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Future quantum computers are likely to be expensive and affordable outright by few, motivating client/server

models for outsourced computation. However, the applications for quantum computing will often involve

sensitive data, and the client would like to keep her data secret, both from eavesdroppers and the server itself.

Homomorphic encryption is an approach for encrypted, outsourced quantum computation, where the client’s

data remains secret, even during execution of the computation. We present a scheme for the homomorphic

encryption of arbitrary quantum states of light with no more than a fixed number of photons, under the evolution

of both passive and adaptive linear optics, the latter of which is universal for quantum computation. The scheme

uses random coherent displacements in phase-space to obfuscate client data. In the limit of large coherent

displacements, the protocol exhibits asymptotically perfect information-theoretic secrecy. The experimental

requirements are modest, and easily implementable using present-day technology.

DOI: 10.1103/PhysRevResearch.2.013332

I. INTRODUCTION

In the upcoming quantum era, it is to be expected that

client/server models for quantum computing will emerge,

owing to the high expected cost of quantum hardware. This

necessitates the ability for a client (Alice), possessing data she

wants processed, to outsource the computation to a host (Bob),

who possesses the costly quantum computer. In such a model,

security will be a major concern. The types of applications to

which quantum computing will initially be most relevant will

contain sensitive data, whether it be strategically important

information, or valuable intellectual property, or confidential

personal information. This raises the important question of

how Alice can outsource computation of her data such that no

adversary Eve, or even the server Bob, can read her data—she

trusts no one!

Homomorphic encryption is a cryptographic protocol that

achieves this objective. Alice sends encrypted data to Bob,

who processes it in encrypted form, before returning it to

Alice. The essential feature is that computing the data does not
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require first decrypting it—it remains encrypted throughout

the computation, ensuring that even if Bob is compromised,

Alice retains integrity of her data.

Classical homomorphic encryption has only been de-

scribed very recently [1–3], and a number of results for homo-

morphic quantum computation have been described [4–11].

In the case of universal quantum computation, such protocols

require a degree of interaction between Alice and Bob. How-

ever, it was shown in Ref. [4] that under certain restricted,

non-universal models for quantum computation, homomor-

phic encryption may be implemented passively, without any

client/server interaction, and requiring only separable, nonen-

tangling encoding/decoding operations. In that protocol, in

which single photons encode data, random polarization ro-

tations on Alice’s input photonic state obfuscate data from

Bob. Also, in Ref. [8], a similar protocol was presented using

phase-key encoding, whereby random rotations in phase-

space obfuscate Alice’s data, encoded into coherent states.

These two protocols are limited in their security by the fact

that the rotations in phase-/polarisation-space are correlated

across all inputs, thereby limiting the entropy of the encoded

input states, and hence its security. For example, with m

optical modes, polarization-key encoding is only able to hide

O(ln(m)) bits of information, falling far short of our utopian

ideal of perfect information theoretic security (i.e., hiding all

m bits of information in the case of 0 or 1 photons per mode).

The polarization- and phase-key homomorphic encryption

techniques are specific examples of a more general framework

for encryption, whereby the encoding and decoding opera-
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tions commute with the computation, thereby mitigating the

need for elaborate interactive protocols.

Here we consider an alternate technique that supersedes

both polarization- and phase-key encoding—displacement key

encoding, whereby random coherent displacements obfuscate

optically encoded quantum information. This idea has been

recently explored by Marshall et al. [12], where it was argued

heuristically why the scheme might be secure. Based on ex-

perimental data generated, Marshall et al. numerically showed

that the mutual information between the encrypted and the

unencrypted data can be made small as the variance of the

random displacements increases. This encouraging evidence

suggests that a displacement key encoding might offer perfect

security in the asymptotic limit. However, obtaining analyt-

ical bounds to quantify the security of the scheme has been

recognized to be a challenging issue, yet to be solved.

In this paper, we rigorously obtain explicit bounds on

the security of using a displacement key encoding, thereby

confirming the intuition of Ref. [12]. Moreover, the dis-

placement key encoding improves on the earlier polarization-

and phase-key techniques in two important respects. First,

we demonstrate that by choosing the encoding displacement

operators to be independent on each optical mode and to

follow a Gaussian distribution with an increasing variance,

any pair of encoded codewords will become increasingly close

in trace-distance and thereby increasingly indistinguishable.

Our encoding scheme is a weak information-theoretic security

encryption scheme with secrecy error that is twice of this

maximum trace distance, and this security definition has been

introduced in Ref. [13, definition 5]. We also remark that

the trace-distance metric we use is preferable to the mutual

information used in Ref. [12], because the trace distance

directly quantifies the indistinguishability of quantum states

while the mutual information does not. Second, our technique

is applicable to linear optics computations acting on quantum

states of light with no more than a fixed number of photons.

Constraining quantum states to have no more than a fixed

number of photons is reasonable, because quantum states that

are bounded in energy can always be well approximated by

quantum states that bounded in photon number, given that

sufficiently many photons is considered. This is far more gen-

eral than polarization-key encoding, which applies to single-

photon input states, or phase-key encoding, which applies to

input coherent states.

II. COMMUTATIVE HOMOMORPHIC ENCRYPTION

OF PASSIVE LINEAR OPTICS

A linear optics network [14], comprising only beam-

splitters and phase shifters, implements a photon-number-

preserving unitary map on the photonic creation operators,

Û â
†
i Û † →

m
∑

j=1

Ui, j â
†
j , (1)

where â
†
i is the creation operator for the ith mode, there are m

optical modes, and U is an SU(m) matrix characterising the

linear optics network.

Bob possesses both the hardware and software for imple-

menting the computation (Û ), which Alice would like applied

FIG. 1. General protocol for commuting homomorphic encryp-

tion of optical states under linear optics evolution Û , where Êi (Ê ′
i )

are the encoding (decoding) operations, which we require to be

separable.

to her input state (|ψ〉in), yielding the computed output state

(|ψ〉out = Û |ψ〉in).

Before sending her input state to Bob, Alice, who has

limited quantum resources, wishes to encode her input state

using operations separable across all modes, similarly for

decoding, i.e., we rule out entangling gates for Alice. To

achieve this, we require the commutation relation,

Û

[

m
⊗

i=1

Êi(k)

]

=
[

m
⊗

i=1

Ê ′
i (k)

]

Û , (2)

to hold, where Êi(k) (Ê ′
i (k)) is the encoding (decoding) op-

eration, with key k. Since Alice has limited classical compu-

tational power, she should determine the encoding/decoding

operations efficiently with a classical computer, and imple-

ment these operations efficiently. The model is summarised

in Fig. 1.

The most natural examples of schemes complying with this

model are ones where systems encoding quantum informa-

tion comprise two subsystems: a primary one in which the

computation is taking place; and, a secondary independent

one, which does not directly couple with the primary and

is unaffected by the computational operations. This allows

us to exploit the secondary subsystem (e.g., polarization) to

control the entropy of our codewords, without affecting the

computation in the primary subsystem (e.g., photon number).

