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ECOLOGY

CATER: Combined Animal Tracking & Environment
Reconstruction

Lars Haalck1†, Michael Mangan2†, Antoine Wystrach3†, Leo Clement3, Barbara Webb4,

Benjamin Risse1*

Quantifying the behavior of small animals traversing long distances in complex environments is one of the most
difficult tracking scenarios for computer vision. Tiny and low-contrast foreground objects have to be localized in
cluttered and dynamic scenes as well as trajectories compensated for camera motion and drift in multiple
lengthy recordings. We introduce CATER, a novel methodology combining an unsupervised probabilistic detec-
tion mechanism with a globally optimized environment reconstruction pipeline enabling precision behavioral
quantification in natural environments. Implemented as an easy to use and highly parallelized tool, we show its
application to recover fine-scale motion trajectories, registered to a high-resolution image mosaic reconstruc-
tion, of naturally foraging desert ants from unconstrained field recordings. By bridging the gap between labo-
ratory and field experiments, we gain previously unknown insights into ant navigation with respect to
motivational states, previous experience, and current environments and provide an appearance-agnostic
method applicable to study the behavior of a wide range of terrestrial species under realistic conditions.
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INTRODUCTION

For more than 50 years (1), researchers have sought technologies to
accurately quantify the behavior of animals in their natural habitats.
Advances in imaging technology, computer vision, and machine
learning have enabled a variety of breakthroughs in the computa-
tional analysis of animal behavior in recent years (2–5) with differ-
ent tracking systems developed for model organisms such as
Drosophila melanogaster flies (6, 7), larvae (8, 9), Caenorhabditis
elegans (10), zebrafish (11), and mice (12, 13).
Animal tracking approaches are usually divided into two catego-

ries, namely, pose estimation and positional detections over time
(14). In particular, deep learning algorithms have enabled fully au-
tomatic pose estimations from video recordings. Prominent exam-
ples are DeepPoseKit (15), DeepLabCut (16), and LEAP (17).
Recently, extensions of these algorithms have improved the applica-
bility of these algorithms for multi-animal pose estimation (18, 19).
For positional detection of animals over time, both conventional
computer vision and deep learning algorithms have been used.
For example, Ctrax (20), idTracker (11), Multi-Worm Tracker
(10), and FIMTrack (9) are well-known examples for conventional
tracking algorithms using background subtraction and dedicated
foreground identification strategies. In contrast, machine learn-
ing–based detection algorithms usually use (fully) convolutional
neural networks to identify the objects of interest such as the id-
Tracker.ai (21), Mouse Tracking (22), fish CNNTracker (23), and
anTraX (24).
Because the difficulty of visual tracking typically increases with

the complexity and variability of the scenery (25), these systems

have primarily been developed for controlled laboratory conditions
(18, 19, 21, 26). The difficulty is further aggravated for small animals
like insects, which do not provide visually distinctive features (lim-
iting feature-based methods such as deep learning approaches),
while navigating unpredictably in a cluttered and highly ambiguous
environment (preventing background modeling and requiring
camera motion compensation) (27). Moreover, the lack of unique
features and visual ambiguities challenge the capabilities of state-
of-the-art tracking algorithms, which often use discriminative cor-
relation filters, Siamese correlation, or transformer-based machine
learning architectures (28). To provide a general purpose in-field
animal tracker, three fundamental challenges must be addressed.
First, animals must be detected consistently over time, even when
occupying few pixels, providing low contrast, and across periods
of occlusion. Second, these detections must be linked and warped
into a cameramotion compensated trajectory in a common frame of
reference. Third, trajectories must be embedded in an environment
reconstruction, allowing researchers to relate trajectories to envi-
ronmental features, such as obstacles. At the time of writing,
there is no software that addresses all three challenges in an end-
to-end pipeline, facilitating long-range and unconstrained in-field
animal tracking (table S1) (25).
The visual tracking of individually foraging ants provides an ex-

cellent example of these challenges. These insects are comparatively
small and often visually indistinguishable from each other and their
complex natural habitat (background). On the other hand, ants
exhibit highly complex navigation strategies such as path integra-
tion (PI) and visual memory mechanisms, which are best studied
under natural conditions in the field (29). Desert ant behavior is
currently quantified over longer ranges, either using hand annota-
tion with reference to a preinstalled grid (30, 31) or by following
individuals with differential Global Positioning System (GPS)
device (32). Complementary analysis of the fine-scale movement
patterns in small areas [from fixed cameras stationed at the nest,
e.g., (33, 34) or using data from trackballs placed at discrete loca-
tions, e.g., (35)] have inspired new hypotheses regarding how
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visual memories are learned (36) and used (37), respectively.
However, many questions remain unresolved. For example, how
quickly can visual route memories be learned? How is foraging be-
havior affected by motivational state and environmental interac-
tions? What are the underlying control strategies that govern
motion during navigation? To tackle these questions, there is a
need for in-field quantification techniques that enable uncon-
strained measurement of microscale behavior in the animal’s
natural habitat.
In this work, we bridge the gap between laboratory experiments

