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Continuous-variable quantum key distribution exploits coherent measurements of the electromagnetic
field, i.e., homodyne or heterodyne detection. The most advanced security proofs developed so far have
relied on idealized mathematical models for such measurements, which assume that the measurement
outcomes are continuous and unbounded variables. As physical-measurement devices have a finite range
and precision, these mathematical models only serve as an approximation. It is expected that, under suit-
able conditions, the predictions obtained using these simplified models will be in good agreement with
the actual experimental implementations. However, a quantitative analysis of the error introduced by this
approximation, and of its impact on composable security, have been lacking so far. Here, we present a
theory to rigorously account for the experimental limitations of realistic heterodyne detection. We focus
on collective attacks and present security proofs for the asymptotic and finite-size regimes, the latter
being within the framework of composable security. In doing this, we establish for the first time the com-
posable security of discrete-modulation continuous-variable quantum key distribution in the finite-size
regime. Tight bounds on the key rates are obtained through semidefinite programming and do not rely on

a truncation of the Hilbert space.

DOI: 10.1103/PRXQuantum.3.010341

I. INTRODUCTION

Quantum key distribution (QKD) is the art of exploiting
quantum optics to distribute a secret key between dis-
tant authenticated users. Such a secret key can then be
used as a one-time pad to achieve unconditionally secure
communication. First introduced in the 1980s by Bennett
and Brassard [1], QKD is now at the forefront of quan-
tum science and technology. By encoding information into
the quantum electromagnetic field, QKD enables provably
secure communication through an insecure communication
channel, a task known to be impossible in classical physics.
This contrasts with standard and postquantum cryptogra-
phy, which are based on computational assumptions and do
not guarantee long-term security. In fact, future advance-
ments in theoretical computer science or computational
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power (including quantum computing) may jeopardize the
security of these schemes.

To travel the route from fundamental physics to future
technologies, we need to account for the trade-off between
the rate of key generation of the protocol, its secu-
rity, and the feasibility and robustness to experimen-
tal imperfection. The highest standards of security and
robustness are those of device-independent QKD but are
achieved at the cost of a reduced key rate. Here, we focus
on continuous-variable (CV) QKD, within the device-
dependent approach, which allows for feasible imple-
mentations with much higher key rates. Our goal is
to improve the robustness of CV QKD to experimen-
tal imperfections and practical limitations. For a recent
review of device-independent QKD and CV QKD, see
Ref. [2].

CV QKD denotes a family of protocols where informa-
tion is carried by the phase and quadrature of the quantum
electromagnetic field. A variety of protocols exist that dif-
fer in how the quadratures encode this information [3—7].
However, when it comes to decoding, all CV-QKD pro-
tocols exploit coherent measurements of the field, i.e.,
either homodyne or heterodyne detection [8]. The strate-
gic importance of CV QKD indeed relies on this choice
of measurement, as homodyne and heterodyne detection
are mature, scalable, and noise-resilient technologies. This
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is in contrast with discrete-variable architectures, which
require bulky, high-efficiency, and low-noise single-photon
detectors [9].

When modeling a CV-QKD protocol, it is customary
to describe its measurement outcomes as continuous and
unbounded variables. In these models, homodyne detec-
tion measures one quadrature of the field and heterodyne
detection provides a joint measurement of both quadra-
ture and phase [8]. These simplified models are power-
ful mathematical tools due to their continuous symmetry.
Two fundamental theoretical results rely on this symme-
try: the optimality of Gaussian attacks [10—12] and the
Gaussian de Finetti reduction [13]. However, this sym-
metry is not exact and is broken by real-world physical
devices. In fact, in actual experimental implementations,
homodyne and heterodyne detection yield digital outcomes
and have a finite range [14,15]. While it is expected
that, in some limit, the idealized measurement models
will describe actual physical devices well, up to now a
quantitative analysis of this approximation has been lack-
ing. In particular, it has not been known how to quan-
tify the impact of these nonidealities on the secret key
rate.

In this work, we finally fill this important conceptual
gap and present a theory to quantify the secret key rates
obtained in actual QKD protocols that exploit actual mea-
surement devices. Up to now, only a handful of results
have been available in this direction. Furrer ef al. have
considered digitized homodyne for a protocol based on the
distribution of entangled states [6] and Matsuura et al. have
considered a binary encoding using coherent states, homo-
dyne detection, and a test phase exploiting heterodyne [7].
However, in both cases the key rates do not converge to
the asymptotic bounds obtained in Refs. [13,16—18], which
are believed to be optimal for ideal detection. In contrast,
our results converge to these optimal bounds when the
nonidealities are sufficiently small.

We focus on discrete-modulation (DM) protocols, where
the sender prepares coherent states the amplitudes of which
are sampled from a discrete ensemble. We establish the
security against collective attacks in both the asymptotic
and the nonasymptotic regime, the latter within the frame-
work of composable security [19]. This contrasts with pre-
vious works on DM CV QKD [16—18,20], which have only
considered the asymptotic limit of infinite channel uses.
Our composable-security proof allows us to quantify the
security of QKD in the practical scenario where the num-
ber of signal exchanges is finite and QKD is used as a sub-
routine of an overarching cryptography protocol. Although
collective attacks are not the most general attacks, they
are known to be optimal, up to some finite-size correc-
tions, through de Finetti reduction [13,21,22] While we
focus on heterodyne detection, the same approach may
also be applied, with some modifications, to homodyne
detection.

II. STRUCTURE OF THE PAPER AND SUMMARY
OF RESULTS

We introduce DM CV QKD with nonideal heterodyne
detection in Sec. III and review its asymptotic security
in Sec. IV. We discuss using a data-driven approach to
approximate infinite-dimensional states with ones with
finite-dimensional support in Sec. V and in Sec. VI we cal-
culate corresponding corrections to our secret key rate by
using a continuity argument.

We bound the secret key rates in three different settings
with increasing complexity, where in each setting we find
the optimal values using linear semidefinite programming.
In the first setting (Sec. VII), the semidefinite programs are
still over infinite-dimensional quantum states and knowl-
edge of their optimal values would allow one to determine
the secret key rate in the asymptotic limit. In the sec-
ond setting (Sec. VIII), we map the infinite-dimensional
semidefinite programs of Sec. VII into finite-dimensional
ones, the latter of which can be solved numerically with-
out truncating the Hilbert space. This gives us a way to
exactly numerically evaluate the secret key rate in the
asymptotic limit. In the third setting (Sec. 1X), within a
composable-security framework, we generalize the theory
of asymptotic QKD to nonasymptotic QKD; we show how
perturbations to the semidefinite programs in Sec. VIII
depend on the number of channel uses and we prove that
these perturbations vanish when the number of channel
uses becomes arbitrarily large. This result allows us to esti-
mate the secret key rate of a nonasymptotic DM-CV-QKD
scheme with composable security.

