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On quasi-tame Looijenga pairs

Andrea Brini and Yannik Schüler

We prove a conjecture of Bousseau, van Garrel and the first-named
author relating, under suitable positivity conditions, the higher
genus maximal contact log Gromov–Witten invariants of Looijenga
pairs to other curve counting invariants of Gromov–Witten/Gopa-
kumar–Vafa type. The proof consists of a closed-form q-hypergeo-
metric resummation of the quantum tropical vertex calculation of
the log invariants in presence of infinite scattering. The resulting
identity of q-series appears to be new and of independent combi-
natorial interest.

1. Introduction

1.1. Quasi-tame Looijenga pairs

A Looijenga pair Y (D) := (Y,D) is the datum of a smooth rational complex
projective surface Y and an anticanonical singular curve D ∈ | − KY |. A
Looijenga pair Y (D) is called nef if the singular curve D is a simple normal
crossings divisor D = ∪l

i=1Di with each Di smooth, irreducible, and nef1

for all i = 1, . . . , l. A tame Looijenga pair is a nef pair with either l > 2,
or D2

i > 0 for all i. Writing EY (D) := Tot(⊕i(OY (−Di)), we will say that
a nef pair Y (D) is quasi-tame if there exists a tame pair Y ′(D′) such that
EY (D) is deformation-equivalent to EY ′(D′). By definition, there is an obvious
sequence of nested inclusions

nef Looijenga pairs ⊃ quasi-tame Looijenga pairs ⊃ tame Looijenga pairs .

Looijenga pairs have been the focus of much attention lately due to their
intertwined role in mirror symmetry for surfaces [2–4, 20, 23, 36, 42, 43] and
the study of cluster varieties [19, 37, 45]. In a recent series of papers [7–9], the
log Gromov–Witten theory of quasi-tame pairs was further conjectured to be
at the centre of a web of correspondences relating it to several enumerative
theories. We recall the relevant context and fix notation below.

1Since we require D to be singular, an l-component nef Looijenga pair must have
l > 1.
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1.2. Enumerative theories

The authors of [7] consider four different geometries, and associated enu-
merative invariants, attached to the datum of a quasi-tame Looijenga pair
Y (D):

1. the log Calabi–Yau surface obtained by viewing Y (D) as a log-scheme
for the divisorial log structure induced by D. For a given genus g and
effective curve class d ∈ H2(Y,Z) with d ·Di > 0 for all i = 1, . . . , l, the
corresponding set of invariants are the log Gromov–Witten invariants
[1, 10, 22] of Y (D) with maximal tangency at each component Di, l−1
point insertions on the surface, and one insertion of the top Chern class
of the Hodge bundle:

(1) N
log
g,d (Y (D)) :=

∫

[Mlog
g,l−1(Y (D),d)]vir

l−1∏

i=1

ev∗i [ptY ](−1)gλg,

or equivalently, their all-genus generating function

(2) N
log
d (Y (D))(�) :=

(
2 sin

(
�

2

))2−l ∑

g�0

N
log
g,d (Y (D))�2g−2+l ;

2. the quasi-projective Calabi–Yau variety EY (D), and its genus zero local
Gromov–Witten invariants [11, 12]

(3) Nd(EY (D)) :=

∫

[M0,l−1(EY (D),d)]vir

l−1∏

i=1

ev∗i [ptY ]

and local Gopakumar–Vafa invariants [24, 27]

(4) GVd(EY (D)) :=
∑

k|d

μ(k)

k4−l
Nd(EY (D))

where μ is the Möbius function;
3. the quasi-projective Calabi–Yau threefold Tot(OY \∪i<lDi

(−Dl)) equip-
ped with a disjoint union of l−1 Lagrangians Li fibred over real curves
in Di, i < l, as defined in [7, Construction 6.4]:

Y op(D) :=
(
Tot

(
O(−Dl) → Y \ (D1 ∪ · · · ∪Dl−1)

)
, L1 ⊔ · · · ⊔ Ll−1

)
,
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The respective invariants, for a given relative homology degree d ∈
H2(Y

op(D),Z), are the open Gromov–Witten counts

Og,d(Y
op(D)) :=

∫

[Mg(Y op(D),d)]vir
1,

Od(Y
op(D))(�) :=

∑

g≥0

�
2g+l−3Og,d(Y

op(D))(5)

virtually enumerating genus-g open Riemann surfaces with l − 1 con-
nected components of the boundary ending on the Lagrangians Li,
i = 1, . . . l − 1. Under relatively lax conditions2, Y op(D) can be de-
formed to a singular Harvey–Lawson (Aganagic–Vafa) Lagrangian pair
with Li ≃ R2×S1, for which open GW counts can be defined in the al-
gebraic category [26, 34] (see also [14, 33]). Denoting by wi(d) the wind-
ing number of a relative degree-d open stable map to Y op(D) around
the non-trivial homology circle in Li, we will also consider the corre-
sponding genus zero/all-genus Labastida–Mariño–Ooguri–Vafa invari-
ants [31, 32, 41]

LMOV0,d(Y
op(D)) =

∑

k|d

μ(k)

k4−l
O0,d/k(Y

op(D)),

LMOVd(Y
op(D))(�) = [1]2q

∏

i<l

wi(d)

[wi(d)]q

∑

k|d

μ(k)

k
Od/k(Y

op(D))(k�),

(6)

where [n]q := qn/2 − q−n/2, and q = ei�;
4. for l = 2, a symmetric quiver Q(Y (D)) with adjacency matrix de-

termined by Y (D) [7, Thm. 7.3]. For a given charge vector d, the
corresponding numbers are the numerical Donaldson–Thomas invari-
ants DTnum

d (Q(Y (D))), defined as the formal Taylor coefficients of (the
plethystic logarithm of) the generating series of Euler characteristics
on the stack of representations of Q(Y (D)).

The constructions of [7] in particular identify the absolute homology of
Y (D), the relative homology of Y op(D), and the free abelian group over the

2This was formalised as “Property O” in [7, Definition 6.3]: this is equivalent
to requiring that EY (D) is deformation-equivalent to EY ′(D′) with Y ′ a toric weak
Fano surface, D′

i a prime toric divisor for i < l, and D′

l nef. All quasi-tame pairs
with l = 2 satisfy Property O, and all non-tame quasi-tame pairs have l = 2, so
this is safely assumed to hold throughout this paper.
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set of vertices of Q(Y (D)),

d ∈ H2(Y (D),Z) ≃ H2(EY (D),Z) ≃ Hrel
2 (Y op(D),Z) ≃ Z

|(Q(Y (D)))0|.

Under these identifications, the authors of [7] propose that the invariants
above are essentially the same, as follows.

Conjecture 1.1 (The genus zero log/local/open correspondence, [7, 16,
35]). The genus zero log, local, and open Gromov–Witten invariants associ-
ated to a quasi-tame Looijenga pair Y (D) are related as

(7) Nd(EY (D)) = O0,d(Y
op(D)) =

⎛
⎝

l∏

j=1

(−1)d·Dj−1

d ·Dj

⎞
⎠N

log
0,d (Y (D)),

and, for the associated BPS invariants,

(8) GVd(EY (D)) = LMOV0,d(Y
op(D)) ∈ Z.

