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A hidden invariance algebra of Maxwell’s equations and the conservation of all

Lipkin’s zilches from symmetries of the standard electromagnetic action

Vasileios A. Letsios∗

Department of Mathematics, University of York

Heslington, York, YO10 5DD, United Kingdom

In 1964, Lipkin discovered a set of conserved quantities for free electromagnetism without a clear
physical interpretation, known as the zilches. In 2010, Tang and Cohen realized that one of the
zilches, termed as optical chirality, provides a measure of the handedness of light, motivating novel
investigations into the interactions of light with chiral matter. Although the zilch symmetries of
Maxwell’s equations underlying the conservation of the zilches are known, the question of how to
explicitly derive all zilch conservation laws from symmetries of the standard free EM action using
Noether’s theorem has been answered only in the case of optical chirality. In this Letter, we provide
the answer to this question by showing that the zilch symmetries leave invariant the standard free
EM action.

In the rest of the article, we provide new insight concerning the conservation of the zilches and
their underlying symmetries. First, we show that the zilch symmetries belong to the enveloping
algebra of a “hidden” invariance algebra of free Maxwell’s equations in potential form. The “hidden”
algebra closes on so(6,C)R up to gauge transformations of the four-potential Aµ. The generators of
the “hidden” algebra consist of familiar conformal symmetry transformations and certain “hidden”

symmetry transformations of Aµ. We discuss the generalization of these “hidden” symmetries of
Maxwell’s equations in the presence of a material four-current, Jµ. The “hidden” symmetries are also
discussed for the theory of a complex Abelian gauge field (this is related to the complex formulation
of duality-symmetric electromagnetism). Finally, we show that the zilch symmetries of the standard
free EM action can be extended to zilch symmetries of the standard interacting action, S′, by
considering simultaneous transformations of both Aµ and Jµ. This allows us to give a new derivation
of the continuity equation for optical chirality in the presence of electric charges and currents, while
we also derive new continuity equations for the rest of the zilches.

I. INTRODUCTION

Noether’s seminal theorem [1] is the cornerstone in un-
derstanding the deep connection between symmetries of
physical theories and conservation laws. Starting from
continuous symmetries of the action functional of a the-
ory, Noether’s theorem can be used to derive conserva-
tion laws for the associated Euler-Lagrange equations.
In relativistic field theories, such as electromagnetism
in Minkowski spacetime, the knowledge of a symmetry
leads to a Noether (four-)current, V µ, which is conserved
(∂µV

µ = 0). This conservation holds for fields satisfy-
ing the Euler-Lagrange equations - i.e. for on-shell field
configurations - and the corresponding Noether charge,
Q =

∫

d3xV 0, is time-independent.

An example of little-known time-independent quanti-
ties in free electromagnetism is given by the ten zilches
that were discovered by Lipkin in 1964 [2]. One of the
zilches, now known as optical chirality, started drawing
renewed theoretical and experimental interest in 2010,
when Tang and Cohen realized that this particular zilch
provides a measure of the chirality (or handedness) of
light [3]. The optical chirality density for the free elec-
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tromagnetic (EM) field is [2, 3]

C =
1

2

(

−E · ∂B
∂t

+B · ∂E
∂t

)

, (1)

where E and B are the electric and magnetic fields, re-
spectively [4]. (Throughout this Letter, we adopt the
system of units in which the speed of light and the per-
mittivity of free space are c = ε0 = 1.) The flux of optical
chirality is given by the three-vector

S =
1

2
E × ∂E

∂t
+

1

2
B × ∂B

∂t
, (2)

while the differential conservation law for optical chiral-
ity [2]

∂

∂t
C +∇ · S = 0 (3)

is satisfied if E and B obey the free Maxwell equations

∇×B =
∂E

∂t
, ∇×E = −∂B

∂t
,

∇ ·E = 0, ∇ ·B = 0. (4)

Optical chirality is given by the integral of C over the
space,

∫

d3xC, and is a constant of motion for free elec-
tromagnetism [2].

In Ref. [3], Tang and Cohen demonstrated that, in the
presence of an EM field, the dissymmetry in the excita-
tion rate of two small chiral molecules that are related to
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each other by mirror reflection is determined by the opti-
cal chirality. These findings have motivated novel investi-
gations into chiral light-matter interactions [3, 5–16]. Un-
derstanding these interactions is very important in var-
ious disciplines. For example, it is known that deriving
products of a given handedness in chemical reactions can
be crucial - because molecules of a given handedness must
be used in order to design drugs without negative side-
effects [17] - and chiral light has been suggested to serve
as a useful tool in order to achieve this [18–20]. Applica-
tions of chiral light to the detection and characterization
of chiral biomolecules have been also discussed [6]. As for
the other nine zilches, recently, Smith and Strange shed
light on the mystery of their physical meaning for certain
topologically non-trivial vacuum EM fields [21].

