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Haicheng Shu† Peter Spencer‡
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Abstract

This paper presents a macro-finance model of the US economy and the spot

and futures markets for oil. The performance of the model is greatly enhanced

by using the Kalman filter to model latent variables representing the inflation

asymptote, the real price of oil and the slope of the futures curve. We find

that these are dominated by innovations in observed futures prices, reflecting

the importance of market expectations. Using the Kalman filter to capture

inflationary shocks helps solve the notorious price puzzle, the tendency for in-

creases in interest rates to anticipate such developments and apparently cause

inflation. Futures prices also depend upon risk premiums, which we find are

dominated by the latent variable representing the real oil price rather than

macro variables like inflation and interest rates.

Keywords: affine term structure model, macro finance model, oil price, oil

futures contracts, spanned macro factor risk.

JEL code: G12, G13, Q41, Q43

1 Introduction

This paper develops an affine macro-finance model of the macroeconomy and the

oil futures market, which we use to study the links between the US macro economy,

monetary policy, and the spot and futures markets for oil.
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As the name suggests, the macro-finance approach allows oil futures prices to

reflect macroeconomic variables as well as the latent variables normally used to

model oil market factors in futures markets. It is based on the ‘central bank model’

(CBM) developed by Svensson (1999), Rudebusch (2002), Smets (2002), Kozicki and

Tinsley (2005) and others, which represents the behavior of the macroeconomy in

terms of the output gap (gt), inflation (πt), and the short term interest rate (rt). We

follow Dewachter and Lyrio (2006), Ireland (2007) and others and allow for shifts

in the long run inflation asymptote (π∗

t ), using the Kalman filter to represent this

empirically.

The oil price also affects this model of the economy. This side of the model

is informed by the extensive macroeconometric literature, pioneered by Hamilton

(1983), which studies the effect of oil prices on the economy. Hamilton argues that

most post-war recessions in the US have been caused by oil price shocks. He and his

colleagues have followed this paper up with many studies documenting the adverse

effect of oil price changes on real output and inflation over the last few decades

(Hamilton (1985), Hamilton (2003), Herrera and Hamilton (2001), Hamilton (2008),

Hamilton and Wu (2014)). Many other authors have studied this effect (Raymond

and Rich 1997, Finn 2000, Hooker 1996 and Hooker 2002). However, Kilian (2008),

(2009) and Barsky and Kilian (2004) attribute a much greater role to demand side

pressures, arguing that the effect of supply-side shocks depends critically upon the

tightness of the oil market in the run up to the shock.

Whereas these authors focus on the effect of the spot oil price on the economy,

the novelty of this paper lies in our exploitation of the information to be found in

oil futures prices. These authors assume that the spot price is observed without

error and use it as a regressor in the macro model, after adjusting it for inflation to

model the real price. However, as Dunn and Holloway (2012) note, because there

is very little physical trade in oil, this assumption is unrealistic. In practice, the

spot price reported by Price Reporting Agencies like Platts is assessed in terms

of near-term forward and futures prices. Our model allows the reported spot and

futures prices to depend upon a latent variable (ρ) representing the ‘true’ real oil

price. The futures curve, which shows how prices vary with maturity, also depends

upon a second latent variable (δ) that determines its slope.

We use the Kalman filter to represent these two latent variables (together with

π∗

t ); assuming that spot and futures prices are all measured with error. The filter

updates these variables optimally in terms of surprises in the observed macroeco-

nomic variables and the reported spot and futures prices. The reported price (ρo)

is then set equal to ρ plus a measurement error. If, instead, we suppress these er-

rors and mimic the conventional macro model approach by setting ρ equal to the

reported price, there is a very large deterioration in the likelihood, suggesting that
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this approach is inappropriate.

Futures prices play an important role in this model because they reflect market

expectations. Specifically, the futures price for any future date represents the risk-

neutral expectation of the price at that date. The market’s expectation equals

the futures price plus a risk premium. Our model allows these three items to be

distinguished because it captures the time series dynamics of the data. This model

can then be used to calculate the time series expectation of the price at any future

date, which is used as a proxy for the market expectation. Subtracting the futures

price from this expectation gives an estimate of the risk premium, the expected

dollar payoff to an investor holding the future. Central banks routinely use this

method to decompose a government bond yield into an expected interest rate and

a risk premium.1

Although oil futures prices have only become available since 1984, the ability of

the Kalman filter to deal with missing data allows us to combine these data with a

larger macro dataset (1964Q1 to 2022Q1) and study the period of the oil price shocks

of the 1970s. We evaluate two types of model. In the first type, macro variables do

not have a contemporaneous effect on futures prices, which, as in previous studies,

only depend upon latent variables. However, in this type of model, macro variables

affect the time series dynamics and thus the future evolution of prices. In the second

type, they also have a contemporaneous effect on futures prices. Our model selection

criteria leads us to adopt the second approach.

Our empirical results shed new light on the nature of the risk premium. The

conventional view is that oil producers sell futures to hedge against future price falls,

depressing the futures price and increasing the risk premium until arbitrageurs are

prepared take the other side of the market. Hamilton and Wu (2014) argue that

since 2004, buying pressure from commodity index funds has had the opposite ef-

fect, turning the premium negative in 2008 and 2014. We checked this by following

them in allowing for a structural break in 2005Q1. This exercise suggested that the

risk-neutral dynamics did indeed shift then, possibly because of increased partici-

pation in the futures market by financial institutions. It also revealed an increase

in macroeconomic volatility, consistent with the ending of the Great Moderation.

Nevertheless, our results suggest that it was the weakness of oil prices that caused

the premium to turn negative in 2008 and 2014. We also checked to see if the ex-

ploitation of shale hydrocarbons or other developments had shifted the time-series

dynamics, but found no significant evidence of this. Thus, our preferred model (re-

ported as M5 in Section 3) allows for a shift in volatility and the risk-neutral (but

not the time- series) dynamics in 2005Q1.

1See for example the daily analysis published by the Federal Reserve at: http-
s://www.federalreserve.gov/pubs/feds/2005/200533/200533abs.html.
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Our use of the Kalman filter to capture the effect of potential inflationary devel-

opments helps to solve the notorious price puzzle - the tendency (noted originally

by Sims 1992) for increases in policy interest rates to anticipate such developments

and thus apparently cause inflation. We find that the latent variables are almost

entirely driven by surprises in futures prices once these become available in 1984.2

Introducing these variables into the macro model allows them to pick up inflationary

surprises that could otherwise be wrongly attributed to innovations in the interest

rate.

