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a b s t r a c t 

Convex quantile regression (CQR) is a fully nonparametric approach to estimating quantile functions, 
which has proved useful in many applications of productivity and efficiency analysis. Importantly, CQR 
satisfies the quantile property, which states that the observed data is split into proportions by the CQR 
frontier for any weight in the unit interval. Convex expectile regression (CER) is a closely related nonpara- 
metric approach, which has the following expectile property: the relative share of negative deviations is 
equal to the weight of negative deviations. The first contribution of this paper is to extend these quan- 
tile and expectile properties to the general set of shape constrained nonparametric functions. The second 
contribution is to relax the global concavity assumptions of the CQR and CER estimators, developing the 
isotonic nonparametric quantile and expectile estimators. Our third contribution is to compare the fi- 
nite sample performance of the CQR and CER approaches in the controlled environment of Monte Carlo 
simulations. 

© 2023 The Author(s). Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Convex quantile regression (CQR) introduced by Wang et al. 
(2014) is a fully nonparametric approach to estimating quantile 
functions, which has proved useful in many applications of produc- 
tivity and efficiency analysis due to its robustness against random 

noise, heteroscedasticity, and outliers. One of the prime applica- 
tion areas has been shadow pricing of undesirable outputs such as 
greenhouse gas emissions (see, e.g., Dai et al., 2020; Kuosmanen 
et al., 2020; Quinn et al., 2022; Zhao & Qiao, 2022 ). 

In practice, CQR employs a convenient linear programming (LP) 
formulation that minimizes the weighted sum of positive and neg- 
ative deviations from the frontier, which has the deterministic data 
envelopment analysis (DEA) as the limiting special case where the 
weight of positive deviations τ approaches to one. 1 Wang et al. 
(2014) formally show that the CQR production function satisfies 
the quantile property, which states that the observed data is split 
into proportions τ below and 1 − τ above the CQR frontier for any 
weight τ in the unit interval. Kuosmanen & Zhou (2021) further 

∗ Corresponding author. 
E-mail addresses: sheng.dai@utu.fi (S. Dai), timo.kuosmanen@utu.fi (T. Kuosma- 

nen), xun.zhou@york.ac.uk (X. Zhou) . 
1 Banker et al. (1991) consider a very similar approach to CQR, referring to it as 

“stochastic DEA”. 

extend the quantile property to the multiple-input multiple-output 
setting using the directional distance function. 

Convex expectile regression (CER) is a closely related nonpara- 
metric approach, which differs from CQR in that the weighted sum 

of squared deviations is minimized instead of the weighted sum 

of absolute deviations. 2 Kuosmanen et al. (2015) motivate the use 
of squared deviations by noting that the CER frontier is always 
unique, whereas the CQR frontier is not necessarily unique if there 
are ties in the data (i.e., x i = x j for some pair of observations i , 
j). Kuosmanen & Zhou (2021) formally show that CER satisfies the 
expectile property, which states that the relative share of negative 
deviations in the total sum of deviations is always equal to the 
weight ˜ τ of negative deviations. 

Thus far, the quantile property of CQR and the expectile prop- 
erty of CER have been established in the canonical case of mono- 
tonic increasing and globally concave production function. How- 
ever, the literature on shape constrained nonparametric regression 
and frontier estimation includes many other relevant specifications, 
including the constant, non-increasing, or non-decreasing returns 
to scale (e.g., Kuosmanen et al., 2015 ) and the isotonic regres- 
sion (e.g., Keshvari & Kuosmanen, 2013 ) that relaxes the concav- 
ity/convexity assumption. Besides single output production func- 

2 In the parametric stream of literature, Aigner et al. (1976) pioneer the expectile 
regression approach. 

https://doi.org/10.1016/j.ejor.2023.04.004 
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tions, the joint production of multiple outputs is routinely modeled 
using the cost functions and distance functions. Finally, additional 
regularizations such as the L 1 norm, L 2 norm, or the Lipschitz norm 

are used to alleviate overfitting and the curse of dimensionality 
(e.g., Dai, 2023; Mazumder et al., 2019 ). It is not immediately ob- 
vious whether and to what extent the quantile property of CQR 
or the expectile property of CER carries over to these relevant ex- 
tensions. The first contribution of this paper is to state and prove 
the generalized quantile and expectile properties that apply to any 
shape constrained nonparametric estimators. 

The second contribution of this paper is to relax the con- 
cavity assumptions of CQR and CER, building on the work by 
Keshvari & Kuosmanen (2013) . Importantly, the generalized quan- 
tile and expectile properties established in this paper also apply 
to the resulting isotonic convex quantile regression and isotonic con- 
vex expectile regression , respectively. Our main motivation for re- 
laxing the concavity constraints is to facilitate the comparison of 
the CQR and CER approaches with other commonly used quan- 
tile frontier approaches in the literature. For example, Aragon et al. 
(2005) propose the widely used order- α estimator, where no con- 
cavity/convexity assumptions are usually imposed. 3 In contrast to 
the direct CQR and indirect CER approaches, the order- α estimator 
first estimates the quantile of the empirical distribution of devi- 
ations from the best practice frontier and then converts it to the 
corresponding quantile function. Wang et al. (2014) suggest that 
the performance of this procedure heavily depends on the assump- 
tions on the distribution of the composite error term and the func- 
tional form of the underlying regression function (e.g., production, 
cost, or distance function). Thus far, the finite sample performance 
of the direct CQR, the indirect CER, and the order- α estimators has 
not been systematically examined in the controlled environment of 
Monte Carlo simulations. 

Our third contribution is to compare the finite sample perfor- 
mance of the direct CQR estimation versus the indirect CER estima- 
tion of quantiles. While the quantile and expectile functions differ 
(see, e.g., Newey & Powell, 1987 ), one can easily convert expectiles 
to quantiles, and vice versa, using a well-established transforma- 
tion (e.g., Efron, 1991; Waltrup et al., 2015 ). In the present context, 
Kuosmanen & Zhou (2021) hypothesize that the indirect estima- 
tion of quantile frontiers by first estimating multiple CER frontiers 
and subsequently converting them to relevant quantile functions 
can help to improve statistical performance compared to the direct 
CQR estimation. The Monte Carlo evidence presented in this paper 
supports this hypothesis. 

We stress that our main focus is on the further development 
of the CQR and CER estimators. Our main motivation for includ- 
ing the order- α estimator in our Monte Carlo simulations is to put 
the finite sample performance of CQR and CER into an appropri- 
ate perspective. While a thorough review of the well-established 
order- α estimator falls beyond the scope of this paper, our simula- 
tions might provide interesting evidence regarding the finite sam- 
ple performance of the order- α estimator as well. For example, we 
document that the order- α frontier does not necessarily satisfy the 
quantile property, particularly at low quantile. 

The rest of this paper is organized as follows. Section 2 de- 
scribes the theory on shape constrained nonparametric quantile 
and expectile regression. Section 3 introduces the operational im- 
plementation of quantile function estimation. Section 4 performs 
a Monte Carlo study to compare the finite sample performance 

3 Of course, one can subsequently convexify the estimated step function, simi- 
lar to Ferreira & Marques (2020) and Polemis et al. (2021) . Note that although the 
order- α estimator assumes monotonicity, the conditional estimator does not neces- 
sarily satisfy monotonicity (see Section 5 for an illustration). The recent paper by 
Daouia et al. (2017) avoids this problem by proposing an alternative unconditional 
order- α estimator. 

among nonparametric quantile frontier estimators. To illustrate and 
visualize the estimated quantile functions, an empirical application 
to a dataset of U.S. electric power plants is presented in Section 5 . 
Section 6 concludes this paper with suggested avenues for future 
research. Formal proof and additional Monte Carlo simulation evi- 
dence are provided in Appendices A and B . 

2. Theory 

This section introduces the shape constrained quantile regres- 
sion and states the generalized quantile property in Section 2.1 . 
The shape constrained expectile regression and the generalized ex- 
pectile property are introduced in Section 2.2 . Since the main use 
of these methods has thus far been in the context of productiv- 
ity and efficiency analysis, we phrase the results in the context of 
a stochastic nonparametric production model. However, the gen- 
eralized quantile and expectile properties introduced in this sec- 
tion apply more broadly in shape constrained nonparametric esti- 
mation in any context. 

