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The capacity of a channel is known to be equivalent to the highest rate at which it can generate

entanglement. Analogous to entanglement, the notion of a causality measure characterizes the temporal

aspect of quantum correlations. Despite holding an equally fundamental role in physics, temporal quantum

correlations have yet to find their operational significance in quantum communication. Here we uncover a

connection between quantum causality and channel capacity. We show the amount of temporal correlations

between two ends of the noisy quantum channel, as quantified by a causality measure, implies a general

upper bound on its channel capacity. The expression of this new bound is simpler to evaluate than most

previously known bounds. We demonstrate the utility of this bound by applying it to a class of shifted

depolarizing channels, which results in improvement over previously known bounds for this class of

channels.

DOI: 10.1103/PhysRevLett.123.150502

Introduction.—Determining the rate at which informa-

tion can be reliably transmitted over a given channel is one

of the central tasks of information theory. In a classical

setting, Shannon [1] proved that the capacity of discrete

memoryless channels is governed by a simple expression.

In a quantum setting, however, such a characterization of a

channel’s ability to transmit information has proved far

more elusive. In determining the capacity of a quantum

channel N we have to consider the possibility that in order

to achieve the maximal capacity per use of the channel it

may be necessary to encode information in states that are

entangled across channels. Thus, to determine the actual

capacity of a quantum channel, one needs to take the

supremum of this quantity over tensor products of an

arbitrary number of copies of the channel. In the context of

quantum communication, a significant amount of progress

has been made on achievable rates for the transmission of

quantum information over noisy channels [2–5]. However,

existing formulas for quantum capacities often involve

implicit optimization problems. In the absence of formulas

for the exact capacities, one is forced to rely on bounds for

the quantum capacity that are tractable to evaluate [6–14].

The reader is referred to Refs. [15,16] for a review of

related results.

The quantum capacity is also known to be equivalent to

the highest rate at which the channel can be used to

generate quantum entanglement, the essential nonclassical

signature in composite quantum systems [15]. While the

conceptual link between channel capacity and spatial

quantum correlations has become increasingly clear, the

operational role of temporal correlations in quantum

communication remains to be clearly depicted. Powerful

existing frameworks such as the process matrices [17,18]

have enabled novel results in a setting where the causal

order in a communication task is indefinite [19–21] while

the framework of quantum causal models has been

employed to study cause-effect and temporal relations

between quantum systems [22,23]. Here we work in the

conventional setting of one-way quantum communication

and integrate causal considerations into the traditional

framework of quantum Shannon theory. Specifically, we

view a quantum communication process through a noisy

channel as a generalized quantum state that is extended

across time. Taking this viewpoint intuitively connects the

channel’s quantum capacity with its ability to preserve

causal correlations between the input and output.

In this Letter, we present novel general upper bounds on

the quantum capacities of quantum channels that do not

require optimization and are based on causality consid-

erations derived using a pseudodensity matrix (PDM)

formalism introduced in Ref. [24], with the bound also

expressible in terms of the Choi matrix of a channel [25].

A PDM is a generalization of the standard density matrix

that seeks to capture both spatial and temporal correlations.
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In quantum mechanics, a density matrix is a probability

distribution over pure quantum states but it can alterna-

tively be viewed as a representation of the expectation

values for each possible Pauli measurement on the system.

For a system composed of multiple spatially separated

subsystems, each Pauli operator can be expanded as a

tensor product of single-qubit Pauli operators, with one

acting on each subsystem. PDMs build on this second view

of the standard density matrix, extending the notion of the

density matrix into the time domain. The resulting pseudo-

density matrix is defined as

R ¼
1

2
n

X

3

i1¼0

…

X

3

in¼0

hfσijg
n
j¼1

i ⊗
n

j¼1

σij
;

where hfσijg
n
j¼1

i is the expectation value for the product of
a set of Pauli measurements. Unlike in the standard density

matrix, we do not require the measurements act only on

distinct spatially separated subsystems. Rather each meas-

urement can be associated with an instant in time and a

particular subsystem, and is taken to project the state of the

system onto the eigenspace of the measured observable

corresponding to the measurement outcome. We also note

that although the PDM is introduced with respect to the set

of qubits, it can describe a quantum system of any

dimensionality. One needs to embed such a system into

a state of qubits and restrict its evolution to the appropriate

subspace.