Explicit examples are discussed in Sec. X, for the case
of quadrature phase-shift keying (QPSK). These exam-
ples suggest that, in the limit of vanishing nonidealities in
heterodyne measurement and a growing number of chan-
nel uses, the secret key rate of DM CV QKD approaches
the highest rate possible. Conclusions and potential future
developments are discussed in Sec. XI.

Table I compares our results with previous works that
have also presented security analysis of CV-QKD proto-
cols. We only consider works that have obtained a tight
estimation of the key rate. The encoding of classical infor-
mation in quantum signals may happen through either
a continuous modulation (CM) or a discrete modulation
(DM). In this work, we consider DM, which reflects what
is actually done in experiments. We obtain our security
proof within the framework of composable security, which
is the gold standard in cryptography; composable security
permits a quantitative assessment of the security of QKD,
including when the QKD protocol is a subroutine of an
overarching communication protocol. We consider a real-
istic model of actual heterodyne detection, instead of the
ideal model used in previous works. Our numerical calcu-
lation of the lower bound on the secret key rate is exact, as
we do not need to impose an arbitrary cutoff of the Hilbert
space.
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TABLE I. A comparison of our results with previous security
analyses of CV QKD. We only include works that have pro-
vided a tight estimate of the key rates. Encoding: the protocol
considered has continuous (CM) or discrete (DM) modulation.
Composable: the security analysis is in the framework of com-
posable security. Heterodyne: the security analysis assumes an
ideal or realistic model for heterodyne detection. Key rate: the
estimation of the key rate is exact or obtained through numerical
approximation.

Encoding Composable Heterodyne Key rate
Ref. [13] CM (7 Ideal Exact
Ref. [17] DM ® Ideal Approx.
Ref. [18] DM @) Ideal Approx.
Ref. [20] DM ® Ideal Exact
Ref. [16] DM ® Ideal Exact
This work DM (] Realistic Exact

III. THE MODEL

We consider one-way QKD where one user (convention-
ally called Alice) prepares quantum states and sends them
to the other user (called Bob), who measures them by het-
erodyne detection. The transmission is through an insecure
quantum channel that may be controlled by an adversary
(called Eve). This general scheme defines a prepare-and-
measure (PM) protocol. In this work, we focus on DM-CV-
QKD protocols where, on each channel use, Alice prepares
a coherent state |«) the amplitude of which is sampled
from an M-ary set, {ay}x—0,. a—1, With probabilities P;.
This defines Alice’s M-ary random variable X. An exam-
ple is QPSK, obtained for M = 4 and setting o, = o,
Py =1/4.

In order to prove the security of these protocols, we need
to consider a different, though formally equivalent, sce-
nario where a bipartite quantum state p4p is distributed to
Alice and Bob, of which Eve holds a purification. This kind
of setting defines an entanglement-based (EB) protocol. It
is sufficient to prove the security of the EB protocol, from
which the security of the PM protocol follows. In the EB
protocol, the state p is a two-mode state, where @ and a,
and b and b7, are the annihilation and creation operators for
Alice and Bob, respectively. The EB representation of DM-
CV-QKD protocols is discussed in detail in Ref. [16]. In
this work, we focus on collective attacks, which are iden-
tified by the assumption that, over n uses of the quantum
channel, the state factorizes and has the form p%’. In the
following, we indicate as pg = Try(045) the reduced state
on Bob’s side. To make the notation lighter, we sometimes
drop the subscripts AB or B when the meaning is clear from
the context.

On the receiver’s side, Bob measures by applying het-
erodyne detection. Ideally, heterodyne detection is a joint
measurement of the quadrature (g) and phase (p) of the

field, the output of which can be described as a com-
plex variable B = (g + ip)/~/2. Ideal heterodyne detec-
tion, applied on a state p, would yield a continuous and
unbounded output, with probability density 1/7 (8|p|8),
where |8) is the coherent state of amplitude 8. In contrast,
actual experimental realizations of heterodyne detection
have measurement outcomes that are confined to a finite
region in phase space, 8 € R(R), and hence have finite
range. Here, we assume that the region R(R) is defined
by the condition ¢,p € [—R, R], for some R > 0. Further-
more, the measurement outputs are digital, such that each
quadrature takes d values, with each value corresponding
to a unique log d-bit string. This is obtained by binning the
values of ¢ € [—R, R] into d nonoverlapping intervals. For
simplicity, we consider intervals of equal size,

1; =[-R+2(G — DR/d,—R + 2jR/d], Q)

forj =1,...,d. The output j is then associated with the
event ¢ € Z;, which, in turn, we identify by the central
value:

g =—R+ (G — DR/d+jR/d. )

The same digitization, when applied to both ¢ and p, yields
a description of actual heterodyne detection as a measure-
ment with d? possible outputs. This defines Bob’s variable
Y, which is a discrete random variable and assumes d?
values. These discrete values can be conveniently labeled
using the central points of each interval, i.e.,

B = (q; +ipi) /V2. 3)

If Bob obtains the average state pg, then the probability of
measuring B is

d2
Py = / LE (10s18), @
peZy T

where the complex interval Zj is defined in such a way
that B € Zj if and only if ¢ € Z; and p € Ty, and d°B =
% dgdp . Finally, there is a nonzero probability

d2
P0<R>=1—f LE (810818) )
BeR®R) T

of an inconclusive measurement, when the amplitude lies
outside the measurement range.

