the cost
of introducing a false belief to the focal agent, which
necessarily compromises the optimality of the sub-
sequent decision.

The final aspect of the model relates this Bayesian
estimation to the choice the focal agent makes.
Following [34], we assume that the focal agent will
choose option b with probability P(B|C, I). This
assumption allows for the observable reality that an
animal confronted with apparently identical condi-
tions and social information may nonetheless make
different decisions on different occasions. However,
it also introduces a second deviation from rationality,
since the probability of choosing correctly is maxim-
ised by choosing whichever option has greater than
50% probability of being correct.

Systems such as the one studied here are usually
modelled as inherently stochastic; this stochasticity
may be attributed either to the agents’ limited per-
ception abilities and the ambiguity of the environ-
mental cues [12, 13, 48], or to the observer’s limited
perception [36]. Both of these approaches serve the
same goal: to introduce noise into the system. It’s irre-
futable that noise plays an important role in them;
it is exactly that ambiguity of personal information
that leads individual agents to source social inform-
ation from their peers [49–51]. Acknowledging this
feature, the above model is also inherently stochastic.
This is achieved due to the probabilistic definition of
decision-making, and to the existence of parameter a.

2.2. Performance and collective optimality
We now consider how animals employing the above
decision strategy will perform in terms of accurately
choosing the correct option. We assume without loss
of generality that A is the correct choice—that is, we
take the reward for choosing A to be 1 (in some arbit-
rary units of utility or fitness) and the utility of B to be
zero. Following the model, each agent chooses either
A or B in turn according to the following probabilistic
rule:

P(Choose A) =
1

1+ as−∆n
(6)
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where the non-social parameter a defines how reliable
the environment is, s how strongly the social inform-
ation is followed, and ∆n= nA − nB is the social
information, specifically the difference in agents that
have chosen option A minus the number of agents
that have chosen option B.

When equation (6) is applied sequentially on all
group members on a group with N agents, the group
will be divided between the two options and will be
in one out of n+ 1 possible configurations, corres-
ponding to the number of agents that have chosen
A, ranging from 0 to N; the probability of each pos-
sible configuration depends on the values of a and s.
By summing over the final configurations and their
probabilities for a specific set of a and s, we construct
a measure for the group’s collective behaviour,E(nA),
that shows the average number of agents that chose
option A:

E(nA) =
∑

ipi (7)

where i is the number of agents on option A and
pi the probability of i agents being on option A.
Conceptually we assume that the order of the agents
in the sequence is a random permutation for any
given decision, such that E(nA) represents the expec-
ted reward a randomly chosen agent can expect to
receive if all agents apply the same decision-making
rule.

Throughout this paper we consider a (represent-
ing the quality of environmental information) to be
a fixed quantity that the agents cannot alter, whereas
theymay choose a value of s to apply. For a given value
of a, we define the collectively optimal value of s to be
that which maximises the value of E(nA).

2.3. Evolutionary stability
So far we have considered the case of identical agents,
all of whom make decisions according to a com-
mon rule (equation (6)), with the same values for
parameters s and a. Under this condition, one can
identify a collectively optimal strategy that maximises
the reward for all agents as above, by maximising
equation (7) with respect to s; this is the strategy that
if employed by all agents of the group, it would lead
to the optimal E(nA) for the group. However, such a
strategy is not necessarily evolutionarily stable, since
it may be exploited by an individual who applies a dif-
ferent value of s. To determine an evolutionary stable
strategy (ESS), we must determine a value of s= sESS
such that if all agents employ this value, no agent can
gain by changing their value of to s= s ′.

Here it is important to be precise in how we cal-
culate the effect of an agent varying s. In general the
expected reward an agent receives for employing a
given s will depend on its position in the sequence,
but we assume throughout that agents do not choose

these positions, but are instead randomly shuffled in
each decision. Therefore, in calculating the expected
reward for an agent employing a new value s= s ′ we
average over all the positions in the sequence that this
agent might find themselves (with equal probability
for each).

