
Automated Compositional Verification for
Robotic State Machines using Isabelle/HOL

Fang Yan , Simon Foster , Ibrahim Habli
Department of Computer Science, University of York, York, UK

firstname.lastname@york.ac.uk

Abstract—RoboChart is a graphical language for model-based
engineering of robotic systems, in the style of UML and SysML.
It contains notations for data structures, system architecture,
and the behaviour of individual robotic controllers using state
machines. Crucially, RoboChart has a formal semantics in
the CSP process algebra, which provides a precise foundation
for software engineering and formal verification using model
checking. However, due to state explosion, the application of
model checking does not scale. In this paper, we contribute
a compositional verification technique that uses Isabelle/HOL
RoboChart state machines symbolically. Our technique uses
state invariants to capture safety requirements over a very
large or infinite state, similar to the B method, and is highly
automated using Isabelle’s sledgehammer tool. We give a model
transformation from the RoboTool development environment to
Isabelle/HOL and apply this to several verification case studies.

Index Terms—RoboChart, state machine, theorem proving,
model transformation, Isabelle/HOL

I. INTRODUCTION

Model-based Engineering (MBE) is widely used in sys-
tem development. For safety-critical systems, it is crucial
to verify system models rigorously. Compared with testing
and simulation, formal verification using model checking and
theorem proving can explore the whole state space or at
least a substantial portion of it. However, the application of
formal verification in engineering practice is hindered by the
excessive need for formal expertise. As such, the integration of
formal verification into MBE has been the subject of intense
research [1]–[4].

For example, RoboChart [5] is a UML-like modelling lan-
guage for robotic systems. It has a denotational semantics [5]
based on the CSP process algebra and a probabilistic semantics
in PRISM [6]. These formal semantics enable RoboChart to be
verified by the model checkers FDR [7] for non-probabilistic
properties, and PRISM [8] for probabilistic properties.

Though model checking is a valuable and highly automated
technique, it suffers from the state explosion problem [4], and
cannot be applied to robotic models containing unbounded
data types and real numbers. In contrast, theorem proving
represents the state space symbolically, without requiring
abstractions, and so avoids these issues.

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 812.788 (MSCA-ETN SAS).
This publication reflects only the author’s view, exempting the European
Union from any liability. Project website: http://etn-sas.eu/.

Although traditionally a manual process, integrating au-
tomated proof tools like SMT solvers has the potential to
significantly improve theorem proving usability. For example,
sledgehammer [9] is a tool that applies ATPs and SMT solvers
in Isabelle/HOL [10]. However, the integration of theorem
proving into MBE workflows remains a major challenge.

So the question is how can we leverage the use of such au-
tomated proof techniques for verification in an MBE process?
Though work exists on the application of theorem proving to
software models, e.g., [11]–[13], the work usually depends
on manual translation or proof and so inhibits traceability.
Moreover, previous work on RoboChart verification cannot
benefit from compositionality, because all transitions are com-
piled into a monolithic model for checking, meaning that the
benefits of theorem proving are only partly gained.

Our contribution is a compositional verification technique
for verifying RoboChart state machine models. Each transition
of the machine can be independently verified against a set of
invariants. Our technique can support seamless integration of
theorem proving in supporting MBE. The technique comprises
the five activities shown in Fig. 1. We bridge the gap between
the domain-specific models and formalization using a set
of intermediary notations that balance usability by software
engineers with suitable rigour provided by formal semantics.

Fig. 1: Pipeline for verifying RoboChart state machine.

The technical contributions of our paper are (1) a pipeline
for RoboChart state machine verification by automated the-
orem proving; (2) the mapping rules from RoboChart to
an abstract machine language with verification support of
Isabelle/HOL; (3) a requirement proving strategy and proof
methods for deadlock freedom; and (4) a case study on an
underwater vehicle robot to demonstrate the effectiveness of
our method. The transformation algorithm, a running example
and the case study can be accessed online1.

1https://github.com/uoy-fangyan/ICECCS2023-Compositional-Verification

https://orcid.org/0000-0001-5603-3467
https://orcid.org/0000-0002-9889-9514
https://orcid.org/0000-0003-2736-8238
https://github.com/uoy-fangyan/ICECCS2023-Compositional-Verification

The rest of the paper is structured as follows. §II dis-
cusses related work on verifying domain-specific models
by formal reasoning. §III provides the required background
on RoboChart. §IV gives the background knowledge of Z-
Machines, the intermediary notation underpinning RoboChart
transformation, then begins our contributions with a deadlock
freedom verification method. In §V, we present a modelling
pattern based on Z-Machines. §VI introduces the mapping
rules from RoboChart state machines to Z-Machines accord-
ing to the modelling pattern. §VII discusses the verification
approach, including the strategy for constructing structural
invariants, and the type of requirement to be covered. §VIII
shows the case study on an autonomous underwater vehicle.
We evaluate our method and conclude in §IX.

II. RELATED WORK

There is a substantial body of work on verifying models
developed in model-driven design languages within a formal
reasoning environment. A major part of the results are for
verifying the system models with model checking methods by
transforming models from a system modelling language (e.g.,
AADL, SysML, Stateflow) to a formal language (e.g., Lustre,
LNT) [1]–[3]. We focus on works in verifying system models
by theorem proving using automated theorem provers.

A few works exist to address the model verification by
interactive theorem provers, such as Isabelle/HOL, KeYmaera
X, etc. Hadad et al. [11] transform a subset of the AADL
model into Event-B, then verify the models in the RODIN
platform and Atelier B prover. They use UML class diagram
to classify the AADL elements and further map the classes
to Event-B models. Our intermediary notation, Z-Machines,
is conceptually similar to Event-B, but is embedded into
Isabelle/HOL. Use of Isabelle/HOL gives us access to an array
of verification and modelling facilities, including automated
theorem proving, code generation, and real number analysis.