and in-field studies by demonstrating how new visual tracking
methods provide unique insights into the natural navigation behav-
ior of ants. Our core contribution is a combined solution for uncon-
strained visual animal tracking and environment reconstruction
framework [called Combined Animal Tracking & Environment Re-
construction (CATER)], capable of detecting small targets in video
data captured in complex settings while embedding their locomo-
tion path within a high-resolution environment reconstruction in
moving camera conditions. This has been achieved by:
1) An unsupervised probabilistic animal detection mechanism,

which identifies the object of interest in the images based onmotion
alone, making its appearance agnostic, robust to occlusions and
camera motion, and capable of localizing even tiny insects in clut-
tered environments.
2) A dense and globally optimized environment reconstruction

algorithm, which can process millions of frames to calculate a high-
resolution image mosaic from multiple freely moving
camera videos.
3) A unified and highly parallelized tracking framework combin-

ing the detection and reconstruction algorithm to generate full
frame rate animal locations projected onto the very high-resolution
environment reconstruction.
4) Integrated routines and graphical interfaces for user interac-

tions to enable efficient corrections andmanual annotations to con-
textualize the behavioral measurements.
5) The application of this framework to obtain a uniquely high-

resolution (time and position) dataset describing the entire foraging
history of individual desert ants in their complex desert-
shrub habitat.
Evaluations of our framework yield excellent spatial and tempo-

ral accuracy.We demonstrate its applicability in a setting beyond the
capabilities of existing approaches by successfully integrating 1.8
million images frommultiple recordings into a unique high-resolu-
tion environment reconstruction while achieving a median tracking
accuracy of 0.6 cm evaluated on more than 300,000 manually anno-
tated images. CATER enables us to obtain detailed trajectories,
which revealed a number of original insights into ant navigation.

RESULTS

Data collection
Our test scenario is a study of the foraging ontogeny of desert ants
(Cataglyphis velox). For video recording, an off-the-shelf camcorder
(Panasonic HDC-TM900) was used to capture uncompressed
1920 by 1080 video recordings at 50 frames per second. A
custom-made camera rig with a 1.5-m horizontal arm was used to
capture video from directly above the ant (approximately 1 m)
without the experimenter disturbing the forager (Fig. 1A). To sim-
plify the capture process, four standard red laser pointers were

secured around the camera pointing downwards to create a visible
light pattern on the ground to aid camera/ant alignment (Fig. 1, A
and B). Given that ants blend in with the background and only cover
approximately 30 by 6 pixels in the image (Fig. 1C), they are barely
visible for human observers and can only be identified in zoomed
croppings (Fig. 1, D and E). This clearly presents a major challenge
for any existing tracking algorithm.
We followed each individual ant (having marked them) from the

first time that they exited the nest (Fig. 1F). The ant was free to
forage in any direction, interact with other ants and vegetation,
and return to the nest as it wished. Only when its foraging path
reached approximately 8 m from the nest was it provided with a
food morsel. Foraging ants will more or less rapidly establish visu-
ally guided idiosyncratic routes if they discover a site with a regular
food supply (30, 31). Following their second homeward trip from
the same feeding site, individuals were subjected to a series of dis-
placement tests to assess their visual memory performance given
minimal experience (details are in “Data capture” section in Supple-
mentary Text). The resultant dataset totals 151 videos (1.8 million
individual frames) documenting the complete foraging history and
displacement trials of 14 foragers in their natural habitat (details of
complete dataset are in “The ant ontogeny dataset” section in Sup-
plementary Text).

Tracking and reconstruction framework
Our framework consists of several modules processed in an inter-
leaved fashion, as summarized in Fig. 2A. For all frames Ii, a simi-
larity graph is generated by extracting and matching features across
all frames from all videos (Fig. 2B). The frames and resultant trans-
formations are then passed to two parallelized tracking and recon-
struction tasks.
In the first task, matches from consecutive images are used to

calculate pairwise transformations Ti,i+1 (38). These transforma-
tions are used to compensate the camera motion and to extract
motion residuals between consecutive images called unaries Φi
(Fig. 2C; details are in “Tracking and reconstruction algorithm”
section in Materials and Methods). That is, each unary represents
the probability distribution of animal movement as a two-dimen-
sional (2D) heatmap. Assuming a moving ant in the majority of
the frames, the motion residuals can be interpreted as 2D probabil-
ity distributions of potential ant locations. These locations pi = (x, y)
are connected by a motion model (i.e., pairwise potentials Ψpi → pi+1

between two consecutive detections pi and pi+1) to encourage
smooth pixel transitions and temporal consistency for all possible
locations in each frame. By combining all unaries and pairwise po-
tentials into a factor graph (which is a graphical representation of
the underlying belief network; Fig. 2D), the most probable ant lo-
cations p�i for all frames i = 1, …, T can be computed by using the
globally optimal max-sum algorithm (39)