Thus, we find that the properties of our preferred model are nicely in line with

economic priors. An increase in the oil price has the effect of increasing inflation and

reducing economic activity initially. Our model suggests that the Federal Reserve

responds to this by reducing interest rates, meaning that the reduction in activity

is short-lived. It raises interest rates in response to increases in economic activity

and inflation, consistent with the Taylor rule. In turn, an increase in interest rates

has the effect of slowing activity, which reduces inflation. Our model suggests that

US interest rates have surprisingly strong effects on the oil market, reinforcing this

disinflationary effect. The results also align with those of Barsky and Kilian (2004)

in suggesting that the persistence of oil price shocks depends upon the strength of

the US economy.

The paper is organized as follows. The next section sets out the macro-finance

dynamic term structure model framework, which specifies the state dynamics under

the real-world and risk-neutral probability measures. Section 3 sets out the empirical

methodology and econometric model, describes the data that we use, and discusses

the empirical findings and results. Section 4 concludes.

2 The model framework

Our research strategy is to follow the macro-finance literature, which models the

dynamics under the risk-neutral and the state space measures using both latent

variables and observable variables like the interest rate, assuming that these are

measured without error. As in the existing literature on the oil futures market, we

represent the oil price and convenience yield by latent variables, but re-specify the

model in terms of the real oil price to align it with a conventional macroeconometric

2The Kalman gain matrix for any model and any period shows how surprises in the observed
variables are mapped into revisions in the latent variables, reflecting how informative they are.
These matrices are not reported, but are available from the authors upon request. We find that
the observed (real) spot price (ρo) has practically no effect on ρ or other latent variables after
1984, when futures were first trade. This suggests that measurement error makes it inappropriate
to use this as a regressor in a macro model. Instead, we would suggest using futures prices as
instrumental variables for the observed spot price.
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structure. We first describe three possible ways of modeling the oil market and then

set out the model of the macroeconomy, which is common to all our models..

2.1 The spot oil market

The relationship between the spot (St) and one-period future (F1,t) oil price depends

upon the cost of carrying inventory ct = (rt − dt), which can be decomposed into

the convenience yield from holding physical oil inventories dt and the spot interest

rate rt:

F1,t = Ste
ct = Ste

(rt−dt) (1)

This shows that if the cost of carry is negative the futures curve is downward sloping.

The market is then said to be “in backwardation”, as it was in 2012 for example. If

the cost of carry is positive, the forward curve is upward sloping and is said to be

“in contango”, as it was in 2015.

This relationship naturally leads to a two-factor model of the futures curve, in

which the level of the curve is dictated by the spot price and its slope by the cost of

carry. Many papers, like Heath (2019), treat the cost of carry as a single variable,

while others like Cassasus and Dufresne (2005), distinguish the convenience yield

and the spot interest rate. The theory of storage (see Working 1933, Kaldor 1939,

Working 1949, Brennan 1958, Weymar 1968) suggests that the convenience yield is

closely related to the level of the commodity stored in the inventory. This literature

states that when inventories are tight, the convenience yield will be high, the cost of

carry negative, and the futures curve in backwardation. On the other hand, when

oil inventories are abundant, as they were in 2015, the convenience yield will be

negative, adding to the interest cost of carry and pushing the futures curve into

contango. Similarly, economic theory suggests that the interest rate depends upon

inflation, the output gap, and other factors influencing monetary policy.

2.2 The risk-neutral dynamics

Crucially, a futures contract, unlike a spot inventory, does not yield convenience or

other benefits, which means that the price Fn,t of a contract to deliver oil at any

future date (t + n) equals the risk-neutral expectation of the spot oil price St+n at

that date, as explained in online appendix (1). Assuming that prices are lognormally

distributed, the risk-neutral dynamics are determined by an identity that rules out

arbitrage:

st+1 = st + ct −
1

2
σ2
s + ǫQs,t+1 ǫQs,t ∼ N(0, σ2

s) (2)

where: st is the natural logarithm spot oil price at time t and σ2
s its one period

ahead conditional variance. In this paper, parameter values and error terms with
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a Q superscript, as in the equations of this section denote values under the risk-

neutral measure Q, while those without superscripts as in the equations of the

next section) denote values under the time-series or physical probability measure

P . Heath (2018) develops a two-factor latent factor model that complements this

equation with another for ct :

(

st+1

ct+1

)

=

(

kQs

kQc

)

+

(

1 1

φQ
c,s φQ

c,c

)(

st

ct

)

+

(

ǫQs,t+1

ǫQc,t+1

)

(3)

where kQs = −1
2
σ2
s and φQ

c,s, φ
Q
c,c are parameters to be estimated. This is used to find

the risk-neutral expectations for future spot prices and hence the futures prices.

This offers a simple stand-alone model of the futures market, similar to Schwartz

(1997) and Cassasus and Collin-Dufresne (2005), in which the futures prices only

depend upon the latent variables. The simplicity of this type of specification stems

from the ability of a few latent variables to explain a very high percentage of the

variance of the cross-section of nominal futures prices.

Subtracting the log GDP deflator pt+1 = pt + πt+1, where πt+1 = pt+1 − pt is

the rate of inflation, from both sides of equation (2) gives a similar real arbitrage

identity. This replaces st+1 by the real oil price ρt+1 = st − πt+1 and ct by the real

cost of carry χt = ct − EQ
t (πt+1). This change of variable gives a stand-alone two

factor model of real futures prices:

(

ρt+1

χt+1

)

=

(

kQρ

kQc

)

+

(

1 1

φQ
c,ρ φQ

c,c

)(

ρt

χt

)

+

(

ǫQρ,t+1

ǫQχ,t+1

)

′

(4)

We use this in preference to equation (3) because it explains real rather than nominal

oil prices and thus aligns better with the models used by macroeconomists. This is

used to fit the futures prices in our benchmark model M1. Because macro variables

do not appear in this system, they have no contemporaneous effect on oil prices in

M1.

A further modification is to split the real cost of carry χt = rt − dt − EQ
t (πt+1)

into the explicitly-observed interest rate rt and a latent variable δt representing the

residual cost of carry (inflation and the convenience yield, which both reduce the

real cost of carry): δt = dt + EQ
t (πt+1). The risk-neutral dynamics can then be

specified as:

(

ρt+1

δt+1

)

=

(

kQρ

kQδ

)

+

(

1 −1

φQ
δ,ρ φQ

δ,δ

)(

ρt

δt

)

+

(

rt

0

)

+

(

ǫQρ,t+1

ǫQδ,t+1

)

(5)

Notably, although this specification still only involves two latent factors, it is funda-

6



mentally different from model M1(4) because it allows the macro variables to have

a contemporaneous effect on the cross-section of futures prices via the interest rate

term. This is how we specify the futures prices in model M2.