Zou et al. [12], [14] translate Stateflow diagrams to
HCSP [15] models which are verified in Isabelle using Hoare
logic. We instead use Z-Machines as a higher-level represen-
tation, which makes the mapping more direct.

Foster et al. [13] present an automated verification technique
for a subset of RoboChart by mechanising an action language
for states and transitions in Isabelle/HOL. We take a further
step to incorporate Z-Machines to realize the mechanization of
RoboChart in Isabelle, and our mapping rules from RoboChart
to the intermediary notation are inspired by their dynamic
semantics of a state diagram. Their work verifies only the
deadlock-free property while ours is capable of verifying
different types of properties including deadlock freedom. Also,
in [13] the semantics of the whole state machine is generated
monolithically. Our semantic translation allows compositional
verification.

In [16], Foster et al. mechanise an Interaction Tree (ITree)
based CSP semantics and a Z mathematical toolkit in Is-
abelle/HOL. Ye et al. [17] use this ITree-based semantics to
give RoboChart an operational semantics in Isabelle, whereas
we use Z-Machines as a higher-level one. The intermediary

notation we choose for our method (Z-Machines) is also built
on top of the ITree CSP semantics. However, our purpose
is to verify RoboChart models with theorem proving in Is-
abelle/HOL but [17] has no attempt at building a verification
method and cannot benefit from compositionality.

III. ROBOCHART

We use an autonomous Chemical detector [5], [18] as
a running example to describe features of RoboChart for
modelling controllers. The robot performs a random walk with
obstacle avoidance and analyses the air to detect dangerous
gases. Once a chemical with an intensity above a threshold
is detected, the robot drops a flag, reports the location of the
gas, and stops the walk.

A RoboChart model’s top-level structure is a module con-
taining one robotic platform (an abstracted physical robot
indicating available services), and multiple controllers that
specify software behaviours. Fig. 2 displays the ChemicalDe-
tector module which contains a platform Vehicle and two
controller references (MainController and MicroController). The
platform provides several services to the controllers including
(1) reading sensor data through gas, obstacle, and odometer
events; (2) movement actuation through move, randomWalk,
and shortRandomWalk operations grouped in an interface
Operations; and (3) dropping a flag when receiving event flag.

Fig. 2: RoboChart module of Chemical detector.

The types are defined in the two packages and imported as
shown in Fig. 2: Chemical and Location. In the two packages,
primitive types Chem and Intensity are declared for chemicals
to be detected and the intensity of the chemicals, enumerations
Status for the detection status, Angle for the turning directions
of the robot, and Loc for the chemical locations. The packages
declare a record GasSensor containing two fields (c of type
Chem and i of type Intensity), and define six functions and
an operation changeDirection using a state machine. The
behaviour of MicroController is specified using state machine
Movement, and MainController using state machine GasAnaly-
sis as shown in Fig. 3.

The machine GasAnalysis declares a constant thr as intensity
threshold, and four variables including sts as detection status,
gs as the list of sensor readings, ins as the gas intensity, and anl

2

Fig. 3: RoboChart state machine model of Gas Analysis.

as turning direction. The machine has one initial junction, four
normal states called Reading, Analysis, NoGas, GasDetected,
and a final state. Each state may have an entry action such
as sts = analysis(gs), a during action, and an exit action. A
Transition is a directed connection from a source node to
a target node. It can have a trigger event (e.g., event gas
of input type), a guard condition (e.g., “not goreq(ins,thr)”),
and an action that is executed during the transition (e.g., the
assignment action “anl = location(gs)”, and the action of event
turn).

GasAnalysis models the gas detection behaviour of the
robot. After the machine is initialized, it takes the sensor
readings from event gas, then in state Analysis it analyses
the gas status according to the readings. If there is no gas
detected, a resume command is sent to Movement to let the
robot continue its random walk, and GasAnalysis reads the
new reading. If there is gas detected, the machine enters
GasDetected and calculates the gas intensity. If the intensity
reaches the threshold, it is identified as a dangerous gas
detected, a stop signal is sent to the machine Movement, and
GasAnalysis terminates. Otherwise, it is identified as no danger
and a turn signal is sent to Movement to change the direction
of the robot, and GasAnalysis enters Reading to take the new
readings.

IV. Z-MACHINES AND DEADLOCK-FREEDOM

Here, we introduce Z-Machines, which we use to give a
semantics to RoboChart, and a novel proof method for check-
ing deadlock-freedom. The Z-Machine language is an abstract
machine model, similar to the Z [19] and B [20] methods,
which is built as a conservative extension of Isabelle/HOL.
A Z-Machine consists of (1) a rich state space including
invariants; (2) operations acting over the state space; and
(3) the machine itself, which initialises the state and groups
together the operations. Z-Machines can make use of any data
structures available in HOL, such as sets, functions, records,
algebraic data types, and real numbers.

As with the B method [20], a Z-Machine is essentially an
action system [21], where operations can be called repeatedly
depending on their preconditions. We give an operation below
taken from the “Birthday Book” example [19], in Isabelle:

zoperation AddBirthday =
params name∈NAME date∈DATE
pre "name /∈ known"
update "[known’ = known ∪ {name},

bday’ = bday ⊕ {name 7→ date}]"

Here, NAME and DATE are abstract sets that can be assigned
particular values. Each operation consists of (1) a number of
parameters (params), which model inputs and outputs; (2) a
precondition (pre), which must be true for the operation to be
executed; and (3) an update, which simultaneously assigns
new values to state variables. In addition to zoperation,
we provide commands to create state spaces (zstore) with
invariants, and machines (zmachine).

Z-Machines have a semantics in the Circus concurrent speci-
fication language [22], which combines Z and the CSP process
algebra. The main constructs we use in building Z-Machines
are (1) external choice []e∈E → P(e), where the environment
picks an event e in E to chose a successor process P(e); and (2)
simultaneous assignment [x′1 = e1, · · ·x′n = en], where several
variables are atomically updated to corresponding expressions.