2.1. Shape constrained nonparametric quantile regression 

Consider the following nonparametric regression model 

y i = f ( x i ) + ε i , for i = 1 , . . . , n, (1) 

where x ∈ R d is the d-dimensional input vector and y ∈ R is the 
single output, respectively. 4 f : R d → R is a nonparametric fron- 
tier production function and the composite error term ε consists 
of the random noise term v and the inefficiency term u according 
to ε = v − u . The nonparametric model (1) does not assume any 
specific functional form for the regression function f , but rather 
assumes that f satisfies certain axiomatic properties (e.g., mono- 
tonicity, concavity/convexity). As such, one can readily use this 
nonparametric model to characterize a production function by im- 
posing shape constraints for all values of x in the support of x (see, 
e.g., Kuosmanen, 2008; Kuosmanen & Johnson, 2010; Yagi et al., 
2020 ). 

Assume a real valued data set { ( x i , y i ) } n i =1 and let F be the joint 
distribution function of ( x , y ) and F x (x ) be the associated marginal 
distribution function of x ( Aragon et al., 2005 ). Given the quantile 
τ ∈ (0 , 1) , the corresponding quantile function is defined as 

Q(τ | x ) := F −1 (τ | x ) = inf { y ≥ 0 | F (y | x ) ≥ τ } (2) 

where F (y | x ) = F ( x , y ) /F x (x ) and it is the conditional distribution 
function of y given x ≤ x . If the distribution function F (y | x ) is 
strictly increasing, then Q(τ | x ) = F −1 (τ | x ) , where F −1 (τ | x ) is 
the inverse of F (y | x ) . 

Note that when the data are generated according to Eq. (1) and 
the inputs are exogenous in the sense that E (ε| x ) = E (u ) , then the 
quantile function (2) can be equivalently stated as 

Q(τ | x i ) = f ( x i ) + F −1 
ε i 

(τ ) (3) 

where F ε is the cumulative distribution function of the composite 
error term ε. 

The objective of the shape constrained nonparametric regres- 
sion is to find the best-fit function f within the set of functions F . 
For example, f could be specified as a production function as in 
Wang et al. (2014) , penalized production function as in Dai (2023) , 
directional distance function as in Kuosmanen & Zhou (2021) , or 
some other functions (e.g., cost function). Set F could include the 
classes of monotonic increasing/decreasing, concave/convex, and/or 

4 In this paper, we focus on the single output case (i.e., y ∈ R ), noting that 
CQR/CER and their nonconvex counterparts can also handle multiple outputs, see, 
e.g., Kuosmanen & Zhou (2021) . 

915 



S. Dai, T. Kuosmanen and X. Zhou European Journal of Operational Research 310 (2023) 914–927 

homogenous functions, possibly subject to other restrictions as 
well. 

In general, the shape constrained nonparametric estimator of 
the quantile function (3) can be stated as 

ˆ Q (τ | x i ) = arg min 
f τ ∈F 

τ
n 

∑ 

i =1 

ρτ (y i − f τ ( x i )) (4) 

where ρτ (t) = (τ − 1 { t < 0 } ) t is the check function ( Koenker & 

Bassett, 1978 ). Using Eq. (3) , the estimator can be obtained as the 
optimal solution to the following optimization problem 

min τ
n 

∑ 

i =1 

ε + 
i + (1 − τ ) 

n 
∑ 

i =1 

ε −
i (5) 

s.t. y i = Q(τ | x i ) + ε + 
i − ε −

i ∀ i 

Q ∈ F 

Note that the error term ε i in (1) is now decomposed into two 
non-negative components ε + 

i 
≥ 0 and ε −

i 
≥ 0 such that ε i = ε + 

i 
−

ε −
i 
. 

Definition 1 (Quantile property) . For any τ ∈ (0 , 1) , the number 
of strict positive residuals ( ̂  ε + 

i 
> 0 ) denoted by n + τ and the number 

of strict negative residuals ( ̂  ε −
i 

> 0 ) denoted by n −τ satisfy the in- 

equalities: 
n + τ

n 
≤ 1 − τ and 

n −τ
n 

≤ τ, where n is the total number of 

observations. 

Theorem 1. For any real-valued data and non-empty set of functions 

F , residuals ˆ ε + 
i 

and ˆ ε −
i 
, i = 1 , . . . , n obtained as the optimal solution 

to (5) satisfy the quantile property. 

Proof. See Appendix A . �

This result generalizes the previous quantile properties estab- 
lished by Wang et al. (2014) and Kuosmanen & Zhou (2021) to 
any arbitrary shape constrained nonparametric quantile estimator 
that can be stated as a special case of the generic formulation (5) . 
The practical benefit of this generalization is that it is no longer 
necessary to prove the quantile property every time one adds or 
deletes constraints. Note that the set F can include not only pro- 
duction axioms such as the weak or strong disposability, concav- 
ity/convexity, or alternative returns to scale assumptions, it can 
also include weight restrictions or regularization such as Lipschitz 
continuity, which can be useful to alleviate overfitting and/or the 
curse of dimensionality of the quantile estimator. 

2.2. Shape constrained nonparametric expectile regression 

Newey & Powell (1987) introduce linear expectile regression 
as an alternative method that relies on asymmetric least squares. 
Kuosmanen et al. (2015) are the first to consider asymmetric least 
squares in the present context of shape constrained nonparametric 
regression. Formally, for expectile ˜ τ ∈ (0 , 1) , the expectile function 
is defined as 

Ŵ( ̃  τ | x i ) = f ( x i ) + F −1 
ε i 

(τ ) (6) 

The shape constrained nonparametric estimator of the expectile 
function (6) is formulated as 

ˆ Ŵ( ̃  τ | x i ) = arg min 
f ̃ τ ∈F 

˜ τ
n 

∑ 

i =1 

ρ ˜ τ (y i − f ̃ τ ( x i )) 
2 (7) 

where ρ ˜ τ (t) = (τ − 1 { t < 0 } ) t 2 is the “check function” in expectile 
regression ( Newey & Powell, 1987 ). Using Eq. (3) , the expectile 
estimator can be obtained as the optimal solution to the following 
optimization problem 

min ˜ τ
n 

∑ 

i =1 

(ε + 
i ) 

2 + (1 − ˜ τ ) 
n 

∑ 

i =1 

(ε −
i ) 

2 (8) 

s.t. y i = Ŵ( ̃  τ | x i ) + ε + 
i − ε −

i ∀ i 

Ŵ ∈ F 

Definition 2 (Expectile property) . For any ˜ τ ∈ (0 , 1) , the number 
of strict positive residuals ( ̂  ε + 

i 
> 0 ) and the number of strict nega- 

tive residuals ( ̂  ε −
i 

> 0 ) satisfy ˜ τ = 
∑ n 

i =1 ˆ ε 
−
i 

/ ( 
∑ n 

i =1 ˆ ε 
+ 
i 

+ 
∑ n 

i =1 ˆ ε 
−
i 
) . 

Theorem 2. For any real-valued data and non-empty set of functions 

F , residuals ˆ ε + 
i 

and ˆ ε −
i 
, i = 1 , . . . , n obtained as the optimal solution 

to (8) satisfy the expectile property. 

Proof. See Appendix A . �

This result generalizes the result by Kuosmanen & Zhou 
(2021) to any arbitrary shape constrained expectile estimator. Note 
that the expectile property is similar to the quantile property, but 
not exactly the same. This is because the expectile function is dif- 
ferent from the quantile function (see, e.g., Newey & Powell, 1987; 
Waltrup et al., 2015 ). Beyond the discrepancy between the quan- 
tiles and expectiles, both approaches can be connected by a unique 
one-to-one mapping from quantile τ to expectile ˜ τ . There exists a 
bijective function such that Ŵ ˜ τ = Q τ , where expectile ˜ τ is defined 
as below ( De Rossi & Harvey, 2009 ) 

˜ τ = 

∫ Q τ
−∞ (z − Q τ ) dF (z) 

∫ Q τ
−∞ (z − Q τ ) dF (z) −

∫ ∞ 
Q τ

(z − Q τ ) dF (z) 
, 

where 
∫ Q τ
−∞ (z − Q τ ) dF (z) and 

∫ ∞ 
Q τ

(z − Q τ ) dF (z) are the lower and 
upper partial moments, respectively, and F (z) is the cumulative 
distribution function of z. Therefore, we can always convert the 
expectile based quantile estimates ˆ Ŵ ˜ τ from the quantile estimates 
ˆ Q τ , and vice versa. The estimator (7) can thus be treated as an in- 
direct estimation of quantiles through expectile regression. 

