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Abstract

To help health economic modelers respond to demands for greater use of complex 

systems models in public health. To propose identifiable features of such models 

and support researchers to plan public health modeling projects using these models. 

A working group of experts in complex systems modeling and economic evalu-

ation was brought together to develop and jointly write guidance for the use of 

complex systems models for health economic analysis. The content of workshops 

was informed by a scoping review. A public health complex systems model for 

economic evaluation is defined as a quantitative, dynamic, non-linear model that 

incorporates feedback and interactions among model elements, in order to capture 

emergent outcomes and estimate health, economic and potentially other conse-

quences to inform public policies. The guidance covers: when complex systems 

modeling is needed; principles for designing a complex systems model; and how 

to choose an appropriate modeling technique. This paper provides a definition to 

identify and characterize complex systems models for economic evaluations and 

proposes guidance on key aspects of the process for health economics analysis. This 

document will support the development of complex systems models, with impact on 

public health systems policy and decision making.

K E Y W O R D S

complex systems, economic modeling, public health
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1 | INTRODUCTION

There have been calls for greater use of complex systems methods to inform public health decision making (Diez Roux, 2011; 

Lich et al., 2013; Rutter et al., 2017). Computational models can be useful to evaluate public health interventions operating 

within complex systems, however, there are few examples of economic evaluations employing complex systems models (Shiell 

et al., 2008; Squires & Boyd, 2019).

1.1 | What is a computational model?

A computational model describes a simplified representation of reality in which a system is described using mathematical 

relationships (Caro et al., 2012). Such models combine evidence to quantify the future performance of parts of the system 

and address questions that are difficult to answer using primary empirical research approaches (Brennan et al., 2006). Within 

public health this includes: planning services, supporting infectious disease surveillance, policy impact analysis, economic 

evaluation, testing determinants of disease patterns, investigating disease trajectories, and testing intervention scenarios (Briggs 

et al., 2016). Models can characterize the population at the individual-level, in which people are distinct units, or at the aggre-

gate level, using population averages.

1.2 | Features of a complex system

A system refers to problem situations characterized by having interconnected elements (Meadows, 2008), with multiple causes 

and consequences (Chapman, 2004). System complexity increases with the intricacy of the relationships between elements 

(Rickles et al., 2007). Therefore, it is not the number of interactions that is the defining characteristic of dynamic complexity, 

but rather the nature of interactions and their generation of emergent outcomes (Holland, 2014). Emergent outcomes are proper-

ties, perhaps observed at an aggregate-level of a complex system, that cannot be predicted by considering the elements within it 

in isolation, and are more than just the sum of its parts. Thus, in complex system problems, the effects of any single intervention 

cannot be determined in isolation. Each decision that is made depends on others, multiplying the counterfactuals that need to 

be considered (Ornstein et al., 2020).

Public health challenges can be conceptualized as complex systems problems because they involve: (i) mutual interdependen-

cies between elements of the system, where effect directions, sizes, accumulation and timings are not well-understood or captured 

by research methods grounded in linear models of cause and effect; (ii) actors who have diverse sets of priorities, values and under-

standing of the problem; (iii) costs, benefits and harms spread across many parts of the system; and (iv) deep uncertainties due to 

rapidly shifting geo-political and economic contexts potentially changing population, demographic and/or behavioral dynamics and 

the interplay between social determinants and service system factors that influence the impacts of interventions (Meier et al., 2019).

Obesity provides a public health example of a systems problem in which interplay between numerous biological, environ-

mental, social, political and economic factors influences obesity, which in turn can have implications for policy evaluation. 

A model describing a simple pathway between disease trajectory and health outcomes will be sufficient if the intervention 

produces consistent effects regardless of context. However, if the intervention interacts with other factors affecting the evolu-

tion, and consequences of the disease, this modeling approach will overlook emergent outcomes.

1.3 | Economic modeling in public health

Economic evaluation is a core component of all phases of intervention research in public health (Skivington et  al.,  2021). 