Z-Machines can be animated using Isabelle’s code genera-
tor, via a coinductive semantics for Circus in the Interaction
Tree (ITree) semantic model [16]. Animation consists of first
initialising the state, and then checking the precondition of
each operation for every possible parameter value. The user
can select an enabled operation for execution, which then
executes the update and iterates. The animator can be used
to explore and evaluate the behaviour of a formal model.

Verification of Z-Machines consists of identifying suitable
state invariants to satisfy the critical requirements, and then
showing (1) that the initialisation establishes the invariants,
i.e. {true} Init {I}; and (2) that each operation preserves them,
i.e. {I}Opi(x,y,z){I}. We provide the zpog method, which
generates a set of proof obligations for such a specification
triple, via calculation of the operation’s weakest precondition.
The resulting proof obligations can then often be discharged
automatically using the Isabelle tools auto and sledgehammer.

In addition to general invariant properties, we contribute
a method to prove deadlock-freedom. Generally speaking, a
process P is deadlock-free provided that there does not exist
a trace tr (a list of events) such that P tr−→ stop, where stop
is the process with no enabled events. More specifically, a
Z-Machine is deadlock-free if in any reachable state there is
at least one operation that is enabled, which means that no
deadlocking trace exists.

We support an automated method for checking deadlock-
freedom through a calculus for “deadlock-freedom precondi-
tions” (dfp). The dfp of a process is a predicate characterising
the initial states that do not have any deadlocking transitions,
i.e. dfp(P)= {s | ∄tr.P(s) tr−→ stop}. Using our ITree semantics,
we prove the following equations of our dfp calculus:

3

Theorem 1 (Deadlock-Freedom Preconditions).

dfp(stop) = false

dfp([x′1 = e1, · · ·x′n = en]) = true

dfp(P ;Q) = (dfp(P)∧wlp P (dfp(Q)))

dfp([]e∈E → P(e)) = (E ̸= /0∧ (∀e ∈ E.dfp(P(e))))

The dfp of stop is false, since this process always deadlocks.
The dfp of a simultaneous assignment for n variables is
true, since this can never deadlock. The dfp of a sequential
composition P ;Q requires (1) the dfp of P; and (2) the final
state of P does not cause Q to deadlock, which we characterise
with the weakest liberal precondition. Finally, the dfp of a
choice between the events in E requires that E is non-empty,
and that every successor process P(e) for e ∈ E is deadlock-
free. We also prove the following theorem:

Theorem 2 (Deadlock-Freedom of Z-Machines). A Z-
Machine with n∈N operations, each guarded with a paramet-
ric event ci, is deadlock-free provided there exists an invariant
I, such that I =⇒ dfp

(
[]i∈{1..n} ci(x)→ Opi(x)

)
.

To prove deadlock-freedom we need a suitable invariant of the
machine I, such that I implies that the precondition of at least
one operation is satisfied. We can verify this by calculating the
dfp of all the operations, which corresponds to the disjunction
of all the operation preconditions. Then, we need to prove that
I is sufficient to satisfy one of the preconditions.

We supply a proof method called deadlock_free, which
automates deadlock checking. It assumes that we have already
shown that I is an invariant of all the machine operations,
and requires we supply lemmas to this effect. This being
the case, the method calculates a deadlock freedom condition
predicate for the whole Z-machine, which can typically be
discharged using auto or sledgehammer. Through our Z-
Machine semantics for RoboChart, we will apply this method
to prove deadlock-freedom of robotic state machines.

V. SEMANTIC DOMAIN

To verify RoboChart models in Isabelle/HOL, we propose a
modelling pattern for a RoboChart subset using Z-Machines.
We use Z-Machine operations to represent RoboChart transi-
tion behaviours, and define observational variables to encode
the semantic structure of RoboChart elements. These variables
are accompanied by a set of healthiness conditions, following
the approach of Unifying Theories of Programming [23].
The healthiness conditions characterise state machines with
a coherent semantics, and all operations shall satisfy them.

A. Observational variables

RoboChart states and transitions have separate CSP seman-
tics [5] represented by processes. A transition process starts
with an enabled trigger event (if one exists). If the transition
condition is met, the process exits the current state, executes
any transition actions, and then enters the target state. From
here, a state process starts and executes state entry actions and
then during actions.

We define two types, St and Evt, to represent the sets of
states and events defined in RoboChart models. A parametric
datatype tag is defined as follows for an observational variable
tr to tag semantic transition information:

datatype (’s, ’e) tag = State ’s | Event ’e

To define tr using the type tag, ′s is instantiated with St, and
′e with Evt. The two constructors State and Event are used to
define state-related and event-related requirements. tag comes
with the built-in functions of is State and is Event, and both
are of Boolean type.

We define three observational variables to enrich the struc-
ture of the Z-Machine including tr, and to enable a more
precise mapping to the RoboChart semantics:

• st :: St type, as the current state the machine is in;
• triggers of type “Evt set”, a set of possible trigger events

that can be enabled in the following transitions; and
• tr :: (St,Evt) tag list as a list representing the sequential

trace of the behaviours of each transition.
These variables form part of the Z-Machine store. tr is used to
mimic a combined process of states and transitions based on
the CSP semantics, but is a simplified version of the CSP
process of RoboChart without the process of entering and
exiting states. We use tr to record sequentially the trigger
event, the exit action of event type in source state, the actions
of event type executed, the entry action and during action of
event type in target state, and the target state entered. We
mainly use tr to define the event-related and state-related
safety requirements.

B. Healthiness conditions

With the observational variables defined, we give a set of
healthiness conditions to set constraints on the observational
variables. For example, when a transition is completed, the
entered state in the transition process shall be the current state.
These conditions will be the basis for invariant proving. There
are four generic healthiness conditions defined as below:

HC1≜(#tr > 0). The trace shall not be an empty list. In
RoboChart, state machines must contain at least one state,
therefore after initialization, tr is not empty.