Although the zilch symmetries - i.e. the symmetries
underlying the zilch conservation laws - and their gener-
alization have been discussed in previous works [22–31],
there are still certain gaps concerning our mathematical
understanding of them. Most importantly, there is a gap
in the literature concerning the explicit derivation of all
zilch conservation laws from symmetries of the standard
free EM action using Noether’s theorem. In this Letter,
we fill this gap and we also provide new insight concern-
ing the zilch symmetries. Before proceeding to the main
part of this article, let us discuss what is already known
concerning the zilch symmetries in Subsection IA, as well
as review the main findings of the present article in Sub-
section I B. For later convenience, we present here our
notation and conventions.

Conventions.—Greek tensor indices run from 0 to 3
and Latin tensor indices from 1 to 3. We follow the
Einstein summation convention, while indices are raised
and lowered with the mostly plus Minkowski metric
ηµν = diag(−1, 1, 1, 1). A spacetime point in standard
Minkowski coordinates is xµ = (x0, x1, x2, x3) ≡ (t, xi).
The totally antisymmetric tensors in 4 and 3 dimensions
are ϵµνρσ and ϵijk, respectively (ϵ0123 = −ϵ123 = −1).

Let Aµ = (−ϕ,A) denote the EM four-potential. The
standard free EM action

S =
1

2

∫

d4x (E ·E −B ·B) ,

with E = −∂A

∂t
−∇ϕ, B = ∇×A, (5)

is expressed as

S =− 1

4

∫

d4xFµνFµν , (6)

where the antisymmetric EM tensor is defined as Fµν ≡
∂µAν − ∂νAµ (with F0i = −Ei and Fik = ϵikmBm). We
denote the dual EM tensor as ⋆Fµν = 1

2ϵµνρσF
ρσ. The

free Maxwell’s equations ∂νFνµ = 0 are expressed in po-
tential form as

□Aµ − ∂µ∂
νAν = 0, (7)

where □ = ∂ν∂ν . Because of the definition of Fµν in
terms of the four-potential, the equation

∂ρFµν + ∂νFρµ + ∂µFνρ = 0 (8)

is identically satisfied. Equation (7), as well as the
action (6), are invariant under infinitesimal gauge-
transformations

δgaugeAµ = ∂µa, (9)

where a is an arbitrary scalar function.

A. What is known about the zilch symmetries?

The zilch conservation laws can be conveniently de-
scribed in terms of the zilch tensor [2, 32]

Zµ
νρ = − ⋆Fµλ∂ρFλν + Fµλ ∂ρ

⋆Fλν . (10)

This is conserved on-shell, ∂ρZµ
νρ = 0, and the ten time-

independent quantities [2]:

Z
µν = Z

νµ =

∫

d3xZµν0

are the ten zilches (see Section II for background material
concerning the zilches). The optical chirality density (1)
is related to the zilch tensor as Z000 = 2C.

At the level of free Maxwell’s equations expressed
in terms of the EM tensor, the zilch symmetries are
known [25, 30]. More specifically, the zilch symmetry
transformations of the EM tensor are [25, 30]

∆Fµν = ñαnρ ∂α∂ρ
⋆Fµν , (11)

where ñα and nρ are two arbitrary constant four-vectors.
These transformations are symmetries of free Maxwell’s
equations, i.e. if Fµν is a solution, then so is ∆Fµν . In
Ref. [30], a complete classification of all independent local
conservation laws of Maxwell’s equations was given by
using the methods described in Refs. [33, 34]. Using these
methods, it was shown that the zilch symmetries (11) of
free Maxwell’s equations give rise to the conservation of
the zilch tensor (10). However, in Ref. [30] the invariance
of the standard EM action (6) was not discussed.

The zilch symmetries have also been studied in the
case of duality-symmetric electromagnetism [24]. The
duality-symmetric EM action is [23]

S̃ = −1

8

∫

d4x (FµνFµν +GµνGµν) . (12)

This theory is an extension of the standard EM theory
as it has two four-potentials, Aµ and Cµ, and two EM
tensors Fµν = ∂µAν − ∂νAµ and Gµν = ∂µCν − ∂νCµ.
The duality-symmetric theory coincides with the stan-
dard EM theory only after we impose the duality con-
straint Gµν = ∗Fµν . In Ref. [24], following the reverse
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Noether procedure, it was shown that the ‘generalized’
version of the zilch tensor:

Z
µ
νρ = − 1

2
Gµλ∂ρFλν +

1

2
Fµλ ∂ρGλν

− 1

2
G λ

ν ∂ρF
µ

λ +
1

2
F λ
ν ∂ρG

µ
λ (13)

is the Noether current corresponding to the following
zilch symmetry transformations [24]:

∆̃Aν = nρñµ ∂ρGµν

∆̃Cν = −nρñµ ∂ρFµν . (14)

It has been shown that these transformations leave in-
variant the duality-symmetric action (12) [24]. Then,
the conservation of the zilches follows from the fact that
the tensor (13) coincides with the zilch tensor (20) of the
standard EM theory if we apply the duality constraint.