Moreover, if l = 2,

(9) DTnum
d (Q(Y (D))) = |GVd(EY (D))|.

In [7, Conj. 1.3], the above is further extended to an identity between
all-genus Gromov–Witten generating functions.

Conjecture 1.2 (The higher genus log/open correspondence). The higher
genus log and open Gromov–Witten invariants associated to a quasi-tame
Looijenga pair Y (D) are related as

(10) Od(Y
op(D))(�) =

⎛
⎝

l−1∏

j=1

(−1)d·Dj−1

d ·Dj

⎞
⎠ (−1)d·Dl−1

[d ·Dl]q
N
log
d (Y (D))(�).

Moreover,

LMOVd(Y
op(D))(�) = [1]2q

(
l∏

i=1

1

[d ·Di]q

)

×
∑

k|d

(−1)d/k·D+lμ(k)

[k]2−l
q k2−l

N
log
d/k(Y (D))(k�)

∈ Z[q, q−1] .(11)
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Conjecture 1.1 was proved in [7, Thm. 1.4–1.6]. Conjecture 1.2 was
proved in [7, Thm. 1.5 and 1.7] for tame Y (D), and formulated as a conjec-
ture for quasi-tame Y (D) in [7, Conj. 4.8]. Two non-tame, quasi-tame cases
of this conjecture were subsequently proved in [30].

In this paper, we establish a stronger statement from which Conjec-
ture 1.2 follows for any quasi-tame Looijenga pair Y (D). We will provide a
closed-form calculation and comparison of both sides of (10), returning the
two equalities in Conjecture 1.2 as a corollary. Since the tame setting was
already dealt with in [7], we may restrict our attention here to non-tame,
quasi-tame pairs alone, for which l = 2. We give here a slightly discursive
version of the main result of this paper (see Propositions 2.3, 2.5 and 2.7 for
precise statements, and e.g. (12) and (14) for explicit formulas).

Theorem 1.3. Let Y (D) be a non-tame, quasi-tame Looijenga pair Y (D)
and d ∈ H2(Y,Z). The log and open higher genus generating functions

N
log
d (Y (D))(�) and Od(Y

op(D))(�) are rational functions of q = ei�, with
zeroes and poles only at q = 0, ∞, or at roots of unity. Furthermore, Con-
jecture 1.2 holds.

1.3. Strategy of the proof

Our task is simplified by a number of circumstances, which reduce Theo-
rem 1.3 to the computation of one single example. As explained in [15] and
[7, Prop. 2.2], Y (D) is fully determined by the self-intersections (D2

1, D
2
2),

and when considering specific examples we will shorten notation by writing
Y (D2

1, D
2
2) for Y (D). Let π : dPr → P2 be the blow-up of the plane at r ≥ 0

points {P1, . . . , Pr}, and write H := π∗c1(OP2(1)), Ei := [π−1(Pi)]. Up to
deformation and permutation of D1, D2 and E1, . . . , Er, there is a unique
non-tame, quasi-tame pair of maximal Picard number given by Y = dP3

and D1 = H − E1, D2 = 2H − E2 − E3, so that (D2
1, D

2
2) = (0, 2).

By [7, Prop 2.2], any other non-tame, quasi-tame pair Y (D) is the result
of a toric contraction π′ : dP3(0, 2) → Y (D). Therefore, as we recall in
Proposition 2.3 below, the blow-up formulas for log and open invariants [7,
Prop. 4.3 and 6.9] imply that it suffices to check that Conjecture 1.2 holds
for the single case Y (D) = dP3(0, 2). The l.h.s. of (10) in that case was
computed in [7, Sec. 6.3.1] to be

Od (dP
op
3 (0, 2)) = (−1)d1+d2+d3

[d1]q
d1[d0]q[d1 + d2 + d3 − d0]q

[
d3

d0 − d1

]

q

×

[
d3

d0 − d2

]

q

[
d0

d3

]

q

[
d1 + d2 + d3 − d0

d3

]

q

,(12)
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where we decomposed d = d0(H − E1 − E2 − E3) + d1E1 + d2E2 + d3E3 in
terms of generators {H − E1 − E2 − E3, E1, E2, E3} of H2(dP3,Z), and for
non-negative integers n, m we denoted3

(13) [n]q! :=

n∏

i=1

[i]q,

[
n

m

]

q

:=

{
[n]q!

[m]q! [n−m]q!
0 ≤ m ≤ n,

0 otherwise.

The first equality (10) in Conjecture 1.2 is then a consequence of the follow-
ing

Proposition 1.4 (=Propositions 2.5 and 2.7). With the conventions above,
we have

N
log
d

(
dP3(0, 2)

)
(�) =

[d1]q[d2 + d3]q
[d0]q[d1 + d2 + d3 − d0]q

[
d3

d0 − d1

]

q

[
d3

d0 − d2

]

q

×

[
d0

d3

]

q

[
d1 + d2 + d3 − d0

d3

]

q

.(14)

Indeed, comparing (12) with (14) we see that these generating series
are related as in (10). The second statement, equation (11), then also fol-
lows from Proposition 1.4 combined with the BPS integrality result of [7,
Thm. 8.1] for l = 2, whose proof applies identically to this case.

We will show Proposition 1.4 in two main steps. We will first construct
a toric model for dP3(0, 2) in the sense of [20], and then compute the λg-log
Gromov–Witten invariants (1) from the corresponding quantum scattering
diagram and algebra of quantum broken lines [4–6, 13, 17, 18, 38, 40]. The
lack of tameness is epitomised by the existence of infinite scattering when
two quantum walls meet, and the resulting sum over quantum broken lines
leads to the intricate-looking multi-variate generalised hypergeometric sum
in (19). The second step consists of proving that this sum admits a closed-
form q-hypergeometric resummation given by (14). To our knowledge, this
has not previously appeared in the literature, with the exception of the
special cases d3 = d2 = d0 and d3 = d0 = d1 + d2 considered in [30]. To
prove it, we first establish a difference equation satisfied by a 1-parameter
deformation of (19), and then show inductively that the resulting recur-
sion has a unique closed-form solution compatible with (19) by repeated
use of Jackson’s q-analogue of the Pfaff–Saalschütz summation for the 3ϕ2-
hypergeometric function.

3By [7, Prop. 2.5], the effectiveness of d implies that all arguments of the q-
binomial expressions in (12) are non-negative integers.
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2. Proof of Conjecture 1.2

2.1. Log GW invariants from the quantum tropical vertex

We start off by giving a summary of the combinatorial setup for the calcula-
tion of the higher genus log GW invariants (2) from the associated quantum
scattering diagram, referring the reader to [7, Sec. 4.2] for a more extensive
treatment.

2.1.1. Toric models Two birational operations on log Calabi–Yau sur-
faces Y (D) will feature prominently in the rest of the paper.

• If Ỹ is the blow-up of Y at a node of D and D̃ is the preimage of D
in Ỹ we say Ỹ (D̃) is a corner blow-up of Y (D).