HC2≜(last(tr) = State st). The last element of tr shall be
the current state st the state machine is in after the transition.

HC3≜(∀i < #tr.tr!i = State f inal −→ i = #tr− 1). If the
state machine terminates, the last element of tr shall be one
of the termination states.

We collect the healthiness conditions in a predicate called
wf_rcstore, which is imposed on every state machine store.

VI. MODEL TRANSFORMATION

As shown in Fig. 1, our method has five steps. The first
activity is to transform the RoboChart state machine auto-
matically into a Z-Machine. The second activity involves the
generation of structural invariants for Z-Machine models under
analysis. Structural invariants are model-specific constraints on
the state components, separate from the healthiness conditions,

4

https://github.com/isabelle-utp/interaction-trees/blob/master/UTP/ITree_DFP.thy
https://github.com/isabelle-utp/Z_Machines/blob/9f3ecffe7dc1377d834df9075a648e9ba2ebfdc6/Z_Machine.thy#L87

and are necessary for requirement verification in the next step.
The structural invariants should be provided by the users. The
third activity is the formalisation of the system properties of
interest, and the generation of corresponding lemma templates.
The fourth activity is an automatic generation of the ITree-
based Circus semantics in Isabelle [16]. At last, we use the
auto proof and the sledgehammer interface in Isabelle/HOL
to call ATPs for proving the system requirements.

In this section, we discuss Step 1 for mapping RoboChart
state machines to the semantic domain of Z-Machines. We
group the elements of RoboChart meta-models into six cate-
gories: Type Declarations, Context, Nodes, Transitions, State-
ments and Expressions, and State machines. The mapping
for the Statements and Expressions is straightforward and is
omitted in the paper. Thus, we present five groups of mapping
rules in this section. We illustrate the whole process with
the running example of the GasAnalysis state machine of the
Chemical Detector from §III.

A. Types

Rule 1: Primitive datatypes of RoboChart are mapped
to Isabelle/HOL primitive types including nat to nat, int to
integer, boolean to bool, real to real, and char to string.

Rule 2: Type declarations in RoboChart are mapped to
HOL type declarations. These include abstract types with-
out a definition (i.e. given sets), record types, enumerations,
Cartesian products, and sets. HOL has similar elements for
these types. An example mapping for GasAnalysis is shown
in Fig. 4. We use the text format of RoboChart here to compare
it with the models in Isabelle/HOL.

(a) RoboChart types (b) Isabelle types

Fig. 4: Gas Analysis example for mapping Rule 2.

Rule 3: Types in the Z mathematical toolkit includ-
ing functions, relations and sequences, are mapped to Is-
abelle/HOL functions, relations, and lists, using our imple-
mentation of the Z mathematical toolkit2. RoboChart func-
tions are partial, so have a precondition and postcondition
pattern. We have developed a corresponding command in the
Z toolkit library with a precondition and postcondition
to be transformed automatically. However, for the purpose of
theorem proving, an abstract function declaring the type of the
domain and the range is often sufficient.

B. RoboChart context

RoboChart context includes Variables, Constants, Opera-
tions, and Events. These elements can either be declared
directly in the robotic platform, or grouped in interfaces [5].

2https://isabelle-utp.york.ac.uk/theories/z-toolkit

Operations are omitted in our transformation as they represent
the hardware platform behaviours.

Rule 4: Constants are mapped to polymorphic constants in
HOL using the consts keyword. Such constants are uninter-
preted symbols of a given type, which can be later assigned a
value using the def_consts command.

Rule 5: Variables are mapped to store variables. We use
the zstore command to collect all the variables.

Rule 6: Events are collected and defined as an enumer-
ation type Evt with all the events as the constructors in
Isabelle/HOL. A corresponding set with all events as its
elements is defined. Events may be used as a transition trigger,
a transition action, or a state action.

The transformation examples using Rule 4-6 is as below:

consts thr::"Intensity"
consts SeqGasSensor::"GasSensor list set"
enumtype Evt = gas | turn | resume | stop
definition "Evt = {gas, turn, resume, stop}"

zstore GasAnalysis =
sts::"Status"
gs:: "GasSensor list"
ins::"Intensity"
anl::"Angle"

where invs...

The where section contains the healthiness conditions and
structural invariants, which will be explained in detail in §VII.

C. Nodes

A RoboChart node can either be a state or a junction, with
Final States and Initial Junctions as special types of States
and Junctions [5]. We do not need to differentiate the initial
junction from other states for transformation.

Rule 7: Nodes are collected and defined as an enumeration
type St with all the nodes as the constructors. A corresponding
set with all nodes as its elements is also defined.

In GasAnalysis there are six nodes as below.

enumtype St = initial | NoGas | GasDetected |
Analysis | Reading | final

definition "St = {initial, NoGas, GasDetected ,
Analysis , Reading, final}"

D. RoboChart transition behaviour

Rule 8: Transition behaviour of RoboChart (entering and
exiting states, and transitions between the states) is mapped to
zoperations. One transition matches one zoperation. This
means that we retain traceability to the original state machine
model. Moreover, it makes our technique compositional, since
we can independently verify whether each individual transition
preserves the invariants, without affecting any of the other
transitions. Thus we harness the incremental nature of the
Isabelle document model, whereby individual commands are
processed independently [24]. The mapping to RoboChart
elements is according to the following template.

zoperation TransN =
params <parameter_input > ∈ "<PARAMETER >"

5

https://isabelle-utp.york.ac.uk/theories/z-toolkit

pre "st=<src_st> (∧ <tran_cond >)*"
update "[<state_var >′ = <new_val_state_var >

,st′ = <tgt_st>
,triggers ′={<possible_trg_events >}
,tr′= tr @ [<trg_event >,

<src_exit_action >, <tran_action >,
<tgt_action >, <tgt_st >]

,<parameter >′= <parameter_input >]"

We now explain each of the components of this template with
the example of GasAnalysis shown in Fig. 5.