The derivation of the zilch conservation laws from
symmetries of alternative actions has been studied in
Refs. [25, 28].

B. Filling a gap in the literature, main results of

this article and outline

In order to derive all zilch conservation laws using
Noether’s theorem in the case of standard electromag-
netism, one needs to find the zilch symmetry transfor-
mations of the four-potential that leave the standard ac-
tion (6) invariant. It is easy to observe that the zilch sym-
metry transformations ∆Fµν [Eq. (11)] of free Maxwell’s
equations are induced by the following zilch transforma-
tions of the four-potential:

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ = nρñµ ∂ρ
∗Fµν , (15)

with ∆Fµν ≡ ∂µ∆Aν − ∂ν∆Aµ for on-shell field configu-

rations. (The transformations (15) coincide with ∆̃Aν in
Eq. (14) if we apply the duality constraint.) Interestingly,
the study of the variation of the standard action (6) un-
der the zilch transformations (15) has not been studied
in the literature. This means that the following question
is still open:

How can we derive all zilch conservation laws from

symmetries of the standard free EM action using

Noether’s theorem?

In this Letter, we give the full answer to this question
by showing that the zilch transformations (15) leave the
standard EM action (6) invariant, and, then, we derive
all zilch conservation laws using the standard Noether
procedure (see, e.g. Ref. [35]).

Note that the only zilch conservation law that has hith-
erto been derived from symmetries of the standard ac-
tion (5) is the one concerning the conservation of optical

chirality [36]. In particular, Philbin showed that opti-
cal chirality is the Noether charge corresponding to the
following symmetry transformations [36]:

∆ϕ = 0, ∆A = ∇× ∂A

∂t
. (16)

This equation corresponds to a special case of the zilch
symmetry transformation (15) with ñµ = nµ = δµ0 . In
this article we provide an alternative (and covariant)
derivation of Philbin’s [36] result for optical chirality.
Outline and main results. The basics concerning the
zilch tensor and the zilches are reviewed in Section II.
The derivation of all zilch conservation laws using the in-
variance of the standard action (6) under the zilch sym-
metries (15) is presented in Section III. Then, we proceed
by providing new insight concerning the conservation of
the zilches and their underlying symmetries. More specif-
ically, the rest of the investigations and findings of this
article are summarized as follows:

• A hidden invariance algebra of free
Maxwell’s equations and the zilch sym-
metries (Subsection IV A).—We show that
the zilch symmetry transformations (15) of the
four-potential belong to the enveloping algebra of
a “hidden” invariance algebra of free Maxwell’s
equations in potential form. This “hidden” algebra
closes on the 30-dimensional real Lie algebra
so(6,C)R - i.e. the ‘realification’ of the complex
Lie algebra so(6,C) - up to gauge transformations
of the four-potential. (The so(6,C)R invariance of
free Maxwell’s equations in terms of the electric
and magnetic fields was uncovered in Ref. [37],
but the potential form of Maxwell’s equations
was not discussed.) The 30 generators of the
“hidden” algebra correspond to the 15 well-known
infinitesimal conformal transformations [Eq. (40)]
and to 15 little-known (“hidden”) infinitesimal
transformations [Eq. (41)]. The “hidden” trans-
formations (41) take a simpler form when acting
on the EM tensor; that is a product of a duality
transformation with an infinitesimal conformal
transformation [25, 26] (see Eq. (42)) [38].

• Hidden symmetries in the case of Maxwell’s
equations in the presence of matter (Sub-
section IV B) and in the theory of a complex
gauge field (Subsection IV C).—We show that
the “hidden” symmetries [Eq. (41)] of free Maxwell’s
equations persist in the presence of a material
four-current [see Eq. (50)]. However, unlike the
free case, the invariance algebra does not close on
so(6,C)R. Then, we observe that the “hidden” sym-
metries of the real potential Aµ also exist for the
free field equations (56) of a complex Abelian gauge
field Aµ - this is related to the complex formu-
lation of duality-symmetric electromagnetism with
the complex potential given by Aµ = Aµ+iCµ [24].
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We show that if we redefine the “hidden” transfor-
mations of Aµ by multiplying with i =

√
−1, the

30-dimensional algebra becomes so(4, 2)
⊕

so(4, 2)
(it closes again up to gauge transformations of the
complex potential).