In practice, a simple procedure suggested by Efron (1991) is first 
to estimate the expectile and then indirectly determine the corre- 
sponding quantile by counting the number of negative residuals 
ε −
i 

that take strictly positive values. More recently, Waltrup et al. 
(2015) propose a similar but more efficient approach by using the 
linear interpolation method. Note that all alternative transforma- 
tion procedures rely on the quantile property. In another context, 
the estimated expectile function has been suggested to be more 
sensitive to outliers than the estimated quantile function ( Daouia 
et al., 2020; Waltrup et al., 2015 ), which, however, is not supported 
by our Monte Carlo simulations (see Appendix B ). 

However, the effectiveness of indirect estimation of quantiles 
through expectile regression has not been tested in the present 
context of CER. Moreover, as an alternative to the direct quantile 
regression, we really do not know about the finite sample perfor- 
mance of CER. In Section 4 , we will systematically compare the 
performance of these two approaches through Monte Carlo simu- 
lations. 

3. Estimation 

This section discusses the operational implementation of shape 
constrained quantile regression. Section 3.1 discusses the di- 
rect quantile estimation in the canonical case of monotonic in- 
creasing and concave production functions ( Wang et al., 2014 ). 
Section 3.2 discusses the indirect estimation of quantiles based on 
CER ( Kuosmanen & Zhou, 2021 ). In Sections 3.3 and 3.4 we relax 
the concavity assumption following Keshvari & Kuosmanen (2013) , 
introducing the isotonic versions of CQR and CER, respectively. 

3.1. Direct CQR 

If the regression function f is assumed to be a family of con- 
tinuous, monotonic increasing, and globally concave functions, we 
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can apply the direct CQR approach or the indirect CER approach to 
estimate quantile functions. Specifically, we solve problem (4) to 
obtain the estimated quantile function by converting it to the fol- 
lowing LP problem ( Wang et al., 2014 ) 

min 
α, β,ε + ,ε −

τ
n 

∑ 

i =1 

ε + 
i + (1 − τ ) 

n 
∑ 

i =1 

ε −
i (9) 

s.t. y i = αi + β
′ 

i x i + ε + 
i − ε −

i ∀ i 

αi + β
′ 

i x i ≤ αh + β
′ 

h x i ∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i ≥ 0 , ε −

i ≥ 0 ∀ i 

where the objective function is convex but not strictly convex on 
R n . The first set of constraints can be interpreted as a multivariate 
regression equation. The second set of constraints, i.e., a system of 
Afriat inequalities, imposes concavity. The third set of constraints 
imposes monotonicity, and the last refers to the sign constraints 
on the decomposed error terms. 

Since it was proposed by Wang et al. (2014) , convex quantile 
regression (CQR), as formulated in (9) , has been applied to a num- 
ber of studies because of its appealing features (e.g., Jradi & Rug- 
giero, 2019; Kuosmanen et al., 2015; Kuosmanen & Zhou, 2021 ). For 
example, the CQR estimator aims to estimate the conditional me- 
dian or other quantiles of the response variable, and thus is more 
robust to random noise and heteroscedasticity than other central 
tendency estimators such as convex nonparametric least squares 
( Kuosmanen, 2008 ) and penalized convex regression ( Dai et al., 
2022 ). Furthermore, the CQR estimator is relatively computation- 
ally simple due to its LP formulation. In practice, problem (9) can 
be solved by standard algorithms for LP such as CPLEX or MOSEK. 

One notable drawback of CQR is that the optimal solution to 
problem (9) is not necessarily unique, which also affects the esti- 
mated intercepts and slope coefficients (i.e., ˆ αi and ˆ βi j ). This non- 
uniqueness problem of quantile regression could be assumed away 
if the inputs x are randomly drawn from a continuous distribu- 
tion. However, the data will likely contain ties if the inputs are 
randomly drawn from a discrete distribution (consider, e.g., bino- 
mial or Poisson distribution). Empirical data are always rounded 
to a limited number of decimal digits, so the data tend to be dis- 
crete even when the underlying input distribution is continuous. 
Finally, firms optimize their inputs and outputs to maximize profit 
(or some other objective function), so the assumption of randomly 
drawn data is also debatable. 

The coefficients α and β in problem (9) characterize the sub- 
gradients of the estimated nonparametric quantiles. Having solved 
problem (9) , the τ th quantile function can be expressed as (see, 
e.g., Kuosmanen, 2008; Seijo & Bodhisattva, 2011 ) 

ˆ Q (τ | x i ) = min 
i =1 , ... ,n 

{

ˆ ατ
i + ˆ β

τ

i 
′ 
x 
}

. 

This representor function allows us to 1) built an explicit repre- 
sentation for the quantile function ˆ Q , which helps assess marginal 
properties, connect to the intuitive economic interpretations, and 
forecast and model ex-post economic events; 2) transform the in- 
finite dimensional regression problem (4) into a finite dimensional 
LP problem (9) , which also apply to the general multiple regression 
setting. 

3.2. Indirect CER 

Following Kuosmanen & Zhou (2021) , we can indirectly esti- 
mate monotonic and concave quantile functions through expec- 
tile regression by transforming problem (7) into the following 

quadratic programming (QP) problem 

min 
α, β,ε + ,ε −

˜ τ
n 

∑ 

i =1 

(ε + 
i ) 

2 + (1 − ˜ τ ) 
n 

∑ 

i =1 

(ε −
i ) 

2 (10) 

s.t. y i = αi + β
′ 

i x i + ε + 
i − ε −

i ∀ i 

αi + β
′ 

i x i ≤ αh + β
′ 

h x i ∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i ≥ 0 , ε −

i ≥ 0 ∀ i 

where the CER problem now minimizes the asymmetric squared 
deviations instead of the absolute deviations in (9) . 5 The quadratic 
objective function in (10) guarantees the uniqueness of estimated 
quantile functions. Note that solving the CER problem requires QP, 
and that standard solvers such as CPLEX or MOSEK can effectively 
handle QP problems as well. 

While the estimated quantile function is always unique in the 
CER estimation, the feasible set of problem (10) could be un- 
bounded. That is, there may exist multiple combinations of shadow 

prices ( ̂  βi j ) leading to the same optimal value of the objective 
function ( Dai, 2023 ). The non-unique estimates in both CQR and 
CER may further cause a longstanding problem of quantile cross- 
ing in quantile estimation. Dai et al. (2022) propose to address this 
problem by introducing additional regularization. By Theorem 2 , 
such regularization does not violate the expectile property. 

3.3. Direct isotonic CQR 

Since the current methodological toolbox does not include a 
nonconvex quantile regression method, we propose to extend the 
approach by relaxing the convexity assumption and relying on the 
monotonicity assumption only. For both CQR and CER, we propose 
isotonic CQR and isotonic CER as their nonconvex counterparts. We 
then can resort to the direct isotonic CQR or indirect isotonic CER 
approach to estimate the monotonic quantile function. 

Consider the production function f is isotonic with respect 
to a partial ordering: if for any pair x i and x h , x i � x h , the 
estimated production function ˆ f ( x i ) ∈ M , where M := { f ∈ R d : 
f ( x i ) ≤ f ( x h ) } . When the partial ordering is defined as the dom- 
inance relation (i.e., x i � x j if x i ≤ x j ), the non-decreasing produc- 
tion function satisfies monotonicity (i.e., free disposability of in- 
puts); that is, isotonicity is equivalent to monotonicity. However, 
the partial ordering could also be defined by other criteria (e.g., re- 
vealed preference information), where isotonicity is not exactly the 
same as monotonicity. In this paper, we follow the general isotonic 
notation given above but note that monotonicity is an important 
special case of isotonicity. 