IV. ASYMPTOTIC SECURITY OF CV QKD

In the limit that » — oo, the secret key rate (i.e., the
number of secret bits that can be distilled per transmission
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of the signal) is given by the Devetak-Winter formula [23]:
Foo = §1(X5Y) — X (Y E)p, (6)

where 7/(X;7Y) is the mutual information between Alice
and Bob and x (Y;E), is the Holevo information (quan-
tum mutual information) between Bob and Eve (here,
we assume reverse reconciliation on Bob’s data, which
is optimal for long-distance communication). The factor
& € (0, 1) accounts for the subunit efficiency of error cor-
rection. While /(X'; Y) only depends on X and Y, x (Y; E),
also depends on the quantum information held by Eve,
which in general cannot be estimated directly. Fortunately,
the property of extremality of Gaussian states [11,12]
allows us to write the upper bound

XY5E)y < fylva(p), v8(p), vas(p)], (7

where f, is a known function of the covariance matrix
(CM) elements (see Appendix A):

L. f
Ya(p) = ETF[(CI a+aa')p], (®)
1
v5(p) = STrl(b'b + bbYpl, ©)

1
vag(p) i= ETT[(aTbJr +ab)p]. (10)

In conclusion, estimation of the CM suffices to obtain a
universal upper bound on the Holevo information, which
holds for collective attacks in the limit of # — oo. The
asymptotic key rate is thus bounded as

Too 2 EIX;Y) — fy[va(p), ¥8(P), vas(p)]. (11)

Since f, is an increasing function of y4 and yp and a
decreasing function of y,z [24], the estimation of upper
bounds on y,4, yp and a lower bound on y,z suffices to
bound the asymptotic key rate. In practical realizations of
CV QKD, where the parameter y, is known by definition
of the protocol, one only needs to bound y3 and y,3.

V. PHOTON-NUMBER CUTOFF

The technical difficulties in the analysis of CV QKD are
due to the fact that the quantum information carriers reside
in a Hilbert space with infinite dimensions. To overcome
this issue, we need to impose a cutoff in the Hilbert space.
As we do not want to impose such a cutoff in an arbi-
trary way, we follow a data-driven approach. Define the

following operators on Bob’s side:

d2
Wsz P gyipl (12)
\ﬁ|2>R2 T
and
Ve=Y_ In)(nl, (13)

n>R2

where |n) is the Fock state with »n photons. Renner and
Cirac [22] have noted that

From the experimental data, Bob can estimate the proba-
bility Po(R) as in Eq. (5). Note that

d2,3
We 5/ L 18y, (15)
IBRgR®) T
from which we obtain
Tr(Vrpp) < 2Tr(Wrpp) < 2Py(R). (16)

This shows that the probability that Bob receives more
than 2R? photons is no larger than 2Py(R). The gentle
measurement lemma [25] then yields

2Py(R), (17

loap — Taglll <2

where

(I @ Mp @ IT)
T4B = s
Tr(TTpg)

(18)
is a normalized state with finite-dimensional support and
M=1-Vy=)_ In)nl (19)

n<R?

is the projector onto the subspace with up to N = |R?]
photons and || - ||; is the trace norm. In conclusion, though
p 1s generic, an experimental estimation of the probability
Py(R) allows us to determine the proximity of p to a state
with finite-dimensional support.

VI. CONTINUITY OF THE HOLEVO
INFORMATION

In the EB representation, the two-mode state pp is mea-
sured, on Bob’s side, by heterodyne detection. In general,
pa4p resides in a Hilbert space with infinite dimensions.
However, as discussed above, it is close in trace norm to
the state 745 in Eq. (18). Note that 7,5 has support in a
space with M x |R? + 1] dimensions.

010341-4
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The Holevo information is a continuous functional of
the state. By applying Shirokov’s continuity bound [26],
we obtain

x(VE), < x(Y;E). +36, (20)

where (in this paper, we put log =
natural logarithm)

log, and In denotes the

§=38logd® +2(1+8)log(1+8)—28logs’, (21)
with 8" = [lpap — ta8ll1 < 24/2Po(R).

This implies that, by paying a small penalty in the key
rate, we can replace p with the finite-dimensional state t.
We thereby obtain the following bound on the asymptotic
key rate:

Foo 2 EIX;Y) — fylva(T), va(T), ya(1)] = 8. (22)

By comparing with Eq. (11), we note that this bound
depends on the CM of t. However, t is only a mathemati-
cal tool and does not describe the state that is prepared and
measured in the experimental realization of the protocol.
The only state that is physically accessible is p. Below, we
show how we can estimate the CM of t by measuring p by
heterodyne detection. In particular, our goal is to find an
upper bound on yz(t) and a lower bound on y,5(7).

VII. SEMIDEFINITE PROGRAMMING

In the EB representation, Alice prepares the two-mode
state

V) g = Z VPV A ® lat) 4 (23)

Alice keeps the mode A4 and sends 4’ to Bob. The vectors
|,) are mutually orthogonal and span an M -dimensional
subspace of Alice’s mode 4. Note that Alice’s reduced
state is

M—1
pa= Y VPPuolavle) V) (Wl = 0. (24)
xx'=0

The equivalence with the PM protocol is obtained by
noticing that a projective measurement of 4" in the basis
{1¥x) }x=0....m—1 prepares the mode 4 in the coherent state
|y with probability P,. A good choice for the vectors
[)’s is presented in Ref. [16].

Our goal is to bound the key rate using the data collected
by Alice and Bob, where Bob’s measurement is modeled
as realistic heterodyne detection with finite range and pre-
cision. We follow the seminal ideas of Refs. [17,18] and
achieve this by semidefinite programming (SDP). As an

example, we apply linear SDP, as done in Ref. [17], to
bound the CM of the state t, but we remark that our theory
can also apply to nonlinear SDP as in Ref. [18].

Let pp(x) be the state received by Bob given that Alice
sent |a,). Alice and Bob can experimentally estimate the
probability mass distribution

B
ij|x = /
T T

!

(Blos(x)|B), (25)

which can be used as a constraint in the SDP that we later
formulate. We can also consider linear combinations of the
parameters Pj,,, which obviously are also experimentally
accessible. Here, we consider the quantities

|Bix|* P (26)

~

=~
Il
—

i
o

S

d
X + Oy
,Px Z o /Bjk IBJkijlx

J.k=1

@7

Il
S

X

({3nt)

[where the sign (“’) denotes complex conjugation], which
are the expectation values of the variance and the covari-
ance between Alice’s and Bob’s variables. Note that v =
Tr(Vp) and ¢ = Tr(Cp) are the expectation values of the
operators

yoy |ﬁ,k|2/ —ﬁ|ﬂ><ﬂ|, (28)
Jok=1
1= & d*p
-3 S 3" el 0] ®/ “Li6)(1 + e
x=0 j k=1
(29)
Similarly, from Eq. (5), the quantity 1 — Po(R) = Tr(Up)
is the expectation value of the operator
d2
u=[ gy (30)
BeR®) T

Denote as pp(r) the optimal value of the semidefinite
program

maﬁgize%Tr[H (b"b + bb") T pg]
subject toTr(Vpp)< v

TrUUpp)> 1 — Py(R)

Tr(pg)= 1. 31)

Taking normalization into account, we obtain the upper
bound on yp(7),

vs(T) < v8(T) < v8(T)
Tr(Tlpg) ~ 1 —2Py(R)