Consider a population comprised of identical
individuals (all using the same value of s= sgroup), and
one average invading agent using s ′ = sinv ̸= sgroup.
In this case, the average group member will have an
expected probability of making a successful choice of
P(A)group = E(nA)group, as all agents are identical. The
average invader has an expected probability of mak-
ing a successful choice of P(A)inv; this is calculated by
using equation (7) for each possible places within the
sequence the invader can be in, and taking their aver-
age. In this case, the ESS that the group can employ
is the one where no other strategy (i.e. no other value
of the parameter s= s ′) can out-perform. The value
of s where this is achieved is calculated analytically,
by considering a range of s values, and comparing the
rewards for the groups and invader for each one; once
these become equal, the respective value of s this is
occurring for is s= sESS. As shown in figure 2(a), there
is one such value of s for the case where both group
and invader are using the probabilistic decision rule
of equation (6), and it is an equilibrium point.

2.4. Alternative decision rules
Above we consider the evolutionary stability of a
given parameter value s, assuming that all agents
employ the same underlying decision rule specified
in equation (6). However, given that the derivation of
this decision rule includes multiple departures from
full rationality, we anticipate that this could be vul-
nerable to invasion by alternative decision rules. In
particular, adhering to the basic mathematical form
of equation (6), two alternatives present themselves
as natural variations. In the first case the focal agent
does not observe the aggregate number of previous
decisions in favour of A and B, but instead only
observes (or responds to) the direction of the major-
ity decision. In this case the appropriate decision
rule is:

P(Choose A) =
1

1+ as−sign(∆n)
. (8)

We term this the simplified decision rule, since the
social information is a lower-dimensional simplific-
ation of that in equation (6). This rule is reason-
able on two grounds. First, observing the direction
of the majority is simpler (especially in large groups)
and therefore faster and more reliable as a source of
social information. Second, if previous agents had
chosen independently (as assumed in the derivation
of equation (6)), then the Condorcet Jury theorem
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implies that the probability that the majority is cor-
rect will grow quickly with the number of observed
agents.

The second variation we consider is that an agent
observes only themost recent decision before its own.
Here the decision rule is given as:

P(Choose A) =
1

1+ as−d
(9)

where d= 1 if the most recent choice was A and d=
−1 if B. We term this the dynamic decision rule in
line with similar usage by [39] which investigated an
analogous model empirically in humbug damselfish.
This rule is motivated by the theoretical findings in
the supplementary information of [34] and in [36]
that more recent decisions should be weighted more
strongly by an agent able to fully account for the
correlations in previous agents’ choices, and by the
empirical results of [39, 40] which point to both hum-
bug damselfish and zebrafish responding primarily to
the most recent choices of conspecifics.

Similarly to section 2.3, we consider a group
of agents, where all the agents are using the same
decision-making strategy but one average invader
who is using one of the other two strategies. Like
before, the group and the invader will respectively
generate an expected reward P(A)group = E(nA)group
and P(A)inv, only now these rewards will depend
both on the employed value of s and the decision-
making strategy, as the strategy determines whether
equations (6), (8) or (9) will be used to calculated
the probabilistic decision which will in turn generate
the values of those probabilities. As before, as long an
average invader is able to reach a value of P(A)inv >
P(A)group for any value of s while using a strategy dif-
ferent to the one used by the group (e.g. the dynamic
instead of the aggregate), the group’s strategy is sus-
ceptible to invasion. On the other hand, if an invader
is not able to outperform the group for any value of s
while using a strategy other than the one used by the
group, then the group’s strategy is stable against the
invaders strategy. Moreover, if a strategy employed
by the group is not susceptible to invasion by any of
the other two strategies for any value of s, then that
strategy is evolutionary stable; like in section 2.3, this
stability is calculated analytically.