Economic evaluation using modeling techniques can estimate the value of public health investments, exploring incremental 

and population effects of changes in policies (Squires & Boyd, 2019). Modeling approaches used in economic evaluation often 

develop from the methods of health technology assessment, that is, decision-trees and Markov models, in which the implementa-

tion context is not explicitly modeled (Lawson et al., 2022). Discrete Event Simulation has been recommended to extend model 

complexity in economic evaluations (Karnon & Haji Ali Afzali, 2014), whereas in the public health literature complex systems 

models are often identified by other model traditions, such as system dynamics or agent-based models (ABM)s (Atkinson 

et al., 2015; Bicket et al., 2020; Carey et al., 2015; McGill et al., 2021; Xue et al., 2018). Guidance is needed to overcome 

barriers in translating cross-disciplinary knowledge given the breadth of the systems science literature (Trochim et al., 2006).
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1.4 | Complex systems modeling in public health

Complex system methods for public health have been discussed extensively in the literature (Leischow & Milstein, 2006; Lich 

et al., 2013; Luke & Stamatakis, 2012; Rutter et al., 2017; Tracy et al., 2018; Trochim et al., 2006). However, several reviews 

highlight the competing definitions of complex systems (Leischow & Milstein, 2006; Lich et al., 2013; Trochim et al., 2006). 

As such, it is useful to specify the distinguishing features of a Complex System Model (CSM) that can be identified from the 

model structure and mathematical relationships, rather than focusing on modeling traditions for example, Systems Dynamics 

and agent-based models. A definition of a CSM for public health economic modelers will enable consistent labeling of models, 

limit conceptual stretching, a more efficient description of methods, and, where appropriate, encourage the adoption of CSM.

1.5 | Aims of this guidance

The aims of this manuscript are to (i) propose a definition of computational CSM that highlights the critical modeling features 

for economic modelers to use in public health models (Section A), (ii) support economic modelers to identify situations when 

a CSM is needed (Section B), (iii) identify appropriate modeling types for economic modelers to choose from (Section C), (iv) 

highlight useful approaches/methods in CSM (Section D).

2 | METHOD

The guidance was written in consultation with an international consortium of academic experts in CSM and related fields. In 

September 2020, 44 academic experts from the project leader's network and identified using a snowball approach to recruit-

ment were invited to attend two workshops (October 2020 and March 2021). Participants included established academics and 

researchers along with PhD students, to provide an understanding of the challenges involved in modeling in public health. Of 

these, 42 attended the workshops and 36 contributed to the manuscript.

The aims and scope of the first workshop were informed by an organizing committee (PB, AB, HS, KE) and a scoping 

review of the literature on CSMs in public health (Table S1 in the supplementary material). The scoping review aimed to iden-

tify examples of CSM and catalog the various modeling methods used (Table S2 in the supplementary material). The review 

used and adapted a previous systematic review of complex systems methods (Carey et al., 2015).

Discussions from the two workshops provided direction on the scope, structure, and content of this guidance document. 

Details of the review and workshops are described in Appendix A and Appendix B of the supplementary material.

We tested the application of the definition of complex systems models against a set of CSM case studies. The case stud-

ies were identified by either the literature review or workshop participants to represent different model types, including but 

not limited to economic studies, across a range of public health topics. This process identified eight public health CSMs. We 

systematically cataloged methods used in the development of these models with input from workshop participants.

3 | SECTION A: DEFINITION OF COMPLEX SYSTEMS MODELS

A public health oriented CSM is a quantitative, dynamic, non-linear model that incorporates feedback, and interactions among 

model elements, in order to capture emergent outcomes and estimate health, economic and potentially other consequences to 

inform public policies.