Causality monotone.—The generalization of states to

systems extended across multiple points in time has the

result that, unlike density matrices, PDMs can have negative

eigenvalues. As the PDM is equivalent to the standard

density matrix when the measurements are restricted to a

singlemoment in time, the existence of negative eigenvalues

in the PDM acts as a witness to temporal correlations in the

measurement events. In order to quantify the causal com-

ponent of such correlations, the notion of a causality

monotone was introduced in Ref. [24]. We now introduce

a function based on the logarithm of the trace norm of the

PDM, FðRÞ ¼ log2kRk1, which is similar to causality

monotones, but sacrifices convexity in favor of additivity

when applied to tensor products. This is similar to loga-

rithmic negativity [26] in the context of spatial correlations.

Analogous to entanglement measures [27], FðRÞ satisfies
the following important properties: (1) FðRÞ ≥ 0, with

FðRÞ ¼ 0 if R is positive semidefinite, and FðR2Þ ¼ 1 for

R2 obtained from two consecutivemeasurements on a single

qubit closed system, (2) FðRÞ is invariant under a local

change of basis, (3) FðRÞ is nonincreasing under local

operations, (4) Fð
P

i piRiÞ ≤ maxiFðRiÞ, for any proba-

bility distribution fpig, and (5) FðR ⊗ SÞ ¼ FðRÞ þ FðSÞ.
Properties 1–3 follow directly from the corresponding

properties of the causality monotone ftrðRÞ ¼ kRk1 − 1

proved in Ref. [24], since FðRÞ ¼ log2½ftrðRÞ þ 1�, and
from the monotonicity of the logarithm function. Property 4

also follows from the monotonicity of the logarithm func-

tion, since this implies Fð
P

i piRiÞ ≤ maxiFðRi

P

j pjÞ ¼

maxiFðRiÞ. To prove property 5, we note that

log2kR⊗Sk1¼ log2kRk1kSk1¼ log2kRk1þ log2kSk1, and
hence FðR ⊗ SÞ ¼ FðRÞ þ FðSÞ.
Causality bound on quantum channel capacity.—

Evolution of any quantum state can be identified with a

corresponding PDM. Consider a qubit-to-qubit channelN 1

acting on a single qubit described by an initial state ρ. For

such a process RN 1
, a PDM that involves a single use of the

channelN 1 and two measurements before and afterN 1 has

been shown to be given by

RN 1
¼ ðI ⊗ N 1Þ

��

ρ ⊗
I

2
; SWAP

��

; ð1Þ

where SWAP ¼ 1

2

P

3

i¼0
σi ⊗ σi and fA;Bg ¼ ABþ BA

[28,29]. Here we fix the input ρ to be a maximally mixed

state. Then, Eq. (1) can be easily generalized to describe

any quantum channel N acting on a collection of l qubits

RN ¼ ðI ⊗ N Þ

�

SWAP⊗l

2
l

�

: ð2Þ

It is worth noting that choosing ρ to be maximally mixed,

the causality measure FðRN Þ gains a simple interpretation

as it reduces to the logarithmic negativity of the Choi state

of N , which measures the amount of entanglement

preserved in an initially maximally entangled two-qubit

system after a subsystem is sent through the channel. As

such, the well-studied entanglement measure negativity has

an equally valid role in the temporal domain, in that it

quantifies a channel’s ability to preserve causal correla-

tions. The relevance of the Choi state for causal structures

in quantum mechanics has also been found in previous

work [22,23]. Here we take the novel step to directly link

the properties of a Choi state with the quantum capacity of

the respective channel.

Operationally, the quantum capacity of a quantum chan-

nel N is the maximum rate in which quantum information

can be transmitted across n independent uses of the quantum

channel N with vanishing error as the number of uses n
approaches infinity. Therefore in order to relate the causality

measure to the quantum channel capacity, we employEq. (2)

and use the causality measure FðRN Þ to construct an upper
bound on the number of uses of a given channel N to

approximate the ideal (identity) channel I⊗k. As in the

canonical setting ofRef. [3]wewish to approximate k copies
of the identity channel as it corresponds precisely to the

asymptotically perfect transmission of k copies of a state.

