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A (k,n)-threshold secret-sharing scheme allows for a string to be split into n shares in such a way that any

subset of at least k shares suffices to recover the secret string, but such that any subset of at most k − 1 shares

contains no information about the secret. Quantum secret-sharing schemes extend this idea to the sharing of

quantum states. Here we propose a method of performing computation securely on quantum shared secrets. We

introduce a (n,n)-quantum secret sharing scheme together with a set of algorithms that allow quantum circuits

to be evaluated securely on the shared secret without the need to decode the secret. We consider a multipartite

setting, with each participant holding a share of the secret. We show that if there exists at least one honest

participant, no group of dishonest participants can recover any information about the shared secret, independent

of their deviations from the algorithm.

DOI: 10.1103/PhysRevA.96.052333

I. INTRODUCTION

The connected nature of modern computing infrastructure
has led to the widespread adoption of distributed and delegated
computation [1], with hard computational tasks routinely dele-
gated to remote computers. In such a setting, the computation’s
security is a real concern. In the field of quantum cryptography,
aside from quantum key distribution [2,3], quantum algorithms
have appeared for secure computation tasks such as secure
multiparty computation [4], blind computation [5–8] and
verifiable delegated computation [9–13]. We focus on a
different form of secure computation; namely, the evaluation
of quantum circuits on shared secrets.

A secret sharing scheme keeps an r-bit string r as a
secret, via encryption into an s-bit string s. These s bits are
subsequently distributed among n parties, with the intention
that, whenever the colluding parties are too few, they cannot
perfectly recover the secret r. Reversibility of the encryption
allows the secret r to be recovered when all of the n

parties assemble the data that they were distributed. In a
(k,n)-threshold scheme for classical secret sharing [14,15],
no group with fewer than k colluding parties can reconstruct
the secret r, and any k parties can reconstruct r. Similarly
in a (k,n)-threshold quantum secret sharing scheme, a secret
quantum state of s qubits is shared among n parties such that
no group fewer than k colluding parties can reconstruct the
secret quantum state [16–20], and any k parties can reconstruct
the secret quantum state. Here, we present an (n,n)-threshold
quantum secret sharing scheme that also supports provably
secure evaluation of quantum circuits on the shared secret,
where the size of each share is independent of the number of
parties.

Threshold secret sharing schemes that support computation
in the classical context have been extensively studied. When
the parties interact only via broadcast channels and if the size
each party’s share grows with n, arbitrary Boolean functions
can be computed on (k,n)-classical threshold secret sharing
schemes for any k [21]; if instead the size of each party’s share

*yingkai_ouyang@sutd.edu.sg

must be equal to the secret’s size, only linear functions can be
computed whenever k � 2 [21]. The problem of only being
able to compute linear functions in a threshold secret sharing
scheme is often circumvented by assuming its verifiability
[22]. However, verifiable secret sharing [23] is impossible
without an honest majority when only broadcast channels
are permitted [24]. Indeed previous schemes for multipartite
quantum computation build upon quantum verifiable sharing
schemes which also require an honest majority [25,26].
Since our scheme works with at least an honest party, it is
not a generalization of any classically existing scheme to
the quantum case, and is markedly different from previous
schemes for secure multipartite quantum computation.

Our secret sharing scheme with computation is closely
related to quantum homomorphic encryption schemes [27–31],
which allow the performed quantum computation to be public
and require the decoding algorithm to be independent of
the depth of the computation. Indeed, we are motivated
by a quantum homomorphic encryption scheme [29] that
supports transversal evaluations of Clifford gates and present
a secret sharing scheme that allows the evaluation of Clifford
gates by requiring the n noninteracting parties to perform
the corresponding Clifford operations in parallel. A constant
number t of non-Clifford gates can also be implemented
securely via a coordinated gate teleportation by using logical
magic states. Our encoding is based on a randomized stabilizer
code, and indeed in a similar manner it is possible to derive
a range of secret sharing schemes which allow for varying
nonuniversal combinations of gates to be evaluated locally
(and hence securely) based on error-correction codes which
allow transversal evaluation of these gates. Our innovation is
twofold: we show how to achieve an (n,n) threshold scheme,
which is not possible based on any single quantum error-
correction code due to upper bounds on the distance [32], and
we show that universality can be achieved through the use of
gate teleportation using magic states. While this second claim
may seem an obvious consequence of corresponding results in
quantum fault tolerance, this does not directly follow. Rather,
it is important to show that the communication necessary to
apply correction operators following gate teleportation cannot
be used to compromise the security of the shared secret,