• In case Ỹ is the blow-up of Y at a smooth point in D and D̃ is the
strict transform of D in Ỹ we say Ỹ (D̃) is an interior blow-up of Y (D).

Starting from a Looijenga pair Y (D), we will seek to construct pairs
Ỹ (D̃) and Y (D) fitting into a diagram

(15)

Ỹ (D̃)

Y (D) Y (D)

ϕ π

where ϕ is a sequence of corner blow-ups and π is a toric model, meaning that
Y is toric, D is its toric boundary and π is a sequence of interior blow-ups.
By [20, Prop. 1.3] such a diagram always exists. We will write ρDi

for the
generator of the ray in the fan Σ of Y associated to the toric prime divisor
which is the push-forward along π of the strict transform of Di under ϕ.

Given a toric model π : Ỹ (D̃) → Y (D) as in (15) we can associate a
consistent quantum scattering diagram D to it, which is what we discuss
next.

2.1.2. Quantum scattering and higher genus invariants The scat-
tering diagram D is defined on the lattice NZ

∼= Z2 of integral points of the
fan Σ of Y , as follows: assume that π is a sequence of blow-ups of distinct
smooth points P1, . . . , Ps of D and denote E1, . . . , Es the exceptional divisors
in Ỹ associated to these blow-ups. Further, write ρj for the primitive gener-
ator of the ray associated to the toric prime divisor which Pj is an element
of. For each j ∈ {1, . . . , s} we introduce a wall dj := Rρj decorated with
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wall-crossing functions fdj
:= 1 + tjz

−ρj ∈ C�t1, . . . , ts�[NZ]. We will often
write zρ =: xayb if ρ = (a, b). Then D is the unique (up to equivalence)
completion of the initial scattering diagram Din := {(dj , fdj

)}j∈{1,...,s} in the
sense of [4, 5, 21, 29]. Such a completion can be found algorithmically by
successively adding new rays whenever two walls meet, as we now describe.

First of all, after perturbing the diagram Din we may assume that walls
intersect in codimension at least one and that no more than two walls meet in
a point. Now suppose two walls d1, d2 intersect. Denote by −ρi a primitive
integral direction of di and assume fdi = 1 + ciz

ρi

. For our purpose the
relevant scattering processes are:

• det(ρ1, ρ2) = ±1 (simple scattering): the algorithm tells us to add a
ray d emanating from the intersection point d1 ∩ d2 in the direction
−ρ1 − ρ2 decorated with 1 + c1c2z

ρ1+ρ2

.
• det(ρ1, ρ2) = ±2 (infinite scattering): the algorithm creates three types

of walls. First, there is a central wall in the direction −ρ1−ρ2 decorated
with a wall-crossing function whose explicit shape is not of interest
in the subsequent analysis and hence omitted. Further – and most
relevant for us later – one needs to add walls d1, . . . , dn, . . . with slope
−(n+ 1)ρ1 − nρ2 decorated with

1 + cn+1
1 cn2z

(n+1)ρ1+nρ2

and last a collection 1d, . . . , nd, . . . of walls respectively having slope
−nρ1 − (n+ 1)ρ2 and decorated with

1 + cn1 c
n+1
2 znρ

1+(n+1)ρ2

.

Adding new walls to the scattering diagram possibly creates new intersec-
tion points. Perturbing the diagram if necessary and repeating the above
described process for each newly created intersection point yields a consis-
tent scattering diagram D.

We now introduce the final combinatorial object we require for our com-
putation of log Gromov–Witten invariants. LetNR := NZ⊗ZR. Given p ∈ NR

and m ∈ NZ, a quantum broken line β with ends p and m consists of

1. a continuous piece-wise straight path β : (−∞, 0] → B \
⋃

d∈D ∂d ∪⋃
d1 �=d2 d

1 ∩ d2 intersecting walls transversely;
2. a labelling L1, . . . , Ln of the successive line segments with Ln ending

at p such that each intersection point Li ∩ Li+1 lies on a wall;
3. an assignment aiz

mi to each line segment Li such that
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• a1z
m1 = zm,

• if Li ∩ Li+1 ⊂ d with fd =
∑

r≥0 crz
rρd and ρd chosen primitive

then ai+1z
mi+1 is a monomial occurring in the expansion of

(16) aiz
mi

1

2
(|det(ρd,mi)|−1)∏

ℓ=− 1

2
(|det(ρd,mi)|−1)

⎛
⎝∑

r≥0

crq
rℓzrρd

⎞
⎠ ,

• Li is directed in direction −mi.

For such a quantum broken line β call aβ,end := an the end-coefficient and
write mβ,end := mn. Moreover, we will often refer to aβ,endz

mβ,end as the
end-monomial and to zm as the asymptotic monomial of β. We remark that
for fd = 1 + czρd the product in (16) takes the form

(17)

1

2
(|det(ρd,mi)|−1)∏

ℓ=− 1

2
(|det(ρd,mi)|−1)

(
1 + cqℓzρd

)
=

| det(ρd,mi)|∑

k=0

[
| det(ρd,mi)|

k

]

q

ckzkρd .

Now given two lattice vectors m1,m2 ∈ NZ, define

(18) CD

p;m1,m2
(q) :=

∑

β1,β2

Ends(βi)=(p,mi)
mβ1,end+mβ2,end=0

aβ1,end aβ2,end

to be the sum of products of all end-coefficients of quantum broken lines β1
and β2 with asymptotic monomials zm1 , resp. zm2 , meeting in a common
point p and with opposite exponents of their end-monomials. This sum is a
polynomial in the variables tj with coefficients in Z[q±

1

2 ]. It turns out that
the definition of CD

p;m1,m2
(q) is mostly independent of p.

Proposition 2.1. [38, Proposition 2.13 & 2.15] The sum in (18) is finite
and as long as p is chosen generic, CD

p;m1,m2
(q) is independent of the choice

of p.

Moreover, we remark that according to the same proposition [38, Propo-
sition 2.15] CD

p;m1,m2
(q) enjoys the interpretation as being the constant term

in the product of two theta functions. However, most crucial for us, this
quantity gives us a way to extract the higher genus, maximal contact log
Gromov–Witten invariants (2) of a Looijenga pair Y (D) from the scattering
diagram associated to its toric model, as per the following
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Proposition 2.2 ([7, 39]). Let Y (D) be a 2-component Looijenga pair, i.e.
D = D1 + D2, π : Ỹ (D̃) → Y (D) a toric model for it as in (15), and D

the corresponding consistent quantum scattering diagram. For d ∈ H2(Y,Z)

an effective curve class, set mi := (d · Di)ρDi
. Then N

log
d (Y (D))(�) is the

coefficient of
∏s

j=1 t
d·ϕ∗Ej

j in

CD

p;m1,m2
(q)

∣∣∣∣
q=ei�

.

2.1.3. Birational invariance Suppose now that Y (D) is a 2-component
quasi-tame Looijenga pair and π : Y ′(D′) → Y (D) is a sequence of interior
blow-ups such that Y ′(D′) is also quasi-tame. The following compatibility
statement explains how the higher genus log-open correspondence interacts
with this type of birational transformations.