(a) RoboChart transitions (b) Z-Machine operations

Fig. 5: Examples for mapping Rule 8, 8.1, 8.2, 8.3.

Rule 8.1: For RoboChart events of input and synchroniza-
tion types that communicate a value to a variable, we use
params section to let the variable parameter first read a
value from a set PARAMETER that represents the possible input
values. The variable to be updated will then be assigned the
value of parameter in the update section.

For example, in transition t0 of Fig. 5, gs is to be updated
through event gas of input type. After transformation, the input
value is first read by g from the set SeqGasSensor. Then gs
is assigned with g for an update.

Rule 8.2: For each operation, there are two possible sources
of precondition including transition conditions (e.g., sts =
Status::noGas), and the source state of the transition (e.g.,
st = Reading).

Rule 8.3: The update section updates the store variables
if involved in this transition. Depending on the transition
to be executed, the updated variables vary. However, the
observational variables are always updated in each operation:

• st is updated to the target state of the transition.
• triggers is updated to a set of events that may be

enabled while the machine is at the target state.
• tr is updated by appending to the list sequentially the

trigger event, the exit action of the event type in the
source state, the transition action of the event type, the
entry action and the during the action of the event type
in the target state as appropriate, and the target state.

• For the variable to be updated through an input event,
it is assigned with the value of parameter from the
params section. Besides, if there is an assignment in
the same operation using this variable as a function
parameter, the assignment shall use parameter instead of
the variable itself. For example, variable sts is updated
through the assignment sts’ = analysis(gs_input)
where gs_input is the input parameter for gs.

We explain the rules using examples in Fig. 5. Transition
t0 goes from source state Reading to target state Analysis
and is transformed into operation ReadingToAnalysis. This
transition is triggered by gas; which assigns a value to variable
gs; then the source state is exited and state Analysis is
entered; and an entry action assigns a new value to sts.
Accordingly, in ReadingToAnalysis, pre uses the source
state as a precondition, i.e., st = Reading. The event gas is
of input type, so its value is communicated through the params
section. In the update section, st is updated to Analysis,
tr gains two new elements of trigger event Event gas and
target state State Analysis. Since there are no trigger events
in the following transitions with Analysis as the source state,
trigger is an empty set.

E. RoboChart state machine

Rule 9: State machine is mapped to a zmachine which is
defined using the initialisation, invariants and operations. The
initialisation assigns uniquely defined values to all the store
variables to provide a starting point for the operations. For
example, tr is initialized to [State initial]. The values of
the state variables are provided by users. Keyword invariant
points to the set of invariants (including healthiness conditions
and the structural invariants) defined in the zstore using
the naming form of “Machine name inv”. The invariants are
grouped in GasAnalysis_inv. The zmachine for GasAnaly-
sis is as follows:

definition Init::"GasAnalysis subst" where
"Init = "[gs⇝[]

,ins⇝0
,sts⇝noGas
,anl⇝Front
,st ⇝initial
,tr ⇝[State initial]
,triggers⇝{}]"

zmachine GasAnalysisMachine =
over GasAnalysis
init Init
invariant GasAnalysis_inv
operations InitialToReading AnalysisToNoGas

AnalysisToGasDetected GasDetectedToFinal
GasDetectedToReading ReadingToAnalysis
NoGasToReading

VII. VERIFICATION APPROACH

In this section, we provide the principles to define invariants
and requirement specifications, and a method to verify them.

After a RoboChart Z-Machine is generated in Step 1, the
developer needs to provide a set of structural invariants and re-
quirement specifications, and then use Isabelle to verify them.
The verification strategy is shown in Fig. 6. We first define a
set of structural invariants for the Z-Machine as the baseline
for requirement proof, and then specify the requirements and
prove (or refute) them with the help of the zpog method (see
§IV). zpog may verify a property directly, or else provide a set
of residual proof obligations. We can then call sledgehammer
to complete the proof, or nitpick to find counterexample traces.

6

Fig. 6: Z-Machine verification strategy in Isabelle/HOL.

A. Structural invariants

We require structural invariants to impose constraints on
the state space, which are typically supplied by the user.
However, we also implement some simple heuristics to infer
invariants for state variables according to some common
patterns employed in RoboChart.

A variable can be updated with an assignment of a function
value. If the variable is not updated with this assignment
in each operation, we can infer an invariant to record the
relation between the variable and the function parameters
and to impose this relation to all operations so that those
operations where the variable is not updated know their
relation’s existence. Effectively, we are using the operation’s
frame to infer these invariants.

There are two possible scenarios when a variable is updated
using the value of a function. Case 1: the variable and the
function parameters are updated during the same transition
and not updated anywhere else, an invariant shall state that
the variable equals the function value for all operations. Case
2: The operation updating the variable differs from the one
updating the function parameter. An invariant should state that
the variable equals the function value in certain states, except
where only the parameters are updated.

The invariants are defined in the where section of the
zstore, as shown below:

zstore GasAnalysis =
...
where
hc:"wf_rcstore tr st (Some final)"
inv_1:"sts = analysis(gs)"
inv_2:"st=GasDetected−→ ins=intensity(gs)"

We first require that the state space satisfies all the healthi-
ness conditions of §V by the inclusion of the wf_rcstore
predicate. We then state the structural invariants.

Invariant inv_1 is an example of Case 1. In operation
ReadingToAnalysis, the input event gas updates the sen-
sor reading list gs. The detection status sts is updated by
analysis(gs). The variable sts and the parameter gs are
updated in the same operation, and at nowhere else. Conse-
quently, sts = analysis(gs) is a structural invariant.

Invariant inv_2 is an example of Case 2. ins is updated us-
ing intensity(gs) in operation AnalysisToGasDetected,
while gs is updated in operation ReadingToAnalysis.
Thus, the invariant “ins=intensity(gs)” shall hold at state
GasDetected.