3. Results

3.1. Collectively optimal social behaviour
The performance of a behaviour is measured by
the probability of making the correct decision. This
depends on the degree of reliability of the environ-
ment’s information (value of a), and the intensity of
following the available social information (value of
s). Figure 1 shows how variation in the social para-
meter s changes the probability of different group
outcomes: panel (a) shows the outcome distribution
in the case where a= 0.9 and the social parameter

is relatively weak (s= 1.5). In this case agents are
more likely to choose A rather than B, but interme-
diate outcomes (those with a roughly equal propor-
tion of agents choosing A and B) are highly plaus-
ible. The probability that all agents will choose B is
very low. The expected proportion of agents choos-
ing A is 0.540 92. In panel (b) we show the outcome
distribution for the same value of a (implying the
same quality of non-social information) but a greater
value of the social parameter (s= 2.3). In this case we
make an interesting observation: although the prob-
ability that all agents will choose A has increased, this
has been accompanied by an increase in the probab-
ility that all agents will choose B, with intermediate
outcomes being very unlikely. This has decreased the
expected proportion of correct decisions to 0.540 29.
In panel (c) we show the outcome distribution for
the same value of a (implying the same quality of
non-social information) but a much greater value
of the social parameter (s= 10). In this case we
notice a further increase in the probability that the
agents will choose A or B, and a further decrease in
the probability of the intermediate outcomes (with
most of them having a 0 probability of occurring).
This has decreased the expected proportion of cor-
rect decisions to 0.5304. In other words, being more
social has increased the probability of making a bad
decision. This is due to the probabilistic nature of
the system: even with good non-social information,
the agents early in the sequence may still make a bad
decision. If the tendency to follow social information
is very strong, the improbable but still possible bad
decisionwill be copied by the following agents, result-
ing in an information cascade, eventually misleading
a large proportion of the group. This demonstrates
that there is a limit to how strongly social inform-
ation should be followed to maximise collective
accuracy.

The effect of a and s is more widely demonstrated
in figure 1(d). This shows the value of E(nA) for dif-
ferent combinations these parameters, for a ∈[0,1]
& s ∈[1,10]. We see the observation mentioned pre-
viously: being more social in the presence of that
information increases the probability of making the
best decision up until a point, after which an increase
in social behaviour decreases that probability. The
white line shown on this panel is the collectively
optimal value of s for the corresponding value of a.

Based on the calculation of E(nA) shown in
figure 1(d), it is straightforward to identify the
value of s that is collectively optimal, shown by the
white line. It is clear that as a increases (i.e. non-
social information becomes less reliable), the collect-
ively optimal value of s decreases (agents weight the
decisions of others less highly). This makes intuitive
sense; as agents are identical, a lower value of ameans
that other agents aremore likely to havemade the cor-
rect decision, and are therefore more reliable sources
of social information.
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Figure 1. Effect of environmental information (a) and intensity of sociality (s) on decision-making. Plot (a) shows the
probabilities of possible final configurations and the value of E(nA) for a group of n= 8 agents, a< 1 and s= 1.5; this corresponds
to a case where reliable information is not too strongly followed, leading to very high probability of most agents making a correct
decision, and high value of E(nA). Plot (b) for a group of n= 8 agents, a< 1 (same as in plot (a)) and s= 2.3; this refers to the
case where reliable information is followed strongly, now leading to a decrease in most agents making a correct decision and
increase to the probability of most agents making a wrong one, and to a slightly lower value of E(nA) compared to when the same
information was followed less strongly. Plot (c) for a group of n= 8 agents, a< 1 (same as in plot (a)) and s= 10; this refers to the
case where reliable information is followed very strongly, now leading to a further decrease in most agents making a correct
decision (with some cases having a probability 0 of occurring) and further increase to the probability of all agents making a wrong
one, and to an even lower value of E(nA) compared to when the same information was followed less strongly. This demonstrates
that over-reliance on social information (even when the environment is reliable) can amplify the potentially wrong decisions
made by previous agents. Plot (d) summarises the value of PR for several combinations of a and s, for a ∈[0,1] and s ∈[1,10]; we
observe higher values of PA that increase as a decreases, while we also observe that across a constant a, as s increases PA decreases,
as expected due to the aforementioned cost of over-sociality. For s> 1 and a> 1 (i.e. social behaviour in unreliable environments)
we observe a symmetrically opposite behaviour to being social in reliable environments (around the value a= 1.)