Proposition 2.3. [7, Prop. 4.3 and 6.9] Let π : Y ′(D′) → Y (D) be an inte-
rior blow-up, with both Y ′(D′) and Y (D) 2-component quasi-tame Looijenga

pairs. Then N
log
d (Y (D)) = N

log
π∗d(Y

′(D′)), Od(Y
op(D)) = Oπ∗d(Y

′ op(D′)) for
all d ∈ H2(Y,Z).

The comparison statement of Proposition 2.3 for log invariants is easy
to visualise in genus 0, where the invariants N

log
0,d (Y (D)) are enumerative

[39]: since blowing up a point away from the curves does not affect the local
geometry, the corresponding counts are invariant, a property also reflected in
the broken lines calculations of the scattering diagrams of Section 2.1.2. The
corresponding statement for the open invariants is a non-trivial consequence
of the invariance of the topological vertex under flops [25, 28].

By the classification theorem of nef Looijenga pairs in [7, Prop. 2.2], any
non-tame, quasi-tame Looijenga pair Y (D) is obtained up to deformation
as a sequence of m ≥ 0 interior blowings-down of dP3(0, 2). It follows from
Proposition 2.3 that proving Conjecture 1.2 for Y (D) = dP3(0, 2) implies
that the same statement a fortiori holds for any other non-tame, quasi-tame
pair (and indeed any 2-component quasi-tame pair with Picard number lower
than four).

2.2. The case of maximal Picard number

Let us then specialise to Y (D) = dP3(0, 2). Throughout this section we will
write d = d0(H−E1−E2−E3)+

∑3
i=1 diEi for a curve class d ∈ H2(dP3,Z). If

d ·D1 or d ·D2 vanishes, then N
log
d

(
dP3(0, 2)

)
(�) = 0. In case the intersection

numbers are strictly positive, we may use the scattering diagram of dP3(0, 2)
to compute the invariants.
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2.2.1. Constructing the toric model First, we recall from [7, Sec. 4.4]
the construction of a toric model of P2(D1 ∪ D2), with D1 a line and D2

a smooth conic intersecting D1 in two distinct points P1 and P2. Let E
denote the tangent line through P1 to D2. In the following we will always
identify D1, D2, E , and some yet to be defined divisors F1, F2 with their
strict transforms, resp. push-forwards, under blow-ups, resp. blow-downs.

Blow up the point P1, and write F1 for the exceptional divisor, and then
blow up the intersection point of F1 with D2 and denote the exceptional
curve by F2. Under these blow-ups, the strict transform of E is a (−1)-curve
intersecting F2 in one point and can therefore be blown down. This blow-
down results in the log Calabi–Yau surface

(
P2(D), D

)
with anti-canonical

divisor D = D1 ∪F1 ∪F2 ∪D2 where F1 is a curve with self-intersection −2,
D2 has self-intersection 2, and D1, F2 zero. Therefore, since the irreducible
components of D form a necklace with the same self-intersections as the
toric boundary of F2, we already must have P2(D) = F2 with D the toric
boundary by [15, Lemma 2.10] and hence we have constructed a toric model
for P2(D). From the discussion of the previous Section, at a tropical level
the fact that we blew down E amounts to adding a wall dF2

emanating from
a focus-focus singularity on the ray corresponding to F2 in the fan of F2.

The above construction results in a toric model for dP3(0, 2), as displayed
in Figure 1: we blow up an interior point on D1 and two interior points onD2

and take the proper transforms, which at the fan level leads to the addition of
focus-focus singularities on the rays corresponding to D1 and D2 (indicated
with crosses in Figure 1). We denote by E1, resp. by E2, E3 the exceptional
loci that result from blowing up a point in D1, resp. two points on D2.

2.2.2. The quantum scattering diagram We now follow the construc-
tion outlined in Section 2.1.2 to derive the quantum scattering diagram D of
the toric model of dP3(0, 2) (Figure 2). We shoot out walls dF2

, dD1
, dD2,1,

dD2,2 emanating from the focus-focus singularities in the direction −ρ, where
ρ is the respective generator of the ray in the fan. We send the singularities
to infinity and perturb the walls as indicated in Figure 2. From these initial
walls we now want to construct a consistent scattering diagram. However,
since in our subsequent analysis we will only be interested in walls with slope
lying in the cone generated by (0,−1) and (1, 2), we will restrict the discus-
sion to such walls only. As |ρF2

∧ ρD1
| = 2 there is infinite scattering in the

sense of Section 2.1.2 between the walls dF2
and dD1

. This results in walls
d2, d3, . . . with slope −nρF2

− (n − 1)ρD1
= (1,−2(n − 1)) decorated with

wallcrossing functions 1 + tntn−1
1 x−1y2(n−1) where n > 1. For conformity,

let us write d1 := dF2
. Now for all n ≥ 1 each wall dn intersects both dD2,1
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D2

D1F1

F2
×

×

×

×

Figure 1: The toric model of dP3(0, 2).

and dD2,2. Luckily, in this case we only have simple scattering resulting in
walls with slope (1,−2n+3) and wallcrossing functions 1+tntn−1

1 tix
−1y2n−3

where i ∈ {2, 3}. Lastly, we notice that the wall which is the result of scat-
tering between dn and dD2,1 intersects dD2,2 thus producing a wall with slope
(1,−2n + 4) and wallcrossing function 1 + tntn−1

1 t2t3x
−1y2n+4 attached to

it. Let us call this wall dD2,D2
n . The whole construction is summarised in

Figure 2.
We collect the walls constructed above into 4-tuples labelled by an inte-

ger n > 0 as depicted in Figure 3. The nth tuple consists of the wall dn, the
walls which are the result of scattering between dn and dD2,1, resp. dD2,2,

and lastly the wall dD2,D2

n+1 .

2.2.3. Higher genus log GW invariants In this section we will apply
Proposition 2.2 to obtain the log Gromov–Witten invariants of dP3(0, 2).
For this we need to determine CD

p;m1,m2
(q), where mi := (d · Di)ρDi

and p

is a generically chosen point. First, let us characterise all quantum broken
lines which contribute to this sum.

Lemma 2.4. Choose p in the lower right quadrant so that it lies to the right
of dD2,2 and that below p there are only walls belonging to the nth 4-tuple of
walls with n ≥ d ·D2 + 2. Then the following statements hold:

1. If β2 is a quantum broken line with ends (p,m2) then either it is a
straight line and thus mβ2,end = m2 or mβ2,end lies in the half open
cone {−a1ρD1

− a2ρD2
| a1 > 0, a2 ≥ 0}.



On quasi-tame Looijenga pairs 325

x
y

· · ·

...

dD1

dF2

dD2,1 dD2,2

×

×

× ×

1+tx−1

1
+
t 1
x
y

2
1
+
t 2
y
−

1

1
+
t 3
y
−

1

xd1y2d1

y−d2−d3

•
p

1

2

3

4

1

2

3

Figure 2: The quantum scattering diagram of dP3(0, 2).