• Zilch continuity equations from symmetries
in the presence of matter (Section V) and a
new question (Section VI).—We also study the
derivation of zilch continuity equations in the pres-
ence of electric charges and currents by extending
the zilch symmetries of the standard free action (6)
to zilch symmetries [Eqs. (60) and (61)] of the stan-
dard interacting action (59) (in which Aµ couples to
a non-dynamical material four-current Jµ). Taking
advantage of the invariance of the interacting action
under the zilch symmetries, we present a new way
to derive the known continuity equation for optical
chirality [39]

∂

∂t
C +∇ · S =

1

2

(

j · ∂B
∂t

− ∂j

∂t
·B

)

(17)

(j is the material electric current density). In
Ref. [39], the continuity equation (17) was obtained
from the complementary fields formalism, while
a similar continuity equation had been first ob-
tained in Ref. [3]. Apart from Eq. (17), in this
Letter, we also obtain new continuity equations
[Eqs. (65) and (68)] for the rest of the zilches in the
presence of electric charges and currents from sym-
metries of the interacting EM action (59). Then, we
pose the interesting open question of whether the
aforementioned invariance of the interacting EM
action with a non-dynamical material four-current
can be extended to the case where the material
four-current is dynamical.

II. BACKGROUND MATERIAL CONCERNING

THE ZILCH TENSOR AND THE ZILCHES

In this Section we review the basics concerning the
zilch tensor and the zilches.

The zilch tensor (10) can be expressed in various
forms [2, 32]. For example, using the following iden-
tity [32]:

∂ρ
(

⋆FλνF
µλ

)

= −1

4
δµν ∂ρ

(

⋆FλκFλκ

)

, (18)

the zilch tensor (10) can be equivalently expressed as

Zµ
νρ = − ⋆Fµλ∂ρFλν − ⋆F λ

ν ∂ρF
µ

λ − 1

2
δµν

⋆Fλκ∂ρFλκ.

(19)

This expression makes manifest that the properties
Zµν

ρ = Zνµ
ρ and Zµ

µρ = 0 are identically satis-
fied. Moreover, by using free Maxwell’s equations,

it is straightforward to show that the zilch tensor is
divergence-free with respect to all of its indices and also
satisfies Zρ

νρ = 0 [32]. Using the fact that the zilch
tensor is symmetric in its first two indices we can rewrite
Eq. (10) as

Zµ
νρ = − 1

2
⋆Fµλ∂ρFλν +

1

2
Fµλ ∂ρ

⋆Fλν

− 1

2
⋆F λ

ν ∂ρF
µ

λ +
1

2
F λ
ν ∂ρ

⋆F µ
λ . (20)

As mentioned in the Introduction, the ten zilches are
given by the following ten time-independent quantities [2,
32]:

Z
µν = Z

νµ =

∫

d3xZµν0, (21)

with ∂Z µν/∂t = 0. Only nine zilches in Eq. (21) are in-
dependent since Zµ

µ 0 = 0. The µν0-component (Zµν0)
of the zilch tensor is the spatial density of the zilch
Z µν , and the µνj-components (Zµνj) are the compo-
nents of the three-vector describing the corresponding
flux [2]. The time-independence of the ten zilches follows
from the ten differential conservation laws described by
∂ρZ

µνρ = 0. The conservation law (3) for optical chiral-
ity corresponds to 1

2

(

∂0Z
000 + ∂jZ

00j
)

= 0.
For later convenience, note that the integral in Eq. (21)

has the symmetry property

∫

d3xZµν0 =

∫

d3xZµ0ν

(

=

∫

d3xZ0µν

)

(22)

because the difference Zµν0 − Zµ0ν can always be ex-
pressed as a spatial divergence [32]

Zµν0 − Zµ0ν = ∂jΛ
µνj ,

where the explicit expression for the tensor Λ is not
needed for the present discussion [40]. It immediately fol-
lows that the difference Zµ0ν −Zν0µ can also be written
as a spatial divergence. Hence, the µν-zilch, Z µν , can
be actually interpreted as the time-independent quantity
that corresponds to any of the three differential conser-
vation laws: ∂ρZ

µνρ = 0 (which is the one used by Lip-
kin [2]), ∂ρZ

µρν = 0 and ∂ρZ
νρµ = 0. These differential

conservation laws are not independent of each other. For
example, the conservation law ∂ρZ

µνρ = 0 can be re-
written as ∂ρZ

µρν = 0 by using the relations

∂0Z
µν0 = ∂0

(

Zµ0ν + ∂jΛ
µνj

)

(23)

and

∂jZ
µνj = ∂j

(

Zµjν − ∂0Λ
µνj

)

(24)

for the corresponding spatial densities and fluxes, respec-
tively.
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III. INVARIANCE OF THE STANDARD

ACTION UNDER THE ZILCH

TRANSFORMATIONS AND CONSERVATION

LAWS FOR ALL ZILCHES

In this Section we show that the zilch symmetry trans-
formation (15), which is given here again for convenience:

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ = nρñµ ∂ρ
∗Fµν , (25)

is a symmetry of the standard free EM action (6). Then,
we derive all zilch conservation laws using Noether’s the-
orem.