arg max
p�i ;���;p

�
T

Eðp1; � � � ; pT j I1; � � � ; ITÞ ¼
X

T

i¼1

Φi þ
X

T�1

i¼1

Ψpi!piþ1

This global probabilistic inference formulation can be solved in-
dependently of the object and background appearance, does not
require any initialization or manually labeled training data (unsu-
pervised), and is capable of resolving ambiguities such as occlusions
automatically.
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In the second task, 2D environment reconstructions are extract-
ed by identifying key frames from any number of video sequences
and warping these frames Ii into a unified image mosaic coordinate
system Îi based on their pairwise transformations Ti,i+1 (Fig. 2E).
Subsequently, introduced drift is mitigated by minimizing an opti-
mization problem using the transformations between all frames. Af-
terwards, all intermediate frames need to be reintegrated to enable
full frame rate trajectories. This is done using geodesic interpolation
followed by a refinement step resulting in dense transformations Ti
for all frames (Fig. 2F) (40). In the following, we refer to the resul-
tant globally optimized image mosaic as environment reconstruc-
tion or map to emphasize that this mosaic recovers visual
characteristics in two dimensions.
Last, ant locations pi need to be projected onto the image mosaic

via Ti to embed the trajectories into the environment reconstruc-
tions (Fig. 2G). The approaches are thus combined into a unified
unsupervised tracking framework that yields high-accuracy paths
and environmental maps without initialization or calibration
routines.
In contrast to nonvisual tracking methods [such as telemetry

(41)], our resulting dataset preserves all visual environment infor-
mation, allowing post hoc augmentations that both improve the
data quality (e.g., through human-in-the-loop tracker corrections)

and allow emergent research questions to be tackled after data col-
lection. In particular, labels can be added to individual frames (e.g.,
to note behavioral changes such as acquisition of food) or specific
locations tagged in the background image mosaics (e.g., feeding
sites). The entire framework as well as the interaction functionality
is embedded into a unified graphical user interface and offers a
variety of convenient and usable features and visualizations for
fast data interaction (details are in “Tracking and reconstruction al-
gorithm” section in Materials and Methods and fig. S2).
Tracking and reconstruction performance evaluation
Our object detection and tracking algorithm is appearance agnostic
and can be used to detect all kinds of animals and artificial objects in
a variety of different environments and lighting conditions (39).
Here, we use this localization pipeline to successfully recover the
position of ants in all 1.8 million images of our ontogeny dataset.
Our reconstruction pipeline registers background scenes to

create high-resolution top-down image mosaics of the ant habitat
on which the complete foraging paths of multiple ants can be
plotted (Fig. 3A and fig. S6). Previous evaluation has shown that
our registration mechanism can achieve millimeter spatial accuracy
and a median angular error of 3° (40). The resultant data are partic-
ularly unique: The high-temporal resolution (50 Hz) allows

Fig. 1. Data capture and visual in-field tracking overview. (A) Ant paths were recorded using an off-the-shelf camera augmented with downward facing laser pointers

to aid camera/ant alignment. (B) From these recordings, camera trajectories and ant detections are estimated and combined to compute the ant position (animal tra-

jectory) with respect to the environment reconstruction. (C to E) Example image from the dataset at full resolution and zoomed in around the ant. (F) Flow chart outlining

the experimental protocol to assess the minimal learning and memory requirements for visual route following in desert ants (“Data capture” section in Supplementary
Text provides additional information).
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Fig. 2. Insect tracking and environment reconstruction framework. (A) Overview of the detection and tracking framework. Consecutive frames Ii are used (B) to

compute camera motion compensated unaries Φi (C), which are connected by pairwise potentials Ψ to build a factor graph (D). In-frame ant detections pi are then

computed using the factor graph and projected based on the camera views (E) into a unified reference system p̂i using globally referenced frame transformations Ti

(F) to project the images Îi into a unified image mosaic (G) to generate animal tracks.
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observation of fine-scale behavior across the animals complete for-
aging path in their natural habitat (Fig. 3B); the embedding of paths
into a shared frame of reference allows high-resolution comparison
of behaviors within and across individuals (Fig. 3C). Moreover, the
ability to add labels while reviewing the videos permits retrospective
analysis; i.e., conditions of interest such as interactions with vegeta-
tion or other ants (Fig. 3D) do not need to be explicitly recorded by
the experimenter at the time of data collection, provided that they
can be observed in the video data.

Figure 3 (E and F) compares the performance of the tracking al-
gorithm with respect to the amount of manual positional estimates
versus a linear interpolation between the same amounts of evenly
spaced points. We evaluated the tracking performance using
307,956 manually annotated images and achieved a median accura-
cy of 0.6 cm. Integrating just 1% of these manual annotations into
the globally optimized probabilistic inference task further improves
the accuracy to 0.31 cm median accuracy. In contrast, the results
using linear interpolation needs more points to achieve similar
median accuracy. We note that this is the accuracy of the true ant

Fig. 3. Reconstructing the foraging history of desert ants in thewild. (A) A unified high-resolution (41,248 by 30,351 pixels) top-down imagemosaic incorporating 93

videos onwhich the recovered paths of their respective ants are plotted. (B) The 50-Hz temporal resolution allows accurate forward and angular velocities to bemeasured

and fine-scale behavioral motifs such as loops to bemapped. (C) Behavior with respect to key locations [here, the first departures (dashed lines) and returns (solid lines) of

three ants from the nest (N)] can be compared across individuals. (D) Environmental interaction with terrain features (here, bushes) can be recovered. (E) Deviation of

tracking results per frame using linear interpolation between equidistant points. 0∗ stands for two points being the minimum for successful linear interpolation. (F)

Deviation of tracking results per frame using the tracker. The points are selected on the basis of high deviation from the ground truth.
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position rather than an estimate of position of the tracking device
(e.g., GPS unit) as a proxy for the animal position and that the be-
havioral statistics do not change substantially if manually specified
corrections are included to the probabilistic inference task (cf. fg.
S5). Performance is particularly robust for homing ants that travel
quickly over open terrain while carrying a clearly visible food
morsel. These results are in line with previous evaluations of the de-
tection mechanisms in which a localization accuracy above 96% was
achieved on the publicly available Small Targets within Natural
Scenes dataset (39). On the basis of accurate (in-frame) localiza-
tions, the accuracy of camera motion compensated trajectories
can be estimated based on the precision of the image mosaic algo-
rithm, which has been estimated under laboratory conditions in a
separate publication (40).