3.2. Evolutionary stable strategy
Previous research (e.g. [34, 41]) has focused on
empirical estimation of a and s in equation (6) (or
the extended version of this model [35]), but estim-
ating both parameters ignores that in a system under
natural selection the values of a and s should be con-
nected so as to optimise the performance of agents’
decision-making. Here we will determine this neces-
sary connection between the values of a and s and
show that for agents employing equation (6) as a
decision-making rule these should not be considered
as independent variables.

Above we showed how the collectively optimal
value of s varies with the reliability of non-social
information, a. However, this collectively optimal
value of s indicates the value that would be chosen so
as to maximise the success of the group as a whole.
As noted in the previous section, under individual
natural selection such an optimal value cannot be
assumed to be stable (resistant to invasion by other
strategies). Instead, we must seek an evolutionarily
stable value of s= sESS such that a group of agents
employing this value cannot be outperformed by an
individual who changes their value to an alternative
s= s ′; in the following sections, we will be evaluating
evolutionary stability via pairwise-invasibility plots
[52], i.e. we will be plotting the dynamics between a
group whose members all employ the same strategy,
and a single invader that is potentially using a strategy
different that the group, to assess the invader’s inva-
sion success. Figure 2 shows the results of this analysis.
In panel (a) we show the relative expected rewards for
a group employing s= sgroup and an invader employ-
ing s= sinvader (with non-social parameter a= 0.9)—
yellow areas show cases where the invader’s reward is
greater than the rest of the group, and purple vice

versa. As the plot shows, there is a single value of
sgroup (indicated by the red line) such that no invader
can profit from choosing a different value. This is
therefore the evolutionarily stable value of sESS for
the particular value of a chosen. Performing this ana-
lysis with different non-social parameter values we
canmap sESS as a function of a. This is shown in panel
(b) (orange line), alongside the previously calculated
value of the collectively optimal s (blue line) for com-
parison. Notably, while both the collectively optimal
and ESS values of s show a similar pattern of variation
with a (increasing as non-social information becomes
more reliable), they differ markedly across the range
of a values, with the collectively optimal s always being
lower than the ESS value. This shows that agents are
selfishly motivated to effectively ‘use up’ the available
social information, creating strong correlations with
other agents that make their own decisions less useful
as a source of information to those that follow them.
The collective effect of this is to reduce the average
performance of all individuals relatively to what they
could have achieved had they been able to coordin-
ate on the collectively optimal value of s. This ‘price
of anarchy’ [53] (the difference in E(nA) under the
two strategies) is shown in panel (c) as a function of
a, showing a peak at a≃ 0.4.

3.3. Alternative decision rules
Animals may observe and respond to social inform-
ation in a number of different ways. So far we
have considered only one decision-making rule, that
assumes agents respond to social information in the
form ∆n= nA − nB. We now consider the alternat-
ive decision-making rules specified in the Methods
section, in terms of the collective behaviour they
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Figure 2. Evolution of social behaviour. Plot (a) shows the dynamics between a homogeneous group and a defector, for different
combinations of sgroup and sinvader and for one value of a< 1; the yellow areas correspond to the case where the invader has a
higher probability of making the correct decision, the purple areas to the case where the group has a higher probability of making
the correct decision, while the diagonal and the curved line correspond to the cases where they have equal probabilities of making
the correct decision (with the diagonal being the special case where they actually have the same behaviour, as it is the line where
sgroup = sinvader). The intersection of the two lines meets at the evolutionary stable point sESS; notice that while the group remains
at that value of sgroup = sESS, for all values of Sinvader the outcome is that the group will have a higher probability of making the
correct decision compared to the invader, thus outperforming her. The group reaches eventually reaches that point due to the
existence of invaders; in every other point (for all sgroup ̸= sESS the group is outperformed, and will eventually adopt the invader’s s
as this is more successful—but once s= sESS is reached, no other attempt to invade can be successful. Plot (b) shows the values of
sESS for the range a ∈ [0,1], plotted with the equivalent collectively optimal values sOpt; collectively optimal refers to the value of s
that the group must use in order to maximise the value of E(nA) in the environment it navigates, in the absence of invaders.
Notice how the evolutionary stable behaviour is not optimal, but over-social. Plot (c) shows how the difference between E(nA)
when calculated using sOpt and using sESS, i.e. the selective pressure the agents in the group our under due to the invader’s
presence. We see that the selective pressure is low when uncertainty is low, increases as the uncertainty increases until it reaches a
maximum point, and then decreases as uncertainty increases further.