III. DISPLACEMENT-KEY ENCODING

Phase-space displacement operations satisfy the required

commutation relation of Eq. (2). The displacement operation

adds coherent amplitude to an optical state, thereby translating

it in phase-space. This process is described by the unitary

displacement operator, given by,

D̂(α) = exp[αâ† − α∗â]. (3)

Displacement operations are easily experimentally imple-

mented using a low-reflectivity beamsplitter and a coherent

state (well approximated by a laser source) [15, Eq. (9.15)],

013332-2
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FIG. 2. Experimental realisation of the displacement operator. A

strong coherent state (|α〉) is incident on an extremely low reflectivity

(r) beamsplitter, where it is mixed with the input state (ρ̂in). The

output state (ρ̂out) is now given by the input state, displaced by

amplitude rα.

of the form

|α〉 = e− |α|2
2

∞
∑

n=0

αn

√
n!

|n〉, (4)

(see Fig. 2). The displacement amplitude is directly propor-

tional to the coherent state amplitude and the beamsplitter

reflectivity. A special case of displaced states are displaced

vacuum states, which are identically coherent states of the

same amplitude, D̂(α)|0〉 = |α〉.
The commutation relation between displacement operators

and linear optics evolution relates the output displacement

amplitudes �β = (β1, . . . , βm) to the input displacement am-

plitudes �α = (α1, . . . , αm), and is given by

Û D̂(�α) = D̂(�β )Û , (5)

where D̂(�β ) = ⊗m
j=1 D̂(β j ), D̂(�α) = ⊗m

j=1 D̂(β j ), and �β re-

lates to �α according to the unitary map

�β = U · �α. (6)

The computation required for Alice to determine her decoding

operations from her encoding operations is simple matrix

multiplication, which is efficiently computable [16]. Thus our

condition on the complexity of encoding/decoding is satisfied.

An input tensor product of displacement operations with

amplitudes �α on multiple modes may be be reversed by

applying inverse displacement operations with amplitudes �β
at the output, D̂(�β )† = D̂(−�β ). Specifically,

D̂(−�β )Û D̂(�α) = Û , (7)

allowing the computation, Û |ψin〉, to be recovered from the

encoded computation, Û D̂(�α)|ψin〉, via application of the

inverse of the encoding operation.

Our scheme extends trivially to the case where the server

is asked to perform any Gaussian operation, rather than only

passive linear optical evolution. This is because displacements

similarly commute with squeezing as one can see from

D̂(α)Ŝ(reiθ ) = Ŝ(reiθ )D̂(γ ), (8)

and all Gaussian operations can be expressed as linear-

squeezing-linear evolutions according to the Bloch-Messiah

decomposition [17,18], together with displacements, where

Ŝ(reiθ ) denotes a squeezing operator with r � 0, θ ∈ R and

γ = α cosh r + α∗eiθ sinh r.

The decryption circuit that Alice uses is identical in struc-

ture to her encryption operation, and Alice does not need

to able to perform arbitrary linear optical operations that

potentially requires up to m(m − 1)/2 beamsplitters. Rather,

Alice’s decryption circuit on m modes always requires only

m beamsplitters. Because of this, Alice’s decryption circuit

has exactly the same structure as her encryption circuit. Both

the encryption and decryption circuits can then in principle

be implemented using m Mach-Zehnder interferometers, and

such an optical circuit is independent of Bob’s LOQC. To find

out what coherent states to input into the beamsplitters for

the decryption, Alice needs only to know (1) her own secret

encrypting displacements, and (2) the unitary that Bob’s linear

optical circuit implements.

Unlike phase-key or polarization-key encoding, where the

encoding operations applied to each mode must be identical

for the encryption/decryption commutation relation to hold,

for displacements the amplitudes may be chosen indepen-

dently for each mode, while still preserving the desired com-

mutation relation. Intuitively, one would anticipate that the

ability to choose keys independently for each mode would im-

prove security, since the elimination of correlations between

input encoding operations allows the entropy of the encoded

state to be greatly increased, thereby making codewords less

distinguishable.

We examine this protocol in the context of input data

comprising of arbitrary pure quantum states of light with no

more than n photons. In the photon-number basis this implies

that

|ψin〉 =
n

∑

j=0

λ j | j〉, ρ̂in = |ψin〉〈ψin|, (9)

where | j〉 = 1√
j!

(â†) j |0〉 is a photon-number (Fock) state and

â† is the photonic creation operator, and |ψin〉 has unit norm

so that
∑∞

j=0 |λ j |2 = 1.

We consider states supported on no more than n photons,

because such states can well approximate states of bounded

energy in the following sense.

Lemma 1. Let ρ = ∑

j p j |φ j〉〈φ j | be a density operator

where every |φ j〉 has expected energy at most μ. Let n �

μ. Then there exists a density operator ρ ′ = ∑

j p j |φ′
j〉〈φ′

j |
where |φ j〉 has at most n photons and expected energy at most

μ for every j, such that

‖ρ − ρ ′‖1 � 4
√

μ/n + 4μ/n. (10)

One can see that the approximation error becomes small

when n becomes large for fixed μ. The proof of Lemma 1

follows trivially from Lemmas 11 and 12 in the Appendix.

Lemmas 11 and 12 show respectively that the trace-distance

between states can be related to the Euclidean norms, and the

approximation error for pure states can be bounded using a

connection with Markov’s inequality.

013332-3
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IV. SECURITY PROOF

The main result of our paper is the following theorem,

which implies that our encoding scheme in the limit of large

coherent displacements has weak information-theoretic secu-

rity.

Theorem 1. The trace-distance between arbitrary encrypted

states with at most n photons is at most ǫ, where

ǫ = 1

σ 2

(

n

4
+ 1

2

(

1 + 1

2σ 2

)n

+ 4(n + 1)

)

.

Our scheme thus is a weak information-theoretic security

encryption scheme with secrecy error at most 2ǫ.

Our proof employs a continuous-variable (CV) represen-

tation for optical states [19]. We omit some intermediate

mathematical steps in the main text, delegating the complete

step-by-step derivation to the Appendix.

Photon-number (Fock) states are related to the x and p

quadrature CVs using Hermite functions [20, Sec. 18.1]. The

Hermite polynomials are defined as

H j (x) = (−1)nex2 d j

dx j
e−x2

(11)

and the corresponding Hermite functions as

ψ j (x) = e−x2/2 1
√

2 j j!
√

π
H j (x). (12)

These provide the direct relation between discrete variable

(DV) and CV representations of optical states. Most impor-

tantly, for Fock states we have

| j〉 =
∫ ∞

−∞
ψ j (x)|x〉 dx, (13)

where x is a position eigenstate in phase-space. The position

eigenstates form a complete basis, satisfying

〈x1|x2〉 = δ(x1 − x2). (14)

Our input state from Eq. (9) can therefore be expressed in the

position basis as

ρ̂in =
∑

0�i, j�n

λiλ
∗
j

∫

x1,x2∈R

ψi(x1)ψ∗
j (x2)|x1〉〈x2| dx1dx2. (15)

Let Alice’s encoding operation be represented by the quan-

tum process Eenc, which applies a random complex-valued

displacement, chosen from a normal distribution with zero

mean and standard deviation σ . Experimentally, σ is bounded

by the energy output of coherent laser sources. An unknown

encoding operation can be represented as a quantum process,

Eenc(ρ̂) =
∫

α∈C

μ(α)D̂(α)ρ̂D̂(α)†d2α, (16)

where μ(α) = e−|α|2/(2σ2 )

2πσ 2 is a Gaussian measure and d2α =
d (ℜ(α))d (ℑ(α)) indicates that the integral is performed over

the real and imaginary parts of α. Then our encrypted state

ρ̂enc = Eenc(ρin ) can be interpreted as a weighted mixture over

all possible displacement amplitudes associated with the en-

tire key-space. Displacing a position eigenstate by α = u + iv

shifts its position by v and appends a phase that depends on

its position, u and v. After performing the integral over the

imaginary part of the complex number α = u + iv, we get

ρ̂enc =
∑

0�i, j�n

λ∗
i λ j

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−u2/(4σ 2 )

2
√

πσ 2
ψi(x1)ψ∗

j (x2)

× |x1 + u〉〈x2 + u| du dx1 dx2. (17)

The security of the scheme can be quantified using the trace-

distance between any pair of its encrypted inputs. When

the trace-distance between a pair of states in an encryption

scheme approaches zero, the resolution of this pair of states

as perceived by Eve or Bob vanishes. Such a scheme is said

to exhibit weak information-theoretic security [13], and we

proceed to show that our encryption scheme indeed exhibits

such a form of security.