Tracking yields insights from detailed route comparisons
A crucial and novel outcome of our processing framework is that it
allows successive routes of the same ant to be precisely registered
through anchoring on the terrain. This allows us to probe how ac-
curately an ant can follow a route using visual memory alone after
minimal experience. This was tested by tracking individual ants
until they had returned twice from the same feeding site. The
first-time ants were permitted to enter the nest and deposit the
food; the second time, they were captured just before nest entry
and (still holding the food item) released back at the feeding site.
This eliminates PI information, and as these ants do not use chem-
ical trails, it allows us to test visual navigation in isolation.
An example of the entire foraging history of an individual ant as

it progressed through our experimental protocol is provided in
Fig. 4. This example clearly demonstrates that after just two visits
to the same feeding site, the displaced ant was capable (after an
initial search) of retracing its homeward path, a result replicated
by all 14 ants tested in this way. There is notable overlap in each
return path. Excluding any initial search segment (i.e., trimmed),
we quantitatively compared the homing route taken after displace-
ment to the same ant’s immediately previous homeward route, for
all ants (see “Trajectory processing” section in Materials and
Methods). We observed a close similarity in the precise path
taken; substantially more similar than would be expected if the
ant was just trying to run in the nest direction (e.g., if attracted by
a beacon or using a local vector), or if it was retracing its outward
route (Fig. 4, ridgeline plot). The same ants were subsequently dis-
placed to a location, which they had not previously experienced (3
to 4 m from the nest in a perpendicular or 180° direction from their
feeding location), and were observed to engage in search, only able
to home if their search path crossed over a previous inward route
(Fig. 4, right).
These data provide strong evidence that C. velox desert ants need

to experience a route no more than twice (and only once success-
fully reaching the nest) to have committed it to memory with suffi-
cient reliability to be able to use it to return home in the absence of
PI information. This supports previous reports of one-time route
learning either in isolated instances (31) or over short route seg-
ments (42, 43).
We note that the ant shown in Fig. 4 foraged to the 8m boundary

and returned with food on its first outing, as did two other ants; that
is, they did not appear to perform “learning walks.” This lack of
recent experience of the nest surrounds (all ants that had foraged
in the previous 2 days were excluded) did not affect their homing

ability either on their first homeward trip (Fig. 3C and “Homing
performance of ants without exploratory paths” section in Supple-
mentary Text) or in their route displacement test for which they
ranked second, third, and fifth of the 14. Nine of the ants made at
least one initial exploratory path (returning without food) in the
nest vicinity (explorations: mean = 2.2, SD = 1.9; see “The ant on-
togeny dataset” section in Supplementary Text). However, unlike
the usual characterization of learning walks (33, 36, 44–46), we
saw no consistent growth in the duration (mean/SD, first: 27/23 s
and last: 36/53 s) or distance covered (mean/SD, first: 0.60/0.32 m
and last: 0.64/0.34 m) in these paths. Although the angular coverage
increased over trips (mean/SD, first: 98°/37° and last: 191°/78°), for-
aging was generally restricted to a specific angular sector (Fig. 4 and
“Characterization of initial exploratory forages” section in Supple-
mentary Text). This puts into doubt an assumption frequently made
in recent computational models of ant visual memory (including
our own) (47–51) that all foraging ants use learning walks to
acquire views from multiple directions and a range of distances
around the nest as a basis for reliable homing behavior.

Reconstructions enable habitat interaction studies
The ability to reexamine the behavior of ants in the context of the
merged video information allows us to identify the effect of habitat
features. Upon locating food, ants will return directly to the nest
(using PI) and are then assumed to return to the location where
the food was found to scavenge further (using a vector memory,
that is, inverting the PI information) (52). Our data reveal clear dif-
ferences between paths taken when returning to either a known
feeding location or the nest implying different strategies depending
on themotivational context. Outward paths of ants to the 8m boun-
dary gradually increased in their similarity, directness, and speed of
travel over successive journeys indicating that they are refined over
time, which contrasts with homeward paths that were fixed, direct,
and travelled quickly from their first instance (“Differences in
outward and inward route learning” section in Supplementa-
ry Text).
Closer examination shows that some ants entered bushes much

more often on their outward trips than homing trips (ratio of time
in bush; Fig. 5), suggesting different strategies driven bymotivation-
al state. Foraging ants may target bushes to locate prey (e.g., snail
carcasses) or shelter from the sun, while homing ants aim to get
home as quickly as possible and thus avoided the bushes (Fig. 5).
This is supported by the fact that, when in a bush, foraging (out-
bound) ants slow down considerably and spent time searching
(higher search index), whereas homing ants (which rarely entered
a bush) continued moving at their usual rapid pace through
bushes (Fig. 5, boxplot). Incorporation of such adaptive strategies
into computational models will be important in maintaining their
explanatory power in more realistic settings.