Figure 3. Probabilities of final states, for a group of n= 8
agents and different strategies. Each plot has a different pair
of a, s, leading to the same value of E(nA) for all strategies
and a bias towards consensus-reaching where the
probability that all of the agents will make the same choice
is high. This demonstrates that we cannot necessarily infer
which strategy is being used by the agents simply by
noticing that there is a bias towards consensus.

induce (and whether this is compatible with obser-
vations of real animal groups) and their relative per-
formance in decision-making accuracy.

A common characteristic of group decisions is
the tendency towards consensus decision making—
outcomes in which all agents choose the same option
are themost probable [14]. All three decision rules we
have tested are able to replicate this collective pattern,
as shown in figure 3, by selection of appropriate values
of a and s. This is prima facie evidence that all three
models are suitable candidates for modelling collect-
ive decisions.

Instead we can appeal to the theoretical perform-
ance of each decision making rule as a basis for
judging its credibility as a candidate for real animal
groups. In our analysis above we determined the evol-
utionarily stable value of s for a group in which agents
all employ the decision making rule in equation (6),
by analysing whether an invading strategy with a dif-
ferent value of s could outperform the other mem-
bers of the group. We can extend this stability ana-
lysis to ask whether an invading strategy with a dif-
ferent value of s and a different decision making rule
can outperform an otherwise homogeneous group.

In figure 4(a) we consider the dynamics between
all possible combinations of strategies between group
and invader for a group like the one consider before.
Along the diagonal are the cases where they both
employ the same strategy, while the rest corresponds
to the cases where group and invader employ differ-
ent decision rules. Each column refers to the group
using the same strategy (aggregate, simplified and
dynamic starting from the left), and every row to the
defector using the same strategy (aggregate, simpli-
fied and dynamic starting from the top). The yellow
areas signal the cases where the invader outperforms
the group, while the purple ones the cases where the
group outperforms the invader.

For each decision rule in isolation there exists a
single evolutionarily stable value of s. Groups employ-
ing a single decision rule can therefore be assumed
to reach this stable point, where they cannot be
outperformed by invaders using different values of
s. However, they may be outperformed by invaders
using a different strategy against it. In each column,
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(a) (b)

Figure 4. Dynamics between group and invader, for different combinations of decision-making strategy use and N= 8, a= 0.3.
Plot (a) shows the dynamics in the case of a fixed group; here, the invader is assumed to always be present and disrupting the
information provided to her peers. In the cases where group and invader employ the same strategy, they are always able to reach
an equilibrium point corresponding to the evolutionary stable state of the group; the value of sESS is marked in all three cases with
a red line. In each column, this indicates whether a strategy is successful or not against the group’s strategy; this happens
whenever that line falls into yellow areas. We notice that for all the strategies, an invader is able to invade using a different one.
Specifically: (a) the aggregate strategy can be invaded by both the simplified and the dynamic for a wide range or s values (ranging
from fairly small to large values), (b) the simplified strategy can be invaded for a wide range or s values by the dynamic strategy
(ranging from fairly small to large values) and for a narrow range of small s values by the aggregate, and (c) the dynamic strategy
can be invaded by a range of s values (ranging from small to medium). This means that a fixed group does not evolve to use a
single strategy. Plot (b) shows the case of an infinite group; in that case, the invader may not always be present during the
decision-making process and hence her presence is not as disruptive. In this case we notice that although the simplified and the
dynamics strategies can be invaded like before (i.e. the simplified can be invaded, the aggregate cannot, meaning that an infinite
group can evolve to employ a single strategy (namely the aggregate strategy).

the vertical red line signifies the group’s evolutionary
stable value of s. If this line falls within a yellow region
for a different decision rule, it signifies that in that
case the invader can employ this different decision
rule, with the corresponding values of s that arewithin
that region, to outperform the group.