Let us start by examining the way in which the zilch
symmetry transformation (25) acts on the EM tensor for
off-shell field configurations; that is

∆Fµν ≡ ∂µ∆Aν − ∂ν∆Aµ

= ñαnρ
(

∂α∂ρ
⋆Fµν − ϵαµνσ∂ρ∂λF

λσ
)

, (26)

where we have made use of the following important off-
shell identity [41]:

∂α
⋆Fµν + ∂ν

⋆Fαµ + ∂µ
⋆Fνα = ϵαµνσ∂

βF σ
β . (27)

We now proceed to demonstrate that the zilch sym-
metry transformation (25) is indeed a symmetry of the
action (6) and then apply Noether’s theorem. We find
that the variation

∆S = −1

2

∫

d4xFµν ∆Fµν (28)

is given by a total divergence (without making use of the
equations of motion), as

∆S =

∫

d4x ∂νD
ν (29)

with

Dν =
1

2
nρñµ

(

2 ⋆Fλν∂ρFµλ + Z ν
µ ρ + δνρ

⋆Fµσ ∂
βF σ

β

)

(30)

- see Appendix A for some details of the calculation.
Now, the usual procedure [35] can be followed in order to
construct the conserved Noether current, V ν , associated
with the zilch symmetry transformation (25), as

V ν =
∂L

∂(∂νAµ)
∆Aµ −Dν , (31)

where L = − 1
4F

αβFαβ is the free EM Lagrangian den-
sity. Substituting the expression for Dν [Eq. (30)] into
Eq. (31) and making use of the identity (18), we find

V ν =
1

2
nρñµ

(

Z ν
µ ρ − δνρ

⋆Fµσ ∂
βF σ

β

)

. (32)

The definition of a conserved Noether current is not
unique; we are free to add any term that vanishes on-
shell and/or any term that is equal to the divergence of

any rank-2 antisymmetric tensor to the expression for the
Noether current [42]. Thus, we are allowed to express the
Noether current in Eq. (32) as

V ν
zilch =

1

2
nρñµZ ν

µ ρ (33)

with ∂νV
ν
zilch = 0. Since the constant four-vectors nρ and

ñµ in Eq. (33) are arbitrary, we conclude that

∂νZ
µνρ = 0. (34)

In other words, the zilch tensor is the conserved Noether
current corresponding to the zilch symmetries (25) of the
standard free action (6), while the corresponding Noether
charges are the zilches (21).

IV. “HIDDEN” SYMMETRIES

A. “Hidden” invariance algebra of free Maxwell’s

equations and the zilch symmetries

Here we investigate the relation of the zilch symmetry
transformations (25) to a “hidden” so(6,C)R invariance
algebra of free Maxwell’s equations in potential form (7).

Let ξµ denote any of the fifteen conformal Killing vec-
tors of Minkowski spacetime satisfying

∂µξν + ∂νξµ =
∂αξα
2

ηµν . (35)

The conformal Killing vectors ξµ of Minkowski spacetime
consist of [43]: the four generators of spacetime transla-
tions,

P(α) = Pµ

(α)∂µ = ∂α, (36)

the six generators of the Lorentz algebra so(3, 1),

M(β,γ) = Mµ

(β,γ)∂µ = xβ∂γ − xγ∂β , (37)

the generator of dilations

D = Dµ∂µ = xµ∂µ, (38)

and the four generators of special conformal transforma-
tions

K(α) = Kµ

(α)∂µ = xνxν∂α − 2xαx
µ∂µ. (39)

These fifteen vectors form a basis for the algebra of
infinitesimal conformal transformations of Minkowski
spacetime which is isomorphic to so(4, 2).

The “hidden” invariance algebra of free Maxwell’s equa-
tions (7) is generated by two types of infinitesimal sym-
metry transformations of the four-potential. The first
type corresponds to the well-known infinitesimal confor-
mal transformations, conveniently described by the Lie
derivative

LξAµ = ξλ∂λAµ +Aλ∂µξ
λ, ξ ∈ so(4, 2). (40)
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These transformations generate a representation of
so(4, 2) on the solution space of Maxwell’s equations (7).
The second type of transformations corresponds to the
little-known (“hidden”) transformations [44]

TξAµ = ξρϵρµσλ∂
σAλ, ξ ∈ so(4, 2). (41)

If Aµ is a solution of Maxwell’s equations, then so are
LξAµ and TξAµ for all ξ ∈ so(4, 2) [44]. The effect of the
“hidden” transformation (41) on Fµν corresponds to the
product of a duality transformation with an infinitesimal
conformal transformation as

TξFµν ≡ ∂µTξAν − ∂νTξAµ = Lξ
⋆Fµν , (42)

where

Lξ
⋆Fµν = ξρ∂ρ

⋆Fµν + ⋆Fρν ∂µξ
ρ + ⋆Fµρ ∂νξ

ρ. (43)

This symmetry transformation of the EM tensor was first
found in Refs. [25, 26].