High spatiotemporal data yields mechanistic insights
Our dataset provides the spatiotemporal resolution (50Hz position-
ing at centimeter accuracy) necessary for revealing the mechanisms
that underpin guidance behavior in insects. For example, a host of
competing hypotheses have been proposed regarding the encoding,
storage location, and use of visual route memories in insects (51, 53,
54). One way to tease apart these models is to reveal the precise cir-
cumstances under which navigating insects recognize their location
(e.g., the change in distance and orientation at which a view is
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recognized is likely to be specific to an individual model). Our data
demonstrates local bursts of forward speed when the ant trajectory
becomes aligned in a “familiar” direction (Fig. 6, A and B), that is,
along a route it has previously taken toward the nest. We can thus
infer the locations and conditions under which ants recognize a pre-
viously traversed route. We also observe instances of scanning
movements (sharply reduced forward speed and increased
angular velocity) (55) immediately following moments when the
ant strays from a previously traversed route (Fig. 6, A and B), allow-
ing us to infer when there is a failure of recognition. Unexpectedly
—and not captured by recent models (37, 51, 54)—some ants
moved much faster and displayed less local meander when search-
ing in a completely unfamiliar environment (Fig. 6B, bottom left
panel). This suggests that slowing and scanning behaviors may be
triggered by sharp (phasic) changes in familiarity, rather than the
tonic familiarity level of the current location, as has previously
been assumed.
We also observe, in ants moving freely in natural conditions, the

expression of regular lateral oscillations (Fig. 6C). These have pre-
viously been seen in laboratory conditions (56) and in tethered ants
running on a trackball in the field (35, 57) but have not been report-
ed for ants moving over natural terrain, as they are hard to perceive
by eye. The oscillation frequency is remarkably conserved (around

0.9 Hz) across conditions, but their regularity (magnitude of the
Fourier peak) is modulated by the familiarity of the visual environ-
ment (Fig. 6C and fig. S10). Oscillations are most regular with zero-
vector (ZV) ants in unfamiliar environment (Fig. 6C and fig. S10).
This fits nicely the idea that an intrinsic neural oscillator is constant-
ly at play in navigating ants but that both PI [available in full-vector
(FV) ants] and visual scene recognition (available when on the fa-
miliar route) modulate these oscillations and thus interfere with
their regularity (35, 57) by adding externally driven left and right
motor commands (37, 56, 58). Overall, this shows how detailed ki-
nematic data at the natural scale can shed light on the mechanisms
at play during an ecological task.

DISCUSSION

The ability to track animal behavior over the natural range of forag-
ing distances has been transformative in our understanding of nav-
igation behavior. For bees, it provided definitive evidence that dance
communication provides new foragers with a vector to find the food
location (59). In bats, it revealed the pin-point accuracy with which
animals could target a particular foraging location (a single tree)
over large distances (kilometers) (60). Even in laboratory rats, the
use of a larger arena was a critical factor in the discovery of grid

Fig. 4. Tracking results indicate that homeward routememories are acquired rapidly. The foraging history of an individual ant is shown (left to right). On the second

return (second from left), it is captured before nest entry and displaced back to the feeding site and is able to retrace the same homeward route without path integration

(PI) information (third from left). Ridgeline plot (below): The similarity to its previous route is higher than to a straight line [as measured by symmetrized segment-path

distance (SSPD) as defined in the section "Trajectory Preprocessing" in Materials and Methods"], a directed walk with realistic noise, or to its outward path. Control (far

right): Displacement to a location not previously experienced results in lengthy search indicating the absence of any long-range cues to the nest position.

Haalck et al., Sci. Adv. 9, eadg2094 (2023) 21 April 2023 7 of 13

SC I ENCE ADVANCES | R E S EARCH RESOURCE
D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at S
h
effield

 U
n
iv

ersity
 o

n
 M

ay
 0

4
, 2

0
2
3



cells (61). However, until now, substantially increasing the range
while maintaining the spatial and temporal resolution of laboratory
tracking conditions (18) was not possible, particularly under natural
conditions where the computer vision challenges are substantially
increased (25, 27).
Here, we have shown that, using a single camera to follow a for-

aging animal, we can reconstruct both detailed tracks and natural
habitats. CATER is a general visual tracking and reconstruction
framework capable of extracting dense movement patterns of un-
marked animals irrespective of their size (even down to a few

pixels), camera motion (both static and moving), or setting (con-
trolled laboratory to natural habitats). It combines algorithms for
small object detection (39) and full frame rate–optimized recon-
struction (40) into a novel and fully automatic tracking framework,
which is applicable to extremely challenging datasets. As a result,
animal locations and habitat reconstructions from potentially mul-
tiple videos are incorporated in a global reference frame, enabling a
wide range of behavioral quantifications and studies. We show its
application to data from freely foraging ants in a complex desert-
shrub habitat, consisting of multiple videos from handheld
cameras with more than 1.8 million frames and a total of more
than 2 km of insect tracks. The tracking module achieved centime-
ter-level precision without any manual correction, with tracks em-
bedded in a shared reconstructed image mosaic. Note that this
processing pipeline is designed to provide high-precision trajecto-
ries of individual animals followed by the camera. It has therefore
been developed for tracking a single animal of interest with no built-
in multi-animal tracking capabilities and can only be used in a post
hoc fashion (no real-time tracking). The resulting output docu-
ments the entire foraging history of desert ants, as they learned to
navigate their local environment at unprecedented spatiotemporal
resolution.
As a result of these methodological advances, we have already