For example, consider the left column of
figure 4(a); the top plot shows the equilibrium
point for a group employing the aggregate decision
rule (equation (6)) and the invader’s failure to out-
compete using the same decision rule (since the ver-
tical line falls exclusively in purple areas). However, if
the defector chooses to employ the simplified strategy
(equation (8)), as shown in the middle plot, the same
line passes through yellow areas, meaning that there
are values of s the defector can employ to outperform
the rest of the group. This implies that the aggregate
decision rule is not globally stable against invasion
by the simplified decision rule (assuming that inva-
sions can arise freely on any alternative rule and with
any value of s, rather than being restricted to local
mutations).

This does not imply that the simplified decision
rule is a stable strategy for the group to employ.
Similar inspection of the results as above shows that
this rule can be invaded by both the aggregate and
dynamic rules. Instead, what this analysis shows is
that in a group restricted to employ these three rules,
no single decision rule is globally stable. This may
eventually lead to the coexistence of different rules
in the group, a cyclical transition between rules or
the adoption of new rules not tested here. Which of

these occurs depends on further assumptions about
the evolutionary process beyond the initial invasion,
which we do not consider further here. What we
can establish from these results is that the aggregate
decision rule, which has been widely used as a model
for interpreting collective behaviour in real systems,
is not stable under the conditions we have described.

So far we have considered a fixed group in which
the same agents repeatedly make decisions together.
However, many animal groups in which decisions are
made are transitory, being drawn from a larger pop-
ulation by (for example) fission-fusion dynamics. In
such populations the effect of an invader may be dif-
ferent than in a fixed group because each agent in the
population encounters the invader more rarely (the
invader is rarely part of any randomly selected sub-
group), and thus the majority of an agent’s rewards
are obtained in interactions solely with the domin-
ant phenotype. In very large populations the effect of
the invader on other agents will be negligible, whereas
in a single fixed group the invader may severely dis-
rupt other agents’ use of social information across the
whole group.

We investigated whether this changed the stability
relationships between different decision rules, assum-
ing that in each decision a group of 8 is drawn ran-
domly from an effectively infinite population. In this
case we observe different dynamics between group
and invader; as shown in figure 4(b), while in this case
the simplified and the dynamic strategy can still be
invaded from the other two strategies for some val-
ues of s, the aggregate strategy cannot be invaded by
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either. So in that case, eventually, a larger group will
evolve to use the aggregate strategy as this is evolu-
tionary stable, under the assumption that only these
three decision rules are available.

So far we have considered a group of size N = 8
in an environment of a= 0.9. Different group sizes
lead to different dynamics, since group size affects
the information transfer process, and the quality of
available social information to the agents. For a fixed
value of a, different group sizes (N) lead to differ-
ent dynamics; a decrease in group size leads to the
group’s strategy being more robust against invaders,
as it can be invaded by them for a narrower range of s
values. Cases with different group sizes and different
values of a are briefly presented in the supplementary
material.

4. Discussion

Collective decision-making emerges from the indi-
viduals’ decisions, which in turn are affected by the
available personal and social information. Here, we
use a probabilistic sequential decision-makingmodel,
to understand how different rules of interaction
between individuals affect the quality of decision-
making. We established strategies for the use of social
information that are either optimal for the group as a
whole, or evolutionarily stable to invasion by altern-
ative strategies.