The structure of the “hidden” invariance algebra of
Maxwell’s equations in potential form is determined by
the Lie brackets:

[Lξ′ , Lξ]Aµ = L[ξ′,ξ]Aµ (44)

[Lξ′ , Tξ]Aµ = T[ξ′,ξ]Aµ (45)

and

[Tξ′ , Tξ]Aµ =− L[ξ′,ξ]Aµ + ∂µ ([ξ
′, ξ]σAσ − ξ′σξρF

σρ) ,

(46)

where, e.g., [Lξ′ , Lξ] = Lξ′Lξ −LξLξ′ , while ξ and ξ′ are
any two basis elements of so(4, 2) with [ξ′, ξ]ρ = Lξ′ξ

ρ.
We observe the appearance of a gauge transformation of
the form (9) in the last term of Eq. (46). To the best of
our knowledge, the explicit expressions for the commu-
tators (45) and (46) appear here for the first time. The
commutation relations in Eqs. (44)-(46) coincide with the
commutation relations of the 30-dimensional real Lie al-
gebra so(6,C)R [37] (up to the gauge transformation in
Eq. (46)).

Now, let us denote the zilch symmetry transforma-
tion (25) with associated Noether current corresponding
to Z ν

α β (α and β have fixed values) as ∆(β,α)Aµ. The

latter is readily expressed as [see Eq. (25)]

∆(β,α)Aµ = ∂β
(

ϵαµσλ ∂
σAλ

)

= LP(β)
TP(α)

Aµ. (47)

It is obvious from this expression that ∆(β,α)Aµ is given
by the product of a “hidden” transformation (41) with
respect to the translation Killing vector P(α) = ∂α and a
Lie derivative (40) with respect to the translation Killing
vector P(β) = ∂β . This makes clear that the zilch sym-
metry transformation ∆(β,α)Aµ belongs to the enveloping
algebra of our “hidden” invariance algebra [and so do all
transformations of the form (25)].

B. “Hidden” symmetries of Maxwell’s equations in

the presence of a material four-current

In the presence of a material four-current Maxwell’s
equations are

□Aµ − ∂µ∂
νAν = −Jµ, (48)

where Jµ = (ρ, j). Maxwell’s equations remain invariant
under simultaneous infinitesimal conformal transforma-
tions of Aµ and Jµ, i.e. Eq. (48) will still be satisfied if
we make the following replacements:

Aµ → LξAµ,

Jµ → LξJµ +
∂αξ

α

2
Jµ, ξ ∈ so(4, 2), (49)

where Lξ is the Lie derivative (40). It is interesting to
investigate whether the “hidden” symmetries (41) of free
Maxwell’s equations also persist in the presence of mat-
ter. Indeed, we find that if Aµ and Jµ satisfy Eq. (48),
then Eq. (48) will still be satisfied if we make the follow-
ing replacements:

Aµ → TξAµ,

Jµ → δhidξ Jµ = ϵρµσλ∂
σ
(

ξρJλ
)

, ξ ∈ so(4, 2), (50)

where TξAµ is given by Eq. (41), while we call δhidξ Jµ in
the second line the “hidden” transformation of the four-
current. Equation (50) describes the “hidden” symme-
tries of Maxwell’s equations in the presence of a material
four-current.

Unlike the free case, in the presence of matter, the
algebra does not close on so(6,C)R up to gauge transfor-
mations of the four-potential [45]. This can be readily
understood from the following example. By calculating
the commutators between “hidden” symmetries generated
by translation Killing vectors (36), we find:

[TP(α)
, TP(β)

]Aµ

= ∂µ

(

−Pσ
(α)P

ρ

(β)Fσρ

)

+
(

P(α)µP
ρ

(β) − P ρ

(α)P(β)µ

)

∂σFσρ

(51)

(compare this equation with Eq. (46)) and

[δhidP(α)
, δhidP(β)

]Jµ = ∂µ

(

−Pσ
(α)P

ρ

(β)(∂σJρ − ∂ρJσ)
)

+
(

P(α)µP
ρ

(β) − P ρ

(α)P(β)µ

)

□Jρ. (52)

Also, from these commutators, it follows that Maxwell’s
equations (48) will still be satisfied if we make the re-
placements (this is easy to check):

Aµ →
(

P(α)µP
ρ

(β) − P ρ

(α)P(β)µ

)

∂σFσρ (53)

and

Jµ → ∂µ

(

−Pσ
(α)P

ρ

(β)(∂σJρ − ∂ρJσ)
)

+
(

P(α)µP
ρ

(β) − P ρ

(α)P(β)µ

)

□Jρ. (54)

The study of the full structure of the algebra in the pres-
ence of matter is something that we leave for future work.
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C. “Hidden” symmetries for the complex Abelian

gauge field

The free action for the complex Abelian gauge field,
Aµ, is

−1

8

∫

d4xF
†
µνF

µν , (55)

where † denotes complex conjugation, while Fµν =
∂µAν − ∂νAµ. Expressing Aµ as Aµ = Aµ + iCµ, the
action (55) takes the form of the duality-symmetric ac-
tion (12).