gained important new insights into the visual navigation capabili-
ties of ants. The combination of accuracy within tracks and consis-
tent registration between tracks has revealed that ants follow
previous routes very tightly. From instantaneous speed data, we
could directly confirm that slowing and scanning—which have
been assumed to indicate uncertainty about the route—are associ-
ated directly with points at which the ant has deviated from its pre-
vious route, and clear increases in speed can be observed when the
route is regained. We found that visual memory for the inbound
path is obtained very rapidly and appears equally accurate along
the whole course of the path, and accuracy in return is independent
of time spent in “learning walks” around the nest. We believe this is
indicative of “one-shot” learning of visual scenes by the ant. By con-
trast, the outward path evolves more gradually, under the influence
of alternative foraging instincts such as approach to bushes. The
ability to retrospectively annotate the video footage to identify
such environmental influences and relate them to behavior is an im-
portant contribution of our approach. Last, the high temporal res-
olution provided by video tracking provides additional mechanistic
insight by revealing a steady underlying oscillation in the ant’s
paths, observed under all conditions (foraging, homing, and search-
ing), which appears to be an intrinsic active strategy controlling
visual steering.
Robust motion tracking as a behavioral readout is fundamental

to fields from neuroscience (62) through genetics (63, 64) to med-
icine (65) and ecology (5, 25). Although this study focused on track-
ing insects from handheld camera footage, the methods described
are widely generalizable. For example, drones are increasingly being
used to capture video of different animals in distinct settings [e.g.,
large terrestrial mammals (66, 67) or fishes in shallow water (68)],
and the data produced are remarkably similar to that presented here
and thus can be processed in our framework to obtain detailed paths
projected onto their territory. Similarly, multicamera systems and
structure from motion pipelines could be added to capture the 3D
structure of animal habitats (69), which combined with new biolog-
ically realistic sensing (70) and brain models (51, 54, 71) would

Fig. 5. Environment reconstruction enables post hoc habitat interaction

studies. The first four foraging trips of an ant to the 8 m boundary are shown

with sections spent within vegetation highlighted in green. The ant entered

bushes significantly more during its outward (13 bushes, 334 s) than its homing

trips (two bushes, 10 s). The boxplot depicts the search index (a measure of

amount of local searching; see “Trajectory processing” section in Materials and
Methods for search index calculation) of the ant for route sections within

bushes compared to those in open terrain for both the first outbound and first

homing trip. Only on outward trips did the ant engage in search behaviors, and

search increased within bushes. The duration and ratio of time spent in bushes

shows a clear tendency to enter bushes on outbound trips versus a tendency to

avoid bushes when homing (bottom right).
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allow hypotheses to be verified in real-world conditions. In the
future, we will integrate additional features such as multi-animal
tracking and real-time user feedback during recording. The appli-
cations of such general trackingmethods thus extend beyond behav-
ioral analyses and include habitat management (72) and
conservation (2, 66).

MATERIALS AND METHODS

Tracking and reconstruction algorithm
Overview
The proposed method consists of several interacting modules that
are explained in more detail below. Transformations between con-
secutive images are used to rectify the camera motion in the unary
computation stage or between all frames in the image mosaic

Fig. 6. Mechanistic insight from high spatio-

temporal data resolution. (A and B) Tracks of ants

after displacement to the feeding site, with forward

velocity indicated by color and angular velocity by

line thickness. Previous tracks are in gray. In (A), the

ant’s initial search is slow with extensive rotation

compared to the straight and fast movement once

the familiar route is found. Inset, zoomed section of

search: A similar transition to faster, straighter

motion can be seen in detail each time the ant

faces in the direction of the route (arrows 1, 4, 6,

and 7), suggesting moments of visual recognition.

(B) Zooming in on another ant mid-route, we can

identify a “scan,” where forward velocity falls to
zero and angular velocity exceeds 500°/s (arrow 1)

immediately preceding its regaining of the route

(arrow 2). (C) Comparison of movement dynamics

for an ant homing from her usual feeding location

with [full-vector (FV) on route, green] or without

[zero-vector (ZV) on route, blue] a PI vector or when

released in an unfamiliar area without a PI vector

(ZV unfamiliar, red). For this ant, there is a clear

increase in forward velocity in the unfamiliar envi-

ronment (bottom left). Highlighting right (blue)

and left (yellow) turning reveals regular lateral os-

cillations. Zooming in (top right) shows that oscil-

lation amplitude increases markedly in the

unfamiliar environment. The Fourier spectrum of

the angular velocity (bottom left) shows similar

frequency of oscillations (around 1 Hz) but varia-

tion in their regularity (magnitude) across

conditions.
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computation stage to find key frames and to generate a 2D back-
ground representation. Following the unary computation, animal
detections are computed using factor graph optimization. These
animal coordinates in per-frame pixel space are transformed
using the global camera locations resulting from camera registration
and following the image mosaic generation. An abstract overview of
the complete framework is outlined in Fig. 2A.
Unary computation and detection
Consecutive images are transformed using their pairwise transfor-
mation. To minimize the reprojection error and thus the noise in
the resulting unaries, we use homographies in this stage, since
they have the highest degree of freedom. Given images Ii, Ii+1 and
their estimated homography Hi,i+1, image Ii+1 can be warped into
the same coordinate system as Ii using