To show that the trace-distance between almost arbitrary

input states with no more than a fixed number of photons

approaches zero as the standard deviation of the random

displacements grows, we require detailed information of every

matrix element 〈a|ρ̂enc|b〉. To get a handle on 〈a|ρ̂enc|b〉, it

suffices to consider 〈a|ρ̂i, j |b〉 where ρ̂i, j = E (|i〉〈 j|) because

ρ̂enc = ∑

0�i, j�n λ∗
i λ j ρ̂i, j . Since 〈a| and |b〉 can be both ex-

pressed in terms of Hermite polynomials in the position basis,

we find that 〈a|ρ̂i, j |b〉 is just an integral of the product of

four Hermite polynomials. To evaluate these integrals, we

recall that any Hermite polynomial H j (x) can be expressed

as the coefficient of t j in the Gaussian generating function

e−x2/2+2xt−t2

e−x2/2 j! [20, Eq. (18.5)]. Hence, 〈a|ρ̂i, j |b〉 may

be evaluated by writing all of the Hermite polynomials in

terms of their Gaussian generating functions, performing the

Gaussian integrals, and then reading off the respective coef-

ficients. In doing so, we find the exact form of 〈a|ρ̂i, j |b〉 in

Lemma 3 of the Appendix. Namely, 〈a|ρ̂i, j |b〉 is only nonzero

when b − a = j − i. Moreover, we have that

〈a|ρ̂i,i|a〉 = xy

min(a,i)
∑

q=0

(

a

q

)(

i

q

)

y2qxa+i, (18)

and when k � 1, we find in Lemma 10 of the Appendix that

0 � |〈a|ρ̂i,i+k|a + k〉|

� xy

min(a,i)
∑

q=0

(

a + k

q + k

)(

i + k

q + k

)

y2q+kxa+i+k, (19)

where y = 1
2σ 2 and x = 2σ 2

1+2σ 2 . Now let T denote the differ-

ence between two encrypted inputs. Let us write T = D + O

in the Fock basis, where D is the diagonal of T . From this

decomposition of T , we will obtain an upper bound on the

trace norm of T . First we prove that the trace norm of D is

O(σ−2). To see this, we show in Lemma 6 of the Appendix

that

〈a|ρ̂i+1,i+1|a〉 − 〈a|ρ̂i,i|a〉
= −xy〈a|ρ̂i,i|a〉

+ (xy)xa+i+1
∑

k=1,...,min{a,i}

(

a

k

)(

i

k − 1

)

y2k . (20)
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We can use this fact to show in Lemma 7 of the Appendix that

‖ρ̂i+1,i+1 − ρ̂i,i‖1 � 2iσ−2 for σ 2 � 2, from which it follows

from a telescoping sum that trace-distance between any pair

of encrypted Fock states is at most 2n−1nσ−2. Next, we upper

bound the trace norm of O. To see this, note that the Gersgorin

circle theorem [21] implies that ‖O‖1 is at most the sum of

the absolute values of all its matrix elements. By applying a

summation of Eq. (19) over the indices a and k and by doing

the summation in a first, we can use simple binomial identities

to find that ‖O‖1 � 8(n + 1)σ−2. Together, with the triangle

inequality on the trace norm of D + O, this allows us to show

that the trace-distance between arbitrary encrypted states with

at most n photons is at most,

1

σ 2

(

n

4
+ 1

2

(

1 + 1

2σ 2

)n

+ 4(n + 1)

)

, (21)

which asymptotes to zero for large maximum coherent am-

plitudes in the encoding operations. This thereby proves

theorem 1.

When the client Alice has as her input to the scheme a

separable state on m modes, where each mode has at most

n photons, it is easy to see using a telescoping bound on the

modes that the trace-distance between arbitrary multi-mode

separable states is at most m times of the value in (21).

Coherent states with mean photon number of up to 108 can

be easily generated in a cavity mode of a pumped laser [22,

Sec. 4.1]. Since the intensity of a laser can be attenuated with

an variable attenuator, this corresponds to having |α| value

that ranges between 0 and 104, which allows one to create

random displacements with σ = 104. If each mode has at most

15 photons, then using (19), we find that the trace-distance

between arbitrary encrypted states on a single mode is at most

6.8×10−7.

V. ADAPTIVE LINEAR OPTICS

Thus far, we have exclusively considered passive linear op-

tics, where there is no measurement or feedforward. However,

feedforward—the ability to measure a subset of the optical

modes, and use the measurement outcome to dynamically

control the subsequent linear optics network—is an essen-

tial ingredient in many linear optics quantum information

processing protocols. For example, when employing single-

photon encodings for qubits, it is well known that universal

quantum computing is possible with the addition of fast-

feedforward [23], which is known to require nonlinearity [24].

On the other hand, it is strongly believed that without non-

linearity such as feedforward, such schemes cannot be made

universal [24].

Let us understand intuitively how feedforward and non-

linearities can enable two different notions of universality in

quantum optical computing. The first notion is CV univer-

sality [19], where Braunstein and Lloyd show using Baker-

Campbell-Hausdorff arguments how one can in principle im-

plement Hamiltonian evolutions that are arbitrary polynomials

of quadrature operators. To achieve this notion of CV uni-

versality, it suffices to implement Gaussian unitaries which

our scheme can handle natively, along with any non-Gaussian

operation which can be achieved using non-linearities. The

second notion of universality is involves DV encoded within

CV states, and achieving universal DV quantum computation.

In this notion of DV universality with CV states, nonlinearities

can help to initialize non-Gaussian states, which are resource

states to be consumed during gate teleportation to produce

a non-Gaussian gates. To perform the gate teleportation, one

entangles the resource state with a target mode where the non-

Gaussian gate is to be computed, and subsequently measures

the resource state. One then applies a Gaussian gate on the

target mode, conditioned on the measurement outcome. For

instance, on a GKP encoding [25], a combination of non-

Gaussian gates with Gaussian gates can be universal, and

such gates can be achieved with feedforward operations with

nonlinearities.

Can we accommodate for fast-feedforward in the

displacement-key homomorphic encryption protocol? Yes, we

can. Without loss of generality, let us imagine that we wish

to measure just one mode and feedforward the measurement

outcome to a subsequent round of linear optics, to be once

again executed by Bob. For server Bob to perform this mea-

surement, he would have to know the appropriate decryption

operator for that mode. However, he does not have this by

virtue of the protocol, and Alice cannot provide it to him, lest

he misuses it to compromise security.

The only avenue to accommodating the feedforward is to

make the protocol interactive. That is, whenever Bob requires

a measurement result, to proceed with the computation he

outsources the measurement of that mode back to Alice, who

returns to him a classical result. This does not undermine

the viability of the protocol, since Alice is already assumed

to have the ability to apply decoding operations, which are

by definition separable and can therefore be performed on a

per-mode basis.

It is clear that any computation requiring feedforward

will necessarily require turning the encryption protocol into

an interactive one between Alice and Bob. While this is

undesirable, it is to be expected given that no-go proofs

have been provided against universal, non-interactive, fully

homomorphic protocols [9,26,27].

VI. ROBUSTNESS

One might wonder how the robustness of our

displacement-key encoding scheme to noise compares with

the robustness of phase-key and polarization key encoding

schemes. In short, because the demands on the structure of the

input states of the client Alice is relatively mild, she can use

bosonic quantum codes on a single mode [25,28]. If Alice uses

GKP states [25], so that small imperfections in displacements

can be be corrected while the large random displacements

can still obfuscate her data from Bob. To constrain the

photon number per mode, one can use approximate versions

[29] of GKP states. In contrast, bosonic quantum coding

schemes are not immediately compatible with the previous

phase-key [8] and polarization-key schemes [4]. For the

polarization-key encoding which encrypts boson sampling,

without quantum error correction, simulating boson sampling

classically remains classically hard with very little noise [30]

but becomes classically simulable when there is too much

noise [31]. The phase-key scheme [8] is only robust to loss

errors when the computed states remains entirely classical
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and becomes vulnerable to loss errors once they become

entangled into cat states.