The field equation for the complex potential is

□Aµ − ∂µ∂
ν
Aν = 0. (56)

This equation is invariant under the infinitesimal confor-
mal transformations LξAµ in Eq. (40) (with Aµ replaced
by Aµ), as well as under the “hidden” transformations
TξAµ in Eq. (41) (with Aµ replaced by Aµ). As in the
case of the real potential, the structure of the algebra
generated by the conformal and the “hidden” transforma-
tions is determined by the commutators in Eqs. (44)-(46)
with Aµ replaced by Aµ and Fσρ replaced by Fσρ.

Now, we will show that if we redefine the “hidden”
transformations TξAµ, the “hidden” algebra of Eq. (56)
will be isomorphic to so(4, 2)

⊕

so(4, 2). Let us redefine
TξAµ by multiplying with i as

T ′
ξAµ ≡ i TξAµ = i ξρϵρµσλ∂

σ
A

λ, ξ ∈ so(4, 2). (57)

These transformations leave both the action (55) and
Eq. (56) invariant (on the other hand, Tξ is a symmetry of
the field equation only). Now, the “hidden” algebra of the
field equation is generated by the conformal transforma-
tions LξAµ and the redefined “hidden” transformations
T ′
ξAµ. If we now define the new set of generators:

T
±
ξ Aµ ≡ 1√

2

(

Lξ ± T ′
ξ

)

Aµ, ξ ∈ so(4, 2), (58)

it is easy to see that the T
+
ξ ’s generate a so(4, 2) algebra

on their own, and so do the transformations T
−
ξ , while

[T +
ξ ,T −

ξ′ ] = 0 for any ξ, ξ′ ∈ so(4, 2) [these follow di-

rectly from Eqs. (44)-(46)]. Thus, the “hidden” algebra
is now isomorphic to so(4, 2)

⊕

so(4, 2) and closes up to
gauge transformations of the complex potential Aµ.

V. ZILCH CONTINUITY EQUATIONS IN THE

PRESENCE OF ELECTRIC CHARGES AND

CURRENTS FROM SYMMETRIES OF THE

STANDARD INTERACTING ACTION

In the presence of a non-dynamical material four-
current, Jµ = (ρ, j), the standard interacting EM action
is

S′ = S +

∫

d4xJνAν =

∫

d4x

(

−1

4
FµνFµν + JνAν

)

.

(59)

Let us consider the variation of S′ under the following
simultaneous transformations of Aν and Jν :

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ, (60)

∆Jν = nρñµ ϵ ν
µ σλ ∂

σ∂ρJ
λ, (61)

where nρ and ñµ are two arbitrary constant four-vectors,
while Eq. (60) coincides with the zilch symmetry trans-
formation (25). The variation of the free action, S, is
already known to be a total divergence [see Eq. (29)].
Also, after a straightforward calculation, we find that the
variation of the interaction term is a total divergence, as

∆
(

∫

d4xJνAν

)

=

∫

d4x ∂νD
ν
int, (62)

where

Dν
int = ñµnρ(δνρ J

λ ⋆Fµλ − ∂ρJ
λAαϵ ν

µλ α). (63)

Thus, the variation of the interacting action is

∆S′ =

∫

d4x ∂ν (D
ν +Dν

int) , (64)

where Dν is given by Eq. (30).
Now, by applying the standard Noether algorithm [35],

we find the following continuity equations for the zilch
tensor:

∂λZ
µλν = Jλ ∂

ν ⋆Fµλ − ⋆Fµλ ∂νJλ. (65)

These continuity equations determine the rate of gain or
loss of the quantity

∫

d3xZµ0ν , with spatial density given
by Zµ0ν and flux components given by Zµjν .

The continuity equations (65) can be re-expressed in
the form of continuity equations for the zilches (21), with
spatial density given by Zµν0 and flux components given
by Zµνj , as follows. First, we observe that, although in
the presence of electric charges and currents the quantity
∫

d3xZµ0ν and the µν-zilch,
∫

d3xZµν0 [Eq. (21)] are not
equal to each other unless µ = ν = 0 (because the sym-
metry property (22) no longer holds), they are related to
each other by [46]

Zµνρ − Zµρν =
1

2

(

ϵκµνρ ∂σT
σ
κ − ϵκλνρ∂λT

µ
κ

− ϵκρλµ∂λT
ν
κ + ϵκνλµ∂λT

ρ
κ

− 2Fµ
λ ϵ

ρλνσJσ + 2Jµ ⋆F νρ
)

, (66)

where

Tα
β = −FαλFλβ − 1

4
δαβF

κλFκλ (67)

is the Maxwell stress-energy tensor (with ∂αT
α
β =

JαFαβ). Then, by taking the divergence of Eq. (66) with
respect to the index ρ and using the continuity equa-
tion (65) we find

∂ρZ
µνρ = ηµν ⋆Fλσ ∂

λJσ − ⋆Fµσ (∂νJσ − ∂σJ
ν)

− ⋆F νσ (∂µJσ − ∂σJ
µ). (68)
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These are the ten continuity equations determining the
rate of gain (or loss) for the ten zilches (21) in the pres-
ence of electric charges and currents. For µ = ν = 0,
both continuity equations (65) and (68) coincide with
the known equation (17) for optical chirality. To the best
of our knowledge, the other nine continuity equations in
Eq. (68) are presented here for the first time.