(32)

010341-5
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Similarly, consider the optimal value y4p(r) of the
semidefinite program

1
minimizeETr[(aT 15" T1 + al1bIT) py5]

p4p=0

subject toTr[(/ ® V) p4p]< v
Tr(Cpap)= ¢ (33)
Tr[(I @ U) papl> 1 — Po(R)
Trg(pap)= o
Tr(pap)= 1,

from which we obtain the lower bound

Yap(T) > T 2L > y4p(7). (34)

(I ® ) p4z]

Note that the projector IT appears in the objective functions
but not in the constraints. For this reason, we cannot simply
replace p with t and the optimal values of the semidefinite
programs remain defined in an infinite-dimensional Hilbert
space. However, when numerically solving these semidef-
inite programs, we find solutions of the form ITpgIl and
(I ® M) p (I ® IT). This suggests that the presence of the
projector operator IT in the objective function suffices to
make the problem effectively finite dimensional (see the
Appendix D for further detail). To numerically evaluate the
optimal values of these semidefinite programs, we derive
the corresponding dual programs, which are more efficient
to evaluate, and detail this in Appendix D.

VIII. FINITE-DIMENSIONAL SDP

In this section, we obtain, from Egs. (31) and (33),
two semidefinite programs that are defined in a finite-
dimensional Hilbert space. We do this by replacing the
constraints appearing in Egs. (31) and (33) with weaker
constraints. This represents no loss of generality, as our
goal is to obtain an upper bound on y5(t) and a lower
bound on y4p(7). We express the new semidefinite pro-
grams in terms of the normalized state t,p, defined in Eq.
(18), which has support in the finite-dimensional subspace
containing no more than N = |R?] photons.

First, consider the semidefinite program in Eq. (31).
Note that, since V is positive semidefinite, we have

Tr(ITVIpp) < Tr(Vpp). (35)

Therefore, the condition Tr(Vpp) <v implies Tr
(VIppll) < v. Taking into account the fact that the trace
of TppIl is larger than 1 — 2Py (R) [from Eq. (16)], we

obtain the following constraint:

_ Tr(VTppll)
Tr(Vtp) = —Tr(HpBH) (36)

- Tr(VIpgIl) - v
= 1-2Py(R) — 1—-2Py(R)’

(37

Note also that the constraint Tr(i/pg) > 1 — Py(R) can
be rewritten as Tr[({ — U)pg] < Po(R). As I — U is pos-
itive semidefinite, this constraint can be replaced with
Tr[( — U)TppIl] < Py(R). Applying the same argument
as above, we obtain the constraint

Py(R)
Tr(( —U)tp) < TPO(R)’ (38)
which in turn implies
Py(R)

Putting all this together, Eq. (31) can be replaced with the
finite-dimensional semidefinite problem:

1
maxinéizezTr[(bTb + bbT)'cB]

B>
v
subject toTr(Vtp)< ————
) V)< 28R “0)
Py(R)
TI'(Z/{TB)Z 1— TPO(R)
Tr(zg)=1.

Now consider Eq. (33). Note that the operator C is
bounded,

d

_x i x_' d2
IClloe = sup ZM/I L 1prip)

2
Tl k=t
o0

(41)

|&x,3jk + ax,Bjk|
< sup —————
Xk 2

d2
/ﬂ . |ﬂ>(ﬂ|” “2)

eR®R T

1 B _
sup | Bik + o B (43)

< —
2x,/,k

where |0l = sup,, w denotes the operator norm.

vIv)
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This observation allows us to express the constraint in
terms of the state 745 instead of p4p by introducing a small
error,

ITr(Cpap) — Tr(Cryp)| = |Tr[C(psp — Tan)]l (44)
< ICllsollpap — Taglli  (45)

<2y 2Py(R)[Clloos (46)

where the first inequality follows from the general property
that [Tr(0O0)| < |0l 10|11, for any pair of Hermitian
operators O, O'.

In conclusion, we replace Eq. (33) with the finite-
dimensional semidefinite problem:

1
minimizeETr[(aTbT + ab)typ]

48>0
’ v
subject toTr((/ @ V)tasl< 15
Tr(Cran)> ¢ = 2V2P®)ICllws (47
Py(R)

T @Utw]l = 1 = 5
Trp(p4p)=0

Tr(zy)= 1.

IX. NONASYMPTOTIC REGIME

Entropic uncertainty relations are often used to establish
the security of QKD in the nonasymptotic regime [27]. In
particular, they have been applied successfully in CV QKD
by Furrer et al. [6]. Unfortunately, this elegant method
does not yield a tight bound on the key rate for CV QKD.
To quote Leverrier [13]:

“This [CV-QKD] protocol can be analyzed thanks to an
entropic uncertainty relation, but [- - - ] this approach does
not recover the secret key rate corresponding to Gaussian
attacks in the asymptotic limit of large n, even though these
attacks are expected to be optimal.”

In the same paper, Leverrier shows that the asymptotic
equipartition property (AEP) [28] is better suited for CV
QKD as it converges to the secret key rate corresponding
to Gaussian attacks in the asymptotic limit.

As we show below, the theory developed in the previ-
ous sections can be extended to the nonasymptotic regime
where a finite number 7 of signals is exchanged between
Alice and Bob. To achieve this goal, we need to make two
main modifications to our theoretical analysis.

The first modification accounts for the finite-size correc-
tion to the entropic functions appearing in the asymptotic
rate in Eq. (22). These corrections can be computed using

the AEP [28]:

1w > EIXY) — fi[va(D), v8(T), Yap(t)] — &

_AWd,€) N 2log (v/2¢€y)
Vn n ’

where the additive term A can be bounded as [29]

A(d, €5) < 4(1 + logd),/log (2/€3) (49)

and ¢; is the entropy smoothing parameter. Furthermore,
Eq. (48) also includes a term due to privacy amplification,
characterized by the hashing parameter €,. The corre-
sponding key is secure up to probability € = € + ¢, (for
more details, see Ref. [28]).