VII. CONCLUSION

We have presented a technique for homomorphic encryp-

tion of almost arbitrary optical states under the evolution of

linear optics. The scheme requires only separable displace-

ment operations for encoding and decoding, yet provides

perfect secrecy in the limit of large displacement amplitudes.

For passive linear optics, the protocol requires no client/server

interaction, remaining entirely passive. For adaptive linear

optics, an interactive protocol is required. The technology for

implementing the encoding scheme is readily available today,

making near-term demonstration of elementary encrypted op-

tical quantum computation viable.
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APPENDIX A: PRELIMINARIES

1. Hermite polynomials

Define the Hermite polynomials as

Hn(x) = (−1)nex2 dn

dxn
e−x2

, (A1)

and the corresponding Hermite functions as

ψn(x) = e−x2/2 1
√

2nn!
√

π
Hn(x). (A2)

2. The action of a displacement operator on a position eigenstate

The displacement operator can be written as

D(α) = exp(αâ† − α∗â), (A3)

where α = u + iv is a complex number, with u, v ∈ R. Now

the position and momentum operators which admit repre-

sentations as x and 1
i

d
dx

respectively can also be written as

dimensionless quadratures X1 and X2 respectively which can

be related to the ladder operators via the equalities

a = 1√
2

(X̂2 − iX̂1), a† = 1√
2

(X̂2 + iX̂1), (A4)

which implies that X̂1 = 1√
2
(â† − â) and X̂2 = 1

i
√

2
(â† − â),

respectively. Then

[X̂1, X̂2] = 1

2i
[â† + â, â† − â]

= 1

2i
([â†, â† − â] + [â, â† − â])

= 1

2i
([â†,−â] + [â, â†])

= −1

i
[â†, â]

= i. (A5)

Since [X̂1, X̂2] = i the dimensionless quadrature operators X̂1

and X̂2 indeed satisfy the canonical commutation relations.

We then write the displacement operator in terms of the

quadrature operators to get

D(α) = exp

(

α

(

1√
2

X̂1−
i√
2

X̂2

)

−α∗
(

1√
2

X̂1+
i√
2

X̂2

))

= exp((α − α∗)X̂1/
√

2 + iX̂2(−α − α∗)/
√

2)

= exp(
√

2ivX̂1 − iX̂2

√
2u)

= exp(i(
√

2vX̂1 −
√

2uX̂2)). (A6)

Now recall that the BCH formula for operators A, B whose

commutator is proportional to the identity operator is

ei(A+B) = eiAeiBe− i2

2
[A,B] = eiAeiBe[A,B]/2. Hence

D(α) = ei
√

2vX̂1 e−i
√

2uX̂2 e[
√

2vX̂1,−
√

2uX̂2]/2

= ei
√

2vX̂1 e−i
√

2uX̂2 e−uv[X̂1,X̂2]

= ei
√

2vX̂1 e−i
√

2uX̂2 e−iuv. (A7)

Now let |x〉1 denote an eigenstate of the quadrature operator

X̂1 with eigenvalue x, so that X̂1|x〉1 = x|x〉1. Then it is clear

that eiθX1 |x〉1 = eiθx|x〉1. The position eigenstate can be writ-

ten in the momentum basis, which is also its Fourier basis,

so

|x〉1 = 1√
2π

∫ ∞

−∞
d pe−ipx|p〉2, (A8)

where |p〉2 denotes an eigenstate of the second quadrature

operator X̂2 with eigenvalues p. Hence

eiθ X̂2 |x〉1 = 1√
2π

∫ ∞

−∞
d pe−ipxeiθ X̂2 |p〉2

= 1√
2π

∫ ∞

−∞
d pe−ipxeiθ p|p〉2

= 1√
2π

∫ ∞

−∞
d pe−ip(x−θ )|p〉2

= |x − θ〉1. (A9)

Hence it follows that

D(u + iv)|x〉1 = ei
√

2vX̂1 e−i
√

2uX̂2 e−iuv|x〉1

= ei
√

2vX̂1 e−iuv|x +
√

2u〉1

= ei
√

2v(x+u)e−iuv|x +
√

2u〉1

= ei
√

2vxei(
√

2−1)uv|x +
√

2u〉1. (A10)
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APPENDIX B: REPRESENTATION OF THE ENCRYPTED STATE

Lemma 2. Let |ψ〉 = ∑n
i=0 λi|i〉 for any λi ∈ C such that 〈ψ |ψ〉 = 1. Let E be the encryption operation that randomly

displaces with a complex number u + iv, where u and v are chosen independently from normal distributions with mean 0

and standard deviation σ . Let ρenc = E (|ψ〉〈ψ |). Then

ρ̂enc =
n

∑

i=0

n
∑

j=0

λiλ
∗
j

1

2
√

πσ

∫ ∞

−∞
du e

− u2

4σ2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−σ 2 (x−y)2

ψi(x)ψ j (y)|x + u〉〈y + u|. (B1)

Proof. Note the Fock states can be written in the position basis, so that for all non-negative integers i we have

|i〉 =
∫ ∞

−∞
dx ψi(x)|x〉1. (B2)

Then |ψ〉〈ψ | = ∑n
i=0

∑n
j=0 λiλ

∗
j |i〉〈 j|. Expanding this out in the position basis, and dropping the labels on the first quadrature

eigenstates, we get

|ψ〉〈ψ | =
n

∑

i=0

n
∑

j=0

λiλ
∗
j

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 ψi(x1)ψ j (x2)|x1〉〈x2|. (B3)

Then for real u and v, we get

D(u + iv)|ψ〉〈ψ |D(u + iv)† =
n

∑

i=0

n
∑

j=0

λiλ
∗
j

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 ei

√
2v(x1−x2 )ψi(x1)ψ j (x2)|x1 +

√
2u〉〈x2 +

√
2u|. (B4)

Encrypting the state |ψ〉〈ψ | and changing the variable with respect to u then gives

ρ̂enc =
n

∑

i=0

n
∑

j=0

λiλ
∗
j

1

2πσ 2

∫ ∞

−∞

∫ ∞

−∞
du dv e

− u2+v
2

2σ2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 ei

√
2v(x1−x2 )ψi(x1)ψ j (x2)|x1 +

√
2u〉〈x2 +

√
2u|

=
n

∑

i=0

n
∑

j=0

λiλ
∗
j

1

4πσ 2

∫ ∞

−∞

∫ ∞

−∞
du dv e

− u2+v
2

4σ2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 eiv(x1−x2 )ψi(x1)ψ j (x2)|x1 + u〉〈x2 + u|. (B5)

We can perform the integral with respect to v to arrive at

ρ̂enc =
n

∑

i=0

n
∑

j=0

λiλ
∗
j

1

4πσ 2

∫ ∞

−∞
du e

− u2

4σ2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 2

√
πσe−σ 2(x1−x2 )2

ψi(x1)ψ j (x2)|x1 + u〉〈x2 + u|. (B6)

Simplifying the above and relabeling the variables in the integration then gives the result. �

APPENDIX C: INTEGRALS OF PRODUCTS OF HERMITE POLYNOMIALS

The following lemma gives a bound for the exponential suppression of a certain integral of products of Hermite polynomials in

the orders of the some of the Hermite polynomials. The key tools used here are generating functions for the Hermite polynomials,

and this leads to a significant improvement of bounding the absolute value of the integral of product of Hermite functions over

that in Ref. [32].