2469-9926/2017/96(5)/052333(5) 052333-1 ©2017 American Physical Society



OUYANG, TAN, ZHAO, AND FITZSIMONS PHYSICAL REVIEW A 96, 052333 (2017)

......
.

..
.

......
.

..
.

..
.

..
.

....

..
.

..
.

..
.

FIG. 1. The upper portion of the figure shows the secret and the

magic states, located on the first column, and shaded red and green,

respectively. The unshaded qubits are initialized in the maximally

mixed state. The unitaries U1, . . . ,UN spread the states from qubits

in the first column to qubits in the remaining columns, such that the

encoded secret resides in the first s rows of qubits. Each party receives

a single column of qubits.

even when all but one party behave dishonestly. Since the
security of our scheme is independent of the security of
the quantum homomorphic encryption scheme in Ref. [29],
the no-go results for fully quantum homomorphic encryption
schemes with both perfect [33] and imperfect [34] information
theoretic security do not limit the class of circuits which can
be evaluated.

II. SECRET SHARING SCHEME

Our secret sharing scheme comprises of four procedures
as described in Algorithm 1. We label qubits according to a
two-dimensional arrangement as depicted in Fig. 1. In the input
procedure of Algorithm 1, N = s + t qubits are initialized
on a single column, with the first s qubits containing the
quantum secret, and the last t qubits each initialized in the
magic state τ = I

2
+ X+Y

2
√

2
, where I , X, Y , and Z are the usual

Pauli matrices. These magic states are consumed during the
evaluation in reverse order, starting from the last row. We
focus on the case where n − 1 is divisible by four. This is not
a limiting factor, since one can prepare ⌈ n−1

4
⌉ + 1 shares and

give multiple shares to a single party. In the encoding procedure
of Algorithm 1, n − 1 additional columns of N qubits in the
maximally mixed state are appended. This yields an Nn-qubit
quantum state arranged in a grid with N rows and n columns.
Subsequently a unitary encoding U is applied on the Nn qubits,
which spreads the quantum secret from the first column to all
the n columns. Here U = U1 ⊗ · · · ⊗ UN is a tensor product
of the unitaries U1, . . . ,UN , where each Ux acts only on the xth
row of qubits and comprises of only CNOT gates. Specifically,
Ux = BxAx , where (i) Ax comprises n − 1 commuting CNOT

gates with controls all on the first column and targets on each
of the remaining columns, and (ii) Bx comprises of n − 1
commuting CNOT gates with targets all on the first column

and controls on every other column. Although Ux is a fixed
unitary, the induced encoding is random because n − 1 of the
qubits that Ux acts on are random; the qubits from the second
column to the last column are initialized as either |0〉 or |1〉
with probability 1

2
. This random encoding maps the quantum

secret into a highly mixed state [29]. In the sharing procedure
of Algorithm 1, the Nn-qubit quantum state is shared equally
among n parties, with each party receiving a single column of
N qubits. In decoding procedure of Algorithm 1, the n shares
are assembled, the inverse encoding circuit U † is performed,
and all but the first column of qubits are discarded, which
leaves the quantum secret.