VI. AN INTERESTING OPEN QUESTION

Let us suppose that the EM field interacts with a dy-
namical matter field with corresponding four-current J̃µ.
Now, the action of the full interacting theory is

∫

d4x

(

−1

4
FµνF

µν + J̃νAν

)

+ Smatter, (69)

where Smatter is the action corresponding to the free mat-
ter field. According to our earlier discussion, the simul-
taneous transformations (60) and (61) (with Jν replaced

by J̃ν) are symmetries of the first two terms in Eq. (69).
Motivated by this observation, we may pose the question
of whether one could identify symmetries of the full in-
teracting theory (i.e. symmetries of all three terms in
Eq. (69)). In other words, is it possible to identify a
transformation of the matter field such that: this trans-
formation is a symmetry of Smatter, while the four-current
J̃µ transforms as in Eq. (61)?

VII. DISCUSSION

The results of the present Letter establish a clear con-
nection between all zilch continuity equations and sym-
metries of the standard EM action via Noether’s theo-
rem. Having identified all zilches with Noether charges,
we can interpret them as the generators of the corre-
sponding symmetry transformations (25) of the four-
potential in the standard (classical or quantum) EM the-
ory [35, 36, 47]. In the case of optical chirality, the ex-
plicit knowledge of the underlying symmetry generator is
known to offer physical insight, since it allows the iden-
tification of the optical chirality eigenstates with plane

waves of circular polarization [36]. Similarly, the sym-
metry transformations (25) can be used to identify the
eigenstates of all zilches, which is something that we leave
for future work.

A particularly interesting uninvestigated question is
the one concerning the role of all zilches in light-matter
interactions - the case of optical chirality is the only ex-
ception since its role has been studied [3]. The impor-
tance of this question becomes manifest by considering
the fact that a physical interpretation for all zilches has
been recently provided [21]. In particular, in Ref. [21] it
was found that the zilches of a certain class of topolog-
ically non-trivial EM fields in vacuum can be expressed
in terms of energy, momentum, angular momentum and
helicity of the fields. Also, it was demonstrated that the
zilches of these fields encode information about the topol-
ogy of the field lines. We hope that the results presented
in this Letter will be useful in future attempts to study
the role of all zilches in light-matter interactions. More
specifically, motivated by the interpretation and applica-
tions of the known continuity equation (17) for optical
chirality [3, 39, 47–49], it is natural to interpret each of
our new zilch continuity equations [Eq. (68)] as deter-
mining the rate of loss or gain of the corresponding “zilch
quantity” of the EM field. Electrically charged matter
acts as a source or sink for the zilch quantities.
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Appendix A: Invariance of the standard free EM action under the zilch symmetries

Here we present some details for the calculation concerning the invariance of the standard free EM action (6) under
the zilch symmetry transformation (25). For convenience, we focus only on the invariance of the action and not on
the derivation of the associated Noether current (32). Also, we drop all terms that are total divergences in order to
simplify the presentation. However, note that one needs to keep all such terms if they wish to re-derive Eq. (29).
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Varying the action (6) with respect to the zilch symmetry transformation (25) we find

−2∆S =

∫

d4xFµν ∆Fµν

=

∫

d4x
(

Fµν ñαnρ ∂ρ∂α
⋆Fµν − Fµν ñαnρϵαµνσ∂ρ∂λF

λσ
)

, (A1)

where in the second line we used Eq. (26). The first term is readily shown to be equal to a total divergence as follows:

∫

d4xFµν ñαnρ ∂ρ∂α
⋆Fµν = −

∫

d4x ∂ρF
µν ñαnρ ∂α

⋆Fµν

= 2

∫

d4x ∂νF µ
ρ ñαnρ ∂α

⋆Fµν

= 2

∫

d4x ∂ν
(

F µ
ρ ñαnρ ∂α

⋆Fµν

)

,

where in the second line we used Eq. (8), and in the third line we used that the divergence of ⋆Fµν vanishes identically
because of Eq. (8). We now drop the first term in Eq. (A1) (since we showed that it is a total divergence) and we
express Eq. (A1) as

−2∆S = −2

∫

d4x ⋆Fασ ñαnρ ∂ρ∂λF
λσ. (A2)

On the other hand, keeping both terms in Eq. (A1) and using the off-shell identity (27), Eq. (A1) is re-written as

−2∆S = 2

∫

d4x F νσñαnρ ∂ρ∂ν
⋆Fασ. (A3)

Integrating by parts twice, we find

−2∆S = 2

∫

d4x ⋆Fασ ñαnρ ∂ρ∂λF
λσ. (A4)

Comparing this equation with Eq. (A2), we find ∆S = 0 (i.e. ∆S is equal to the integral of a total divergence), as
required.
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