For a given set of data { ( x i , y i ) } n i =1 and quantile τ , for a given 
quantile τ , convex quantile regression over the class M is 

ˆ Q (τ | x i ) = arg min 
f τ ∈M 

n 
∑ 

i =1 

ρτ (y i − f τ ( x i )) (11) 

where the isotonic CQR problem (11) selects the best-fit iso- 
tonic quantile function from the class M . In practice, however, 
it is impossible to directly search for the optimal solution from 

this infinite problem. Following Barlow & Brunk (1972) , we can 
harmlessly replace the class of isotonic quantile functions M by 
the step functions G = 

{

Q : R d + → R + | Q(τ | x ) = 
∑ n 

i =1 δi Z(τ | x i ) 
}

where Z(τ | x i ) is an indicator function at a given quantile τ and 

5 The convex nonparametric least squares (CNLS) estimator ( Kuosmanen, 2008 ) is 
the special case of the CER estimator (10) when ˜ τ = 0 . 5 , that is, when the equal 
weight ˜ τ is given to both positive and negative deviations. 
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Fig. 1. MSE results of the order- α, isotonic CQR, and isotonic CER estimators with n = 10 0 0 . 

is formulated as 

Z(τ | x i ) = 

{

1 if x i � x , 

0 otherwise . 

and δi > 0 is the parameter to characterize the step height. Note 
that the step functions G are a subset of the isotonic functions M 

(i.e., G ⊂ M ), which helps to transform the infinite problem (11) to 
a finite problem (see, e.g., Barlow & Brunk, 1972; Keshvari & Kuos- 
manen, 2013 ). 

The infinite problem (11) can be solved via the following finite 
dimensional isotonic CQR approach 

min 
α, β,ε + ,ε −

τ
n 

∑ 

i =1 

ε + 
i + (1 − τ ) 

n 
∑ 

i =1 

ε −
i (12) 

s.t. y i = αi + β
′ 

i x i + ε + 
i − ε −

i ∀ i 

p ih 

(

αi + β
′ 

i x i 

)

≤ p ih 

(

αh + β
′ 

h x i 

)

∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i ≥ 0 , ε −

i ≥ 0 ∀ i 

where isotonic CQR requires an additional preprocessing step to 
determine the value of p ih that represents the partial order be- 
tween observation i and h . If p ih = 0 , the concavity constraint on 
the production function f is relaxed in isotonic CQR, that is, the 
Afriat inequality constraints are eliminated from isotonic CQR (12) ; 
otherwise, the isotonic CQR estimator is reduced to the original 
CQR estimator (9) . Note that all the notations but p ih in problem 

(12) are the same as those in problem (9) . Therefore, the isotonic 
CQR estimator provides an alternative way to model the class of 

nonparametric isotonic quantile regressions, which is computation- 
ally convenient and provides a clear link to CQR. 6 

To determine the value of p ih in (12) , we need to define a bi- 
nary matrix P = 

[

p ih 
]

n ×n 

p ih = 

{

1 if x i � x h , 

0 otherwise . 

The matrix P converts the partial order relations between two ob- 
servations into binary values and the value of p ih is determined by 
the standard dominance relations, which can be simply detected 
by an enumeration procedure suggested by Keshvari & Kuosmanen 
(2013) . Further, the matrix P can be interpreted as a preference 
matrix if the partial ordering denotes the preference of a decision 
maker. 

3.4. Indirect isotonic CER 

Similarly, the indirect approach to fitting the isotonic quantile 
function is formulated as 

ˆ Ŵ( ̃  τ | x i ) = arg min 
f ̃ τ ∈M 

n 
∑ 

i =1 

ρ ˜ τ (y i − f ̃ τ ( x i )) 
2 (13) 

We also convert the infinite dimensional problem (13) to the 
following tractable QP problem to guarantee the unique expectile 
estimation and derive the isotonic CER approach 

min 
α, β,ε + ,ε −

˜ τ
n 

∑ 

i =1 

(ε + 
i ) 

2 + (1 − ˜ τ ) 
n 

∑ 

i =1 

(ε −
i ) 

2 (14) 

s.t. y i = αi + β
′ 

i x i + ε + 
i − ε −

i ∀ i 

6 As an extension of CQR, isotonic CQR remains in the class of convex regression, 
even though the resulting step function is typically neither convex nor concave. 
Note that the estimated step function envelops a union of n convex sets. 
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Fig. 2. Bias results of the order- α, isotonic CQR, and isotonic CER estimators with n = 10 0 0 . 

p ih 

(

αi + β
′ 

i x i 

)

≤ p ih 

(

αh + β
′ 

h x i 

)

∀ i, h 

βi ≥ 0 ∀ i 

ε + 
i ≥ 0 , ε −

i ≥ 0 ∀ i 

where the parameter p ih is also predetermined by the standard 
dominance relation between the pairs of observations i and h . If 
p ih = 1 , problem (14) is reduced to problem (10) , whereas problem 

(14) can be more easily solved in comparison with the original CER 
estimator (10) . Furthermore, when the quadratic objective function 
is applied, we can connect the isotonic CER estimator with the 
standard FDH approach as a special case (i.e., ˜ τ = 0 . 5 ). Note that 
the shape constrained quantile and expectile regression estimators 
can be extended to handle multiple outputs by introducing the di- 
rectional distance function (see, e.g., Kuosmanen & Zhou, 2021 ). 

In the context of efficiency analysis, the estimated quantile pro- 
duction functions can also serve as a better benchmark than the 
conventional full frontier for a unit’s production structure analy- 
sis. Following Lai et al. (2018) we can easily measure the quan- 
tile technical efficiency for the evaluated units and even can ex- 
tend the quantile efficiency analysis to meta-frontier analysis. For 
a given quantile τ , the estimated quantile technical efficiency for a 
specific unit could be greater than 1 (i.e., “super efficient”), equal 
to 1 (i.e., “efficient”), or less than 1 (i.e., “inefficient”), which are 
the same as the efficiency interpretation in the order- α estimator. 
Furthermore, as explained by Kuosmanen & Zhou (2021) , quantile 
regression estimators are more appropriate for shadow pricing un- 
desirable outputs (e.g., pollutants, CO 2 emissions). 

Considering that CQR (9) and CER (10) are the restricted special 
cases of isotonic CQR (12) and isotonic CER (14) , we could resort 
to isotonic CQR and isotonic CER to examine concavity for their 
convex counterparts (i.e., CQR and CER). Specifically, we can apply 
the standard F -test to test if the sum of weighted absolute resid- 
uals of the CQR problem is significantly smaller than that of the 

isotonic CQR problem. 7 Note that the degree of freedom for those 
shape constrained nonparametric regression estimators can be de- 
termined by a data-driven approach (see Chen et al., 2020 ). An- 
other possible approach to testing the shape (i.e., concavity and 
even monotonicity) is to apply the wild bootstrap methods (see, 
e.g., Yagi et al., 2020 ). While such a testing procedure is promis- 
ing and straightforward, the computational efficiency is a serious 
concern, especially with a large sample size ( Dai, 2023 ). 

The curse of dimensionality is not a problem in the proposed 
quantile regression estimators. A recent study by Dai (2023) pro- 
poses the penalized CQR/CER approaches by introducing L 0 -norm 

regularization and showed their high effectiveness in the dimen- 
sionality reduction of variables (or inputs). The same regularization 
can directly be applied to isotonic CQR/CER to ameliorate the effect 
of the curse of dimensionality. However, the rate of convergence of 
CQR/CER and isotonic CQR/CER has not been formally investigated 
in the literature, which warrants further research. 

4. Monte Carlo study 

The main objective of our simulations is to investigate the finite 
sample performance of those approaches and whether the gener- 
alized quantile and expectile properties are retained in the estima- 
tion of quantile functions. 

4.1. Setup 

We generate data according to the following additive Cobb- 
Douglas production function with d inputs and one output 

7 In the expectile case, we can replace the sum of weighted absolute residuals 
with the sum of weighted squared residuals. 

919 



S. Dai, T. Kuosmanen and X. Zhou European Journal of Operational Research 310 (2023) 914–927 

(cf. Lee et al., 2013; Yagi et al., 2020 ), 

y i = 

D 
∏ 

d=1 

x 
0 . 8 
D 
d,i 

+ ε i , 

where the input variables x i ∈ R n ×d are randomly and indepen- 
dently drawn from U[1 , 10] and the error term ε i has three specifi- 
cations: ε i = v i , ε i = −u i , and ε i = v i − u i , where v i and u i are gen- 
erated independently from N(0 , σ 2 

v ) and N + (0 , σ 2 
u ) , respectively. 

The variance parameters σ 2 
v and σ 2 

u are determined once we set 
signal to noise ratio (SNR) λ and variance σ 2 , where λ = σu /σv 

and σ 2 = σ 2 
u + σ 2 

v . Following Aigner et al. (1977) , ( σ 2 , λ) = (1.88, 
1.66), (1.63, 1.24), and (1.35, 0.83) are selected which allow for in- 
vestigating whether those quantile-like estimators are robust to a 
wide range of SNR values. 