Now let us define the integral

Ia,b,i, j = 1

2
√

πσ

∫ ∞

−∞
du e

− u2

4σ2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−σ 2(x−y)2

ψi(x)ψ j (y)ψa(x + u)ψb(y + u), (C1)

so that

〈a|ρ̂enc|b〉 =
n

∑

i=0

n
∑

j=0

λiλ
∗
j Ia,b,i, j . (C2)

If we encrypt another state of the form
∑n

i=0 μi|i〉, then the difference between the two matrix elements will be

n
∑

i=0

n
∑

j=0

(λiλ
∗
j Ia,b,i, j − μiμ

∗
j Ia,b,i, j ) =

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia,b,i, j . (C3)

Define ρ̂i = E (|i〉〈i|), and define ρ̂i, j = E (|i〉〈 j|). Then

〈a|ρ̂i, j |b〉 = Ia,b,i, j . (C4)
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Clearly for ρ = ∑

i, j λiλ
∗
j |i〉〈 j|, by linearity of the encryption operation,

ρ̂ = E (ρ) =
∑

i, j

λiλ
∗
j ρ̂i, j . (C5)

We use the method of generating functions to evaluate the exact form for the integral Ia,b,i, j .

Lemma 3. Let a, b, i, j be non-negative integers and σ > 0. Let x = 2σ 2

1+2σ 2 and y = 1/(2σ 2). Then

〈a|ρ̂i, j |b〉 = Ia,b,i, j = 1

1 + 2σ 2

∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

yi2+i3

√

(

a

i2

)(

b

i3

)(

i

i2

)(

j

i3

)√
xa+b+i+ j . (C6)

Proof. Let I = Ia,b,i, j . The generating function of the Hermite polynomial is given by

exp(−x2/2 + 2xt − t2) =
∞

∑

n=0

e−x2/2Hn(x)tn/n!. (C7)

Hence, using the notation [tn] f (t ) to denote the coefficient of tn in an analytical function f (t ), we get

Hn(x) = [tn] exp(2xt − t2)n!. (C8)

Recall that

ψn(x) = e−x2/2 1
√

2nn!
√

π
Hn(x). (C9)

Now

ψi(x)ψ j (y)ψa(x + u)ψb(y + u) = e−(x2+y2 )/2e−((x+u)2+(y+u)2 )/2 Hi(x)H j (y)Ha(x + u)Hb(y + u)

π
√

2i+ j+a+bi! j!a!b!

= [sit j f agb]

√
i! j!a!b!

π
√

2i+ j+a+b
e−x2/2+2xs−s2

e−y2/2+2yt−t2

e−(x+u)2/2+2(x+u) f − f 2

e−(y+u)2/2+2(y+u)g−g2

.

(C10)

Hence

I = [sit j f agb]

√
i! j!a!b!

π
√

2i+ j+a+b

1

2
√

πσ

∫ ∞

−∞
du

∫ ∞

−∞
dx

∫ ∞

−∞
dy e

− u2

4σ2 e−σ 2(x−y)2

e−x2/2+2xs−s2

e−y2/2+2yt−t2

×e−(x+u)2/2+2(x+u) f − f 2

e−(y+u)2/2+2(y+u)g−g2

. (C11)

This integral can be easily performed. We make use of the identity

∫ ∞

−∞
dy e−ay2−by =

√

π

a
e

b2

4a , (C12)

where a > 0. Using this identity repeatedly, we can show that

I =
√

i! j!a!b!√
2i+ j+a+b

αF (C13)

where α = 1/(1 + 2σ 2) and

F = [sit j f agb] exp[α(4 f gσ 2 + 2 f s + 2gt + 4stσ 2)]. (C14)

By writing the exponential in F as a product of four exponentials and using the Taylor series expansion for each, we have

F = [sit j f agb]eα4 f gσ 2

eα2 f seα2gt eα4stσ 2 = [sit j f agb]
∑

i1,i2,i3,i4�0

(α4 f gσ 2)i1

i1!

(α2 f s)i2

i2!

(α2gt )i3

i3!

(α4stσ 2)i4

i4!
. (C15)
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By extracting the coefficients, we get

F =
∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(α4σ 2)i1

i1!

(α2)i2

i2!

(α2)i3

i3!

(α4σ 2)i4

i4!
=

∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(2σ 2)i1

i1!

(1)i2

i2!

(1)i3

i3!

(2σ 2)i4

i4!
(2α)i1+i2+i3+i4

=
∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(2σ 2)i1+i4

i1!i2!i3!i4!
(2α)i1+i2+i3+i4 . (C16)

Clearly, i1 + i2 + i3 + i4 = a+b+i+ j

2
. Thus

F =
∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(2σ 2)i1+i4

i1!i2!i3!i4!

√

(2α)a+b+i+ j =
∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(2σ 2)i1+i4

i1!i2!i3!i4!

√
2a+b+i+ j

√

1

(1 + 2σ 2)a+b+i+ j
(C17)

for α = 1/(1 + 2σ 2). Note that

F =
∑

i1, i2, i3, i4 � 0

i1 + i2 = a

i1 + i3 = b

i2 + i4 = i

i3 + i4 = j

(2σ 2)−i2−i3

√
2a+b+i+ j

i1!i2!i3!i4!

√

(

2σ 2

1 + 2σ 2

)a+b+i+ j

. (C18)

Now note that i1 = a − i2, i1 = b − i3, i4 = i − i2, and i4 = j − i3, which implies that

i1!i2!i3!i4! =
√

(a − i2)!(b − i3)!i2!i2!i3!i3!(i − i2)!( j − i3)!. (C19)

Therefore

√
a!b!i! j!

i1!i2!i3!i4!
=

√

a!b!i! j!

(a − i2)!(b − i3)!i2!i2!i3!i3!(i − i2)!( j − i3)!
=

√

(

a

i2

)(

b

i3

)(

i

i2

)(

j

i3

)

. (C20)

Making appropriate substitutions then completes the proof. �

APPENDIX D: TOWARDS THE PROOF OF THE INDISTINGUISHABILITY BOUND

The key result that we rely on is the result from Lemma 3 which gives an exact form for Ia,b,i, j in terms of y = 1/(2σ 2) and

x = 2σ 2

1+2σ 2 . Now let b = a + k for k � 0. Then observe that Ia,b,i, j = 0 unless j = i + k. Hence we restrict our attention to this

case. Then we have

Ia,a+k,i,i+k = 1

1 + 2σ 2

∑

i2=0,...,min(a,i)

√

(

a

i2

)(

a + k

i2 + k

)(

i

i2

)(

i + k

i2 + k

)

y2i2+kxa+i+k . (D1)

To see this, Lemma 3. Recall that the subscripts for the summation in Eq. (C6) must satisfy the equalities

i1 + i2 = a, (D2)

i1 + i3 = b, (D3)

i2 + i4 = i, (D4)

i3 + i4 = j. (D5)
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We can then get

(D3) − (D2) : b − a = i3 − i2, (D6)

(D5) − (D4) : j − i = i3 − i2. (D7)

Hence b − a = j − i. So if b = a + k, then (a + k) − a = j − i which implies that k = j − i and hence j = i + k. Hence

whenever j �= i + k, there will be nothing in the summation of (C6) to sum over, and the summation in that case evaluates

to zero.

Before we proceed, we provide the proofs of several simple but useful technical lemmas. The first technical lemma we need

is the following combinatorial identity.

Lemma 4. Let 0 < x < 1, and let k be a non-negative integer. Then
∑

a�k xa(
a

k) = xk

(1−x)k+1 .

Proof. First note that by relabeling the index for the summation, the sum in the lemma is equal to 1
k!

∑

a�0 xa+k (a + k) . . . (a +
1) = xk

k!
dk

dxk

∑

a�0 xa+k . By use the generating function 1/(1 − x) which holds because |x| < 1, the summation becomes xk

k!
dk

dxk

xk

1−x
.

Simplifying this using the fact that 1 − xk = (1 − x)(1 + · · · + xk+1) yields the result. �

The next technical lemma we need also involves binomial coefficients.