Model M2 requires more parameters than model M1, because equation (5) has to

be supported by a macro model determining the interest rate under the risk-neutral

measure, which is set out in the next section. It is assumed that the algebraic

structure of this model is similar to that of the risk-neutral structure, although

we allow their parameter values and error terms to differ and relax the arbitrage

restriction. Differences in the estimates of the two structures determine the risk

premia, as explained in online appendix (4).

Importantly, equation (5) has the same structure as equation (4), except that the

interest rate appears in the arbitrage equation alongside the latent variable with a

weight of unity. Both models can thus be encompassed by one in which the interest

rate appears with a freely estimated coefficient alongside a latent variable that takes

the place of δt in M2. We call this encompassing specification model M3.

2.3 The time series dynamics

The dynamics of the latent variables and hence futures prices over time are deter-

mined by a time series model. Conventionally, this is specified as a VAR for the

nominal spot price and cost of carry that is similar in structure to the risk-neutral

specification in (3). Heath (2019) develops a model that combines this nominal

risk-neutral structure with a time series VAR, which also contains measures of the

growth rate and oil inventory. These are called “unspanned macro risk factors” be-

cause they do not have a contemporaneous effect on the cross section, but do affect

its future evolution. Similarly, the real oil price and cost of carry can affect the

macro variables in the VAR.

We modify this approach in several ways. Because macroeconometric models

are more naturally specified using the real rather than the nominal oil price, we

first use (4) rather than (3) to model the risk-neutral dynamics. Second, to model

the time series dynamics, we follow macro-finance studies of the term structure of

interest rates (such as Dewachter and Lyrio 2006) in using the Central Bank Model,

which sees the spot interest rate rt being determined by monetary policy, jointly

with the output gap gt−1 and inflation πt−1 (and in our case the real oil price).

Estimating this model jointly with equation (4) allows these macro variables to act

as “unspanned factors”. We call this model M1.

Finally, to get model M2, we use (5) rather than (4) to model the risk-neutral

dynamics. Recall that this means the macro variables have a contemporaneous effect

on the futures prices. This is called a “spanned macro factor risk” model because the

7



futures prices are determined (i.e. ‘spanned’) by both macro and latent variables.

Our macroeconomic structure follows the approach of recent macroeconometric

research, such as Ireland (2007) and others, in allowing for shifts in the Fed’s implicit

inflation target by modelling this as a non-stationary latent variable that acts as the

inflation asymptote π∗

t−1:

π∗

t = κπ∗ + π∗

t−1 + ǫπ∗,t (6)

The model design ensures that in the absence of shocks, the inflation rate equals

this asymptote in steady state. The latent variables are collected in the vector: zt =

(π∗

t , δt, ρt)
′.3 Allowing for the lagged effect of the macro variables mt = (gt, πt, rt)

under this measure, the dynamics describing the oil market potentially generalizes

to:

δt = kδ + θδ,π∗π∗

t + φδ,ρρt−1 + φδ,δδt−1 + φδ,mmt−1 + ǫδ,t (7)

ρt = kρ + θρ,π∗π∗

t + φρ,ρρt−1 + φρ,δδt−1 + φρ,mmt−1 + ǫρ,t (8)

Stacking equation (6) to (8) gives:

zt = Kz +Θz,zzt + Φz,zzt−1 + Φz,mmt−1 + LzDzǫz,t ǫz,t ∼ N(0, Iz) (9)

The full specification of this equation system is presented in online appendix (2).

2.4 The observable state variables

The oil market is only assumed to affect the macroeconomy through the real spot

oil price. The macro variables depend upon each other (with a lag) as well as the

lagged real oil price ρt−1 and the asymptote π∗

t :

gt =κg + θg,π∗π∗

t + φg,ρρt−1 + φg,ggt−1 + φg,ππt−1 + φg,rrt−1 + ǫg,t (10)

πt =κπ + θπ,π∗π∗

t + φπ,ρρt−1 + φπ,ggt−1 + φπ,ππt−1 + φπ,rrt−1 + ǫπ,t (11)

rt =κr + θr,π∗π∗

t + φr,ρρt−1 + φr,ggt−1 + φr,ππt−1 + φr,rrt−1 + ǫr,t (12)

Stacking equation (10) to (12) gives:

mt = Km+Θm,zzt+Φm,zzt−1+Φm,mmt−1+LmDmǫm,t ǫm,t ∼ N(0, Im). (13)

The full specification of this equation is presented in online appendix (2).

3This section describes the time series dynamics in model M2. The time series model M1 is
identical except that the latent variable δt is replaced by χt, so that for example the latent vector
in model M1 is: zt = (π∗

t , χt, ρt)
′.
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2.5 The time series dynamics

The state variables are contained in the state vectorXt = (zt,mt)
′ = (π∗

t , δt, ρt, gt, πt, rt)
′,

Stacking equations (9) and (13) gives the equation for this under the measure P :

(

zt

mt

)

=

(

Kz

Km

)

+

(

Θz,z 0

Θm,z 0

)(

zt

mt

)

+

(

Φz,z Φz,m

Φm,z Φm,m

)(

zt−1

mt−1

)

+

(

LzDz 0

Lz,m LmDm

)(

uz,t

um,t

)

(14)

In matrix form, we have:

Xt = K +ΘXt + ΦXt−1 + LDǫt ǫt ∼ N(0, I) (15)

The full specification of this equation system is presented in online appendix (2).