The invocation of the AEP is not sufficient to analyze
the nonasymptotic regime. In order to achieve compos-
able security in the nonasymptotic regime, we also need
to provide confidence intervals for the channel parameters
that are not known exactly but obtained through parame-
ter estimation. Our second modification to our theory takes
this into account, and we discuss this further below. The
provision of confidence intervals for parameter estimation
is a difficult problem in CV QKD because the variables
measured in ideal homodyne or heterodyne detection are
unbounded. This problem has been solved by Leverrier
[13] by exploiting a continuous symmetry of heterodyne
detection for CV-QKD protocol with Gaussian modula-
tion. Unfortunately, discrete modulation occurs on a finite
range and does not have a continuous symmetry. Hence,
Leverrier’s approach cannot be applied to any CV protocol
with discrete modulation. In our work, since we con-
sider nonideal heterodyne detection (which is bounded),
we are able to compute confidence intervals for all the rele-
vant parameters of the communication channel. Therefore,
although the AEP can be applied to previous asymptotic
security proofs (see, e.g., Refs. [16—18,20]), our work
is the first one to allow for a composable analysis of
parameter estimation for a CV-QKD protocol with discrete
modulation.

(43)

A. Parameter estimation: Confidence intervals

The second modification arises because the parame-
ters v, ¢, and Py(R), which enter the semidefinite pro-
grams, need to be estimated from experimental data. In
the nonasymptotic regime, these estimates are subject to
statistical errors due to finite-size fluctuations. To account
for this, we need to compute confidence intervals for
these quantities for any finite ». It is sufficient to con-
sider one-sided confidence intervals, as the parameters
enter the semidefinite programs in constraints expressed
through inequalities. Following the approach of Ref. [24],
we assume that parameter estimation is performed after
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error correction. This allows Alice and Bob to use all their
raw keys for both parameter estimation and key extraction.

First, consider the variance parameter v. Given n sig-
nal transmissions, Bob obtains from his measurements a

string of quadrature and phase values, ¢7,45,...,¢% and
pE.p2,...,pE. His best estimate for v is
1 n B2 B2

i=1

In the scenario of collective attacks, this is the sum of
n independent identically distributed (IID) variables, with
each variable taking values in the interval [0, R?]. We can
then obtain a confidence interval for v using the additive
Chernoff bound. For any §, > 0,

v

2}

where D(a|lb) =aln(a/b) + (1 —a)ln(1 —a/1 —b) is
the relative entropy. Note that, for p < 1/2, we have

v—34,

Pr{f) <v —SU} < exp [—nD (T

2

€
D —€lp) > s———, (52)

2p(1 —p)

which yields

né>
- sl < % 53
r{v <v } _exp[ 2R2v(1—U/R2):| 9

nd?

= e <_ 2R2v) = €v- (54

To obtain a confidence interval for the covariance param-
eter ¢, we apply the Hoeffding bound. Let us denote as
g, qi,...,qtand pi,psl, ..., pd the raw data collected by
Alice. The best estimate for c is
I\ ¢'e? +pip!
c=- - 55
¢=- ; > (55)
This quantity is the sum of n IID variables, with each
variable chosen from the interval [—AR, AR], where 4 =
max,{|Re(e,)| + [Im(c)|}/~/2. The Hoeffding tail bound
then yields

" 2né?
Pr {c >c+ 86} < exp <_A2RC2) =: €. (56)
Finally, consider the estimation of Py(R). This parameter
is estimated by counting the number of times that a mea-
surement output falls outside of the allowed range R(R).
Bob can locally estimate this with the help of the auxiliary

variables S;, where S; = 0 if the ith signal falls inside the
range and S; = 1 otherwise. Therefore, Bob’s best estimate
for Py(R) is

. | —
PoR) = ~ >s. (57)
i=1

This is the average of independent Bernoulli trials and
therefore follows the Binomial distribution. A confidence
interval can be obtained from the additive Chernoff bound:

Pr {f’O(R) < Py(R) — ap}
< exp {—nD[Py(R) — ép||Po(R)]}. (58)

Applying the bound in Eq. (52), we obtain

Pr {130(R) < Py(R) — ap}

<exp|— nbp (59)
- 2Py(R)[1 — Po(R)]
62
< exp [_ZIZZO(PR)} =: €p. (60)

We require that the probabilities €,, €., and €p are much
smaller than 1, of the order of 10~1°.
In summary, we obtain that the bounds

b >v—36,, (61)
t<c+6,, (62)
Py(R) > Py(R) — 8p, (63)

hold true with almost unit probability (larger than 1 — epg,
where e€pg = €, + €. + €p follows from an application of
the union bound). For simplicity, we put €, = €, = €p =
epp/3. By inverting Eq. (56), we obtain

5, = AR /ln(3/€PE). (64)
2n

From Egs. (54) and (60), we obtain the following condi-
tions for 8, and Jp:

8U=R /21)11’1(3/6135), (65)
n

5 \/2P0<R)1n<3/epﬁ>
P— .

n

(66)
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To estimate these quantities, we apply the inequalities
given in Egs. (61) and (63):

5, <R \/2@ +68,)In (3/ePE>’

(67)
n
2(Py(R) + 8p) In (3
SPS\/ (Po(®) -+ 8) In (3 /ere) .
n
Finally, solving for §, and §p, we obtain
5 < R\/zf)ln Glers) [Rln (3/613,,5)]2
n n
R2In (3
n n( /GPE), 69)
n
2Py(R)In (3 In(3 2 In@3
Spf\/ o )n</6pE>+[n(/epE>] L nG/er)
n n n
(70)

In conclusion, the nonasymptotic secret key rates are
obtained using the formula in Eq. (48), where the parame-
ters yp(7) and y,5(7) are obtained by solving the semidef-
inite programs given in Eqs. (40) and (47), with the
replacements

v—> D+, (71)
c— &—6,, (72)
Po(R) — Py(R) + 8p, (73)

and 4, 8., and §p bounded as in Egs. (64), (69), and (70).
The key rate obtained in this way is secure up to probability
not larger than €’ = ¢; + ¢, + €pg.

X. QPSK: SECRET KEY RATES

Our theoretical analysis applies to any DM protocol. As
a concrete example, we describe the application of our the-
ory to QPSK encoding, where o, = ai* and P, = 1/4, for
x =0,1,2,3. To align with the symmetry of our model of

realistic heterodyne detection, we set @ = |or|e™/4.
We have
. +1 4
@ = |ale™F = |af L (74)
V2
From this, we obtain

A= ! {IR 1 } = 75
= ﬁm;ax IRe(ay)| + [Tm(er) |} = |et], (75)

and

1 _ _
IClloe =< 7 5up | @B + B | < leIR. (76)
X,

For the sake of presentation, we assume a Gaussian chan-
nel from Alice to Bob, characterized by the loss factor
n € [0, 1] and the excess noise variance u > 0. Given that
a and a' are the canonical annihilation and creation opera-
tors on Alice’s input mode, and b and b" on Bob’s output
mode, a Gaussian channel (in the Heisenberg picture) is a
map of the form

b— Jna++/1—ne+w, (77
b — Jna" + /1 —nef +w, (78)

where e and e are the canonical operators associated with
an auxiliary vacuum mode and w is a Gaussian random
variable with zero mean and variance u. Assuming this
form for the channel from Alice to Bob, we can explicitly
compute the expected asymptotic values of the constraint
parameters v, ¢, and Py(R) and then solve the semidefinite
programs to estimate the CM elements y(t) and y,45(7)
(more details on this are discussed in Appendix E).