2. If β1 and β2 are quantum broken lines with ends (p,m1) and (p,m2)
respectively such that

mβ1,end +mβ2,end = 0

then β2 is a straight line and β1 may only bend at walls to the right of
dD2,2 as in Figure 2.
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Proof. Statement 1. can be proven by a straightforward, but tedious case-
by-case analysis. Since this proof is barely enlightening we omit it here, and
only explain how 1. implies 2. Indeed, suppose β2 is not a straight line. Then
by 1. we must have mβ1,end ∈ {a1ρD1

+ a2ρD2
| a1 > 0, a2 ≥ 0}. However,

this means that β1 only crosses walls at which it may pick up a contribution
that bends it further into the the lower right quadrant. In particular, such
a quantum broken line cannot have asymptotic monomial zm1 , leading to a
contradiction. Hence, β2 must be a straight line.

Having Lemma 2.4 at hand, we are now equipped to determine the log
Gromov–Witten invariants of dP3(0, 2) via Proposition 2.2.

Proposition 2.5. Let d be an effective curve class with d ·D1, d ·D2 > 0.
Then

N
log
d

(
dP3(0, 2)

)
(�) =

∑

∀(i,n)∈{1,2,3,4}×Z>0:

ki,n≥0

d0=
∑

n≥1
∑4

i=1(n+δi,1)ki,n

d1=
∑

n≥1
∑4

i=1 ki,n

d0−d2=
∑

n≥1(k1,n+k4,n)

d0−d3=
∑

n≥1(k1,n+k3,n)

∏

n≥1

2∏

i=1

[
d2 + d3 −

∑
m≥1

∑4
j=1(2m− δj,3 − δj,4)kj,n+m

ki,n

]

q

×

[
d2 + d3 −

∑
m≥0

∑4
j=1(2m+ δj,1 + δj,2)kj,n+m

k2+i,n

]

q

.

(19)

Proof. In order to compute N
log
d

(
dP3(0, 2)

)
we choose a point p as specified

in Lemma 2.4 and consider quantum broken lines βi with ends (p, z(d·Di)ρDi ),
where i ∈ {1, 2}, so that the sum of the exponents of their end-monomials
at p vanishes. As stated in Proposition 2.2, we then obtain the desired log
Gromov–Witten invariant by taking the product of the two end-coefficients,
summing this over all such pairs of quantum broken lines and extracting the
coefficient of the monomial td·ϕ∗E

∏3
i=1 t

d·ϕ∗Ei

i .

Let us then analyse a quantum broken line β1 coming from the direction
D1 with asymptotic monomial z(d·D1)ρD1 = xd1y2d1 ending at p which only
bends at walls to the right of dD2,2 as illustrated in Figure 2. We claim that
its end-monomial is of the form

aβ1,endz
mβ1,end =

N∏

n=1

2∏

i=1

[
2nd1 −

∑n
l=1

∑4
j=1(2(n− l)− δj,3 − δj,4)kj,l

ki,n

]

q

×

[
(2n− 1)d1 −

∑n−1
l=1

∑4
j=1(2(n− l)− δj,1 − δj,2)kj,l

k2+i,n

]

q
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1+tnt n−11
t2x−1

y 2n−3
1+tnt n−11

t3x−1
y 2n−3

1+
t n
t n

−
1

1

x −
1
y 2(n

−
1)

1+
t n

+
1
t n
1 t

2 t
3 x −

1
y 2(n

−
1)

1

2

3

4

Figure 3: The nth 4-tuple of walls.

× t
∑

N
n=1

∑4
j=1(n+δj,1)kj,nt

∑
N
n=1

∑4
j=1(n−1+δj,1)kj,n

1

× t
∑

N
n=1(k1,n+k4,n)

2 t
∑

N
n=1(k1,n+k3,n)

3 xd1−
∑

N
n=1

∑4
j=1 kj,n

× y2d1+
∑

N
n=1(2n−2)(k1,n+k2,n)+

∑
N
n=1(2n−3)(k3,n+k4,n)(20)

for some kj,n ≥ 0 where we setN = d·D2+1. Indeed, suppose that after pass-

ing the first (n−1) 4-tuples of walls β2 carries the monomial an−1x
bn−1ycn−1 .

Then crossing wall 4 of the nth 4-tuple displayed in Figure 3 we see that

by the defining property 3 of a quantum broken line and formula (17) the

monomial carried by the quantum broken line must now be

an−1x
bn−1ycn−1

4
�−→ an−1

[
(2n− 3)bn−1 + cn−1

k4,n

]

q

tnk4,nt
(n−1)k4,n

1

× t
k4,n

2 xbn−1−k4,nycn−1+(2n−3)k4,n(21)

for some k4,n ≥ 0. Similarly, after passing the next three walls, which to-

gether with 4 form the nth 4-tuple of walls, the quantum broken line carries

the monomial

an−1

[
(2n− 3)bn−1 + cn−1

k4,n

]

q

tnk4,nt
(n−1)k4,n

1 t
k4,n

2 xbn−1−k4,nycn−1+(2n−3)k4,n
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3
�−→ an−1

[
(2n− 3)bn−1 + cn−1

k3,n

]

q

[
(2n− 3)bn−1 + cn−1

k4,n

]

q

× tn(k3,n+k4,n)t
(n−1)(k3,n+k4,n)
1 t

k4,n

2 t
k3,n

3

× xbn−1−k3,n−k4,nycn−1+(2n−3)(k3,n+k4,n)

2
�−→ an−1

[
(2n− 2)bn−1 + cn−1 + (k3,n + k4,n)

k2,n

]

q

×

[
(2n− 3)bn−1 + cn−1

k3,n

]

q

[
(2n− 3)bn−1 + cn−1

k4,n

]

q

× t
∑4

j=2 nkj,nt

∑4
j=2(n−1)kj,n

1 t
k4,n

2 t
k3,n

3

× xbn−1−
∑4

j=2 kj,nycn−1+(2n−2)k2,n+(2n−3)(k3,n+k4,n)

1
�−→ an−1

[
(2n− 2)bn−1 + cn−1 + (k3,n + k4,n)

k1,n

]

q

×

[
(2n− 2)bn−1 + cn−1 + (k3,n + k4,n)

k2,n

]

q

×

[
(2n− 3)bn−1 + cn−1

k3,n

]

q

[
(2n− 3)bn−1 + cn−1

k4,n

]

q

× t
∑4

j=1(n+δj,1)kj,nt

∑4
j=1(n−1+δj,1)kj,n

1 t
k1,n+k4,n

2 t
k1,n+k3,n

3

× xbn−1−
∑4

j=1 kj,nycn−1+(2n−2)(k1,n+k2,n)+(2n−3)(k3,n+k4,n) .(22)

Since we know that (b0, c0) = m1 = (d1, 2d1), by induction we can deduce

that

bn = d1−

n∑

l=1

4∑

j=1

kj,l , cn = 2d1+

n∑

l=1

(2l−2)(k1,l+k2,l)+

n∑

l=1

(2l−3)(k3,l+k4,l) .