Lemma 5. Let x = (2σ 2)/(1 + 2σ 2), and let i and k be non-negative integers such that 0 � k � i − 1. Then (
i + 1

k ) − (
i

k) =
(

i

k)( kx
i−k+1

− 1
2σ 2+1

).

Proof. Note that (
i + 1

k )x − (
i

k) = kx
i−k+1

− 1
2σ 2+1

is equal to
(

i

k

)

( (i+1)x

i−k+1
− 1). Next it is easy to see that i+1

i−k+1
= 1 + k

i−k+1
. Hence

(

i + 1

k

)

x −
(

i

k

)

=
(

i

k

)(

x + x
k

i − k + 1
− 1

)

=
(

i

k

)( −1

2σ 2 + 1
+ kx

i − k + 1

)

which proves the result.

Note the trivial fact that
∑

k�0 xk = 1 + 2σ 2. Let us consider the case of k = 0 first, which corresponds to i = j. Hence we

consider the nonzero matrix elements of ρ̂i, which are 〈a|ρ̂i|a〉 for a = 0, 1, . . . ,. Notice then that we have

〈a|ρ̂i|a〉 = Ia,a,i,i = 1

1 + 2σ 2

∑

i2=0,...,min(a,i)

(

a

i2

)(

i

i2

)

y2i2 xa+i. (D8)

We are then in a position to bound the trace distance between ρ̂i+1 and ρ̂i for every integer i. In the lemma that follows, we only

consider positive integer i, because the case of i = 0 has already been shown earlier.

Lemma 6. Let i and a be any non-negative integer. Let x = (2σ 2)/(1 + 2σ 2) and y = 1/(2σ 2) for σ > 0. Then

〈a|ρ̂i+1|a〉 − 〈a|ρ̂i|a〉 = −〈a|ρ̂i|a〉
2σ 2 + 1

+ xa+i+1

1 + 2σ 2

∑

k=1,...,min{a,i}

(

a

k

)(

i

k − 1

)

y2k . (D9)

Proof. To prove this, we consider two scenarios. In one scenario, a is small in the sense that a � i. In the other scenario,

a > i.

When a � i, using Lemma 5, we have the following:

〈a|ρ̂i+1|a〉 − 〈a|ρ̂i|a〉 = 1

1 + 2σ 2

∑

i2=0,...,a

(

a

i2

)(

i + 1

i2

)

y2i2 xa+i+1 − 1

1 + 2σ 2

∑

i2=0,...,a

(

a

i2

)(

i

i2

)

y2i2 xa+i

= 1

1 + 2σ 2

∑

i2=0,...,a

(

a

i2

)(

i

i2

)

y2i2 xa+i

(

i2x

i − i2 + 1
− 1

2σ 2 + 1

)

.

Using the expansion for 〈a|ρ̂i|a〉, we then get

〈a|ρ̂i+1|a〉 − 〈a|ρ̂i|a〉 = −〈a|ρ̂i|a〉
2σ 2 + 1

+ 1

1 + 2σ 2
xa+i

∑

i2=1,...,a

(

a

i2

)(

i

i2 − 1

)

y2i2 x. (D10)

Now we proceed to consider the case when a > i. Then we can use Lemma 5 again to get

〈a|ρ̂i+1|a〉 − 〈a|ρ̂i|a〉 = 1

1 + 2σ 2

∑

i2=0,...,i+1

(

a

i2

)(

i + 1

i2

)

y2i2 xa+i+1 − 1

1 + 2σ 2

∑

i2=0,...,i

(

a

i2

)(

i

i2

)

y2i2 xa+i

= 1

1 + 2σ 2

∑

i2=0,...,i

(

a

i2

)(

i

i2

)

y2i2 xa+i

(

i2x

i − i2 + 1
− 1

2σ 2 + 1

)

+ 1

1 + 2σ 2

(

a

i + 1

)

y2i+2xa+i+1.
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Hence we get

〈a|ρ̂i+1|a〉 − 〈a|ρ̂i|a〉 = −〈a|ρ̂i|a〉
2σ 2 + 1

+ 1

1 + 2σ 2
xa+i+1

∑

i2=1,...,i

(

a

i2

)(

i

i2 − 1

)

y2i2 +
(

a

i + 1

)

y2i+2xa+i+1

= −〈a|ρ̂i|a〉
2σ 2 + 1

+ 1

1 + 2σ 2
xa+i+1y2

∑

i2=0,...,i

(

a

i2 + 1

)(

i

i2

)

y2i2 , (D11)

and the result follows from (D10) and (D11). �

The trace distance between ρ̂i+1 and ρ̂i is suppressed with increasing σ , as we shall now show.

Lemma 7. The trace distance between ρ̂i+1 and ρ̂i is

1

2
‖ρ̂i+1 − ρ̂i‖1 �

1

2(1 + 2σ 2)
+ 1

4σ 2

(

1 + 1

2σ 2

)i

.

Proof. Since ρ̂i+1 and ρ̂i are diagonal matrices in the number basis, we have

‖ρ̂i+1 − ρ̂i‖1 =
∑

a�0

|〈a|ρi+1|a〉 − 〈a|ρ̂i|a〉|. (D12)

Using lemma 6 for the exact form of 〈a|ρi+1|a〉 − 〈a|ρ̂i|a〉, we get

‖ρ̂i+1 − ρ̂i‖1 �
∑

a�0

〈a|ρ̂i|a〉
2σ 2 + 1

+
∑

a�0

xa+i+1

1 + 2σ 2

∑

k=1,...,min{a,i}

(

a

k

)(

i

k − 1

)

y2k

�
∑

a�0

〈a|ρ̂i|a〉
2σ 2 + 1

+
∑

a�0

xa+i+1

1 + 2σ 2

∞
∑

k=1

(

a

k

)(

i

k − 1

)

y2k, (D13)

where (
a

k) = 0 for all k > a. The first summation above is trivial to bound because the trace of a density matrix must be one, so

one must have
∑

a�0〈a|ρ̂i|a〉 = 1. For the second summation, we can use Lemma 4 to get

‖ρ̂i+1 − ρ̂i‖1 �
1

2σ 2 + 1
+ xi+1

1 + 2σ 2

∞
∑

k=1

xk

(1 − x)k+1

(

i

k − 1

)

y2k . (D14)

Since x/(1 − x) = 2σ 2 = y−1 and 1/(1 − x) = 2σ 2 + 1 for x = (2σ 2)/(1 + 2σ 2), we get

‖ρ̂i+1 − ρ̂i‖1 �
1

2σ 2 + 1
+ xi+1

i+1
∑

k=1

(

i

k − 1

)

yk . (D15)

Now
∑i+1

k=1 (
i

k − 1)yk = y
∑i

k=0 (
i

k)yk = y(1 + y)i. Thus using the fact that x � 1, 1
2σ 2+1

�
1

2σ 2 and y = 1/(2σ 2), we get

‖ρ̂i+1 − ρ̂i‖1 �
1

1 + 2σ 2
+ 1

2σ 2

(

1 + 1

2σ 2

)i

, (D16)

and the result follows. �

Clearly then by the telescoping sum, the trace distance between any pair of encrypted diagonal states can be easily bounded.