To assess the finite sample performance of the quantile-like es- 
timators, we utilize the standard mean squared error (MSE) and 
bias statistics to evaluate how the estimated quantile function de- 
viates from the true conditional quantile function. The MSE and 
bias statistics can be defined as 

MSE = 
1 
n 

n 
∑ 

i 

(

ˆ Q (τ | x i ) − Q(τ | x i ) 
)2 

, 

bias = 
1 
n 

n 
∑ 

i 

(

ˆ Q (τ | x i ) − Q(τ | x i ) 
)

, 

where ˆ Q denotes the estimated conditional quantile function and 
Q represents the true conditional quantile function; the latter can 
be estimated based on the known inverse cumulative distribu- 
tion function of the error term ε i , i.e., F 

−1 
ε i 

(τ ) . The MSE is always 
greater than or equal to zero, with zero indicating perfect preci- 
sion; while the bias can be negative, positive, or zero, suggesting 
whether the estimated conditional quantile function ˆ Q systemat- 
ically underestimates ( bias < 0 ), overestimates ( bias > 0 ), or pro- 
vides an unbiased estimate of ( bias = 0 ) the true conditional quan- 
tile function. 

In all experiments that follow, we resort to Julia/JuMP to solve 
the CQR/CER and isotonic CQR/CER estimators with the commercial 
off-the-shelf solver MOSEK (9.3). 8 The standard and convexified 
order- α estimators are computed using the R packages “frontiles”
( Daouia et al., 2020 ) and “Benchmarking” ( Bogetoft & Otto, 2010 ). 
All experiments are run on Aalto University’s high-performance 
computing cluster Triton with Xeon @2.8 GHz processors, one CPU, 
and 3 GB of RAM per task. 

4.2. Experiment with monotonic estimators 

In the first group of experiments, we explore whether the non- 
convex quantile estimator (i.e., isotonic CQR/CER) has better finite 
sample performance than the nonconvex order- α estimator in esti- 
mating the quantile production functions. We consider 225 scenar- 
ios with different numbers of observations (50, 10 0, 20 0, 50 0, and 
10 0 0), input dimensions (1, 2, and 3), SNRs (1.66, 1.24, and 0.83), 
and quantiles (0.1, 0.3, 0.5, 0.7, and 0.9). Each scenario is replicated 
10 0 0 times to calculate the MSE and bias statistics. For the sake 
of comparison, the expectiles ˜ τ are transformed into their corre- 
sponding quantiles τ based on the empirical inverse quantile func- 
tion of the error term ε i . 

Table 1 reports the effect of sample size on the performance 
of each estimator in the case of τ = 0 . 9 , a commonly used param- 
eter value in the robust frontier estimation. The results show that 
the finite sample performance of the isotonic CQR and isotonic CER 

8 Alternatively, the estimation of CQR/CER and isotonic CQR/CER can be imple- 
mented in Python using the pyStoNED package ( Dai et al., 2021 ). 

Table 1 

Performance in estimating monotonic quantile function with σ 2 = 1 . 88 and τ = 0 . 9 . 
ICQR = Isotonic CQR, ICER = Isotonic CER. 

d n MSE Bias 

ICQR ICER Order- α ICQR ICER Order- α

1 50 0.368 0.406 1.470 −0.284 −0.385 −0.969 
100 0.215 0.231 1.479 −0.166 −0.252 −1.000 
200 0.132 0.135 1.419 −0.097 −0.156 −1.003 
500 0.069 0.067 1.409 −0.051 −0.086 −1.012 
1000 0.042 0.039 1.404 −0.031 −0.054 −1.018 

2 50 0.933 0.989 1.777 −0.671 −0.731 −1.076 
100 0.639 0.692 1.784 −0.522 −0.591 −1.121 
200 0.416 0.454 1.742 −0.387 −0.454 −1.131 
500 0.236 0.255 1.712 −0.261 −0.313 −1.146 
1000 0.150 0.160 1.692 −0.186 −0.231 −1.150 

3 50 1.479 1.519 1.959 −0.912 −0.944 −1.115 
100 1.152 1.197 1.901 −0.787 −0.827 −1.129 
200 0.875 0.920 1.882 −0.668 −0.714 −1.158 
500 0.572 0.602 1.849 −0.514 −0.558 −1.181 
1000 0.405 0.425 1.820 −0.415 −0.455 −1.191 

estimators is superior to that of the order- α estimator in terms of 
both MSE and bias statistics. Further, the performance of each es- 
timator improves with a larger sample size n , as expected. Specifi- 
cally, the MSE and bias statistics of isotonic CQR and isotonic CER 
estimators get closer to zero as n increases, which suggests that 
both estimators are consistent. The MSE of the order- α estimator 
also generally falls as the sample size increases, whereas the bias 
does not diminish as the sample size increases due to losing the √ 
n -consistency ( Aragon et al., 2005 ). 
Next, consider the choice of quantiles τ . Fig. 1 depicts the MSE 

results in estimating the quantile functions for different input di- 
mensions and SNR specifications, while keeping the sample size 
fixed at n = 10 0 0 . In all scenarios considered, the isotonic CQR 
and isotonic CER estimators have far smaller MSE values than the 
order- α estimator. However, the difference in terms of MSE be- 
tween isotonic CQR and isotonic CER is quite small. Another inter- 
esting observation is that when the quantile τ becomes smaller, 
the MSE of the order- α estimator sees a systematic increasing 
trend. 

We note that the MSE of each estimator generally increases as 
more input variables are introduced. This is because a larger di- 
mensionality increases the data sparsity, which degrades the per- 
formance of each estimator, ceteris paribus . For example, when 
τ = 0 . 9 and σ 2 = 1 . 88 , the MSE of the order- α estimator increases 
from 1.40 in the one-input case to 1.69 in the two-input case to 
1.82 in the three-input case, and isotonic CQR’s and isotonic CER’s 
MSE values rise from 0.04 to 0.15 to 0.40 and from 0.04 to 0.16 to 
0.42, respectively. A similar curse of dimensionality also exists in 
the DEA simulation studies, where the performance of DEA dete- 
riorates when the number of inputs increases, ceteris paribus (see, 
e.g., Cordero et al., 2015; Pedraja-Chaparro et al., 1999 ). 

Fig. 2 displays the bias results. The isotonic CQR and isotonic 
CER estimators yield both positive and negative biases. The bias 
gets greater (in terms of the absolute value) when τ deviates from 

0.5: it becomes a larger positive value when τ decreases from 0.5 
and, on the opposite, a smaller negative value when τ increases 
from 0.5. By contrast, the order- α estimator yields only negative 
biases. Since the order- α frontier converges to the FDH full frontier 
in a finite sample when τ −→ 1 , the observed negative bias of the 
order- α estimator for each quantile τ is due to the small sample 
bias, similar to FDH. Moreover, the bias of the order- α estimator 
becomes larger as τ decreases because the effective sam ple size 
gets smaller. 

Furthermore, we obtain similar results about the MSE and bias 
statistics and the sample size effect in additional experiments 
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Fig. 3. MSE results of the convexified order- α, CQR, and CER estimators with n = 10 0 0 . 

where the composite error term ε i contains either inefficiency 
( ε i = −u i ) or noise ( ε i = v i ) (see Appendix B.1 ). We also investigate 
the estimators’ performance in the presence of functional form 

misspecification and find that the isotonic CQR and isotonic CER 
estimator outperform the order- α estimator in terms of both MSE 
and bias statistics (see Appendix B.2 ). To examine the robustness 
of each estimator, we consider additional scenarios with outliers. 
The results suggest that the isotonic CER estimator is superior in 
all scenarios, and the isotonic CER and isotonic CQR estimators 
are more robust than the order- α estimator due to the fact that 
the order- α estimator does not satisfy the quantile property (see 
Appendix B.3 ). 