We prove that each operation preserves the structural invari-
ants using zpog, which is a fully automated process.

B. Requirements

After the structural invariants have been established we
use a command keyword zexpr to define the requirement
expressions over the store. These are also specified as a form
of state invariant. We can construct the requirements related to
events, states, and state variables based on the available store
variables. For example, we can use the trace variable tr to
impose constraints about sequencing of events. Some example
requirements from GasAnalysis, and their formalisation as
invariant expressions, are given below:

Req1: If no gas is detected, the machine does not terminate.
“sts = noGas −→ ∀i< #tr. tr ! i ̸= State f inal”

Req2: The machine shall terminate only on arrival of a
stop event. “∀ i< #tr. tr ! i = State f inal −→ tr !(i−1) =
Event stop”

Req3: Immediately before entering the state Analysis,
the event gas happens. “∀i< (#tr − 1).tr !(i+1) =
State Analysis −→ tr ! i = Event gas”

Req4: Every time the robot changes direction, new readings
are taken from sensors. “∀ i < #tr−1. tr ! i = Event turn −→
tr ! (i+1) = State Reading”

Req5: The readings from the sensors shall be analyzed before
the gas detection status is identified. “∀i< #(states tr) −
1. (states tr) ! i = State Reading −→ (states tr) ! (i+1) =
State Analysis”

Req6: If intensity exceeds the threshold, gas detected shall be
indicated. “intensity(gs)≥ thr −→ sts = gasD ”

Here, #xs denotes the length of list xs and xs!i returns the
ith element of xs. states tr is defined as (f ilter is State tr)
using functions of f ilter and is State. Five types of claims
are verified against the state machine in Isabelle including
(1) the state reachability driven by the variables, e.g., Req1;
(2) the sequential relationship between states and events, e.g.,
Req2-Req4; (3) the sequential relationship of states, i.e., the
correctness of the transition source and target, e.g., Req5; (4)
the relationship between state variables, e.g., Req6; and (5)
deadlock freedom, which is discussed at the end of this section.

To verify that the Z-Machine model satisfies a requirement,
we need to prove that (1) the initialisation establishes the
requirement; and (2) each operation preserves the requirement.
An excerpt of Req1 verification is given in Fig. 7.

The initialisation Init establishing Req1 is proved auto-
matically by zpogmethod. The operation InitialToReading
preserving Req1 is proved by applying zpog method and
calling sledgehammer. The operation GasDetectedToFinal
is proved by the zpog method but with the support of
the invariants GasAnalysis_inv. This GasAnalysis_inv
includes inv_1, inv_2, and hc listed in §VII-A. The lemma
for GasdetectedToFinal states that

{Req1 ∧ GasAnalysis_inv} GasdetectedToFinal() {Req1}

7

Fig. 7: An excerpt of requirement Req1 proof.

that is, when the operation is started in a state where both
the structural invariants and Req1 are satisfied, then following
execution the requirement still holds.

Although we need to interact with Isabelle/HOL to give the
commands and instructions, the proof itself is completely au-
tomated. As for the automation of the requirement generation,
we generate the verification template, i.e., the zexpr section
with the requirement content left blank and the lemmas for
the initialization and each operation. The users need to fill in
the requirements manually.

We also verify deadlock freedom of the Z-Machine using
the automated method in §IV. For RoboChart, this means
that each state has at least one enabled transition when the
structural invariants are satisfied. For GasAnalysis, we want to
check the state machine only deadlocks when it enters final
state, i.e., it is deadlock-free when not entering final state.
We introduce an operation to bypass final state and use
the deadlock_free proof method defined in §IV to verify
the deadlock freedom. The bypass operation and the deadlock
freedom requirement of GasAnalysis are as follows.

zoperation Bypass =
pre "st= final"

lemma GasAnalysis_deadlock_free:
"deadlock_free GasAnalysisMachine"

apply deadlock_free
sledgehammer ...

The proof is done by first unfolding the Z-Machine definition
GasAnalysisMachine, then applying the deadlock_free
method to provide the sub-goals, and completing the proof
by calling sledgehammer.

VIII. CASE STUDY

We implemented all the transformation rules of §V in
Eclipse using the Epsilon EGL language [26], and carried out
a case study on an Autonomous Underwater Vehicle (AUV)
introduced in [25] to illustrate our approach.

A. System description and safety requirements

The AUV can be operated by humans or by the system au-
tomatically. Its mission is to perform underwater maintenance
and intervention tasks. The main hazards involve potential
collisions with subsea system components and infrastructure,
which can result from the actions of either the operator or

the AUV system. While local path planning utilizes machine
learning techniques, the “Last Response Engine” (LRE) safety
monitoring component is developed without artificial intelli-
gence to allow safety assurance through formal verification.
We apply our RoboChart transformation and verification tech-
nique to the LRE.

Fig. 8 shows the RoboChart state machine model of the
LRE. The LRE’s function is to switch between operating
modes of the system based on certain safety conditions. There
are four modes: (i) Operator Control Mode (OCM), a manual
mode, (ii) Main Operating Mode (MOM), the automatic mode
in safe conditions, (iii) High Caution Mode (HCM), the
automatic mode used when the collision risk is to be lowered
by reducing speed, (iv) Collision Avoidance Mode (CAM),
the emergency automatic mode used when the collision risk
is too high and needs to be reduced by evasive manoeuvres.
Several transitions model the possible moves from one mode
to another. For example, the LRE can move from MOM to
HCM when the horizontal velocity is greater than or equal to
3, and the distance to a static obstacle is less than a given
constant. Moreover, the operator can command the LRE to
switch modes using the events reqOCM/MOM/HCM. A detailed
description of the system operation can be referred to in [25].