Since we consider only one-way communication in the

memoryless setting, themost general procedure for combin-

ing resource channels together to approximate the ideal

channel is to considern parallel uses of the channel preceded
by some encoding and followed by some decoding
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procedure, as shown below in Fig. 1. We do not consider

memory effects in our work. However, it would be interest-

ing to extend our results to the capacities of quantum

channels with memory in a future study [30].

We compare the causality measure across the collection

of channels with the causality measure across the identity

channel. As a result of property 3 of FðRÞ and the fact that

for quantum channel capacity consideration it suffices to

consider isometric encodings [31], the causality measure

across the combined channels does not increase under

encoding and decoding. We then exploit the additivity of

causality measure to relate k to the number of uses of the

channel. In fact, the same properties of F guarantee that

even if we had allowed the encoding and decoding

procedures to operate on entangled ancillary registers,

the above relations would still hold, and hence the bounds

we derive from this will also upper bound the entangle-

ment-assisted capacities N [32,33]. This leads to our main

result that the quantum capacity Q of channel N is upper

bounded by FðRN Þ,

QðN Þ ≤ FðRN Þ: ð3Þ

The mathematical details for deriving this bound are

presented below. Evaluating the causality measure

FðRN Þ requires only finding the logarithm of the trace

norm of a PDM and can be readily calculated for channels

acting on relatively small Hilbert spaces. Importantly,

computing this bound does not involve any optimization.

Furthermore, Eq. (3) implies that any channel with

FðRN Þ ¼ 0 has quantum capacity equal to zero. This

reflects the fact that such a channel exhibits correlations

that could have been produced by measurements on distinct

subsystems of a quantum state, and so the system is

necessarily constrained by the no-signaling theorem. On

the other hand, when FðRN Þ is strictly positive, the

correlations between the two ends of the channel cannot

be captured by bipartite density matrices, thus signifying

information being passed forward in time. We emphasize

that the bound has been derived for channels acting on the

collection of qubits, nonetheless the result applies to

channels with arbitrary input and output dimensions. For

the method to apply to such cases, it suffices to embed the

system into a 2k dimensional Hilbert space of qubits and

restrict the channel to act only on a subspace of this space.

It is also interesting to note the apparent resemblance

between the causality bound and the max-Rains informa-

tion bound [12], which is also expressible through proper-

ties of the Choi state. Indeed, in the Supplemental Material

[34], we show that the max-Rains bound for a channelN is

upper bounded by the causality bound for the conjugate

channel N �. As a result, the max-Rains bound might often

be a tighter bound. In contrast, the causality bound is not a

semidefinite program, requires no optimization, and as such

is analytically calculable [35]. Furthermore, the max-Rains

information provides a bound for the distillable entangle-

ment of a channel, which is a related but distinct concept

from the distillable entanglement of a state. The distillable

entanglement of a state is known to be upper-bounded by

logarithmic negativity while our bound relates logarithmic

negativity to the distillable entanglement of channels.

Application of the bound.—As a practical illustration of

how the causality method works, we apply it to the class of

shifted depolarizing channels. A shifted depolarizing

channel generalizes the well-studied quantum depolarizing

channel [36–38]. It outputs either the state I þ γZ=2 shifted
from the maximally mixed state with probability 4p or the

input state. For a single qubit the channel can be defined by

N γðρÞ ¼ ð1 − 4pÞρþ 4pðI þ γZ=2Þ. The parameter γ ∈

½0; 1� parametrizes the shift, with vanishing γ corresponding

to a standard depolarizing channel. The PDM RN γ

FIG. 1. A quantum state of a collection of k qubits is encoded

into a larger Hilbert space. The encoded quantum information is

sent through n parallel copies of the resource channel N after

which it decoded. In general, the dimensions of the input and the

output of channel N need not be the same. As encoding and

decoding are both physical processes, they are completely

positive trace preserving maps.

FIG. 2. Difference between the HW and causality bounds on

quantum channel capacity of a shifted depolarizing channel.