2.6 The identification scheme

Although ρt and δt are determined by the model of the futures prices, we need to

restrict this system to align the inflation asymptote π∗

t with the observed rate πt

the steady state. To do this, note that Θ = [θ 06,5] where θ = [0 θδ,π∗ θρ,π∗ θg,π∗

θπ,π∗θr,π∗ ]′ and write (15) as:

Xt = K + θπ∗

t + ΦXt−1 + ǫt (16)

Dropping time subscripts and error terms, this has the steady state:

X = ϕ+Rπ∗

t (17)

where:

ϕ = (I − Φ)−1K, R = (I − Φ)−1θ. (18)

Thus, setting:

K = (I − Φ)ϕ, θ = (I − Φ)R. (19)

and ϕ = [0 0 ϕρ 0 0 ϕr ]′ and R = [1 0 0 0 1 1]′ ensures that: δ = g = 0 and that

ρ = ϕρ and π = π∗ in the steady state. The last of these restrictions also ensures

that the interest rate asymptote also moves in line with the inflation asymptote

r = ϕr + π∗.
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2.7 The companion form

Rearranging equation (15) yields the companion form of the state equation under

the measure P :

Xt =A+BXt−1 + CDut ut ∼ N(0, I). (20)

=A+BXt−1 +Wt Wt ∼ N(0,Σ). (21)

where: K and Θ are specified in equation (19). A = (I−Θ)−1K and B = (I−Θ)−1Φ,

C = (I −Θ)−1L and are further specified in section 2 of the online appendix.

2.8 The risk-neutral state dynamics in model M2

Recall that futures prices are modelled by equation (4) in model M1. In model M2

the oil market equation (5) is embedded in a model of the macroeconomy under

measure Q, which generates the spot interest rate and is congruent with equation

(20).

Xt = AQ +BQXt−1 +WQ
t WQ

t ∼ N(0,Σ)

where AQ, BQ and Σ are specified in section 2 of the online appendix.

2.9 The term structure of futures prices

The state dynamics under the risk-neutral measure Q determine the cross-sectional

loadings. We model real futures prices hτ,t = fτ,t − pt, using the Affine Term

Structure Model:

hτ,t = ατ +ΨτXt (22)

The initial condition is implied by the special case when τ = 0, in which h0,t = ρt,

giving the starting values for state variables as:

ψρ,0 = 1 ψπ∗,0 = ψδ,0 = ψg,0 = ψπ,0 = ψr,0 = 0 (23)

Online appendix (1) shows ατ and Ψτ in equation (22) have the following recur-

sive close-form solution:

Ψτ = Ψτ−1B
Q +BQ

π , (24)

ατ = ατ−1 +Ψτ−1A
Q +

1

2
Ψτ−1ΣΨ

′

τ−1 (25)
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2.10 The measurement equation

The measurement equation in the state space representation represents the observed

values yt =
(

hot ρot got πo
t rot

)

, in terms of the state vector Xt by:

yot = J +HXt + et et ∼ N(0, Q) (26)

where: et =
(

ht ρt gt πt rt

)

. This assumes that, the commodity futures ht =

(ht, . . . , hτ )
′ and spot price ρt data are observed with error, and macro data mt =

(gt, πt, rt)
′ are observed without error. Thus, we define the measurement equation

(26) as:

















hot

ρot

got

πo
t

rot

















=

















α

0

0

0

0

















+

















Ψπ∗ Ψδ Ψρ Ψg Ψπ Ψr

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







































π∗

t

δt

ρt

gt

πt

rt























+et et ∼ N(0, Q) (27)

where Q = diag(q21, . . . , q
2
τ , q

2
ρ, 0, 0, 0). As noted in the introduction, the observed

real oil price (ρot ) depends upon the latent price (ρt) plus a measurement error.

2.11 The Kalman filter and the likelihood function

To complete the dynamic term structure model, we now outline the maximum likeli-

hood approach used to estimate the Kalman filter and the model parameters. Recall

that the filter uses surprises in forecasting the vector of observable variables to up-

date the vector of latent variables. As section 5 of the online appendix explains,

the Kalman gain, Γ, depends upon the matrix Θm,z in equation (14), which shows

the contemporaneous effect of the factors on the observable variables. So, before

1984, when there are no futures prices, the revisions just depend upon revisions in

the macro variables, but after 1984 they also depend upon surprises in the futures

prices. We use the Kalman filter rather than the principal components used by many

other term structure researchers primarily because it deals in this way with the ab-

sence of futures data over the pre-1984 period (and the increase in the number of

maturities traded subsequently). Online appendix (5) also derives the log-likelihood

function for this model.

11



3 The empirical model

To recap, the empirical model consists of a heteroscedastic VAR describing the

three latent variables and three macroeconomic variables, as in equation (20), and

the auxiliary equations describing the representative futures prices, as in equation

(26). This is estimated by maximum likelihood and the Kalman filter, which gives

optimal estimates of the latent variables in this situation. This section describes the

data and the empirical results.

3.1 Data sources and description

The model is estimated using quarterly time series of the macro variables and crude

oil futures. All data are downloaded from the Thompson Reuters Datastream. Sum-

mary statistics are presented in Table 1. Figure 1 shows the West Texas Intermediate

(WTI) oil futures prices. We also use data for US output, US inflation, and US Fed-

eral Funds rate, from 1964Q1 to 2022Q1. This allows the effect of the oil shocks of

the 1970s to be analyzed. The Fed Funds rate is specified as a quarterly decimal

fraction (the annual rate in percent divided by 400). We generate the US output gap

by applying the HP filter to log US GDP, then subtracting this measure of potential

output from log GDP. US inflation is the annual log difference of the US implicit

GDP price deflator.

The spot oil price is a composite series. The WTI spot price, which matches

the futures data, is available from 1984Q1, while the Brent price, which gives the

price of a similar grade, is available from 1970Q14. Since the crude oil price was

fixed close to $2.25 per barrel between 1964Q1 and 1970Q15, this value is used until

then; the Brent price from 1970Q1 to 1982Q4 and WTI thereafter. To represent

the term structure of oil futures, the prices of WTI light crude oil futures traded on

New York Mercantile Exchange are used, beginning in 1984, when these oil futures

contracts started trading. Oil futures contracts with 1, 2, 3, 6, 9, 12, 18 and 24

month maturities are studied. The series for the prices of oil futures with 1, 2, 3, 6,

9 and 12 month maturities are available from 1984Q1, the 18 month contract from

1989Q3; and the 24 month contract from 1995Q1.

4Brent and WTI spot oil price series only diverge significantly in recent years, when the latter
went to a discount because of export controls and the development of the US shale hydrocarbon
industry.

5Before the 1970s, the oil market was monopolized by the major Western oil companies, and
the oil price at that time was described by the phrase : “take the price used by Exxon, add it to
that used by Shell and divide the sum by two” (Carollo 2012).
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3.2 Unspanned versus spanned macro factors

Recall that models M1, M2, and M3 differ in the weight given to the explicitly

observed interest rate in the arbitrage equation. This is zero in the benchmark

model M1, unity in M2, and a freely estimated parameter in the encompassing model

M3. The upper panel of Table 2 reports the likelihood statistics and the Bayesian

Information Criteria (BIC) for these models. The likelihood of M2 is practically

identical to that of M3, indicating that this is an acceptable simplification. The

estimate of the rate parameter in M3 is 0.9933, with a standard error of 0.0063.