There are two store variables including pos for the position
of the robot, and vel for the velocity. Four constants are
defined including Obsts as a list of static obstacles, HCMVel as
the advisory velocity for HCM mode, MOMVel as the advisory
velocity for MOM mode, StaticObsDist as the acceptable
distance to the obstacles, MinSafeDist as the minimum safe
distance to the obstacles, which is assumed to be non-negative.

We also define five functions. Function inOPEZ determines
whether the robot has entered one of the forbidden areas,
called “Object Proximity Exclusion Zones” (OPEZ) with a
Boolean value. Function dist calculates the distance from the
robot to the closest obstacle based on their respective positions.
Function CDA (Closest Distance of Approach) calculates the
closest distance the robot will have with an approaching
obstacle in the near future, calculated using both the position
and velocity. Function maneuv can be used to change the
direction of the robot by 90 degrees to avoid collision with an
obstacle. Function setVel sets the velocity to a new value.

The machine communicates with other components through
six events consisting of five input events and one output event.

B. Z-Machine model

The LRE store includes two state variables, the three
observational variables and the healthiness conditions. The
definitions of the constants, functions, and operations for each
transition are omitted here for reasons of space.

zstore LRE =
pos:: "real×real"
vel:: "real×real"
st:: "St"
tr:: "(St, Evt) tag list"
triggers:: "Evt set"

where
hc:"wf_rcstore tr st None"

8

Fig. 8: RoboChart state machine of LRE adapted from [25].

According to Fig. 8, the machine needs an input of the
current position provided by the robot platform in each state.
The position is used as a parameter in several functions.
Though we do not model the platform behaviour or the
communication with the platform, we construct an operation
Move to represent the position update as below.

zoperation Move =
update "[pos′ = (fst(pos)+fst(vel),

snd(pos)+snd(vel))]"

This operation simply updates the position using the current
velocity. A possible initialization is as below.
definition Init::"LRE subset" where
"Init = "[pos⇝(0,0)

, vel⇝(0,0)
, st⇝ initial
, tr⇝ [State initial]
, triggers⇝{reqOCM}]"

C. Safety requirements and Verification

We formalised and verified four safety requirements for the
LRE in Isabelle/HOL.

R1: When the LRE is in CAM, it can only change
to OCM or re-enter CAM. “∀i < #(states tr) −
1.(states tr) ! i = State CAM −→ (states tr) ! (i + 1) ∈
{State OCM, State CAM}”

R2: On entering MOM, the LRE shall advise a new velocity
with a value between 0.4 m/s and 0.6 m/s for MOM mode.
“st = MOM −→ (tr ! (#tr−2) = Event advVel ∧ (xvel2 +
yvel2 > 0.16) ∧ (xvel2 + yvel2 < 0.36))”

R3: When LRE is not in OCM mode, the trigger reqOCM can
always be enabled. “st ̸= OCM −→ reqOCM ∈ triggers”

For each requirement of R1-R3, we prove 18 lemmas in-
cluding one for initialisation establishing the requirement, and
17 lemmas for operations generated from 16 transitions to
preserve the requirement.

During the verification of the LRE, some requirements could
be successfully verified but took a long period of more than
20 minutes, and some requirements failed the proving due to
timing out. As a result, we optimised the Z-Machine library
to improve the proof efficiency. As an example, we introduced
an additional lemma stating that a pair-typed state variable x
can be rewritten as (x.1, x.2), which allows for the efficient
evaluation of function CDA. This optimization enabled the
discharge of a requirement property that had originally timed
out, now taking only around 90 seconds to verify.

The fourth requirement R4 is to check deadlock freedom
of the LRE state machine. The requirement is formalized as
below and verified by applying the deadlock f ree method and
calling sledgehammer. The proof process took only 20 seconds
or so. We tried to verify R4 using the FDR model checker, but
FDR does not support the analysis of real numbers but only
the abstractions, so the verification failed.
lemma R4_LRE_Beh_deadlock_free:
"deadlock_free LREMachine"
apply deadlock_free
by (metis St.exhaust_disc)

IX. CONCLUSION

In this paper, we have developed a compositional and
automated verification technique for RoboChart state machines
using a Z-Machine-based semantics. Our technique overcomes
the state explosion problem by representing state machines
symbolically in Isabelle/HOL. We view our technique as com-
plementary to model checking, which remains very valuable
as a push-button analysis to support early-stage prototyping,
with theorem proving following to provide more exhaustive
verification.

We give a direct mapping from one transition in RoboChart
to one operation in Z-Machines. This means our verification
technique is compositional, since we prove that each transition
preserves the invariants individually. As a result, when a single

9

transition or state is modified, we need only reverify the
corresponding results, with the others remaining untouched.
We can also more easily trace back from proof errors in
Isabelle to state machine elements, which provides better
integration into a software engineering workflow. Moreover,
compositionality can potentially support incremental develop-
ment and verification, where models are developed and verified
one component at a time.

Most of our results are applicable to any EMF-based lan-
guage with a formal semantics that can be mechanised in
Isabelle/HOL. For example, a new version of SysML will soon
be released with a formal semantics3, and we could readily
apply our pipeline to this with suitable model transformations.

Our transformation in this work supports only basic state
machines of RoboChart. Our future work will investigate the
incorporation of communication between RoboChart compo-
nents and hierarchical state machines in the approach. We
also plan to verify the transformation using the baseline CSP
semantics, to ensure its correctness. The trace variable, tr,
currently covers only the state and events, and so we will
explore extending this data structure to cover assignments
and operations. We are also interested in realising a bidi-
rectional communication between Eclipse-based development
tools, such as RoboTool, and Isabelle/HOL in order to facilitate
incremental MBE development and to avoid users’ direct
interaction with Isabelle/HOL.

ACKNOWLEDGMENT

We thank Colin O’Halloran and Nick Tudor from D-RisQ
Software Systems for providing the LRE case study.