III. EVALUATION ON THE SHARED SECRET

To evaluate a quantum circuit on the shared secret, each
party performs quantum computation only on their share of
the quantum state. We consider the approximately universal
model of quantum computation based on a discrete set of gates
composed of Clifford group gates and a single non-Clifford
group gate, in this case T = |0〉〈0| + eiπ/4|1〉〈1| although
other choices are possible. Quantum circuits composed of
arbitrarily many Clifford gates and up to some constant number
t of T gates can be evaluated on the shared secret. We consider
the evaluation of a sequence V = (V1, . . . ,VL) of such gates
on the s-qubit quantum secret shared by n parties. The gates
V1, . . . ,VL are unitary matrices on s qubits and are assumed
to be known to every party. By using the knowledge of V ,
each party implements a sequence of operations on their share
of the qubits, as specified in Algorithm 2. The computation
is performed between the sharing and decoding procedure of
Algorithm 1, as we now describe.

When Vi is a Clifford gate applying nontrivially on some
set of logical qubits, each party performs Vi on the corre-
sponding subset of their column of qubits, thereby collectively
implementing V ⊗n

i . This procedure is depicted in Fig. 2(a) for
single-qubit Clifford gates, and in Fig. 2(b) for a CNOT gate.
Let P = {I,X,Y,Z} denote the set of the Pauli matrices. Then
the divisibility of n − 1 by four implies that, for σ ∈ P ,

Ux(σ ⊗ I⊗n−1)U †
x = σ⊗n. (1)

Since Vi is in the Clifford group, it maps the Pauli group onto
itself,

Ux(ViσV
†
i ⊗ I⊗n−1)U †

x = V ⊗n
i σ⊗n(V

†
i )⊗n. (2)

Hence the transversal Clifford group gates correspond to the
logical Clifford group gates on our random code space [29].

Via gate teleportation, one can perform a constant number t

of T gates on the quantum secret. For each T gate to be per-

formed, a logical magic state τ̃ = I⊗n

2n + X⊗n+Y⊗n

2n
√

2
is prepared.

This is achieved by the input and encoding procedures of
Algorithm 1, however one could replace this presharing of
magic states with a procedure for the parties to interactively
prepare states on demand without the involvement of the initial
sharer. Each of these logical magic states is located on the last t
rows. To prepare τ̃ on the xth row, the first qubit in the xth row
is initialized as T H |0〉 with the remaining qubits maximally
mixed. The encoding unitary Ux is subsequently applied. To
evaluate the kth T gate on qubit j of the shared secret, each
party applies a CNOT with control on the j th qubit and target
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Algorithm 1 Secret sharing scheme.

Here, Hx,y labels the qubit on the xth row and the yth column, and Rx labels the qubits in the xth row.

1. Input. From the s-qubit quantum secret, assign the xth qubit to Hx,1 for x = 1, . . . ,s. Assign τ to each of HN−k+1,1, . . . ,HN,1.

2. Encoding. To prepare the xth logical qubit for x = 1, . . . ,N :

(a) Prepare each of Hx,2, . . . ,Hx,n in state I

2
.

(b) Apply Ax . Perform a CNOT with control on Hx,1 and target on Hx,y for every y = 2, . . . ,n.

(c) Apply Bx . Perform a CNOT with target on Hx,1 and control on Hx,y for every y = 2, . . . ,n.

3. Sharing. Assign the qubits in the yth column to the yth share for y = 1, . . . ,n.

4. Decoding.

(a) Assemble the n shares.

(b) For each x = 1, . . . ,N , implement Bx followed by Ax on Rx .

(c) Output the qubits in the first column, discarding all other qubits.

on the kth last qubit of their share. They then apply a CNOT

with control on the kth last qubit and target on the j th qubit.
Each party y then measures the kth last qubit in the {|0〉,|1〉}
basis and broadcasts the measurement result my to every other
party over a public classical channel. Lastly, if the parity of the
measurement results m is odd, each party applies a single-qubit
Clifford gate SX on the j th qubit. If the parity is even, no such
correction is necessary. Figure 2(c) depicts this procedure. This
method of evaluating each T gate amounts to implementing
a logical gate teleportation algorithm consuming one magic
state [35].