To aid with the interpretation of the definition and guidance, we provide a glossary of terms in Table S3 of the supplementary 

material. The definition recognizes four overlapping critical features: dynamic, non-linear, feedback and interaction that can be 

programmed into an economic model that in combination give rise to the properties of a complex system. A figure illustrating 

the critical features is provided in Figure S1 of the supplementary material. A model incorporating the critical features will add 

complexity and predispose the model to complex properties. In contrast, the quantity of elements, or the intricacy of the inter-

vention (Shiell et al., 2008), may make the model complicated, but not necessarily complex. Complexity is not the same thing 

as complication: non-complex models can be complicated, and complex models can be (relatively) simple. There are numerous 

examples of non-complex, but complicated, system models informing public health decisions linking public health policies to a 

broad range of outcomes (Springmann et al., 2016; Holmes, J et al., 2014; Thomas et al., 2022). These models do not include the 

critical features, that is, not dynamic (Springmann et al., 2016), do not include interactions (Holmes et al., 2014; Springmann 

et al., 2016), and do not include feedback loops (Holmes et al., 2014; Springmann et al., 2016; Thomas et al., 2022).
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BREEZE ET AL.4

High system complexity is characterized by several properties: feedback, adaptation, emergent outcomes and non-linearity. 

These properties can be programmed into a CSM if it has the critical features so that the changes that ripple through a system 

(i.e., an intervention) are non-linear (not proportional to the size of the initial stimulus), adaptive and lead to emergent outcomes. 

In a CSM model changes to one element cause dynamic changes in other parts of the model, which continue to feedback around 

the model amplifying or dampening the initial change and resulting in further changes to the initial element. The ramifications 

of these relationships will be greater with more critical features connecting model elements in the system.

Table 1 describes how the four features of complexity were demonstrated in eight exemplar public health CSMs (Brailsford 

et al., 2012; Dodd et al., 2010; Keogh-Brown et al., 2019; Occhipinti et al., 2021; Probst et al., 2020; Stankov et al., 2019; 

Tobias et al., 2010; Viana et al., 2014).

4 | SECTION B: WHEN SHOULD, AND SHOULDN'T, COMPLEX SYSTEM MODELS BE 
USED?

Figure S2 in the supplementary material illustrates a framework within which the model structure is decided upon and Figure 1 

provides a decision tool to help modelers identify whether to develop a CSM. The following discussion expands on the ques-

tions in Figure 1, relating them to observations from case studies, and practical considerations. Prior to using Figure 1, it would 

be necessary to have a detailed understanding of the system (See Section D).

Public health problems often operate in complex systems. Economic models may be developed to enhance understanding of 

the patterns of behavior, mechanisms and processes of a complex system, or adapted from models with this purpose. Therefore, 

simplification would impact the utility of the model. Probst et al. developed a CSM which aimed to implement a theoretical 

model of social norms in an individual-level model to explain population-level trends in drinking behavior (Probst et al., 2020). 

The interactions and feedback between individual-level drinking behavior and social structures are inherent to the theory. They 

tested the theoretical framework with three hypotheses to provide insights into drinking behavior and identify interventions. In 

other case studies, it was possible to report whether feedback loops enhanced or mitigated intervention effects as they reverber-

ated around the system (Keogh-Brown et al., 2019; Occhipinti et al., 2021; Stankov et al., 2019; Tobias et al., 2010).

It is essential to understand how the intervention interacts with the system, and specifically whether the relationships linking 

the intervention to the consequences include the critical features of complexity. Complex interventions do not need a CSM if the 

effects are not expected to change the properties of a complex system (Shiell et al., 2008), or if the effects can be approximated 

in other ways. CSMs are particularly useful in economic evaluations of multiple interventions, applied to different elements 

or levels (individual or aggregate) within the model (Keogh-Brown et al., 2019; Occhipinti et al., 2021; Probst et al., 2020; 

Stankov et al., 2019; Tobias et al., 2010; Viana et al., 2014). Comparisons of multiple interventions across different parts of 

the system are at greater risk of bias in a non-CSM model. The effectiveness of the intervention may depend on the context in 

which they are applied (Dodd et al., 2010; Occhipinti et al., 2021; Viana et al., 2014), and this context may be modified by other 

interventions. Infectious disease models illustrate the benefits of incorporating spatial structures to characterize the context and 

impact interactions between individuals in the model, and transmission rates (Ferguson et al., 2006; Riley & Ferguson, 2006).