Another point worth noting is that the order- α estimator is 
found to perform relatively poorly at low quantiles. Thus, we fur- 
ther investigate the frequency of violations of the quantile prop- 
erty in 10 0 0 replications. Our simulations confirm that both iso- 
tonic CQR and isotonic CER satisfy the quantile property with the 
violation rates being zero. In contrast, the quantile property is sys- 
tematically violated in the order- α estimator at low quantiles, par- 
ticularly at the 10% quantile (see Table 2 ). The observed violations 
are due to the fact that the order- α estimator relies on the quan- 
tiles of an appropriate distribution based on a subset of the sam- 
ple. However, for high quantiles (i.e., τ > 0 . 5 ), the violation rates 
in the order- α estimator are also equal to zero, suggesting that the 
order- α estimator can satisfy the quantile property for large τ . This 
is consistent with the findings from the MSE and bias comparisons. 
In conclusion, the Monte Carlo simulations presented in this sub- 
section demonstrate that the true quantile estimators perform no- 
tably better than the order- α estimator in the nonconvex case. 

4.3. Experiment with monotonic and convex estimators 

We next conduct the second group of experiments to com- 
pare the performance of the convex estimators (i.e., CQR, CER, and 
convexified order- α) using the same scenarios as in Section 4.2 . 
Table 3 presents the effects of sample size and dimensionality on 
the MSE and bias statistics for τ = 0 . 9 . Figs. 3 and 4 display the 

MSE and bias statistics of the convexified order- α, CQR, and CER 
estimators as we alternate the values of τ and SNR, while keeping 
the sample size constant at n = 10 0 0 . 

The simulation results reported in Table 3 suggest that both 
CQR and CER estimators exhibit superior performance compared to 
the convexified order- α estimator both in terms of MSE and bias. 
Further, the MSE and bias of CQR and CER converge towards zero 
as the sample size n increases, while this is not the case for the 
convexified order- α estimator when the dimensionality d = 1 , 2 . 

Comparing Figs. 1 and 3 , we notice that the MSE statistic for 
each estimator decreases to a great extent once imposing the con- 
cavity constraint, especially for the order- α estimator. For instance, 
in the one-input case with σ = 1 . 88 , the average MSE of the con- 
vexified order- α estimator for the five estimated quantiles de- 
creases by more than 160% compared to its original counterpart. 
This finding confirms that the power of the CQR, CER, and convexi- 
fied order- α estimators derives from their global shape constraints, 
including monotonicity and convexity/concavity ( Kuosmanen et al., 
2020 ). 

While the performance of the order- α estimator increases af- 
ter imposing the concavity constraint, the CQR and CER estima- 
tors continue to outperform the convexified order- α estimator in 
all cases considered. However, the relative MSE ratio between the 
convexified order- α estimator and CQR (or CER) decreases as the 
input dimensionality or the quantile τ increases. Regarding the ef- 
fect of different SNRs, the smaller the value of λ, the higher the 
difference in MSE between the quantile and order- α estimators. 
However, the difference in MSE among the three SNRs is close to 
zero when the quantile τ approaches 1. 

Recall that the biases of the order- α estimator in all considered 
scenarios are negative, indicating that the estimated order- α fron- 
tiers systematically underestimate the true quantile functions. Af- 
ter imposing the concavity constraint, for the three-input cases, the 
convexified order- α estimator does not only underestimate but can 
also overestimate the true quantile function. Moreover, the abso- 
lute bias of the convexified order- α estimator is larger than that of 
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Fig. 4. Bias results of the convexified order- α, CQR, and CER estimators with n = 10 0 0 . 

Fig. 5. Illustration of the estimated order- α, isotonic CQR, and isotonic CER functions. X -axis: ln(C), Y -axis: ln(G). 
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Table 2 

Frequency of quantile property violations for the order- α estimator in 10 0 0 replications. 

n d ( σ 2 , λ) τ n d ( σ 2 , λ) τ

0.1 0.3 0.5 0.1 0.3 

50 1 (1.88, 1.66) 95.8% 0.3% 100 1 (1.88, 1.66) 99.6% 
(1.63, 1.24) 90.3% 0.3% (1.63, 1.24) 97.7% 
(1.35, 0.83) 75.1% 0.4% (1.35, 0.83) 86.7% 

2 (1.88, 1.66) 89.6% 1.7% 2 (1.88, 1.66) 88.8% 
(1.63, 1.24) 83.8% 1.6% (1.63, 1.24) 76.8% 
(1.35, 0.83) 79.7% 1.9% (1.35, 0.83) 66.1% 0.1% 

3 (1.88, 1.66) 98.9% 7.6% 0.2% 3 (1.88, 1.66) 98.1% 0.5% 
(1.63, 1.24) 98.8% 8.2% 0.2% (1.63, 1.24) 97.3% 0.7% 
(1.35, 0.83) 98.7% 7.1% 0.1% (1.35, 0.83) 96.7% 0.5% 

500 1 (1.88, 1.66) 100.0% 1000 1 (1.88, 1.66) 100.0% 
(1.63, 1.24) 100.0% (1.63, 1.24) 100.0% 
(1.35, 0.83) 98.7% (1.35, 0.83) 100.0% 

2 (1.88, 1.66) 89.3% 2 (1.88, 1.66) 90.1% 
(1.63, 1.24) 32.6% (1.63, 1.24) 10.8% 
(1.35, 0.83) 10.0% (1.35, 0.83) 0.9% 

3 (1.88, 1.66) 74.5% 3 (1.88, 1.66) 37.9% 
(1.63, 1.24) 60.2% (1.63, 1.24) 17.1% 
(1.35, 0.83) 50.7% (1.35, 0.83) 11.3% 

Note: The blanks in the columns of different quantiles denote zero violations. 

Fig. 6. Illustration of the estimated convexified order- α, CQR, and CER functions. X -axis: ln(C), Y -axis: ln(G). 

CQR/CER in all scenarios. Note that CQR and CER can better fit the 
true quantile functions with lower MSE and bias values compared 
to the monotonic estimators in Section 4.2 . 

The simulation results in Sections 4.2 and 4.3 reveal that the 
indirect estimation of quantiles using expectiles improves the per- 
formance in most scenarios considered, particularly for the con- 
cave quantile functions. Table 4 reports the percentage of simula- 
tion rounds where the MSE of the indirect expectile estimators is 

lower than that of the direct quantile estimators. Compared to iso- 
tonic CQR, isotonic CER has smaller MSE values for most quantiles 
considered except for those extreme quantiles (e.g., the 10% and 
90% quantiles). Further, when we impose the concavity constraint, 
the CER estimator outperforms the CQR estimator in a larger pro- 
portion of scenarios (e.g., all scenarios at the 10% and 50% quan- 
tiles). The observation from Table 4 suggests that the indirect esti- 
mation of quantiles through expectiles performs better when τ is 
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Table 3 

Performance in estimating monotonic and concave quantile function with σ 2 = 

1 . 88 and τ = 0 . 9 . COA = Convexified order- α. 

d n MSE Bias 

CQR CER COA CQR CER COA 

1 50 0.170 0.169 0.635 −0.056 −0.110 −0.497 
100 0.094 0.088 0.704 −0.023 −0.056 −0.574 
200 0.050 0.050 0.757 −0.009 −0.023 −0.636 
500 0.022 0.021 0.831 −0.005 −0.010 −0.694 
1000 0.031 0.011 0.880 −0.005 −0.005 −0.738 

2 50 0.377 0.395 0.838 −0.194 −0.308 −0.574 
100 0.231 0.239 0.854 −0.106 −0.186 −0.601 
200 0.133 0.137 0.880 −0.056 −0.102 −0.621 
500 0.067 0.069 0.934 −0.027 −0.048 −0.654 
1000 0.039 0.039 0.964 −0.013 −0.026 −0.668 

3 50 0.632 0.671 0.857 −0.406 −0.502 −0.574 
100 0.412 0.438 0.741 −0.249 −0.344 −0.485 
200 0.263 0.280 0.709 −0.152 −0.229 −0.440 
500 0.141 0.150 0.722 −0.082 −0.126 −0.427 
1000 0.087 0.091 0.732 −0.046 −0.078 −0.419 

close to 0.5, whereas the direct quantile estimation remains com- 
petitive when τ is very small or very large. 

5. Empirical illustration 

To gain an intuition of what the quantile production functions 
look like, we proceed to illustrate those estimators with a real 
cross-sectional dataset used in Kuosmanen & Zhou (2021) and Dai 
et al. (2022) . It covers plant-level data on 130 U.S. electric power 
plants in 2014. A very similar dataset has been repeatedly used in 
the empirical demonstration of newly developed frontier estima- 
tors (see, e.g., Gijbels et al., 1999; Martins-Filho & Yao, 2008 ). 