Denoting I = I⊗n, X = X⊗n, Y = Y⊗n, and Z = Z⊗n,
the correct implementation of a logical T gate on the state
ρ̃ = 2−n(I + aX + bY + cZ) shared by the j th qubit of each
party must yield 1

2n (I + (a−b)√
2

X + (a+b)√
2

Y + cZ). This follows

from the conjugation relations for the T gate given by T XT † =
1√
2
(X + Y ), T YT † = Y−X√

2
, and T ZT † = Z. Every party then

performs the CNOT gates and performs the measurements
as depicted in Fig. 2(c). The parity of m = (m1, . . . ,mn) is
equivalent to the observable Z on the kth last qubit of each
share. If the parity is even, the resultant state on the j th qubit
of every party is collectively

ρ̃even =
I

2n
+

(a − b)X

2n
√

2
+

(a + b)Y

2n
√

2
+

cZ

2n
, (3)

and the evaluation of the T gate is successful. If the parity is
odd, however, the resultant state of these qubits is

ρ̃odd =
I

2n
+

(a + b)X

2n
√

2
+

(a − b)Y

2n
√

2
−

cZ

2n
. (4)

Applying SX to each qubit transforms the state into ρ̃even,
resulting in a correct evaluation of the T gate.

IV. SECURITY OF THE SCHEME

A (k,n)-threshold quantum secret-sharing scheme [17,18]
is a quantum operation that maps a secret quantum density
matrix to an encoded state that can be divided among n parties
such that (1) any k or more parties can perfectly reconstruct
the secret quantum state, and (2) any k − 1 or fewer parties can
collectively deduce no information about the secret quantum
state. Algorithm 1 satisfies the first property when k = n, since
the encoding procedure is perfectly reversible with inverse
operation given by the specified decoding procedure. For the
second property, consider the result of encoding a state

ρsecret = 2−s
∑

σ∈P⊗s

wσσ (5)

according to Algorithm 1. Here σ = σ1 ⊗ · · · ⊗ σs , and wσ =
1 when σ is the trivial Pauli operator, σ = I⊗s . It is the
coefficients wσ for the nontrivial Pauli operators σ in P⊗s

that collectively define the quantum secret. From Eq. (1), the
resulting state is

ρ̃secret = 2−s

(
∑

σ∈P⊗s

wσσ⊗n

)
⊗ τ̃⊗t , (6)

where the tensor product in σ⊗n is taken across different shares
of the secret. Property (2) follows, since the reduced density
matrix for any subsystem of n − 1 shares (i.e., n − 1 columns)
is necessarily the maximally mixed state, because all nontrivial
σ are traceless.

Regarding the security of Algorithm 2, we consider the
state of the system across a bipartition between a single honest
party, who follows the algorithm, and the remaining n − 1
parties who are unrestricted in their actions. We show that the
bits broadcast by the honest party are uniformly random and
independent of the other parties’ actions. Given a sequence of

Algorithm 2 Gate evaluation on shared quantum secret.

Given a gate Vi to be evaluated on the shared secret:

1. Clifford group. If Vi is in the Clifford group each party applies Vi to their share.

2. T gates. If Vi is a T gate on qubit j , each party y does as follows:

(a) Apply a CNOT gate controlled by qubit j and targeted on qubit N − k + 1.

(b) Apply a CNOT gate controlled by qubit N − k + 1 and targeted on qubit j .

(c) Measure qubit N − k + 1 in the computational basis, and broadcast the result my .

(d) If the parity of m = (m1, . . . ,mn) is odd, apply the correction operator SX to qubit j .

052333-3
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(a)

(b)

(c)

FIG. 2. The secret qubits are shaded red and the others in green.

(a) Multipartite implementation of a logical Clifford gate G on the xth

row. (b) Multipartite implementation of a logical CNOT operator. (c) A

logical gate teleportation protocol that implements a logical T gate on

the j th logical qubit without the Clifford correction. Collectively, the

qubits on the subsequently measured row are initialized in a logical

magic state. Correction proceeds by broadcasting the measurement

outcomes, and having each party apply a single Clifford gate SX on

the j th qubit only when m has odd parity.

gates (V1, . . . ,VL) with the honest party acting as described
by Algorithm 2, our strategy is to show that after evaluation of
the ℓth gate, the state of the system has the form

ρ
(ℓ)
joint =

∑

σ ∈ P⊗s

θ ∈ {I,X,Y }⊗t−k

b
(ℓ)
σ,θ

(
σ ⊗ θ

2N

)
⊗ χ

(ℓ)
σ,θ , (7)

where k � ℓ is the number of T gates in (V1, . . . ,Vℓ), {b(ℓ)
σ,θ } is

a set of scalars, and {χ (ℓ)
σ,θ } is a set of operators on the dishonest

parties’ system. We have excluded the honest party’s measured
qubits, because these are in a product state with the rest of the
system.