It is also important to consider what consequences, perspectives, and time horizons are important to stakeholders and/or 

policymakers. For example, Tobias et al. simulate the interaction of smoking with the initiation rate of smoking for future gener-

ations (Tobias et al., 2010). This feedback loop is less likely to impact the findings if future costs and QALYs are discounted.

Once the modeler has identified whether a CSM should be considered according to the issues described above it is impor-

tant to consider the practical constraints of model development and these are detailed in the second half of Figure 1. It would 

be advisable to identify what model types might be compatible with the problem (see Section C) and what data is available to 

answer these questions. Model planning needs to be sufficient to consider resources, and consultation with stakeholders, and 

may be iterative as unexpected problems arise.

The model must be fit for purpose and developed with the decision making context in mind. Computationally expensive 

CSMs may limit the capacity to generate timely and comprehensive analysis for fast moving policy decisions. The modeler 

needs to consider where to invest time and resources to respond to the decision problem. Non-complex models may be advan-

tageous if their simplicity allows the modeler to accommodate other model features. The value of the investment in modeling 

must be balanced against opportunity costs. It is wise to keep things as simple as possible, because it can require a lot of time, 

effort and resources to make complexity tractable. The effort should be justified.

CSMs can require more assumptions that are not closely tied to strong experimental evidence. When developing 

CSMs researchers should consider how gaps in evidence will be filled and whether the tools for this are obtainable, that 
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T A B L E  1  Eight selected Public Health Complex System Model (CSM) case studies that demonstrate the key features and insights of the 

approach.

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Dodd et al., 2010 To explore the 

effect of human 

immunodeficiency 

virus (HIV) 

transmission 

epidemiology on the 

impact of universal 

test-and-treat 

interventions.

 Partial differential 

equations.

 The model includes 

infectiousness 

that changes over 

time since HIV 

infection; under 

antiretroviral therapy 

infectiousness is 

reduced and life-

expectancy extended.

Non-linear: The model is 

a non-linear dynamical 

system.

The impact of a universal 

test-and-treat 

intervention was 

shown, for matched 

prevalence, to depend 

on heterogeneity and 

mixing of contacts. In 

some situations, less 

aggressive interventions 

achieved the same 

results, whereas in 

others, reductions were 

lower; annual strategies 

were not necessarily the 

most cost-efficient. The 

potential for incomplete 

implementation or 

coverage to increase 

long-term antiretroviral 

therapy (ART) costs 

was demonstrated.

Dynamic: The model 

accounts for the 

population dynamics 

of HIV infection over 

time.

Interactions: The PDEs 

model assortative 

mixing between high- 

and low-risk segments 

of a heterosexual 

population.

Feedback: There 

is positive 

feedback - higher 

infection prevalence 

drives higher incidence 

of infection.

Brailsford et al., 2012 To evaluate the costs and 

benefits of alternative 

breast cancer screening 

policies in a screening 

model that incorporates 

human behavior.

 Discrete event simulation.

 A three-phase discrete 

event simulation was 

built to model breast 

cancer and screening 

policies and 

extended to include 

patients' behavioral 

characteristics.

Non-linearity: Non-linear 

model specifications 

for tumor growth were 

simulated to allow for 

time dependency in 

tumor growth.

The model enables a broad 

range of experimental 

settings to observe the 

impact of screening 

strategies and health 

behaviors on health 

outcomes. The method 

for modeling behavior 

did not substantially 

alter the model 

outcomes. However, 

incorporating theory-

led models of human 

behavior allow decision 

makers to design public 

health interventions that 

increase the likelihood 

of attendance. The 

frequency of screening 

impacted future 

participation, and in 

this scenario the policy 

more effective.

Dynamic: Individuals are 

simulated from birth 

until death and the 

timing of screening is 

an important parameter 

in policy evaluation.