The computed secret key rates (measured in bits per
channel use, i.e., per mode) are shown in Figs. 1-2 ver-
sus the loss 7, expressed in decibels. The other parameters
of the protocol are fixed as || = 0.5 and u = 0.001.

Figure 1(top) is obtained by solving the semidefinite
programs given in Eqs. (31) and (33), which are defined
in an infinite-dimensional Hilbert space. To find a solu-
tion, we truncate the Hilbert space. The figure shows that,
as expected, by increasing R, and for d large enough, the
secret key rate converges toward the value expected for
ideal heterodyne detection (which has recently been com-
puted in Ref. [16]). Our theory allows us to rigorously
compute the deviation from this ideal rate.

Figure 1(bottom) is obtained by solving the semidef-
inite programs given in Egs. (40) and (47), which are
defined in a finite-dimensional Hilbert space. In this case,
a solution can be found without arbitrary truncation of the
Hilbert space. Compared with Fig. 1(top), we note that
the secret key rate is reduced, especially if the value of
R is not large enough. This is due to the term propor-
tional to ||C || introduced in constraints of the semidefinite
programs to account for the projections into the finite-
dimensional space (therefore, an improved key rate can
be obtained with a better bound for ||C|»). However,
already for R = 7, the difference with the solution of the
infinite-dimensional problem is relatively small.

Figure 2 is obtained by solving finite-dimensional
semidefinite programs and including the finite-size correc-
tions in the constraints, as discussed in Sec. IX. For the
sake of illustration, the calculations are done by putting
the best estimates of the parameters equal to the expected
values, i.e., the semidefinite programs given in Eqs. (40)
and (47) are solved with the replacements

vV —> U+, (79)
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FIG. 1. The asymptotic secret key rates versus the channel loss
for QPSK encoding, for collective attacks in the limit of n —
00. The channel parameters are |¢| = 0.5, u = 0.001, and & =
0.97. The solid lines show the theoretical rate expected for ideal
heterodyne detection, from Ref. [16]. For nonideal heterodyne,
the key rate is computed for d = 16 and R = 6 (squares) and
R =7 (circles). Top: the key rate is obtained by truncating and
solving the infinite-dimensional semidefinite programs given in
Egs. (31) and (33). Bottom: the key rate is obtained by solving
the finite-dimensional semidefinite programs given in Egs. (40)
and (47).

c— ¢c— b (80)

The error parameters are €, = e, = epg = 1070, The
figure shows that a nonzero secret key rate is obtained
when the block size is about n = 10'* or larger. The dom-
inant finite-size corrections are due to &, and §.. This
means that an improved key rate could be obtained by
using tighter confidence intervals for the estimation of
these parameters. This, in turn, would allow us to reduce
the block-size without compromising composable security.

1 B Asymptotic
107'F

10721

< %/

Secret key rate (bits per channel use)
X
< %

10731 4

. . . . . L
0 1 2 3 4 5 6
n (dB)

FIG. 2. The composable secret key rates versus the channel
loss for QPSK encoding, for collective attacks in the regime of
finite n. The channel parameters are |¢| = 0.5, u = 0.001, and
& = 0.97. The solid line is the theoretical rate expected in the
asymptotic limit of # — oo and for ideal heterodyne detection,
from Ref. [16]. For nonideal heterodyne, the expected rate is
computed from the finite-dimensional semidefinite programs and
by taking into account finite-size corrections as described in Sec.
IX.Ford = 16 and R = 7, the plot shows the results for n = 10'°
(crosses), n = 10'! (triangles), and n = 10'? (stars). The error
parameters are €, = €, = epg = 10710,

XI. CONCLUSIONS

In CV QKD, information is decoded by a coherent mea-
surement of the quantum electromagnetic field, i.e., homo-
dyne or heterodyne. These are mature technologies and
they represent the strategic advantage of CV QKD over
discrete-variable architectures. This applies to both contin-
uous [3,4,13,24] and discrete modulation protocols [5,16—
18,20,30,31]. Ideal homodyne and heterodyne detection,
which are measurements of the quadratures of the field,
possess a continuous symmetry that plays a central role
in our theoretical understanding of CV QKD. However,
this symmetry is broken in real homodyne and hetero-
dyne detection that are implemented in actual experiments
[14,15]. While it is expected that, in practice, these mea-
surements will be well approximated by their idealized
models in some regimes, a quantitative assessment of the
error introduced by this approximation, and of its impact
on the secret key rate, has so far been elusive. Here, we
fill this gap and present a theory to quantify the security of
CV QKD with real imperfect heterodyne detection. Within
this theory, we establish the composable security of DM
CV QKD in the nonasymptotic regime. To the best of our
knowledge, this is the first result obtained in this direc-
tion, as previous works have only considered asymptotic
noncomposable security [16—18,20]. Extension to most
general attacks, which in principle can be obtained through
a de Finetti reduction, remains an open problem.

In this paper, we extend the approach of Ref. [17], in
which one first estimates the covariance matrix of the
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quadratures, and then obtain a bound on the key rate
using the property of extremality of Gaussian states. How-
ever, our theory can also be applied to the method of
Refs. [18,20], in which one uses the measured data to
bound the key rate directly through nonlinear semidefinite
programming. We focus on a particular kind of nonide-
ality in detection but our approach can be applied to
other nonidealities in both detection and state prepara-
tion. Examples of these nonidealities include nonlinear-
ities in the analog-to-digital converter [32] and noise in
the state preparation [16]. In principle, accounting for
experimental imperfections in the security analysis miti-
gates the threat from side-channel attacks. Our approach
may also be extended to measurement-device-independent
QKD [29,33,34], which protects against unknown side-
channel attacks on the detectors. The results presented here
are not only conceptually important but also enable secure,
practical, and reliable DM CV QKD. In fact, to obtain
reliable bounds on the secret key rates, the practitioner of
CV QKD needs to carefully assess, in a composable way,
finite-size effects as well as the impact of nonidealities in
the measurement devices, including but not limited to, the
effects of finite range and precision considered in this work.
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APPENDIX A: HOLEVO INFORMATION