Îiþ1 ¼ H�1
i;iþ1 � Iiþ1 ð1Þ

effectively removing camera motion between those two images. The
remaining motion is calculated by subtracting the warped image Î
and I

Di ¼j Îiþ1 � Ii j ð2Þ

The difference Di contains only moving objects like the moving
animal as well as plants moving in the wind, shadows, and noise due
to errors in the estimation of the transformation or due to parallax.
The objective of the following optimization problem is to find a

probable and temporally consistent path of a single animal through
the full video. The optimization problem is formulated as a proba-
bilistic inference problem estimating animal positions pi = (xi, yi)
for all frames i ∈ {1, …, T} for a total of T images given the frame
differences as observationsD = {D1,…, DT}. The energy function to
be maximised is defined as follows (39)

E ðp jDÞ ¼
X

T

i¼1

Φ ðpi jDiÞ

" #

þ
X

T

i¼1

Ψ ðpi; piþ1Þ

" #

ð3Þ

The first functional Φ(·) defines the unary potential and is de-
scribed in terms of the remaining motion Di weighted by a centered
Gaussian distribution to amplify regions in the center and reduce
motion cues at the edge of the images

Φðpi jDiÞ ¼ N ðμ; σ2Þ �Di ð4Þ

for some predefined mean μ and variance σ2 [see (39) for details].
The second functional Ψ(·) defines the pairwise potential and

encourages temporal consistency by coupling detections between
consecutive images

Ψðpi; piþ1Þ ¼ N ðpiþ1 jpi; σ
2Þ ð5Þ

Intuitively, the optimization maximizes areas of motion while
enforcing smooth transitions by limiting the step size between
images. The functional from Eq. 3 problem is maximized using
factor graphs (39).
Image mosaic computation and registration
To decrease the computational complexity of the image mosaic
computation and reduce visual artifacts, the first step is a key
frame selection. Starting with the first image as the first key
frame, the following key frames are selected using multiple
metrics. A candidate must have enough overlap with the previously
selected key frame and should have a small reprojection error (i.e.,

the error of the transformation) with a high amount of good quality
feature points covering a substantial portion of the image. Exhaus-
tive feature matching is done on all key frames to find recurring
places in the full scene. For consecutive key frames, transformations
are estimated warping them into them same coordinate system.
For this stage of the pipeline, similarities are used instead of ho-

mographies, encoding scale, rotation around the viewing direction,
and a translation for a camera that is directed perpendicular toward
the ground. The goal of the image mosaic generation is to find the
best globally consistent reconstruction of the environment, whereas
the goal of the unary computation was to minimize noise between
consecutive images. Because of the additional degrees of freedom,
the later optimization of the transformation is more unstable and
often results in unusable image mosaics.
Let F = {I1, …, IN} be the set of all N images and let

F ¼ fFi , R
2 j i [ f1; . . .;Ngg

be their corresponding feature vectors, where Fi is a set of 2D
feature points.
Given K key frames f~I1; . . .;~IKg , I and their corresponding

pairwise similarity ~Ti;iþ1 for a consecutive pair of key frames ~Ii
and ~Iiþ1, we can define transformations with respect to the first
key frame by a multiplication of the transformation matrices

~Tj ¼
Y

j�1

i¼1

~T
�1
i;iþ1 for 2 � j � N

~T1 ¼ 1

ð6Þ

We call these matrices global transformations, as they project a
certain frame into a common reference coordinate system. Themul-
tiplication leads to an error manifesting itself in a drift where points
of revisiting do not align between earlier and later frames in
the videos.
Subsequently, an optimization problem is solved, where

common feature points in all frames are used to mitigate errors in
the initial estimates

minJð~T1; . . .; ~TKÞ ¼
P

1�i�K

P

i�j�K

P

ðf k;f lÞ[
~Mi;j

k ð~T
�1
j

~TiÞ � f k � f lk
2
2þ k ð~T

�1
i

~TjÞ � f l � f kk
2
2

ð7Þ

For feature matches ~Mi;j ,
~Fi � ~Fj between key frames ~Iiand ~Ij,

minimizing the symmetric reprojection error of the global
transformations.
Given two key frames ~Ii to ~Ij, this energy function reduces the

difference between directly transforming from ~Ii to ~Ij by using ~Ti;j

and using ~Ti to transform ~Ii to the reference coordinate system and

then using ~T
�1
j to transform to frame ~Ij. The direction of this trans-

formation can also be reversed leading to the above functional.
These transformations can then be used to align the images to gen-
erate a common image mosaic.
With these optimized transformations of the key frames alone,