Interaction: Interaction 

between the individual 

and the screening 

service is determined 

by the timing of 

screening, and 

the actions by the 

individual to attend 

screening.

Feedback: The model 

includes theories of 

human behavior to 

inform attendance at 

screening. Adaptive 

theories in which 

previous attendance 

at screening impacts 

the likelihood of 

future attendance were 

modeled.

(Continues)
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BREEZE ET AL.6

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Probst et al., 2020 Aims: To develop a 

theoretical framework 

to explain macro-level 

trends in drinking 

and test the effect of 

policies on alcohol 

consumption.

 Agent-based model.

 An individual-

level model was 

developed to simulate 

dynamic normative 

mechanisms and 

behavioral rules 

underlying drinking 

behavior over 

time. The model 

encompassed 

drinking norms 

and their impact 

on frequency 

and quantity of 

alcohol use. Three 

experiments were 

performed to test the 

modeled normative 

mechanisms.

Non-linearity: Changes 

made to the input 

parameters in the 

model for the three 

experiments did not 

produce proportional 

changes in drinking 

behavior.

 The model allowed 

the researchers to 

examine the degree 

that individual-level 

mechanisms could 

explain more macro-

level phenomena in 

drinking behavior.

 Three experimental 

scenarios were 

programmed to observe 

the effectiveness of 

policies on drinking 

trends.

 An increase in the desire 

to drink led to the most 

meaningful changes 

in the population's 

drinking behavior 

indicating the high 

levels of autonomy 

in decisions to drink. 

A higher degree of 

“receptiveness” toward 

normative influence 

can be considered 

a prerequisite to 

behavioral changes.

Dynamic: The model 

simulates micro-level 

decisions to drink and 

changes in dynamic 

social-level norms to 

observe macro-level 

trends in alcohol 

consumption over time.

Interactions: The 

individual interacts 

with the environment 

through the social 

norms that influence 

the likelihood that they 

and other individuals in 

the model would drink. 

Therefore, individual 

decisions to drink 

modify the macro-level 

social norms.

Feedback: Two 

feedback loops 

were programmed 

to adjust injunctive 

norms (perceived 

acceptability) over 

time in response to 

perceived harm to 

society or prevalence 

of drinking in their 

age/gender reference 

group. A further 

feedback loop adjusts 

descriptive norms over 

time (perceptions of 

drinking by people 

in their age/gender 

reference group).
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BREEZE ET AL. 7

(Continues)

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Tobias et al. (2010). To compare the impact 

of different smoking 

cessation services 

in New Zealand on 

smoking prevalence, 

tobacco consumption, 

and tobacco-

attributable mortality. 

To provide a decision 

tool to support the 

design and evaluation 

of tobacco control 

policies.

 Systems dynamics.

 The model has six 

components. 

The population 

component 

describes the flow 

of people between 

smoking states 

(‘never- smokers’, 

‘current- smokers’, 

‘ex-smokers’ etc.), 

conditional on rates 

of initiating, quitting, 

and mortality 

among smokers and 

ex-smokers. These 

rates are affected 

by role modeling 

and household 

composition. Other 

components describe 

smoking prevalence; 

tobacco consumption; 

second- hand smoke; 

relative risks; and 

tobacco attributable 

deaths as a result of 

smoking or exposure 

to second-hand 

smoke.

Non-linearity: Non-linear 

behavior occurs as 

a result of feedback 

loops.

 The model enables the 

evaluation of a range 

of policies that aim to 

prevent tobacco-related 

harm. The authors 

tested the effects of an 

intervention package 

that acts through a range 

of channels from price 

changes, marketing, 

and service provision. 

They estimated that 

this package could 

reduce tobacco-related 

mortality by 11% 

within 35 years. This 

information informed 

the decision in 2007 

to increase funding 

for smoking cessation 

interventions by NZ$42 

million.

 The same model in a 

previous study was 

used to test the effect of 

hypothetical cigarette 

modifications (i.e. 

manufacturing either 

less toxic or less 

addictive cigarettes) 

on smoking prevalence 

and harm. They found 

that these policies 

would lead to a degree 

of compensatory 

smoking and the 

possible expansion of 

the tobacco market, 

and so could only be 

helpful in combination 

with regulations like 

marketing bans and tax 

increases.