Substituting this into the binomial coefficients in the last line of (22) and

noting that

(2n− 3)bn−1 + cn−1 = (2n− 1)d1 −

n−1∑

l=1

(2(n− l)− 1)(k1,l + k2,l)
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−

n−1∑

l=1

2(n− l)(k3,l + k4,l)(23)

and

(2n− 2)bn−1 + cn−1 + (k3,n + k4,n) = 2nd1 −

n∑

l=1

2(n− l)(k1,l + k2,l)

−

n∑

l=1

(2(n− l)− 1)(k3,l + k4,l)(24)

we indeed see that the end-monomial aβ1,endz
mβ1,end is of the form (20).

Now by definition, CD
p;m1,m2

(q) is the sum of aβ1,endaβ2,end over all quan-

tum broken lines βi, i ∈ {1, 2}, with ends (p,mi) such that

(25) mβ1,end +mβ2,end = 0 .

Since by Lemma 2.4 β2 must be a straight line, we have mβ2,end = (d ·

D2)ρD2
= (0,−d2 − d3) and thus (25) translates into the conditions

d1 =

N∑

n=1

4∑

i=1

ki,n,(26)

d2 + d3 =

N∑

n=1

(
2n(k1,n + k2,n) + (2n− 1)(k3,n + k4,n)

)
.(27)

Hence, plugging aβ2,end = 1 and (20) into the defining expression (18) for

CD
p;m1,m2

(q) we get

CD

p;m1,m2
(q) =

∑

∀(i,n)∈{1,2,3,4}×{1,...,N}:
ki,n≥0

d1=
∑

N
n=1

∑4
i=1 ki,n

d2+d3=
∑

N
n=1

∑4
i=1(2n−δi,3−δi,4)ki,n

t
∑

N
n=1

∑4
j=1(n+δj,1)kj,nt

∑
N
n=1

∑4
j=1(n−1+δj,1)kj,n

1

× t
∑

N
n=1(k1,n+k4,n)

2 t
∑

N
n=1(k1,n+k3,n)

3 ,

×

N∏

n=1

2∏

i=1

[
2nd1 −

∑n
l=1

∑4
j=1(2(n− l)− δj,3 − δj,4)kj,l

ki,n

]

q



330 Andrea Brini and Yannik Schüler

×

[
(2n− 1)d1 −

∑n−1
l=1

∑4
j=1(2(n− l)− δj,1 − δj,2)kj,l

k2+i,n

]

q

.

Using the sum conditions (26) and (27) we can simplify the arguments of
the q-binomials to bring the sum into the form

CD

p;m1,m2
(q) =

(28)

∑

∀(i,n)∈{1,2,3,4}×{1,...,N}:
ki,n≥0

d1=
∑

N
n=1

∑4
i=1 ki,n

d2+d3=
∑

N
n=1

∑4
i=1(2n−δi,3−δi,4)ki,n

t
∑

N
n=1

∑4
j=1(n+δj,1)kj,nt

∑
N
n=1

∑4
j=1(n−1+δj,1)kj,n

1

× t
∑

N
n=1(k1,n+k4,n)

2 t
∑

N
n=1(k1,n+k3,n)

3

×

N∏

n=1

2∏

i=1

[
d2 + d3 −

∑N−n
m=1

∑4
j=1(2m− δj,3 − δj,4)kj,n+m

ki,n

]

q

×

[
d2 + d3 −

∑N−n
m=0

∑4
j=1(2m− δj,1 − δj,2)kj,n+m

k2+i,n

]

q

We can now apply Proposition 2.2 which states that Nlog
d

(
dP3(0, 2)

)
is the

coefficient of

(29) td·ϕ∗E
3∏

i=1

t
d·ϕ∗Ei

i = td0td0−d1

1 td0−d2

2 td0−d3

3 .

in (28). Here, ϕ is the sequence of corner blow-ups d̃P3(D̃) → dP3(D) and
E , E1, E2, E3 are the exceptional curves we introduced in Section 2.2.1. The
above identity follows from the fact that [ϕ∗E ] = H and [ϕ∗Ei] = Ei. Now

picking the coefficient of (29) in (28) we obtain that N
log
d

(
dP3(0, 2)

)
is the

sum of

∏

n≥1

2∏

i=1

[
d2+d3−

∑N−n
m=1

(
2m(k1,n+m+k2,n+m)+(2m− 1)(k3,n+m+k4,n+m)

)

ki,n

]

q

×

[
d2+d3−

∑N−n
m=0

(
(2m+ 1)(k1,n+m+k2,n+m) + 2m(k3,n+m+k4,n+m)

)

k2+i,n

]

q

(30)
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over kj,n ≥ 0, j ∈ {1, . . . , 4} and n ∈ {1, . . . , N} subject to the condi-
tions (26), (27) and

d0 =

N∑

n=1

(
k1,n + n

4∑

i=1

ki,n

)
,(31)

d0 − d1 =

N∑

n=1

(
k1,n + (n− 1)

4∑

i=1

ki,n

)
,(32)

d0 − d2 =

N∑

n=1

(k1,n + k4,n) ,(33)

d0 − d3 =

N∑

n=1

(k1,n + k3,n) .(34)

Notice here that (31), (33), and (34) together imply (27), and that (32) fol-
lows from subtracting (26) from (31). Hence, it is sufficient to impose condi-
tions (26), (31), (33), and (34) only. Note that these constraints are exactly
the ones appearing in the sum in (19). Moreover, (30) exactly matches the
summand on the right-hand side of (19) and hence the claimed formula is
proven.

Remark 2.6. It is easy to convince oneself that there are actually only
finitely many summands contributing to (19), due to the finite number of
choices (ki,n) satisfying the summation conditions. Moreover, the product in
each of these summands is well-defined since the first sum condition forces
ki,n = 0 for all n > d0. Thus, only a finite number of binomials can be
different from one and therefore the whole expression becomes well-defined.

To prove that the right-hand side of (19) returns (14), it will be helpful
to consider a 1-parameter deformation of (19), as follows. For non-negative
integers a, b, c, d, e, we write

G(a, b, c, d, e) :=

∑

∀(i,n)∈{1,2,3,4}×Z>0: ki,n≥0
a=

∑
n≥1

∑4
i=1(n+δi,1)ki,n

b=
∑

n≥1

∑4
i=1 ki,n

c=
∑

n≥1(k1,n+k4,n)

d=
∑

n≥1(k1,n+k3,n)

∏

n≥1

2∏

i=1

[
e−

∑
m≥1

∑4
j=1(2m− δj,3 − δj,4)kj,n+m

ki,n

]

q

×

[
e−

∑
m≥0

∑4
j=1(2m+ δj,1 + δj,2)kj,n+m

k2+i,n

]

q

.

(35)
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By (19), our sought-for log Gromov–Witten generating function is ob-

tained from (35) via the restriction

(36) N
log
d

(
dP3(0, 2)

)
= G(d0, d1, d0 − d2, d0 − d3, d2 + d3) .

We claim that (35) has a simple closed-form summation, as follows.