Following Gijbels et al. (1999) and Martins-Filho & Yao (2008) , 
we consider a univariate case where the output y = ln (G ) with 
G being the net generation of each power plant and the input 
x = ln (C) with C being the sum of fixed cost and variable cost of 
electricity production. See Kuosmanen & Zhou (2021) for a detailed 
discussion of the data sources and descriptive statistics. 

Since there exists a one-to-one mapping between quantiles and 
expectiles, we estimate a number of expectiles (i.e., ˜ τ = 0.001, 
0.002, . . . , 0.999) and then determine the corresponding quantile τ
by counting the number of negative residuals ε i that take strictly 
positive values ( Efron, 1991 ). Fig. 5 depicts the estimated mono- 
tonic quantile and expectile functions by the order- α, isotonic CQR, 
and isotonic CER estimators at τ = 0 . 9 , 0.7, 0.5, and 0.3, respec- 
tively. 

For the sake of illustration, the order- α estimator ( Aragon et al., 
2005 ), one of the most notable partial frontier estimators, is ap- 
plied and compared in all the application and simulations. Further, 
the thorough comparisons also include the convexified order- α es- 
timator, where we first utilize the order- α estimator to estimate 
the order- α production frontier and then apply the standard DEA- 

VRS (variable returns to scale) estimator to the estimated output 
on the order- α production frontier ( Polemis et al., 2021 ). Note that 
the order- α estimator has been extended to the multivariate set- 
ting ( Daouia & Simar, 2007; Daouia et al., 2017 ), hyperbolic orien- 
tation ( Wheelock & Wilson, 2009 ), and directional measures ( Simar 
& Vanhems, 2012 ). Meanwhile, the standard order- α estimator and 
its extensions have been widely applied in the context of produc- 
tivity and efficiency analysis (see, e.g., Carvalho & Marques, 2014; 
Kounetas et al., 2021; Polemis et al., 2021; Wheelock & Wilson, 
2013 ). 

The estimated isotonic CQR and isotonic CER functions are step 
functions enveloping exactly 100 τ% of the observations for each 
quantile τ . In contrast, the estimated order- α frontier does not 
necessarily envelope 100 τ% of the observations, but rather less 
than 100 τ% of the observations especially when the quantile τ gets 
smaller such as τ = 0 . 3 (see Fig. 5 d). This observation suggests that 
the order- α estimator cannot guarantee the quantile property, es- 
pecially for the low quantile estimation. This is because the order- 
α estimator is geared towards estimating high quantiles but de- 
teriorates when τ decreases. Further, the standard order- α esti- 
mator does not even satisfy monotonicity, which is its only as- 
sumed shape constraint. The violation of monotonicity occurs in 
all cases—the estimated order- α frontier (red line) is not strictly 
increasing but can also decrease, as shown in Fig. 5 (see also 
Figs. 2 and 3 in Daouia & Simar 2007 ). 

Fig. 6 illustrates the direct CQR and indirect CER quantile esti- 
mates when global concavity is imposed and the estimated con- 
vexified order- α frontier. All three estimators yield a concave 
piecewise linear curve which can be useful in applications where 
shadow pricing of non-market inputs and/or outputs is the main 
object of interest. In this respect, it is worth noting that the slope 
of the order- α frontier is similar to those of CQR and CER for τ = 

0 . 9 , but the slope decreases rapidly as τ decreases. The slope coef- 
ficients of CQR and CER, which are important for estimating the 
marginal products and elasticities, are much more robust across 
different values of τ in this illustrative example. 

This example also illustrates that indirect estimation of quan- 
tiles using expectiles can be a good alternative to estimate mono- 
tonic concave quantile functions and even monotonic step quan- 
tile functions. For each quantile τ , the indirectly estimated quan- 
tile function using expectile regression (teal line) is quite close to 
the directly estimated quantile function (orange dashed line) (see 
Figs. 5 and 6 ). Of course, a single example does not allow one to 
judge which approach performs better. 

6. Conclusions 

In this paper we have extended the theory and methodology 
of shape constrained quantile and expectile regression in three di- 
rections. First, we have stated and proved the generalized quan- 
tile and expectile properties that apply to any shape constrained 
nonparametric estimators. Examples of such estimators include the 

Table 4 

Percentage of scenarios where the indirect CER estimator has smaller MSE than the direct 
CQR estimator. 

Model specification τ ε = v − u ε = v ε = −u No. scenarios 

Monotonicity all quantiles 65.8% 63.1% 57.3% 225 
0.1 22.2% 13.3% 26.7% 45 
0.5 100.0% 100.0% 100.0% 45 
0.9 13.3% 13.3% 13.3% 45 

+ Concavity all quantiles 88.0% 88.0% 89.8% 225 
0.1 100.0% 100.0% 100.0% 45 
0.5 100.0% 100.0% 100.0% 45 
0.9 40.0% 40.0% 55.6% 45 
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isotonic regression that relaxes the global concavity or convexity 
assumptions. Our result also implies that the quantile and expec- 
tile properties carry over to the constant, non-increasing, or non- 
decreasing returns to scale technologies, the cost function and dis- 
tance function specifications, as well as additional regularizations, 
which are increasingly used in applications to alleviate overfitting 
and the curse of dimensionality. 

Second, we have extended the toolbox of shape constrained 
quantile and expectile estimation by introducing the isotonic con- 
vex quantile regression and isotonic convex expectile regression, 
respectively. These new variants of CQR and CER enable us to re- 
lax the concavity assumptions of CQR and CER, similar to isotonic 
regression. 

Third, we have provided new evidence of the finite sample per- 
formance of the CQR, CER, and their isotonic counterparts in the 
controlled environment of Monte Carlo simulations. To compare 
CQR and CER, we converted the expectiles estimated by CER to 
quantiles using a transformation suggested by Efron (1991) . Our 
simulations confirm that the indirect estimation of quantile fron- 
tiers by first estimating multiple CER frontiers and subsequently 
converting them to relevant quantile functions improves finite 
sample performance compared to the direct CQR estimation. 

Our simulations also included the widely used order- α estima- 
tor to place the excellent finite sample performance of the CQR and 
CER methods into a proper perspective. Our simulations demon- 
strate that the standard order- α estimator does not necessarily 
satisfy the quantile property, particularly at low quantile. In this 
sense, the interpretation of the order- α frontier as the quantile 
function seems debatable. Of course, improving the robustness of 
efficiency measurement and benchmarking is frequently cited as 
the primary motivation for using the order- α estimator as well as 
other similar partial frontier approaches. 

We conclude by noting that the attractive asymptotic properties 
of the order- α estimator did not carry over as excellent finite sam- 
ple performance in our Monte Carlo simulations, even when the 
global concavity constraints were relaxed. Still, the rigorous sta- 
tistical theory remains a key advantage of the order- α approach. 
While there has been notable progress in the statistical theory of 
convex regression (see, e.g., Lim, 2014; Lim & Glynn, 2012; Seijo & 

Bodhisattva, 2011 ), which is the special case of CER when ˜ τ = 0 . 5 , 
the asymptotic theory and statistical inference for the CQR, CER 
and their isotonic counterparts remains to be developed. We would 
like to suggest this as an interesting avenue for future research for 
competent mathematical statisticians. 
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Appendix A. Proofs 

A1. Proof of Theorem 1 

We can rewrite problem (5) as the equivalent problem accord- 
ing to the quantile regression definition ( Koenker & Bassett, 1978 ). 

Specifically, problem (5) can be reformulated as 

min τ
n 

∑ 

i =1 

ρτ (y i − Q ) (A1) 

s.t. Q ∈ F 

The quantile property for any nonparametric quantile regression 
function subject to shape constraints can be established by using 
the proof in Wang et al. (2014) . Suppose that ( ̂  Q 1 , . . . , ˆ Q n ) is a fea- 
sible solution to problem (A1) . For any α ∈ R , ( ̂  Q 1 + α, . . . , ˆ Q n + α) 
is also a feasible solution to problem (A1) as the new estimated 
quantile function is merely the parallel shift of the original one 
with level α ( Wang et al., 2014 ). Note that n + τ + n −τ ≤ n and hence 
we introduce n 0 τ to denote the number of the observations with 
ε + 
i 

= ε −
i 

= 0 . We then have the equation n = n + τ + n −τ + n 0 τ . 
The marginal effects of shifting the estimated quantile function 

on the objective function are calculated by 

∂ 
n 
∑ 

i =1 
ρτ (y i − Q + α) 

∂α
= 

{

(1 − τ )(n −τ + n 0 τ ) − τn + τ if α ≥ 0 , 
(1 − τ ) n −τ − τ (n + τ + n 0 τ ) otherwise . 