The value of zero in M1 is decisively rejected: the M3 parameter estimate is 158.2

standard deviations away from zero. Tests based on log likelihood ratios and t-

statistics with classical statistical considerations are known for their tendency to

over-reject such restrictions in large data samples. The BIC criterion allows for this

by applying a penalty to the large number of parameters in model M2, but still

shows that this model is preferred to M1.

3.3 Structural change

Macroeconomic volatility has clearly increased since the global financial crisis of 2008

that marked the end of the Great Moderation in volatility seen since the mid-1980s.

Ironically, many of the factors that helped to explain this earlier moderation, such as

deregulated financial markets and the move to just-in-time inventory control, seem

to have contributed to the subsequent increase in volatility. This increase could also

reflect an increase in the size and frequency of macroeconomic shocks.

There has also been a marked increase in the volatility of oil prices over this

period, partly reflecting the effect of shocks such as the Covid pandemic. We would

expect this to shift the volatility parameters in Σ. Hamilton and Wu (2014) and

others have suggested that this may also reflect the financialization of commodity

markets (which we call the financialization hypothesis). This could have affected

the risk-neutral parameters in AQ and BQ. On the other hand, the development of

the US shale hydrocarbon sector, which now acts as a swing producer, may have

reduced the exposure of the US economy to oil prices. These effects would be most

likely to affect the time series parameters in A and B.

In order to test these various hypotheses, we conducted a series of structural

stability tests on model M2. The results are shown in the lower panel of Table

2. We followed Hamilton and Wu (2014) and split the sample into two periods:

1964Q1-2004Q4 and 2005Q1-2022Q1. As a portmanteau test, we first used different

sets of perimeter values to optimize the likelihood in each period, thus allowing all

of the model parameters to change. Combining the results for these two sub-periods

gives the criteria for model M4 shown in the Table 2. M4 naturally has a higher
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likelihood than M2, but has twice the number of parameters, and taking this into

account, the BIC criterion suggests that model M2 is preferable to M4.

Nevertheless, analysis of the differences between the parameter values for the

two periods indicated that there was very little change in the time series parame-

ters, but that the volatility and risk-neutral parameters had indeed shifted. Table

2 presents the model selection statistics for two more models that examine these

differences. The first, model M5, allows the volatility (Σ) and risk-neutral (AQ and

BQ) parameters to shift between the two periods, while using a single set of time

series parameters (A and B ) to optimize the likelihood of the full sample. M5 has

a higher BIC value than both M2 and M4. Finally, to try to distinguish the effects

of volatility and financialization, model M6 allows only the risk-neutral parameters

to shift. In terms of the BIC statistic, this model is preferred to M2 and M4 but not

M5. Our preferred model is thus M5. This is consistent with both the increase in

macro volatility and the financialization hypothesis, but does not suggest that the

exploitation of shale hydrocarbons had a significant effect on the structure of the

real economy.

3.4 The empirical results

The rest of the paper compares the empirical properties of models M1 (with un-

spanned macro factor risk) and M5 (spanned) in some detail. Table 3 shows the

root mean squared error and prediction errors of the futures prices in these models.

Table 5 reports the M5 parameters, while Table 1 in the online appendix reports

those for M1. Results for the other models are available upon request from the

authors.

3.5 The factor loadings

The difference between M1 and M5 is most evident in the behavior of the futures

market, which is indicated by the factor loadings (Section 2.9). Empirically, both

models have a single unit root under Q that is associated with the asymptotic

inflation rate and means that the loadings of the futures on the factors (Ψτ ) increase

with maturity (τ). Dividing these loadings by maturity gives the factor loadings for

the annualized cost of carry (Ψτ/τ). These loadings are depicted in Figure 2, as a

function of maturity (expressed in quarters). The first panel shows the loadings on

the three latent variables and the second those on the observed variables.

Futures prices respond in a similar way to the latent variables, but the effect of

the observed variables is absent from M1. This is the key difference between the

spanned and unspanned factor risk models. The effect of oil price shocks decays

slowly with maturity in both models, while the effect of shocks on the cost of carry
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in M1 and the convenience yield in M5 peaks in the 1-2 year area, before decaying.

As we would expect, in M5 the interest rate and inflation shocks have the effect of

pushing up futures prices, an effect that mirrors that of shocks to δt. This means

that portfolio managers could in principle use oil futures to help hedge interest rate

and inflation shocks as well as shocks to the oil market.

3.6 The behavior of the macro and spot oil market variables

Figures 3 show the estimates of the latent and observed state variables. In the

latter case, these estimates are shown alongside their observed values. The long

term inflation asymptote (π∗) in Figure 4 captures the secular trends in inflation.

This resembles the inflation target identified by Ireland (2007) and shown in his

Figure 4. It accommodated the inflationary oil price hikes in the 1970s, resulting

in the peak inflation rate of 10%. However, it fell back after the Volker deflation in

the early 1980s, when we saw the peak interest rate of 15.9%.

Figure 5 shows how the oil market and the output gap interact in model M5.

The vertical bars show the NBER recession periods. The output gap was very high

before both of the oil shocks of the 1970s, as indicated by the left-hand sides of the

first two bars, reflecting the strength of the US economy. This helped tighten the

oil market. Oil inventory and cost of carry were very low in the run up to the first

oil shock, but moved to a higher level afterwards, as shown in Figure 6. Reflecting

this tightness, as Kilian (2008) has argued, these oil price increases were persistent,

provoking a sharp fall in the output gap as the economy moved into recession. In

contrast, the economy was not as strong prior to the oil price spike seen at the time

of the first Gulf war in 1991, when the oil price displayed a spike rather than a step

increase, which was followed by a mild recession. The US economy was also strong

when the oil price peaked in 2008, but the ensuing recession was due to the financial

crisis as well as the high oil price, which fell back sharply as the recession took

hold. These shocks are also reflected in δt, estimated using the Kalman filter. This

estimate reflects the tightening of the market in the 1970s, as well as the weakness

seen in 2014 and 2020.