Lemma 8. Let n be any positive integer, and let i and j be non-negative integers such that i < j � n. Then for σ > 0, the

trace distance between ρ̂i and ρ̂ j is at most

1

2
‖ρ̂i − ρ̂ j‖1 �

j

4σ 2
+ 1

2σ 2

(

1 + 1

2σ 2

) j

. (D17)

Proof. One just needs to write (ρ̂i − ρ̂i+1) + · · · + (ρ̂ j−1 − ρ̂ j ). There are at most n such bracketed terms, so using the triangle

inequality with lemma 7 gives

‖ρ̂i − ρ̂ j‖1 = ‖(ρ̂i − ρ̂i+1) + · · · + (ρ̂ j−1 − ρ̂ j )‖1 � ‖ρ̂i − ρ̂i+1‖1 + · · · + ‖ρ̂ j−1 − ρ̂ j )‖1 �
j − i

1 + 2σ 2
+ 1

2σ 2

j−1
∑

k=i

(

1 + 1

2σ 2

)k

�
j

1 + 2σ 2
+ 1

σ 2

(

1 + 1

2σ 2

) j

�
j

2σ 2
+ 1

σ 2

(

1 + 1

2σ 2

) j

. (D18)

This proves the result. �
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We now proceed to obtain a bound on the off-diagonal matrix elements ρi, j . Without loss of generality, assume that j = i + k

for k � 0. To analyze this case, we first consider the following technical lemma that is easy to verify.

Lemma 9. Let a, i, i2 and k be non-negative integers, and let i2 � a, i. Then
(

a

i2

)(

i

i2

)

�

(

a + k

i2 + k

)(

i + k

i2 + k

)

. (D19)

Proof. It is easy to see that (
a

k)(
i

k) = (
a + k

k )(
i + k

k )
(i2+k

k )
2

(a+k

k )(i+k

k )
. Next observe that since i2 � a and i2 � i, we have

(i2+k

k )
2

(a+k

k )(i+k

k )
�1. �

Using Lemma 9 we can arrive derive bounds for the off-diagonal matrix elements ρ̂i, j .

Lemma 10. Let i, k be non-negative integers and let j = i + k. Then for σ > 0,

∑

a�0

|〈a|ρ̂i, j |a + k〉| �
(

1 + 2σ 2

4σ 4

)k

. (D20)

Proof. Using the exact form for the matrix element 〈a|ρ̂i, j |a + k〉 as given in Lemmas 3 and 9 to bound the binomial

coefficients therein, we get

|〈a|ρ̂i, j |a + k〉| � 1

1 + 2σ 2

∑

i2=0,...,min(a,i)

(

a + k

i2 + k

)(

i + k

i2 + k

)

y2i2+kxa+i+k, (D21)

where y = 1/(2σ 2) and x = (2σ 2)/(1 + 2σ 2). Using Lemma 3 again, we get

|〈a|ρ̂i, j |a + k〉| � (y/x)k〈a + k|ρ̂i+k|a + k〉. (D22)

Using the fact that ρ̂i+k has unit trace, we easily get
∑

a�0 |〈a|ρ̂i, j |a + k〉| � (y/x)k = ( 1+2σ 2

4σ 4 )
k
. �

We are now ready to prove the main result.

Proof of Theorem 1. First we prove that without loss of

generality, we can let the any two input states to our scheme

ρ and ρ ′ be pure states. Now consider the case where ρ and

ρ ′ are mixed states. Then both of these states can always be

written as

ρ =
∑

j�1

p j |φ j〉〈φ j |, ρ ′ =
∑

j�1

p′
j |φ′

j〉〈φ′
j |, (D23)

such that p j = p′
j for every j � 1. In this decomposition, the

states |φ j〉 and |φk〉 need not be distinct even when j �= k.

Similarly, |φ′
j〉 and |φ′

k〉 need not be distinct even when j �= k.

Here, we must have p j to be non-negative and
∑

j�1 p j = 1.

Then we use the linearity of the quantum channel E to see that

E (ρ) − E (ρ ′) =
∑

j�1

p j (E (|φ j〉〈φ j |) − E (|φ′
j〉〈φ′

j |)). (D24)

Applying the triangle inequality for the trace norm, we get

‖E (ρ) − E (ρ ′)‖1 �
∑

j�1

p j‖E (|φ j〉〈φ j |) − E (|φ′
j〉〈φ′

j |)‖1.

(D25)

It hence follows that

‖E (ρ) − E (ρ ′)‖1 � max
j�1

‖E (|φ j〉〈φ j |) − E (|φ′
j〉〈φ′

j |)‖1.

(D26)

From (D26), we can see that we can maximize over the trace

distance between encrypted pure states to maximize ‖E (ρ) −
E (ρ ′)‖1. It thus suffices to consider ρ = |φ〉〈φ| and ρ ′ =
|φ′〉〈φ′| to be pure states in this security proof, where |φ〉 =
∑

i�0 λi|i〉 and |φ′〉 = ∑

i�0 μi|i〉. We make this assumption

with loss of generality in the remainder of this proof.

Consider the matrix

T = E (ρ) − E (ρ ′) =
∑

a,b�0

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia,b,i, j |a〉〈b|.

(D27)

Now let D be the diagonal component of T and O be the off-

diagonal component of T . By the triangle inequality, we will

have ‖T ‖1 = ‖D + O‖1 � ‖D‖1 + ‖O‖1. We now proceed to

bound the diagonal component.

By definition, we have

D =
∑

a�0

n
∑

i, j=0

(λiλ
∗
j − μiμ

∗
j )Ia,a,i, j |a〉〈b|. (D28)

Using Lemma 3, we know that Ia,b,i, j = 0 whenever i �= j.

Therefore the above expression for D simplifies to yield

D =
∑

a�0

n
∑

i=0

(|λi|2 − |μi|2)Ia,a,i, j |a〉〈b|

=
∑

a�0

n
∑

i=0

(|λi|2 − |μi|2)〈a|ρ̂i|a〉. (D29)

Hence it follows that

‖D‖1 = ‖E (ω) − E (ω′)‖1, (D30)

where

ω =
n

∑

i=0

|λi|2|i〉〈i|, ω′ =
n

∑

i=0

|μi|2|i〉〈i|. (D31)
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Since ω and ω′ are mixed states that are diagonal in the Fock

basis, we can use (D26) to see that

‖D‖1 � max
0�i< j�n

‖E (|i〉〈i|) − E (| j〉〈 j|)‖1 = ‖ρ̂i − ρ̂ j‖1.

(D32)

Using Lemma 8,

‖D‖1 �
n

2σ 2
+ 1

σ 2

(

1 + 1

2σ 2

)n

. (D33)

For the off-diagonal elements we can use the Gersgorin

Circle Theorem (GCT). First, note that for any i and j,

|λiλ
∗
j − μiμ

∗
j | � 2. From the GCT the 1-norm of O is at most

the sum of the absolute values of all of its matrix elements.

Notice that

O =
∑

a�0,k�1

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia,a+k,i, j |a〉〈a + k|

+
∑

a�0,k�1

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia+k,a,i, j |a + k〉〈a|

(D34)

Hence we obtain from the GCT that

‖O‖1 �
∑

a�0,k�1

∣

∣

∣

∣

∣

∣

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia,a+k,i, j

∣

∣

∣

∣

∣

∣

+
∑

a�0,k�1

∣

∣

∣

∣

∣

∣

n
∑

i=0

n
∑

j=0

(λiλ
∗
j − μiμ

∗
j )Ia+k,a,i, j

∣

∣

∣

∣

∣

∣

� 2
∑

a�0,k�1

n
∑

i=0

n
∑

j=0

(|Ia,a+k,i, j | + |Ia+k,a,i, j |), (D35)

where we have used the triangle inequality in the second

inequality above. Using the fact that Ia,a+k,i, j is only non-zero

when j − i = k, and similarly for Ia+k,a,i, j , we get

‖O‖1 � 2
∑

a�0,k�1

n
∑

i=0

(|Ia,a+k,i,i+k| + |Ia+k,a,i+k,i|). (D36)

Combining this with the fact that Ia,a+k,i,i+k = I∗
a+k,a,i+k,i we

get

‖O‖1 � 4
∑

a�0,k�1

n
∑

i=0

|Ia,a+k,i,i+k |. (D37)

Using Lemma 10 with σ 2 > 0 for the geometric sum,

this becomes ‖O‖1 � 4
∑n

i=0

∑

k�1 σ−2k �
4(n+1)σ−2

1−σ−2 �

8(n + 1)σ−2. The result then follows. �

APPENDIX E: MULTIMODE SECURITY

The security of our scheme on multiple modes arises from

a telescoping sum on the modes, when the multimode state

is a separable state. To see this explicitly, let the encryption

operator on m modes be E . Because the random displacements

are chosen independently for every mode, we have

E = E1 ⊗ · · · ⊗ Em,

where E j denotes an encryption operator on the jth mode.