Consider a two-mode state p4p shared between Alice
and Bob. We denote by a and &', and b and b, the annihi-
lation and creation operators on Alice’s and Bob’s mode,
respectively. Their local quadrature and phase operators
are g4 = (a+a")/v2, ps=(a—a")/(iV2), g5 = b+
Y V2, ps = (b—b") /(iﬁ). The symmetrically ordered
CM y’(p) of the two-mode state o is defined as

7 2(q4,p4) 9498 4P
Tr (q4,p4) ri PaqB DaPB
2
944 qBP4 qz >(qB,PB)
PB4 DBDA (45, PB) P

(AT)

where X (x,y) := (xy + yx)/2. The CM can be written in

a block form as
, (4 C

where 4, B, and C are 2 x 2 matrices. We denote as
vy and v_ the symplectic eigenvalues of y’(p). When
Bob measures his mode by ideal heterodyne detection, the
conditional state of Alice has CM

(A2)

Y (pap) =4 — C(B+1/2)7'CT. (A3)

We denote vy as the symplectic eigenvalue of y (045).
The property of extremality of Gaussian states yields the
following bound on the Holevo information:

x(VE), < Fyly'(p)], (A4)
where
Fyly'(0)] = g(v4—1/2) + g(v-—1/2) — g(vo — 1/2),
(A5)
and for any x > 0, the function g is defined as
gx) =+ 1Dlog, (x+ 1) —xlog,x, (A6)

and g(x) :=0ifx = 0.
It is possible to show [24] that the function F, increases
if we replace y'(p) with the matrix y (p):

(4%, pD) g) , A 0

0 E(qAapA) 0 —A
el A 0 x@pd o0 |
0 —A 0 (g3 p3)
(A7)

where A := (q49p — papp)/2. From this, we obtain the
bound
X(YE), < Fyly(p)], (A8)

Note that

1

ya(p) = 5Tr[<a*a +aa')p] = Tr{p= (g5, p)], (A9)
1

y5(p) = STrl(b'b + bb")p] = Trp X (g pp)], (A10)

1
yap(p) = 5Tr[<aT b +ab)p] = Tr[pA].  (All)

Obviously, F[y(p)] is a function of y4(p), yz(p), and
v48(p). We therefore define

Sx[va(p), v8(P), va(p)] :== Fy [y (p)]. (A12)
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APPENDIX B: QPSK: EB REPRESENTATION

In the PM representation, Alice prepares the state

|oty) with probability P, = 1/4, for &, = ae™™/* and x =
0,1,2,3, where we put o = |a|e™™/4.
The average state prepared by Alice is
! > o e (B1)
P4 = 4 Oy ) \Ox|.

X

We can expand this state in the number basis. Its (n,n’)
entry is

—la| non
nn' e o0y
A B2
& 4 = il (52)
— e i Z i(n—n')xm /2 (B3)
4 a/nvn/v

el g / /
— 1 (n—n )n/2> (1 (n—n )7'[) )
1 PP ( +e +e
(B4)

. /
That is, o}
case,

= 0 unless n — #’ is a multiple of 4, in which

n=n
,Onn/ - e—|0l\2 a'o
’ - .
4 nln'!

As this state is invariant under rotation of /2 in phase
space, the eigenvectors have the form, fory =0, 1,2, 3,

(B3)

|6y) =Y cyaly +4n). (B6)
n>0
From
1
7 2ol = 3 Al (@], (B7)
x ¥
we obtain
y+4
—olelP2 Y
Cop=¢€ B8
Vv e, oAt (BS)
By imposing normalization, we find
e—lal?/2 o) Han
lpy) = v (B9)
y S =V +4n)!
where
|a|2(y+4n)
(B10)

A, = el Z —_—
4 (v +4n)!

Explicitly,

e lol?

Ao = (coshoz2 + cos az) , (B11)
e lal?

A= (sinhe + sina?) (B12)
o lel?

Ay = (cosha® — cosa?), (B13)
e—lol?

Ay = (sinha® — sina?). (B14)

We define the purification of the state p4 through its
Schmidt decomposition,

W) = ZF 16)) 1), (B15)
where
_ e—\a|2/2 ar
l¢y) = ly (B16)
VN S Vo)
It is easy to check that
o) = Y2010y, (B17)
v
which we can invert to obtain
e—txyrr/2
Vislgy) =) — ) (B18)
We can then write
W) = Z VA1) 18)) (B19)
eflxyﬁ/Z _
= 4 |¢y>|ax> (BZO)
xy
1
=5 D), (B21)
where we define
Y) = Z 0|6, (B22)
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APPENDIX C: OPERATORS IN THE NUMBER
REPRESENTATION

We now express the operators that appear in our semi-
definite programs in the basis {|y) ® |1)}x=0... 3:1=0.....005
where |n)’s are the number states of Bob’s side, satisfying
bb|n) = n|n).

The operator pp is a density matrix of one bosonic mode.

We can express it in the number basis, {|7)},=0.... 00, as
ps =Y purin)in (C1)
nn’'=0
Similarly, p4p reads
3 [e'e)
pas =Y Y peur Y)Y @ )0 (C2)

xx'=0nn'=0

The operator IT projects into the subspace with at most
N = | 2R?| photons, i.c.,

N
=2 Innl (C3)
n=0
Therefore,
1 al 1
STb"D + bbHIT = > (n + 5) ) (nl.— (C4)

n=1

The operator V is

d*B
_ 12
Y- }jk:wju /Ijk “Lioys

where

=Y Vwln], (C5)

nn'=0

d? 2
v,m/—iju f EP ﬁﬂ_ (©6)

Note that, by symmetry, V,,, = 0 unless n — r’ is multiple
of 4. Also by symmetry, V is a real matrix in the Fock
basis.