REFERENCES

[1] H. Bourbouh, M. Farrell, A. Mavridou, I. Sljivo, G. Brat, L. A.
Dennis, and M. Fisher, “Integrating formal verification and assurance:
an inspection rover case study,” in NASA Formal Methods Symposium.
Springer, 2021, pp. 53–71.

[2] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, “A formal approach
to AADL model-based software engineering,” International Journal on
Software Tools for Technology Transfer, vol. 22, no. 2, pp. 219–247,
2020.

[3] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated ver-
ification of AADL-specifications using UPPAAL,” in IEEE 14th Inter-
national Symposium on High-Assurance Systems Engineering (HASE),
25-27 Oct. 2012, Omaha, NE, USA, 2012, pp. 130–138.

[4] H. Kausch, M. Pfeiffer, D. Raco, and B. Rumpe, “Model-based design of
correct safety-critical systems using Dataflow languages on the example
of SysML architecture and behavior diagrams,” in Software Engineering
(Satellite Events), 2021.

[5] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Wood-
cock, “RoboChart: modelling and verification of the functional be-
haviour of robotic applications,” Software & Systems Modeling, vol. 18,
no. 5, pp. 3097–3149, 2019.

[6] K. Ye, A. Cavalcanti, S. Foster, A. Miyazawa, and J. Woodcock,
“Probabilistic modelling and verification using RoboChart and PRISM,”
Software and Systems Modeling, vol. 21, no. 2, pp. 667–716, 2022.

[7] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe,
“FDR3: a parallel refinement checker for CSP,” International Journal
on Software Tools for Technology Transfer, vol. 18, no. 2, pp. 149–167,
2016.

3https://github.com/Systems-Modeling/SysML-v2-Release

[8] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic
symbolic model checker,” in International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer,
2002, pp. 200–204.

[9] S. Böhme and T. Nipkow, “Sledgehammer: judgement day,” in Interna-
tional Joint Conference on Automated Reasoning. Springer, 2010, pp.
107–121.

[10] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof
assistant for higher-order logic. Springer, 2002.

[11] A. S. A. Hadad, C. Ma, and A. A. O. Ahmed, “Formal verification of
AADL models by Event-B,” IEEE Access, vol. 8, pp. 72 814–72 834,
2020.

[12] L. Zou, N. Zhany, S. Wang, M. Fränzle, and S. Qin, “Verifying Simulink
diagrams via a hybrid hoare logic prover,” in 2013 Proceedings of the
International Conference on Embedded Software (EMSOFT). IEEE,
2013, pp. 1–10.

[13] S. Foster, J. Baxter, A. Cavalcanti, A. Miyazawa, and J. Woodcock,
“Automating verification of state machines with reactive designs and
Isabelle/UTP,” in International Conference on Formal Aspects of Com-
ponent Software. Springer, 2018, pp. 137–155.

[14] L. Zou, N. Zhan, S. Wang, and M. Fränzle, “Formal verification of
Simulink/Stateflow diagrams,” in International Symposium on Auto-
mated Technology for Verification and Analysis. Springer, 2015, pp.
464–481.

[15] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou,
“A calculus for hybrid CSP,” in Asian Symposium on Programming
Languages and Systems. Springer, 2010, pp. 1–15.

[16] S. Foster, C.-K. Hur, and J. Woodcock, “Formally verified simulations of
state-rich processes using Interaction Trees in Isabelle/HOL,” in 32nd
Intl. Conf. on Concurrency Theory (CONCUR), ser. LIPIcs, vol. 203.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[17] K. Ye, S. Foster, and J. Woodcock, “Formally verified animation for
RoboChart using Interaction Trees,” in International Conference on
Formal Engineering Methods. Springer, 2022, pp. 404–420.

[18] J. A. Hilder, N. D. Owens, M. J. Neal, P. J. Hickey, S. N. Cairns,
D. P. Kilgour, J. Timmis, and A. M. Tyrrell, “Chemical detection using
the receptor density algorithm,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp.
1730–1741, 2012.

[19] M. Spivey, The Z-Notation - A Reference Manual. Englewood Cliffs,
N. J.: Prentice Hall, 1989.

[20] J.-R. Abrial, The B-Book: assigning programs to meanings. Cambridge
University Press, 1996.

[21] R.-J. Back and R. Kurki-Suonio, “Decentralization of process nets with
centralized control,” Distributed Computing, vol. 3, pp. 73–87, June
1989.

[22] J. C. P. Woodcock and A. L. C. Cavalcanti, “A Concurrent Language for
Refinement,” in IWFM’01: 5th Irish Workshop in Formal Methods, ser.
BCS Electronic Workshops in Computing, A. Butterfield and C. Pahl,
Eds., Dublin, Ireland, July 2001.

[23] C. A. R. Hoare and J. He, Unifying Theories of Programming. Prentice-
Hall, 1998.

[24] M. Wenzel, “Interaction with formal mathematical documents in Is-
abelle/PIDE,” in CICM, ser. LNCS 11617. Springer, 2019, pp. 1–15.

[25] S. Foster, Y. Nemouchi, C. O’Halloran, K. Stephenson, and N. Tu-
dor, “Formal model-based assurance cases in Isabelle/SACM: An au-
tonomous underwater vehicle case study,” in Proceedings of the 8th
International Conference on Formal Methods in Software Engineering,
2020, pp. 11–21.

[26] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation
language,” in International Conference on Theory and Practice of Model
Transformations. Springer, 2008, pp. 46–60.

10

https://github.com/Systems-Modeling/SysML-v2-Release

	Introduction
	Related work
	RoboChart
	Z-Machines and Deadlock-Freedom
	Semantic domain
	Observational variables
	Healthiness conditions

	Model Transformation
	Types
	RoboChart context
	Nodes
	RoboChart transition behaviour
	RoboChart state machine

	Verification Approach
	Structural invariants
	Requirements

	Case Study
	System description and safety requirements
	Z-Machine model
	Safety requirements and Verification

	Conclusion
	References