Notice that the two bounds coincide when there is no shift

(standard depolarizing channel) but the causality bound is tighter

when the shift γ increases.
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associated with the single qubit shifted depolarizing chan-

nel can be found using Eq. (2) from which we obtain an

analytic expression for the value of FðRN γ
Þ, and hence an

upper bound on the quantum capacity of the channel

QðN γÞ ≤ FðRN γ
Þ

¼ log2

�

1 − pþ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8pþ 16p2 þ 4γ
2p2

q

þ
1

2
j2p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8pþ 16p2 þ 4γ
2p2

q

j

�

:

We can compare this with a simple well-known bound on

quantum capacities of Holevo and Werner (HW), which is

general, and has a similar form to the causality bound, but

requires optimization [2]. The causality bound is better or

equal to the HW bound (see the Supplemental Material [34]

for a proof). As shown in Fig. 2, the shifted depolarizing

channel constitutes an example for which the causality

bound is strictly tighter than the HW bound. Furthermore,

the bound FðRN γ
Þ also improves upon the best known

bound from Ref. [39]. In fact, it is tighter for most values of

shifts γ as shown in Fig. 3.

Proof of the bound.—Here, we prove the bound in

Eq. (3). First, we construct the pseudodensity matrix

corresponding to a channel obtained through using n

copies of the resource channelN preceded by the encoding

channel E and followed the decoding channel D. Let

M ¼ D ∘ N⊗n
∘ E. Note that

RM ¼ ðI⊗k ⊗ MÞðRI⊗kÞ:

By the reverse triangle inequality,

kRMk1¼kRI⊗k þRM−RI⊗kk1≥kRI⊗kk1−kRM−RI⊗kk1:

We can relate the trace distance of two pseudodensity

matrices to the diamond norm in the following way:

kRM − RI⊗kk1 ¼ kðI⊗k ⊗ ðM − I⊗kÞÞðRI⊗kÞk1

≤ kM − I⊗kk
⋄
kRI⊗kk1;

where k·k
⋄
denotes the diamond norm [40]. Denoting the

distance between M and I in the diamond norm by ϵ ¼
kM − I⊗kk

⋄
and using the upper bound on kRM − RI⊗kk1

as well as the positivity of kRI⊗kk1, we get

kRMk1
kRI⊗kk1

≥ 1 − ϵ:

Taking the logarithm on both sides of the above inequality,

we find

FðRMÞ − FðRI⊗kÞ ≥ log2ð1 − ϵÞ:

We can exploit the relation between the PDM and SWAP

matrix, as well as the nonincreasing property of the trace

norm under the partial trace, to show that the causality

measure does not increase under decoding and encoding. A

detailed proof is presented in the Supplemental Material

[34]. This gives FðRMÞ ≤ FðR⊗n
N

Þ.

Additivity of F with respect to tensor products implies

that FðR⊗n
N

Þ ¼ nFðRN Þ and FðRI⊗kÞ ¼ kFðRIÞ. Hence

nFðRN Þ − kFðRIÞ ≥ log2ð1 − ϵÞ:

Finally, since FðRIÞ ¼ l, where l is the number of qubits

on which the channel acts, we have

lk

n
≤ FðRN Þ −

log2ð1 − ϵÞ

n
:

The diamond norm distance ϵ can be related to distance in

the completely bounded infinity norm (see Supplemental

Material [34] for details, which includes Refs. [41–44]),

which in turn guarantees ϵ goes to zero as n approaches

infinity. Therefore we obtain the bound QðN Þ ≤ FðRN Þ.
Conclusions and outlook.—We have obtained a bound

on quantum capacity using fundamental causality consid-

erations. In doing so, we have introduced a new measure of

temporal correlations that is analogous to entanglement

logarithmic negativity and possesses desired properties that

make it useful for studying channel capacities. Studies of

spatial correlations have lead to the formulation of many

entanglement monotones with different corresponding

applications and operational meanings, e.g., distillable

entanglement, entanglement cost, squashed entanglement

FIG. 3. Difference between the previously known bound from

Ref. [39] and the causality bound on quantum channel capacity of

a shifted depolarizing channel. The causality bound is tighter for

almost all values of γ and p. Only in the region of small shift γ

and small probability p, which corresponds to the bottom left

corner of the diagram, the causality bound is less tight.
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[45,46]. As a temporal counterpart of quantum correlations,

our work initiates research on operational significance of

causality measures that might prove useful in a wider range

of applications. The causality method applies to arbitrary

quantum channels and produces nontrivial upper bounds

for any channel. However, in contrast to most other of such

bounds, it does not require optimization. Our result could

help to understand the communication rate of complex

systems for which optimization methods are computation-

ally too costly, including quantum networks and quantum

communication between many parties [47–51].
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