Figure 6 also shows the relationships between the US oil inventory (excluding

the US Strategic Petroleum Reserve)6 and the estimated cost of carry from M1 and

convenience yield (dt = δt − πt) from M5. Although the inventory is not part of

the model, this panel shows that short-run swings in dt and the oil inventory are

inversely related, as the theory of storage would predict. However, there are some

notable spikes in dt that are not reflected in the inventory. For example, there is a

sharp spike in 1974Q2, which arguably reflects rationing and other effects designed

6Source: U.S. Energy Information Administration at: https://www.eia.gov/
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to conserve oil stocks and help shield the economy from the Arab oil embargo.7

The lower panel of Figure 6 shows a scatter plot of our convenience yield against

the log inventory series. The correlation coefficient for these series is 0.58. We

take the log of the inventory series because in principle Pindyck (1994), and Jin

(2019) suggest that the relationship between dt and inventory holdings should be

non-linear: to prevent stock-outs, the yield should become extremely large as the

inventory approaches zero. However, inventories are maintained at a high level in

our sample so the risk of stockout is small.

Table 4 reports the estimates of the parameters obtained from the Kalman-VAR

for M5 under the measure P . (See Table 1 in the online appendix for M1.) The

estimates of the key parameters conform to economic priors and in the main are

statistically significant. As we would expect, the estimates of φπ,ρ and φg,ρ indicate

that the real oil price has a significant short run impact on inflation (and in M5)

activity. Consistent with the Taylor rule, which suggests that the central bank ad-

justs the policy interest rate in order to maintain a stable rate of inflation, increases

in inflation and activity lead to increases in interest rates ( φr,π and φr,g). In turn,

an increase in interest rates has the effect of slowing activity (φg,r), which reduces

inflation (φπ,g). These two effects are very significant in M5. This model suggests

that an increase in US interest rates also tends to reduce the oil price (presum-

ably reflecting their global significance), reinforcing this disinflationary effect. The

longer-run effects, revealed by the impulse response functions (IRFs) reported in the

next section, which include the indirect effect of interest rates working through the

US economy, are very significant.

3.6.1 Impulse response functions

Figures 7 and 8 present the IRFs for the state variables, which show the dynamic

effects of innovations in the macroeconomic variables, together with 95% confidence

bounds.8 (See Figures 1 and 2 in the online appendix for M1.) Because these inno-

vations are correlated empirically, orthogonalized innovations using the triangular

factorization defined in section 2.7 are applied here. The orthogonalized impulse

responses show the effect on the macroeconomic system of increasing each of these

innovations by one percentage point for just one-period using the Wald represen-

tation of the system. Each column shows the effect of a unit shock upon a macro

7For example, the US Congress passed the Emergency Highway Energy Conservation Act to
impose a national maximum speed limit of 55 mph in 1974, with similar restrictions imposed in
European countries. In the UK, petrol coupons were issued in preparation for petrol rationing,
although this was not actually implemented.

8The confidence bound for the IRFs in this paper uses the methodology reported in section 3
in Lütkepohl (2000) and Appendix B in Coroneo (2016). Note that because the IRFs (and the
ANOVA results below) only depend upon the time series parameters, which do not shift in model
M5, these are the same for both pre-and Post 2004 parameterisation
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variable, while the rows show their effects.

The relationships between the output gap, inflation, and interest rates are in line

with economic priors and similar to those seen in previous macro-finance models.

The final row of Figure 8 shows that the US Fed changes interest rates in response

to inflation and economic activity, consistent with the Taylor rule. (See Figure 2 in

the online appendix for M1.) The final column shows that output and inflation in

turn fall in response to the higher interest rate. Thus, the inclusion of the oil price

within the CBM and use of Kalman filters to pick up the effect of unobservable

expectational influences help to solve the notorious price puzzle - the tendency

(noted originally by Sims 1992) for increases in policy interest rates to anticipate

inflationary developments, and thus apparent to cause inflation. The oil markets

appear to be surprisingly interest sensitive. A rise in interest rates gives an incentive

to reduce the inventory. This reduces the oil price (φρ,r) and increases δt (φδ,ρ). The

US interest rate is relevant because oil is priced in US dollars and this influences

interest rates globally.

The top two panels on the right-hand side show that interest rates give the

Federal Reserve a surprisingly sharp and strong leverage over the oil market. A one

point increase in interest rates reduces the real oil price by 9.65% after one year in

the model M5.

3.6.2 Analysis of variance

The real-world dynamics are also reflected in Figure 9. (See Figure 3 in the online

appendix for M1.) These report the results of the Analysis of Variance exercise and

show the share of the total variance attributable to the innovations at different lag

lengths. These are also obtained using the Wald representation of the system, as

described in Cochrane and Piazzesi (2009). They indicate the contribution each

innovation would make to the volatility of each model variable if the error process

was suddenly started, having been dormant previously. As such, they reflect both

the impulse responses and the variance of the shocks.

The first column of Figure 9 shows the effects of oil market shocks in M5, while

the second shows the effects of macro shocks. (See Figure 3 in the online appendix

for M1.) The first two rows show that the variances of ρt and δt are dominated

by oil market shocks. However, macro shocks account for approximately 15% of

the variance in δt and 30% of the variance in the oil price after 20 quarters. The

remaining rows show oil market shocks affect the variance of inflation, accounting

for 10% of the variance initially, then decaying gradually. The effects of oil shocks

on the variance of output and interest rates are much smaller. The longer run

variances of inflation and interest rates are naturally dominated by shocks to the
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inflation asymptote.

3.7 The risk premium

Econometric models frequently produce oil price forecasts that differ significantly

from the comparable futures price. These differences are usually interpreted as risk

premiums.9 They can be expressed either in dollars or as percentage returns. The

first is the difference between the time series expectation of a futures price in the

next period E(Fτ−1,t+1) and the current price of the future Fτ,t, modelled by the

risk-neutral expectation (see online appendix, section 4). This is the measure used

by Baumeister and Kilian (2016), and gives the expected profit in dollars for holding

a contract of this maturity for one quarter. The first panel of Figure 10 shows our

estimates of the dollar premium in 3, 12, and 24 month contracts. The second panel

shows this as an annualized percentage return, following Hamilton and Wu (2014)

and Heath (2019), for example.

Producers want to sell futures to hedge against future price falls. When they

are dominant, as they have been historically, this depresses the futures price rela-

tive to the expected spot rate until arbitrageurs are prepared take the other side

of the market, so the premium is normally positive. However, Hamilton and Wu

(2014) argue that buying pressure from commodity index funds has recently had

the opposite effect, turning the premium negative in 2008 and 2014. They employ a

similar methodology to ours, using two latent variables (level and slope factors) to

fit the futures and model the premium. However, we also introduce macroeconomic

variables into the model and can therefore offer a macroeconomic explanation.