Now let I denote the identity channel on a single mode. Then

for any two m-mode states ρ = ρ1 ⊗ · · · ⊗ ρm and τ1 ⊗ · · · ⊗
τm with a tensor product structure, we can write

(E1 ⊗ · · · ⊗ Em)(ρ) − (E1 ⊗ · · · ⊗ Em)(τ )E1(ρ1)

⊗ · · · ⊗ Em(ρm) − E1(τ1) ⊗ · · · ⊗ Em(τm)

= A1 ⊗ · · · ⊗ Am − B1 ⊗ · · · ⊗ Bm, (E1)

where A j = E j (ρ j ) and B j = E j (τ j ). Using the telescoping

sum, we have

A1 ⊗ · · · ⊗ Am − B1 ⊗ · · · ⊗ Bm

= (A1 ⊗ A2 ⊗ · · · ⊗ Am − B1 ⊗ A2 ⊗ · · · ⊗ Am)

+ (B1 ⊗ A2 ⊗ A3 · · · ⊗ Am

− B1 ⊗ B2 ⊗ A3 ⊗ · · · ⊗ Am) + . . .

+(B1 ⊗ · · · ⊗ Bm−1 ⊗ Am − B1 ⊗ · · · ⊗ Bm). (E2)

By applying the triangle inequality for the trace norm of each

of the above bracketed terms, then we get

‖A1 ⊗ · · · ⊗ Am − B1 ⊗ · · · ⊗ Bm‖1

� ‖(A1 ⊗ A2 ⊗ · · · ⊗ Am

− B1 ⊗ A2 ⊗ · · · ⊗ Am)‖1

+‖(B1 ⊗ A2 ⊗ A3 · · · ⊗ Am

− B1 ⊗ B2 ⊗ A3 ⊗ · · · ⊗ Am)‖1

+ · · · + ‖(B1 ⊗ · · · ⊗ Bm−1 ⊗ Am

− B1 ⊗ · · · ⊗ Bm)‖1. (E3)

Using the multiplicativity of the trace norm under the tensor

product and the fact that every quantum state has a trace norm

equal to one so that ‖A j‖1 = ‖B j‖1, we find that

‖A1 ⊗ · · · ⊗ Am − B1 ⊗ · · · ⊗ Bm‖1 �

m
∑

j=1

‖A j − B j‖1.

(E4)

If every single mode state ρ j and τ j have at most n photons,

and every mode is randomly displaced independently with

displacement vector taken from a complex Gaussian distri-

bution of standard deviation σ and mean 0, using the above

inequality, we can see that the trace distance between the

encrypted states A1 ⊗ · · · ⊗ Am and B1 ⊗ · · · ⊗ Bm is simply

at most m times of the trace distance between arbitrary

displacement-encrypted single mode states with at most n

photons.

APPENDIX F: BOUNDED PHOTON NUMBER

AND BOUNDED ENERGY

In this section, we prove that a quantum state with bounded

expected energy is well approximated by a quantum state

with a bounded number of photons. Using n̂ = ∑

n�0 n|n〉〈n|
to denote the number operator, the expected energy of an

arbitrary state ρ supported on the Fock basis is defined to be

Tr(ρn̂) =
∑

n�0

n〈n|ρ|n〉. (F1)
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First we prove a lemma that reduces the problem of bounding

the trace-norm of the difference of density matrices to evaluat-

ing bounds on Euclidean norms, which is reminiscent of [33,

Lemma 2].

Lemma 11. Let ρ = ∑

j p j |φ j〉〈φ j | and ρ ′ = ∑

j p j |φ′
j〉

〈φ′
j | be density operators. Furthermore, let |ǫ j〉 = |φ′

j〉 − |φ j〉.
Then

‖ρ − ρ ′‖1 �
∑

j

p j (2
√

〈ǫ j |ǫ j〉 + 〈ǫ j |ǫ j〉). (F2)

Proof. By definition, |φ′
j〉 = |φ j〉 + |ǫ j〉. Hence,

|φ′
j〉〈φ′

j | − |φ j〉〈φ j | = |φ j〉〈ǫ j | + |ǫ j〉〈φ j | + |ǫ j〉〈ǫ j |. (F3)

By the triangle inequality, we have

‖|φ j〉〈ǫ j | + |ǫ j〉〈φ j | + |ǫ j〉〈ǫ j |‖1

� ‖|φ j〉〈ǫ j |‖1 + ‖|ǫ j〉〈φ j |‖1 + ‖|ǫ j〉〈ǫ j |‖1. (F4)

Now we use the definition of the trace norm where for

any operator A, we have ‖A‖1 = maxU {Tr(AU ) : ‖U‖∞ � 1}
where ‖U‖∞ denotes the maximum singular value of U . For

Hermitian operators, it suffices to consider the maximization

of U over unitary operators. For ‖|ǫ j〉〈ǫ j |‖1, the optimal U is

just the identity operator, and hence ‖|ǫ j〉| < ǫ j |‖1 = 〈ǫ j |ǫ j〉.
To evaluate ‖|ǫ j〉〈φ j |‖1, consider the unitary operator U that

swaps the normalized states |ǫ j〉/
√〈ǫ j |ǫ j〉 and |φ j〉. Then we

can see ‖|ǫ j〉〈φ j |‖1 = 〈ǫ j |ǫ j〉/
√〈ǫ j |ǫ j〉. A similar argument

applies for evaluating ‖|φ j〉〈ǫ j |‖1, and the result follows. �

Now we present a lemma regarding approximating a pure

state with another pure state that has at most n photons.

Lemma 12. Let |φ〉 be any pure state supported on the Fock

basis that has expected energy μ. Let n be an integer such that

n � μ. Then there exists a state |ψ〉 that has at most n photons

and ‖|φ〉 − |ψ〉‖ � 2
√

μ/n.

Proof. In the Fock basis, we have |φ〉 = ∑∞
j=0 λ j | j〉 where

λ j are complex numbers and
∑∞

j=0 |λ j |2 = 1. Now consider

|ψ〉 = ∑n
j=0 λ j | j〉 + x|n + 1〉 for some complex number x

such that |x|2 = 1 − ∑n
j=0 |λ j |2. Hence it follows from the

triangle inequality that

‖|ψ〉 − |φ〉‖ = ‖|ǫ〉 − x|n + 1〉‖ � ‖|ǫ〉‖ + ‖x|n + 1〉‖,
(F5)

where |ǫ〉 = ∑∞
j=n+1 λ j | j〉. Since ‖x|n + 1〉‖ = |x| and

‖|ǫ〉‖ =
√

√

√

√

∞
∑

j�n+1

|λ j |2 =
√

|x|2, (F6)

we get

‖|ψ〉 − |φ〉‖ � 2|x|. (F7)

Now let X denote a random variable that is equal to j with

probability |λ j |2. It then follows that

Pr[X � n + 1] = |x|2. (F8)

By definition of the expected energy, we know that

E(X ) =
∞

∑

j=0

j|λ j |2 = μ. (F9)

Since X is a non-negative random variable, we can use

Markov’s inequality, so that for any real number b such that

b � 1, we have

Pr[X � bμ] �
1

b
. (F10)

Since n � μ, we have

Pr[X � n + 1] �
μ

n
. (F11)

Hence it follows that

‖|ψ〉 − |φ〉‖ � 2
√

μ/n. (F12)

�
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