Given that n 0 τ may be positive (i.e., n 0 τ > 0 ), we have 
{

(1 − τ )(n −τ + n 0 τ ) − τn + τ ≥ 0 
(1 − τ ) n −τ − τ (n + τ + n 0 τ ) ≤ 0 

Reorganizing the above two inequalities leads to 

{

(1 − τ ) n − n + τ ≥ 0 
n −τ − τn ≤ 0 

⇒ 

⎧ 

⎨ 

⎩ 

n + τ

n 
≤ 1 − τ

n −τ
n 

≤ τ

Therefore, Theorem 1 is proved. That is, the quantile property can 
be applied to any nonparametric quantile function subject to shape 
constraints. �

A2. Proof of Theorem 2 

We rewrite problem (8) by the following equivalent problem 

( Newey & Powell, 1987 ) 

min ̃  τ
n 

∑ 

i =1 

ρ ˜ τ (y i − Ŵ) 2 (A2) 

s.t. Ŵ ∈ F 

The expectile property for any nonparametric expectile regression 
function subject to shape constraints can be established following 
Kuosmanen & Zhou (2021) . Similar to the proof of Theorem 1 , the 
marginal effect of shifting the estimated expectile function on the 
objective function is 

∂ 
n 
∑ 

i =1 
ρ ˜ τ (y i − Ŵ + α) 2 

∂α
= 2(1 − ˜ τ ) 

n 
∑ 

i =1 

ˆ ε −
i − 2 ̃  τ

n 
∑ 

i =1 

ˆ ε + 
i 

By reorganizing the first-order condition, we have 

2(1 − ˜ τ ) 
n 

∑ 

i =1 

ˆ ε −
i − 2 ̃  τ

n 
∑ 

i =1 

ˆ ε + 
i = 0 

The expectile property in Theorem 2 is immediately proved as we 
have ˜ τ = 

∑ n 
i =1 ˆ ε 

−
i 

/ ( 
∑ n 

i =1 ˆ ε 
+ 
i 

+ 
∑ n 

i =1 ˆ ε 
−
i 
) . 
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Appendix B. Additional experimental results 

B1. Experiment with different error specifications 

Table B1 

Performance in estimating the quantile function when ε i = v i and ε i = −u i with n = 10 0 0 and d = 1 , 
respectively. ICQR = Isotonic CQR, ICER = Isotonic CER, COA = Convexified order- α. 

ε τ ICQR ICER COA 

Bias MSE Bias MSE Bias MSE 

σv 0.708 0.1 0.040 0.032 0.048 0.029 −1.900 4.895 
0.3 0.016 0.021 0.017 0.016 −1.593 3.352 
0.5 0.017 0.020 0.002 0.014 −1.310 2.191 
0.7 −0.005 0.021 −0.014 0.016 −1.053 1.358 
0.9 −0.029 0.031 −0.047 0.029 −0.800 0.761 

0.801 0.1 0.041 0.038 0.057 0.035 −1.856 4.687 
0.3 0.018 0.025 0.017 0.020 −1.571 3.257 
0.5 0.017 0.023 0.002 0.017 −1.315 2.206 
0.7 −0.006 0.025 −0.014 0.019 −1.082 1.435 
0.9 −0.030 0.037 −0.049 0.035 −0.843 0.855 

0.894 0.1 0.044 0.044 0.052 0.041 −1.814 4.499 
0.3 0.019 0.030 0.017 0.023 −1.553 3.177 
0.5 0.019 0.028 0.003 0.020 −1.319 2.220 
0.7 −0.005 0.029 −0.015 0.023 −1.107 1.508 
0.9 −0.032 0.043 −0.051 0.041 −0.884 0.955 

σu 1.174 0.1 0.044 0.050 0.055 0.045 −1.670 4.468 
0.3 0.009 0.028 0.012 0.019 −1.639 3.582 
0.5 0.009 0.020 −0.005 0.013 −1.427 2.551 
0.7 −0.015 0.015 −0.022 0.009 −1.157 1.587 
0.9 −0.040 0.010 −0.048 0.008 −0.773 0.748 

0.994 0.1 0.041 0.039 0.051 0.035 −1.818 4.810 
0.3 0.009 0.022 0.011 0.015 −1.674 3.694 
0.5 0.007 0.016 −0.006 0.010 −1.411 2.493 
0.7 −0.014 0.012 −0.020 0.007 −1.104 1.450 
0.9 −0.037 0.008 −0.044 0.007 −0.695 0.580 

0.742 0.1 0.037 0.026 0.045 0.023 −1.983 5.371 
0.3 0.008 0.015 0.010 0.010 −1.717 3.860 
0.5 0.006 0.010 −0.005 0.007 −1.383 2.403 
0.7 −0.013 0.008 −0.019 0.005 −1.028 1.264 
0.9 −0.034 0.006 −0.040 0.005 −0.598 0.414 

B2. Experiment with model misspecification 

Table B2 

Performance in estimating quantile function over noncovex set. 

n ( σ 2 , λ) ICQR ICER COA 

Bias MSE Bias MSE Bias MSE 

50 (1.88, 1.66) 0.075 0.401 −0.028 0.353 −4.510 31.867 
(1.63, 1.24) 0.087 0.405 −0.016 0.355 −4.485 31.640 
(1.35, 0.83) 0.096 0.411 −0.008 0.355 −4.463 31.448 

100 (1.88, 1.66) 0.067 0.270 −0.022 0.228 −4.637 32.881 
(1.63, 1.24) 0.076 0.273 −0.014 0.229 −4.614 32.639 
(1.35, 0.83) 0.082 0.277 −0.008 0.229 −4.593 32.432 

200 (1.88, 1.66) 0.056 0.180 −0.010 0.147 −4.691 33.218 
(1.63, 1.24) 0.062 0.182 −0.004 0.148 −4.668 32.975 
(1.35, 0.83) 0.069 0.185 0.000 0.148 −4.648 32.779 

500 (1.88, 1.66) 0.036 0.100 −0.009 0.079 −4.733 33.649 
(1.63, 1.24) 0.040 0.101 −0.005 0.080 −4.710 33.400 
(1.35, 0.83) 0.044 0.102 −0.002 0.080 −4.690 33.192 

1000 (1.88, 1.66) 0.024 0.064 −0.007 0.049 −4.750 33.751 
(1.63, 1.24) 0.027 0.064 −0.004 0.050 −4.728 33.507 
(1.35, 0.83) 0.029 0.065 −0.002 0.050 −4.709 33.307 

DGP: y i = x i + 0 . 1 x 2 
i + v i − u i , where x i ∼ U[1 , 10] , v i 

i.i.d. ∼ N(0 , σ 2 
v ) , and u i 

i.i.d. ∼
N + (0 , σ 2 

u ) . 

B3. Experiment with outliers 

Table B3 

Performance in estimating the quantile function with three outliers. 

( σ 2 , λ) d ICQR ICER COA 

Bias MSE Bias MSE Bias MSE 

(1.88, 1.66) 1 0.029 0.104 −0.011 0.081 −1.844 19.823 
2 0.032 0.105 −0.007 0.082 −1.828 19.748 
3 0.034 0.105 −0.006 0.082 −1.814 19.686 

(1.63, 1.24) 1 0.035 0.232 −0.021 0.202 −1.760 19.840 
2 0.044 0.236 −0.012 0.203 −1.743 19.781 
3 0.050 0.238 −0.005 0.203 −1.727 19.732 

(1.35, 0.83) 1 0.011 0.408 −0.033 0.370 −1.618 19.691 
2 0.024 0.411 −0.018 0.371 −1.598 19.639 
3 0.035 0.414 −0.006 0.372 −1.582 19.592 

DGP: y i = 
∏ D 

d=1 X 
0 . 8 
d 

d,i + v i − u i , where X = ( x 1 , x 2) 
′ 
, x 1 m ∼ U[1 , 10] 

( m = 1 , . . . , 200 ), x 2 n ∼ U[90 , 100] ( n = 1 , . . . , 3 ), v i 
i.i.d. ∼ N(0 , σ 2 

v ) , and 

u i 
i.i.d. ∼ N + (0 , σ 2 

u ) . 
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