Proposition 2.7. For all a, b, c, d, e ∈ Z≥0 we have that

G(a, b, c, d, e) =

[
b− a+ e

b− c

]

q

[
c− a+ d+ e

c

]

q

[
a− c

d

]

q

[
a− d

b− d

]

q

−

[
b− a+ e− 1

b− c

]

q

[
c− a+ d+ e− 1

c

]

q

[
a− c− 1

d

]

q

[
a− d− 1

b− d

]

q

.

(37)

In particular, from (36), it follows that

N
log
d

(
dP3(0, 2)

)
(�) =

[d1]q[d2 + d3]q
[d0]q[d1 + d2 + d3 − d0]q

[
d3

d0 − d1

]

q

[
d3

d0 − d2

]

q

×

[
d0

d3

]

q

[
d1 + d2 + d3 − d0

d3

]

q

.(38)

We will give an inductive proof of Proposition 2.7 in the next Section by

seeking a suitable recursive relation in the parameter a, broadly following

the lead of [30]. The proof is composed of three main steps:

1. We first establish (37) for the base cases a = 0 and b = 0 by a direct

analysis of the quantum broken line sum in (35), which in these cases

is either vanishing, or reduces to a single summand (Lemma 2.8).

2. We then establish, for a, b > 0, a difference equation satisfied by

G(a, b, c, d, e) in the parameters a, b, c and d. This equation recur-

sively and uniquely determines G(a, b, c, d, e) from the knowledge of

the base case G(a′, b′, c′, d′, e) with 0 ≤ a′ < a (Lemma 2.9).

3. We finally check that the r.h.s. of (37) is also a solution of the difference

equation, and conclude by uniqueness (Proposition 2.11). The proof is

fundamentally based on a classical q-hypergeometric summation result

in the form of the q-Pfaff–Saalschütz formula (Lemma 2.10).

2.2.4. Proof of Proposition 2.7 We start by considering the base cases

a = 0 and b = 0 in the induction procedure.
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Lemma 2.8. We have that

(39) G(0, b, c, d, e) = δb,0δc,0δd,0 , G(a, 0, c, d, e) = δa,0δc,0δd,0 .

In particular, Proposition 2.7 holds when a = 0 or b = 0.

Proof. Both equalities are implied by the conditions on the range of sum-
mation of (35): setting a = 0 or b = 0 implies that ki,n = 0 for all
(i, n) ∈ {1, 2, 3, 4} × Z>0. In this case the r.h.s. of (35) is equal to one
for c = d = 0, while if either c �= 0 or d �= 0 it vanishes being an empty sum.

To see that (39) agrees with (37), note that when a = 0 the second
summand in (37) must always vanish, while the first one is non-zero only
if b = c = d = 0, in which case it is equal to 1. Likewise, when b = 0, the
right-hand side of (37) can only be non-zero if c = d = 0: this is equal to 1
for a = 0 by the previous analysis, and for a > 0 the contributions from the
two summands cancel each other, since

[
e− a

−c

]

q

[
c− a+ d+ e

c

]

q

[
a− c

d

]

q

[
a− d

−d

]

q

−

[
e− a− 1

−c

]

q

[
c− a+ d+ e− 1

c

]

q

[
a− c− 1

d

]

q

[
a− d− 1

−d

]

q

= δc,0 δd,0 − δc,0 δd,0 = 0 .

Lemma 2.9. For a, b ∈ Z>0, c, d, e ∈ Z≥0, G(a, b, c, d, e) satisfies the fol-
lowing recursion in (a, b, c, d):

G(a, b, c, d, e) =

∑

kj,1≥0

2∏

i=1

[
e− 2a+ 2b+ c+ d− k3,1 − k4,1

ki,1

]

q

[
e− 2a+ b+ c+ d

ki+2,1

]

q

G(a− b− k1,1, b− k1,1 − k2,1 − k3,1 − k4,1, c− k1,1 − k4,1, d− k1,1 − k3,1, e) .

(40)

Proof. Looking at the defining equation (35) for G(a, b, c, d, e), we see that
the sum conditions imply that

∑

m≥1

(
2m(k1,1+m + k2,1+m) + (2m− 1)(k3,1+m + k4,1+m)

)

= 2a− 2b− c− d+ k3,1 + k4,1
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and
∑

m≥0

(
(2m+ 1)(k1,1+m + k2,1+m) + 2m(k3,1+m + k4,1+m)

)
= 2a− b− c− d .

Hence, they allow us to rewrite the four q-binomial coefficients that corre-
spond to the factor n = 1 in the product over n ≥ 1 in (35) as

2∏

i=1

[
e−

∑
m≥1

(
2m(k1,1+m + k2,1+m) + (2m− 1)(k3,1+m + k4,1+m)

)

ki,n

]

q

×

[
e−

∑
m≥0

(
(2m+ 1)(k1,1+m + k2,1+m) + 2m(k3,1+m + k4,1+m)

)

k2+i,n

]

q

=

2∏

i=1

[
e− 2a+ 2b+ c+ d− k3,1 − k4,1

ki,1

]

q

[
e− 2a+ b+ c+ d

ki+2,1

]

q

.

This factor is independent of all ki,n with n > 1 and hence in (35) we can
factor it out of the sum over these integers which gives us

G(a, b, c, d, e) =

∑

kj,1≥0

2∏

i=1

[
e− 2a+ 2b+ c+ d− k3,1 − k4,1

ki,1

]

q

[
e− 2a+ b+ c+ d

ki+2,1

]

q

×
∑

∀(i,n)∈{1,2,3,4}×Z>1: ki,n≥0
a=

∑
n≥1

∑4
i=1(n+δi,1)ki,n

b=
∑

n≥1

∑4
i=1 ki,n

c=
∑

n≥1(k1,n+k4,n)

d=
∑

n≥1(k1,n+k3,n)

∏

n≥2

2∏

i=1

[
e−

∑
m≥1

∑4
j=1(2m− δj,3 − δj,4)kj,n+m

ki,n

]

q

×

[
e−

∑
m≥0

∑4
j=1(2m+ δj,1 + δj,2)kj,n+m

k2+i,n

]

q

.

(41)

Now using (35) again in order to explicitly write out

G(a− b− k1,1, b−k1,1−k2,1−k3,1−k4,1, c−k1,1 − k4,1, d− k1,1 − k3,1, e) =

∑

∀(i,n)∈{1,2,3,4}×Z>1:

ki,n≥0

a−b−k1,1=
∑

n≥2
∑4

i=1(n−1+δi,1)ki,n

b−
∑

l kl,1=
∑

n≥2
∑4

i=1 ki,n

c−k1,1−k4,1=
∑

n≥2(k1,n+k4,n)

d−k1,1−k3,1=
∑

n≥2(k1,n+k3,n)

∏

n≥2

2∏

i=1

[
e−

∑
m≥1

∑4
j=1(2m−δj,3−δj,4)kj,n+m

ki,n

]

q

×

[
e−

∑
m≥0

∑4
j=1(2m+ δj,1 + δj,2)kj,n+m

k2+i,n

]

q

.

(42)
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we notice that the sum conditions in (42) are actually equivalent to the ones
in the third line of (41). Hence, we can identify (42) with line three and four
of (41) and so we arrive at the recursion formula (40).