Similarly, we have

d2
U= P \6)p Z UnrIn) ('], (CT)
BeR®) T =0
with
d?
U, = / dB 52 PP g (C8)
BeR®) T v nln'! I

The covariance operator in the objective function reads

1
E(arnbn +4' 1 1)

1 3 N
=5 2 D alUlaly) ) (Y| ® In = Dnl

xx'=0 n=1

+ Vn(la" [e) [ (] @ [ (n — 1,

1 3 N
=5 2 D alUlaly) ) (Y| ® In = 1in

xx'=0 n=1

(C9)

+ V(Y lal ) [V (Y| ® n)(n — 1. (C10)
To compute this, first note that
- - _ )\y—l
(@y-1laldy) =& | =, (C11)
y
from which we obtain
e
(Wlalyre) = 7 Y P2 (@ laldy)  (C12)
»'=0
13
— Z Zet(v—l)xn/Ze—tyx ﬂ/2<¢y—l|a|¢y> (C13)
y=0
1< Ay
— = i(y—1)xm/2 —zy'c '7/2 —1 Cl4
a ) e P
y=0
1< A
—F iy (x—x")m /2 y—1 15
& Z W (C15)
=0
Finally, the operator C has components
1 d2/3 ) ﬁan’
Cxx/nn/ = = OxQly ,Bk/ _ei‘ﬁl —
2 j%; Sy valn'l
B g2 B'B”
z 5 " 1612
o 1;1 Bik / - T
(C16)
The operator can thus be written as
1
C:E(A*®B+A®BT), (C17)
where
3
A=) (Yl (C18)

x=0
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d d2,3 e ﬂnlgn’ ,
B=3 o [ Lt L e

nn' j.k=1 Lk

Note that, by symmetry, [B],,y = 0 for n — n’ even. Also
by symmetry, the entries of C are all real.

APPENDIX D: SEMIDEFINITE PROGRAMMING

In the main text of the paper, we formulate the following
optimization problems:

1 N
maximizeE(H(bTb + bb")II, p)

p=0
subject to(V, p)< v (D1)
U,p)= 1—="Py(R)
(I, p)= 1.
and
1
minirglizez (aT1bT1 + a' 161, p)
o=
subjectto(/ ® V, p)< v
(C,p)=c (D2)
(I®U,p)= 1—Py(R)
Trp(p)=0o
(I,p)=1,

where (4,X) = Tr(4'X) denotes the Hilbert-Schmidt
inner product. To derive the corresponding dual programs,
which are more numerically efficient to evaluate, we revisit
duality theory for SDP with mixed constraints. Given any
semidefinite program of the form

minimize(C, X')
X>0

subject to(4;, X )< a;

where C, 4;, and B; are Hermitian matrices, the Lagrangian
is given by

L=(CX)+ ) yi(dnX)=a) + Yz (B, X)=by),
| ] (D4)

where y; > 0,z; € R. By linearity of inner products, we can
rewrite the Lagrangian as

L=(CH+ ) yidi+ ) zB,X)=) yiai— ) zb;.
i j j j

(D5)

The Lagrange dual is then given by

> zb

maximize— E yia; —
i J

vi=0,z; eR

subject toC + Y _yid;i+ Y _zB;> 0. (D6)

J

The Lagrange dual of Eq. (D1) is thus given by

minimizey v — y2[1 — Po(R)] + z
y1.2=0,2€R
1
—EH(bTb + b 43,V — yold 4 21> 0.
(D7)

Strong duality in this case holds because the inequality
constraints can be strictly feasible and the Slater constraint
qualification holds.

The Lagrange dual of Eq. (D2) can be written as

minimize yic — v + y3[1 — Po(R)] — y4 — ¢ (2)
Y123 2(])1§y4 €R
Zhk€

1
subject toE(aHbl'[ +d'TIH ) + k(y,2)> 0.  (D8)

where

k(.2) = —NC 43V = st +yal + > zniZigs (D9)
ok

¢G) =Y znRe(0nr) + Y zaslm(one),

h>k h<k

(D10)

and Zh,k = Eh,k ® Iz when h >k and Zh,k = Fk,h ® I
when i < k, with

Eup = |k) (A] er Ih)(kl, D11
Fup =i |k) (h] ; 1) (kI (D12)

To solve these optimization problems numerically, we
need to impose a cutoff to Bob’s Hilbert space, and work
within a finite-dimensional space of dimensions dim, con-
taining no more than (dim — 1) photons on Bob’s side. The
value of dim can be arbitrarily large, as long as it is larger
than N + 1, where N = |2R?] is determined by the rank
of the projector I1. However, our numerical results suggest
that it is sufficient to put dim = N 4 1. As an example,
Fig. 3 shows the optimal values for QPSK encoding and
for the optimization problems given in Egs. (D7) and (D8),
as a function of dim.
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FIG. 3. The optimal values plotted versus the Hilbert space

cutoff dim, for Eq. (D7) (circles) and Eq. (DS8) (crosses), and
forR=7,d =16, =0.5,7 = 0.1,and u = 0.001. The optimal
values are largely independent of dim as long as dim > |R*| + 1.

APPENDIX E: QPSK: SECRET KEY RATES

As a concrete example, we apply our theory to QPSK
encoding, where o, = oi* and P, = 1/4, forx =0, 1,2, 3.
To align with the symmetry of our model of realistic het-
erodyne detection, we set a = |a|e”™/*. We simulate a
Gaussian channel from Alice to Bob, characterized by the
loss factor n € [0, 1] and the excess noise variance u > 0.

First, we compute the expected value for the mutual
information,

IX;Y) =H(Y) — H(YX), (E1)
where H(Y) is the entropy of Bob’s measurement out-
come and H (Y]|X) is the conditional entropy for a given
input state prepared by Alice. If Alice prepares the coher-
ent state |o,), with oy = (gx + ipx)/«/z, then the state
pp(x) received by Bob is described by the Wigner function
W.(q,p), where

1 G 4)* =T o)

- e 2+1/2)
TQu+1)

W.(q,p) = (E2)

From this, we obtain the probability density of measuring
B = (g + ip)/~/2 by ideal heterodyne detection,

1 1 Rl qx;+<f)—ﬁ p)? 3
J— [ — u+
n(ﬁlﬂg(X)lﬂ) D) e , (E3)
and, in turn, the probability of measuring B € Ly,
P = — d*B(Blps(x)|B) = Pjjx Prye,  (E4)

T Jpezy

where
» _lerf[(2+d—2j)R+dﬁqx]
=0 dJ2w + 1)
1 (d—2j)R+d\/ﬁqxi|
2erf|: NG ICERY] . (ES)

For QPSK encoding, the conditional mutual information
then reads (log in base 2)

3 d
1
H(Y|X) = _Z E E ijlx logl’jk|x. (E6)
x=0j k=1

The probability distribution of Y is obtained by averaging
over X, Py =1/4 Zizo Pjyx and the entropy of Y is

d
H(Y) ==Y PylogPy.

k=1

(E7)

Similarly, we compute the expected values for the esti-
mated parameters v and c¢. We obtain

3 d
1 i + DxDk
TrCoan) = 3 3 3. TR Py,

E8
| > (ES)
x=0j k=1
d 2 2
q; + Py
Tr(Vps) = ), ~—— Pi (E9)
j k=1
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