The remaining two panels of Figure 10 decompose the premium into the effect

upon the oil (δt, ρt) and macro (π∗

t , gt, πt, rt) factors. This shows that oil market

variables play an important role here, with the oil price having a strong positive

effect on the premium. The correlation between the 12-month dollar premium and

the oil price is 0.80 pre-2005, increasing to 0.87% afterwards. This correlation is

similar for the other maturities. If oil producers sell futures to lock in high profits

on future production when oil prices are high, that could explain this correlation.

That would push up the premium by pushing down futures prices. The increase post-

2004 could be due to the effect of financialization, which made the futures market

more convenient for hedging and speculation. We also find that the risk premium has

more than doubled since the Great Moderation, in line with the findings of Hamilton

and Wu (2014). The increased volatility of the oil market factors explains most of

this effect. However, in contrast to Hamilton and Wu (2014), our model suggests

9However, Leduc et al (2021) suggest that these differences could also be due to mistakes in
the market’s ability to distinguish between transitory and permanent shocks when setting futures
prices.
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that it was the low level of oil prices in 2008 and 2014, rather than financialization,

that caused the premium to turn negative in those years.

4 Conclusion

This paper presents a macro-finance model that includes the oil price and its cost

of carry and makes crude oil futures exponential-affine in the state variables. As

expected, we find significant links between oil prices and the macroeconomy. The

model also throws light on the notorious ‘price puzzle’, indicating the importance

of modelling the links between US monetary policy, commodity prices, and inflation

on a comprehensive basis, using latent variables to capture the effect of inflationary

developments reflected in futures prices. The macro-finance framework would seem

to offer practitioners and academic researchers an important tool for understanding

the effects of monetary policy on the commodity markets, and the economy.
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Figures and tables

Table 1: Summary Statistics

WTI futures prices
hτ Mean S.D Skew. Kurt. ADF (p-value) Obs
h3 -0.857 0.490 0.276 -0.982 0.209 153
h6 -0.862 0.491 0.318 -1.046 0.266 153
h9 -0.869 0.492 0.344 -1.087 0.305 153
h12 -0.875 0.493 0.362 -1.114 0.334 153
h18 -0.842 0.505 0.258 -1.286 0.225 131
h24 -0.752 0.507 -0.096 -1.280 0.113 107
Observable macro variables
no Mean S.D Skew. Kurt. ADF (p-value) Obs
ρot -1.032 0.652 -0.337 -0.714 0.073 233
got 0.000 0.016 -1.135 5.014 0.001 233
πo
t 0.008 0.005 1.297 1.028 0.673 233
rot 0.012 0.009 0.778 0.714 0.224 233
These data were downloaded by Datasteam and are discussed in the text. hτ denotes

the τ -month maturity log futures price less the log GDP deflator as in equation

(20), where h3, h6, h9, and h12 are available from from 1984Q1 to 2022Q1; h18

from 1989Q3 to 2022Q1; h24 from 1995Q1 to 2022Q1. Observable macro variables

(as in the vector no), namely ρo, go, πo, and ro are available from 1964Q1 to

2022Q1. Mean denotes the sample arithmetic mean, S.D. standard deviation; Skew.

and Kurt. report skewness and excess kurtosis, standard measures of the third

and fourth moments. Obs. reports the number of observations. ADF shows the

Augmented Dickey Fuller test statistic under the null hypothesis of non-stationarity.

Table 2: Model Selection

Models k log likelihood BICs
Basic models: unspanned v.s. spanned macro factors

M1 46 7448.14 -14551.95
M2 65 7663.10 -14839.64
M3 66 7663.19 -14832.34

Extended models: structural stability tests
M4 128 7895.39 -14832.64
M5 108 7840.46 -14872.49
M6 93 7780.76 -14865.37

This table shows the model selection criteria for the various specifications shown in
sections 3.2 and 3.3, k is the number of parameters. The number of observations n
is 1782 for each model.
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Table 3: Root Mean Squared Errors (RMSE) and Root Mean Squared Prediction
Errors (RMSPE)

no
t M1 M5 hτ,t M1 M5

Root Mean Squared Errors
ρot 0.040 0.031 3m 0.023 2.5×10−13

got 1.4×10−15 1.1×10−14 6m 0.007 0.003
πo
t 1.2×10−16 5.0×10−16 9m 1.1×10−13 2.1×10−13

rot 1.0×10−16 4.1×10−16 12m 0.003 0.002
18m 1.1×10−13 1.9×10−13

24m 0.006 0.004
Root Mean Squared Prediction Errors

ρot 0.179 0.180 3m 0.177 0.178
got 0.010 0.010 6m 0.157 0.156
πo
t 0.001 0.001 9m 0.143 0.142
rot 0.002 0.002 12m 0.133 0.132

18m 0.114 0.113
24m 0.109 0.108

The left-hand panel of this table shows the RMSEs and RMSPEs for the observed
macro variables for the period 1964-2022. The right-hand panel shows these for the
futures price (less the log GDP deflator as in Equation 22) for the periods that they
are available (see notes to Figure 1).

Table 4: Parameter Estimates for M5

Parameters Estimates t-stats Parameters Estimates t-stats
Under the Physical Dynamics

ϕρ 0.040 0.377 φg,g 0.825 23.359
ϕr -0.006 -2.189 φg,π 0.088 1.879
φδ,δ 0.819 16.960 φg,r -0.127 -1.968
φδ,ρ -0.013 -5.297 φπ,ρ 5.7×10−4 4.897

φδ,r -1.5×10−39 -1.1×10−38 φπ,g 0.019 4.301
φρ,δ -0.367 -0.953 φπ,π 0.920 46.198

φρ,ρ 0.889 18.354 φπ,r -5.8×10−28 -1.0×10−25

φρ,g 0.402 0.504 φr,ρ -8.2×10−4 -3.741

φρ,π 9.104 1.587 φr,g 0.009 1.309

φρ,r -4.340 -2.329 φr,π 0.099 3.324

φg,ρ -0.001 -1.317 φr,r 0.931 45.933
This table presents parameter estimates and their t-statistics for model M5.
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Table 5: Parameter Estimates for M5 (cont)