animal detections in frames between two key frames cannot be pro-
jected onto the generated image mosaic. To calculate transforma-
tions for all frames, the omitted frames from the preceding key
frame selection are reintegrated using geodesic interpolation and
are subsequently refined using feature matches between the previ-
ous and next key frame, resulting in dense and accurate
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transformations Ti for each frame i ∈ {1, …, T}. The optimization
and subsequent reintegration and refinement can also be general-
ized to multiple videos by combining key frames of all videos in
the optimization in Eq. 7. Reintegration and refinement is subse-
quently done for all videos simultaneously. Details for the optimi-
zation, reintegration, and multiple video extension can be found in
(40). The registration process is illustrated in fig. S1.
Trajectory generation
The last step is to overlay per-frame detections onto the image
mosaic, which can be achieved by matrix vector multiplication
with the transformation estimate of the corresponding frame.
Given per-frame detections pi = (xi, yi) for a frame Ii for all i ∈

{1, …, T} and their respective transformations Ti mapping them
into the common coordinate system, we transform pi according to

p̂i ¼ Ti � pi ð8Þ

To generate the full animal trajectory, detections of all frames—
intermediate and key frames—have to be used. This is possible,
since we have one transformation for each frame and not only for
the sparse set of key frames after performing reintegration and re-
finement. The described transformation can also be used to overlay
camera trajectories onto the generated image mosaic by transform-
ing points ci = (w/2, h/2) for images with a width of w and a height
of h for all for all i ∈ {1, …, T}.
GUI, human interactions, and parallelization
The tracking and reconstruction algorithms are combined into a
single framework that can be accessed via a graphical user interface
(GUI). This GUI can be used to load and process the video frames
and provides a variety of visualization strategies and user feedbacks
to simplify the tracking process. The graphical interface can also be
used to attach labels and provides a summary indicating the quality
of the frames with respect to the tracking task. See fig. S2 for
more details.
The method described in “Unary computation and detection”

section supports two types of human interaction. First, the user
can manually correct the animal position by manually clicking on
correct animal positions. Note that because of the factor graph op-
timization, a single click can correct multiple frames (39). Second,
the user can also easily add labels to a video to allow more complex
behavioral analysis. For example, in this study, we added labels in-
dicating the visibility of the ant, whether the ant was within shadows
or bushes, plus the ant’s current state (foraging versus homing).
The computational time used to solve the optimization problem

in Eq. 3 across all frames mademanual corrections cumbersome. To
alleviate this, after initial global optimization, videos were chunked
into smaller subsections, which were processed in parallel to let the
user see the impact of their manual correction more quickly. After
revising the whole video, the full optimization can be per-
formed again.

Trajectory preprocessing
The generated raw trajectory is smoothed by using a Savitzky-Golay
smoothing filter (73) with a polynomial order of 3 and a window
size of 50, which equals to 1 s in our recordings. Trajectories in
pixel space on the generated image mosaics were scaled to real-
world space in centimeters using an object with known scale.
Velocity metrics from the paths were obtained by first calculat-

ing “instantaneous velocities vectors” as the vectors connecting each

two subsequent trajectory points. Forward velocity values were then
obtained as the norm of the instantaneous velocity vectors (Euclid-
ean distances between successive points). Angular velocity values
were obtained as the angle between two subsequent instantaneous
velocity vectors. Determining the sign of angular velocity (whether
the ant is turning clockwise or counterclockwise) is intrinsically am-
biguous. However, here, the frame rate (50 Hz) can resolve angular
velocities up to 180°/0.02 s (i.e., 9000°/s), which is by far higher than
themaximum angular velocity displayed by ants. Therefore, the sign
of angular velocity values between two consecutive frames could be
easily disambiguated by choosing the comparison (n→ n + 1 or n +
1→ n) that yielded an angle smaller than 180°. Velocity values pre-
sented in Fig. 6 were smoothed using first a median filter (sliding
window of 10 frames, 0.2 s, to remove aberration data) and then an
average filter (sliding window of 10 frames, 0.2 s, to reduce noise).
Absolute angular velocity values in Fig. 6 were converted linearly
into dot thickness of a scatter plot.
Straightness of a trajectory is defined by the ratio of its total path

length (sum of the length of all segments between consecutive tra-
jectory points) divided by the distance between its start and end
point as discussed in (74). Distance between trajectories is quanti-
fied using the symmetrized segment-path distance (SSPD), which is
based on point to segment distances as described in (75) rather than
dynamic time warping (DTW), which is based on point-to-point
correspondences. SSPD is therefore less dependent on the velocity
of the two compared trajectories. Higher velocity results in fewer
points on the trajectory, which leads to higher distances when
using DTW.
The search index presented in Fig. 5 corresponds to the time

spent within a bush (or between bushes) divided by the Euclidian
distance between the path’s entrance point in a bush and subse-
quent exit point (or the exit point of one bush to the entrance
point of the next bush for between-bushes indexes). Directed
random walks are defined by a realistic step size determined by
the average velocity of the model species and an angle sample
from a random distribution centered around the target angle deter-
mined by the angle from the current position to the nest. Directed
walks are then generated with a same straightness as the corre-
sponding trimmed zero vector path using the metric from above.
This is done by repeatedly sampling random walks until a desired
straightness is achieved.
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