Define now

(43) G̃(a, b, c, d, e) :=

[
b− a+ e

b− c

]

q

[
c− a+ d+ e

c

]

q

[
a− c

d

]

q

[
a− d

b− d

]

q

,

so that the right-hand side of (37) equates to G̃(a, b, c, d, e)− G̃(a−1, b, c, d,
e − 2). We shall make extensive use of Jackson’s q-analogue of the Pfaff–
Saalschütz summation in the form it is stated in [44, Equation (1q)].

Lemma 2.10 (The q-Pfaff–Saalschütz Theorem, [44]). For integers A, B,
C, D ≥ 0 we have

∑

k≥0

[A+B + C +D − k]q!

[k]q! [A− k]q! [B − k]q! [C − k]q! [D + k]q!
=

[
A+B +D

B

]

q

[
A+ C +D

A

]

q

[
B + C +D

C

]

q

.(44)

Proposition 2.11. Let a, b ∈ Z>0 and c, d, e ∈ Z≥0. Then G̃(a, b, c, d, e)
satisfies the same recursion (40) as G(a, b, c, d, e), i.e.

G̃(a, b, c, d, e) =

∑

k1,k2,k3,k4≥0

2∏

i=1

[
e− 2a+ 2b+ c+ d− k3 − k4

ki

]

q

[
e− 2a+ b+ c+ d

ki+2

]

q

× G̃(a− b− k1, b− k1 − k2 − k3 − k4, c− k1 − k4, d− k1 − k3, e) .

(45)

Proof. In order to prove (45) we will repeatedly use Lemma 2.10. We start
from the right-hand side of (45), plug in the definition of G̃ given in (43),
expand the binomials, and collect all factorials involving k1 and k2. Doing
so one finds for the r.h.s. of (45) that

∑

k3,k4≥0

[
b− 2a+ c+ d+ e

k3

]

q

[
b− 2a+ c+ d+ e

k4

]

q

×
[a− b− d+ k3]q! [2b− 2a+ c+ d+ e− k3 − k4]q!

2 [a− b− c+ k4]q!

[b− a+ d+ e− k3]q! [b− a+ c+ e− k4]q!
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×
∑

k1≥0

[b− a+ c+ d+ e− k1 − k3 − k4]q!

[k1]q! [c− k1 − k4]q! [d− k1 − k3]q!

×
1

[2b− 2a+ c+ d+ e− k1 − k3 − k4]q! [a− b− c− d+ k1 + k3 + k4]q!

×
∑

k2≥0

[2b− a+ e− k2 − k3 − k4]q!

[k2]q! [b− c− k2 − k3]q! [b− d− k2 − k4]q!

×
1

[2b− 2a+ c+ d+ e− k2 − k3 − k4]q! [a− 2b+ k2 + k3 + k4]q!
.

We can now use (44) to perform the sum over k1 and k2. Collecting the
factorials depending on k3 and k4 in the resulting expression, we get

[a− b]q! [a− c− d]q! [b− 2a+ c+ d+ e]q!
2

[b− a+ e]q! [c− a+ d+ e]q!
∑

k3≥0

[b− a+ d+ e− k3]q!

[k3]q! [d− k3]q! [b− c− k3]q! [b− 2a+ c+ d+ e− k3]q! [a− b− d+k3]q!

∑

k4≥0

[b− a+ c+ e− k4]q!

[k4]q! [c− k4]q! [b−d− k4]q! [b− 2a+ c+d+e− k4]q! [a− b− c+ k4]q!
.

Thus, we can use (44) again to carry out the sums over k3 and k4 to deduce
that the right-hand side of (45) equals

[a− c]q! [a− d]q! [b− a+ e]q! [c− a+ d+ e]q!

[a− b]q! [b− c]q! [c]q! [b− d]q! [a− c− d]q! [d]q! [c− a+ e]q! [d− a+ e]q!
.

The above is exactly the expansion of G̃(a, b, c, d, e) into factorials, prov-
ing (45).

Using Proposition 2.11 we can conclude the proof of Proposition 2.7.

Proof of Proposition 2.7. By (40), for a > 0 and b > 0, G(a, b, c, d, e) is
determined by the value of G(a′, b′, c′, d′, e) for 0 ≤ a < a′. This means that
G(a, b, c, d, e) is the unique solution of (40) compatible with the boundary
value in (39) for G(0, b, c, d, e). By the second part of Lemma 2.8, the r.h.s.
of (37) indeed returns the correct value of G(0, b, c, d, e) and G(a, 0, c, d, e)
from (35), so all that is left to do is to check that it solves (40), and conclude
by uniqueness.

To this aim, it is sufficient to argue using Proposition 2.11: note first
of all that the coefficients of the recursion are invariant under the shift
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(a, e) → (a− 1, e− 2). Therefore, since G̃(a, b, c, d, e) is a solution of (40) by
Proposition 2.11, then so is G̃(a− 1, b, c, d, e− 2). Furthermore, since (40) is
linear in G, their difference is also a solution. But by (43) this is exactly the
claimed expression for G(a, b, c, d, e) in (37), which concludes the proof.

Corollary 2.12. Conjecture 1.2 holds for any quasi-tame pair Y (D).

Proof. The tame case having been treated in [7], it suffices to restrict to non-
tame, quasi-tame pairs. Taking the specialisation (36) of (37) leads to (14),
which together with (12) establishes the first equality of Conjecture 1.2 for
Y (D) = dP3(0, 2). Since Od (dP

op
3 (0, 2)) = Od (dP

op
3 (1, 1)) [7, Sec. 6.3.1],

the BPS integrality statement in the second equality further follows without
any modification from the proof of [7, Thm. 8.1] for l = 2. Finally, since
every non-tame, quasi-tame pair Y (D) is related to dP3(0, 2) by a series
of m ≥ 0 iterated interior blow-ups at general points of D [7, Prop. 2.2],
Proposition 2.3 further implies that Conjecture 1.2 holds for any such pair.

Acknowledgements

We thank P. Bousseau and M. van Garrel for many enlightening discus-
sions surrounding the topic of this paper. We are particularly indebted to
C. Krattenthaler for an illuminating e-mail correspondence occurred prior
to the appearance of [30]. He exposed us to the idea that our sought-for
q-hypergeometric identities were too rigid to be tackled directly, whereas
suitable parametric refinements might be amenable to an effective recursive
strategy. Special thanks are owed to him for this insight, which is key to the
arguments of Section 2.2.4. We are also grateful to the anonymous referees
for their valuable input.

References

[1] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne–
Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR3257836

[2] S. Bardwell-Evans, M-W. M. Cheung, H. Hong, and Y-S. Lin, Scattering
Diagrams from Holomorphic Discs in Log Calabi-Yau Surfaces (2021),
available at 2110.15234.

[3] L. J. Barrott, Explicit equations for mirror families to log Calabi–
Yau surfaces, Bull. Korean Math. Soc. 57 (2020), no. 1, 139–165.
MR4060189



338 Andrea Brini and Yannik Schüler
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