Parameters Estimates t-stats Parameters Estimates t-stats
Under the Risk-neutral Dynamics (1964Q1-2004Q4 sub-sample)

kQδ 0.077 120.551 φQ
g,r -1.904 -2.288

kQρ 0.042 47.861 φQ
π,π∗ 7.950 5.656

kQg 0.728 10.970 φQ
π,ρ 0.145 11.599

kQπ 8.7×10−30 1.2×10−27 φQ
π,g -0.018 -16.673

kQr 0.061 127.000 φQ
π,π 0.193 4.001

φQ
π∗,π∗ 1.000 31.583 φQ

π,r 0.724 16.101

φQ
δ,δ 0.815 51.561 φQ

r,π∗ -2.911 -4.185

φQ
δ,ρ 0.121 20.318 φQ

r,ρ 0.082 33.735

φQ
g,π∗ -84.984 -4.408 φQ

r,g -0.014 -677.744
φQ
g,ρ 0.831 9.525 φQ

r,π 0.372 31.207

φQ
g,g 0.362 7.500 φQ

r,r 0.750 59.540
φQ
g,π 12.020 35.509

Under the Risk-neutral Dynamics (2005Q1-2022Q1 sub-sample)

kQδ 0.083 59.106 φQ
g,r -2.209 -1.217

kQρ 0.027 5.711 φQ
π,π∗ 6.190 33.129

kQg 0.465 36.109 φQ
π,ρ 0.313 10.813

kQπ 0.086 13.108 φQ
π,g -0.012 -4.731

kQr 0.057 52.636 φQ
π,π 0.195 4.765

φQ
π∗,π∗ 1.000 43.552 φQ

π,r 0.743 11.432

φQ
δ,δ 0.936 94.825 φQ

r,π∗ -3.128 -10.083

φQ
δ,ρ 0.182 42.983 φQ

r,ρ 0.067 36.714

φQ
g,π∗ -70.244 -10.553 φQ

r,g -0.014 -43.905
φQ
g,ρ 0.000 0.000 φQ

r,π 0.413 22.156

φQ
g,g 0.377 11.745 φQ

r,r 0.744 23.041
φQ
g,π 11.414 16.591

Volatility Parameters (1964Q1-2004Q4 sub-sample)

lδ,s 6.108 4.832 dπ∗ 0.004 3.540
lg,ρ 7.7×10−47 7.4×10−45 dδ 0.024 7.328
lπ,ρ 0.003 2.426 dρ 0.094 7.303
lπ,g 0.012 1.576 dg 0.008 17.171
lr,s -2.7×10−46 -6.4×10−44 dπ -6.5×10−4 -7.732
lr,g 0.139 5.647 dr 0.002 14.922
lr,π 0.863 2.498

Volatility Parameters (2005Q1-2022Q1 sub-sample)

lδ,s 3.383 0.919 dπ∗ 0.006 31.888
lg,ρ 0.040 4.887 dδ 0.008 8.699
lπ,ρ 0.002 3.480 dρ 0.193 10.790
lπ,g 0.013 0.995 dg 0.011 9.201
lr,s -2.3×10−25 -3.3×10−22 dπ -0.001 -8.982
lr,g 0.047 4.708 dr 0.001 7.441
lr,π 0.022 0.208
This table presents parameter estimates and their t-statistics for model M5.
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Figure 1: The Term Structure of Log Real WTI Oil Futures Contracts

This figure shows the term structure of (log) WTI light crude oil futures deflated
by the (log) implicit GDP deflator, hτ,t, as defined by equation (22). Value of data
increase from deep blue to dark orange. WTI light crude oil futures started trading
on NYMEX in 1984. The data are from Thomson Reuters Datastream. The 1, 2, 3,
6, 9, and 12 months maturities are available from Q1 1984, the 18 month contract
from 1989Q3; and the 24 month contract from 1995Q1.
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Figure 2: Factor loadings showing the effect of the state variables on the term
structure of the cost of carry in models M1 and M5

The behaviour of the futures curve is dictated by the factor loadings. This figure
shows factor loadings, Ψτ/τ , (expressed in quarters), in M1 and M5, which depend
upon parameters of the risk-neutral factor dynamics (Section 2.10). The spot oil
price has a unit effect at the beginning of the futures curve in both models, but its
influence fades with maturity. The other variables only affect the slope of the futures
curve. The first panel shows the loadings on the two latent oil market variables in
M1. The second and third panels show the loadings on the latent and observed
variables respectively in M5.
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Figure 3: Variables Representing the Macroeconomy and Oil Markets in model M5
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Figure 4: Inflation and the Inflation Asymptote

This figure presents the estimates of long term inflation asymptotes of (π∗) in models
M1 and M5 alongside the data for US inflation.
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Figure 5: The oil market and the output gap in model M5

The top panel of this figure plots the real spot price (ρ). The middle panel of this
figure plots the convenience yield (d = δ − π) estimated by model M5. The output
gap (g) is plotted in the lower panel, and reflects the strength of economic activity.
Shadow areas stand for NBER recession periods.
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Figure 6: The Convenience Yield and US Oil Inventories

This figure presents estimates of the cost of carry in model M1 (χt) the convenience
yield (d = δ−π) in model M5 alongside the data for log US oil inventories. It shows
that the oil inventory is positively correlated with the cost of carry and negatively
correlated with the convenience yield.
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Figure 7: Responses to latent variable shocks in model M5

This figure shows how the variables in each row respond to shocks to the latent
variables in the model with spanned macro factor risk.
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Figure 8: Responses to macro shocks in model M5

This figure shows how the variables in each row respond to shocks to the macro
variables in the model with spanned macro factor risk.
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Figure 9: Variance Decomposition of model M5 for the State Variables

This figure reports the results of the Analysis of Variance (ANOVA) exercise for
M5. The inflation asymptote (π∗) is important in explaining the variations of all
these variables. Together with shocks to the oil price itself (not shown), shocks to
the interest rate and the convenience yield (δ) explain most of the variation in the
real oil price. The final row of this figure shows that the variance of the interest
rate is strongly influenced by shocks to the inflation target (π∗). The variance of
inflation is affected by real oil price shocks.
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Figure 10: Risk Premiums in Futures Contracts

Commodity futures incorporate risk premiums, which reflect the difference between
the real world and risk-neutral expectations of the future spot price (see online
appendix 4). Oil market variables play an important role here, with the underlying
price having a strong positive effect on the premium. The correlation between
the contribution of the oil factors (ρ, δ) and the 6-month risk premium is 0.8038.
However, macro variables are also influential.
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