Our proof is inductive. We assume that the system is in a

state ρ
(ℓ−1)
joint of the form of Eq. (7) after evaluating the first ℓ − 1

gates. If Vℓ is a Clifford group gate, the honest party applies
Vℓ on some subset of the first s qubits of their share, while
the dishonest parties may perform any completely positive
and trace preserving map on their side of the bipartition.

Since VℓI
⊗sV

†
ℓ = I⊗s and VℓP

⊗sV
†
ℓ = P⊗s , linearity of the

operation applied by the dishonest parties on their side of the

bipartition results in the state ρ
(ℓ)
joint in the form of Eq. (7)

as claimed. When Vℓ is a T gate on qubit j , the situation
is more complicated. Since the honest party’s actions only
affect the j th qubit and kth last qubit of its share, the effect
of these actions on all combinations of Pauli operators on

these two qubits which can have nonzero coefficients in ρ
(ℓ−1)
joint

is given by the first column of Table I. By applying CNOT

TABLE I. The values of (i) σj ⊗ θk , (ii) the resulting operator τj,k

after applying steps 1 and 2 of the T -gate procedure of Algorithm 2,

and (iii) (I ⊗ 〈mH|)τj,k(I ⊗ |mH〉) for σk ∈ P , θk ∈ {I,X,Y }.

σj ⊗ θk τj,k (I ⊗ 〈mH|)τj,k(I ⊗ |mH〉)

I ⊗ I I ⊗ I I

I ⊗ X X ⊗ X 0

I ⊗ Y Y ⊗ X 0

X ⊗ I I ⊗ X 0

X ⊗ X X ⊗ I X

X ⊗ Y Y ⊗ I Y

Y ⊗ I Z ⊗ Y 0

Y ⊗ X Y ⊗ Z (−1)mHY

Y ⊗ Y −X ⊗ Z (−1)mH+1X

Z ⊗ I Z ⊗ Z (−1)mHZ

Z ⊗ X Y ⊗ Y 0

Z ⊗ Y X ⊗ Y 0

operations as prescribed by the first two steps of the T -gate
procedure in Algorithm 2, the honest party transforms these
operators into the corresponding Pauli operators given by the
second column of Table I. The absence of I ⊗ Z implies that
the expectation for mH, the measurement result of the honest
party’s measurement, is precisely zero. Hence mH is uniformly
random and independent of the nontrivial weights {bσ,θ }. The
measurement’s effect on the Pauli operators is given by the
third column of Table I, which implies that the resulting state
is in the form of Eq. (7). Since the correction SX is a local

Clifford group operator, the final state ρ
(ℓ)
joint is of the correct

form independent of the parity of m. Since the initial state after
sharing, given by Eq. (6) is of the form of Eq. (7), the induction
hypothesis holds for all 0 � ℓ � L, and the measurement
results of the honest party convey no information usable by
the dishonest participants to recover ρsecret.

V. CONCLUSION

Our scheme therefore represents an (n,n)-threshold secret
sharing scheme that also allows evaluation of quantum circuits
on the shared secret without lowering the threshold. While
the complexity of such circuits is limited in terms of the
number of T gates to the number of corresponding magic states
incorporated in the initial sharing, the possibility of creating
such states as needed without involving the initial sharer
presents an interesting avenue for future research. Intuitively,
the security of our scheme is based on a randomized error-
correction code which leaves only weight n operators constant
while admitting transversal Clifford gates. This suggests that
the use of less random error-correction codes will allow for
(k,n)-threshold schemes for other values of k.
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