The probability of an agent making a good
decision depends both on the reliability of the avail-
able information, and on how strongly this is fol-
lowed. While in general a more certain environment
means that following social information is benefi-
cial, the probabilistic nature and the non-linear form
of the decision-making rule, mean that an increase
in social following is not always beneficial. Although
social information is valuable, the tendency of agents
to follow each other risks magnifying the effect of
early incorrect decisions. Thus the collective perform-
ance of a group is maximised at some finite value of s,
indicating that social information is neither ignored
nor followed deterministically. As the quality of non-
social information increases, so does the collectively
optimal value of the social weighting, since the social
information provided by other agents increases in
value too.

Collectively optimal strategies are vulnerable to
exploitation in groups of selfish agents, and here the
expected value of social weighting that real groups
will exhibit is that represented by an ESS—one
that cannot be successfully exploited by an invading
alternative strategy. We find that such an ESS always
weights social information more highly than would
be collectively optimal. This limits the accuracy of
the group, making individual decisions less often cor-
rect than they would be if the group could coordinate

on the collectively optimal social weighting. This res-
ult mirrors similar findings in a related system [51],
where the authors conclude that animals will even-
tually evolve to a ‘sub-optimal’ state of over-reliance
on social information. The recurrence of that phe-
nomenon here suggests that such overweighting of
social information (relative to what would be collect-
ively optimal) may be a general property of animal
groups.

Extending on such previous research as [51],
which consider the evolution of social weighting
parameters within a single decision rule, we also
investigated the evolutionary stability of different
decision rules. Here we found our results depend
sensitively on our assumptions about the nature of
the population the decision-making group is drawn
from. When agents are drawn randomly from a large
population each time they form a group to make a
decision, the aggregate decision strategy derived by
[34] is stable to invasion by either of the alternatives
we considered. However, if the population of agents
is restricted solely to the individuals within a single
decision making group, this stability is broken, with
all three decision rules potentially coexisting or cyc-
lically replacing each other. These results are limited
to the particular decision rules we have considered,
and others we have not testedmay be favoured by nat-
ural selection. Furthermore, real groups likely exist
somewhere between the two extremes we have con-
sidered, such as in fission-fusion dynamics where
small groups within a larger population may remain
together for some time. Nonetheless, our results sug-
gest that careful consideration should be given to the
nature and stability of group membership when con-
sidering whether a particular decision rule (such as
equation (6)) is an appropriate model for the system
under examination.

In our model there is no additional cost to using a
more computationally or time consuming strategy. It
is likely that counting exactly how many other anim-
als have chosen each option is more costly in these
measures than either observing the majority choice,
or just the most recent decision. We expect that
adding costs to each model will change how group-
invader dynamics play out, but determining exactly
what these costs are would require specific knowledge
of the sensory environment and the factors influen-
cing the cost of time in decision making, so we have
have chosen to omit further exploration of these costs
here.

Bayesian estimation and probability matching
(the process underlying decision-making in this
work) is widely used in interpreting empirical data
[34, 35, 54], in a process often involving fitting a vari-
ation of our model on the available data. In many
occurrences the fitting appears successful, but there
is no dependency between its two main parameters
(i.e. they are attributed values that are incompatible
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with each-other). Our result concerning the depend-
ency between the two parameters provides a guideline
regarding the use of this model for such cases; if the
parameters in the resulting model obey the depend-
ency we have described above between, then it is
likely an appropriate one for describing the data.
Otherwise, it is either the case that it is not the most
appropriate model for this system (and that result-
ing conclusions risk not being sensible), or the case
that the test environment is unnatural (i.e. the agents’
adaptive traits no longer apply.)

We have also chosen to define group behaviour as
the averaged behaviour of the group-members.While
this is informative as it led to insights about beha-
viour evolution, this approach ignores the nuance
of information within a group; depending on the
rank, agents have access to different information, and
it is sensible to expect this to contribute to differ-
ent behaviours for agents, depending on their place
in the group. Furthermore, we expect this to affect
the dynamics between group and invader, since an
invader’s success depends on what place within the
group she manages to place herself. We believe that
by including this level of complexity, we will be able
to add some insight into the existing literature that
researches dynamics between agents with differing
(or even conflicting) goals within groups [55–57].
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