Dynamic: The model 

can be simulated for 

50 years, with the 

emphasis on the first 

20–30. Variables can 

change over time. The 

model produces yearly 

estimates of smoking 

prevalence & harm, 

reflecting the dynamic 

effects of interventions.

Interactions: The six 

components of 

the model interact 

and produce 

model outcomes. 

For example, the 

tobacco consumption 

component interacts 

with the relative risk 

component, which 

affects the mortality 

component and the 

size of the smoking 

population, which 

affects the exposure to 

second-hand smoke and 

so on.

Feedback: Peer smoking 

and parental smoking 

both create reinforcing 

feedback loops that 

increase the number 

of youth smoking 

initiations and the 

persistence of smoking 

in adulthood through 

role modeling effects.
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BREEZE ET AL.8

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Occhipinti, A et al., 2021 The study aimed to i) 

identify the likely 

impact over time of 

mental health and 

suicide prevention 

interventions (ii) 

determine the value 

and balance of 

investments across the 

social determinants 

of mental health 

in the region, and 

(iii) determine the 

best combination of 

strategies to deliver 

the greatest impacts on 

suicidal behavior.

 Systems dynamics.

 The model is separated 

into several 

components. 

The population 

component describes 

the characteristics of 

the population. The 

population moves 

between states of 

psychological distress 

conditional on 

social determinants 

of psychological 

distress components, 

including adverse 

early life exposures, 

homelessness, 

employment, 

domestic violence, 

and substance abuse. 

A mental health 

service component 

represented the 

pathway of care 

for psychological 

distress. Suicidal 

behavior was a key 

outcome.

Dynamic: The model 

reported dynamic 

changes in model 

outputs over 40 years.

 The model provided 

decision makers and 

stakeholders with a 

tool to investigate 

alternative scenarios 

related to the timing 

of implementation of 

interventions, their scale 

and intensity, and to test 

alternative assumptions 

regarding level of 

intervention uptake 

to inform strategic 

decision making. 

Initiatives to improve 

social connectedness 

were the most effective.

 The model demonstrated 

that the greatest impacts 

on suicidal behavior are 

observed when mental 

health and suicidal 

initiatives are combined 

with interventions 

to address key social 

determinants.

 Adding all mental health 

initiatives was only 

marginally better than 

providing a targeted 

combination. This 

suggests that there 

are diminishing 

returns from investing 

additional investing 

in programs and 

initiatives beyond the 

best combination, 

and complex systems 

models can assist by 

prioritizing services 

when resources are 

limited.

Feedback: Bi-directional 

relationships between 

model components 

lead to unpredictable 

dynamic changes in 

outputs. Bidirectional 

relationships are 

observed between 

social determinants, 

social determinants and 

psychological distress, 

and psychological 

distress and the mental 

health system.

Non-linearity: 

Non-linearity is 

assumed due to 

structures and 

connections between 

elements in the system.

Interactions: Interactions 

between model 

components affect the 

dynamic relationships 

in the model. For 

example, the flow 

through the mental 

health care system is 

impacted by health 

care capacity, which 

is affected by rates of 

psychological distress 

and suicidal behavior.
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BREEZE ET AL. 9

(Continues)

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Keogh Brown (2019) To generate an integrated 

quantification 

of the combined 

macroeconomic, 

disease and 

population burden 

of palm cooking oil 

consumption in a major 

palm oil consuming 

country context, 

Thailand.

 Macroeconomic model

 The model describes 

a Computable 

General Equilibrium 

framework (CGE) 

sectoral mathematical 

model of the 

whole economy to 

describe productive 

labor supply, 

consumption and 

savings, government 

taxation and trade. 

The model includes 

a non-economic 

sub-model to 

simulate changes in 

household nutritional 

intake on health, 

health spending, 

and labor supply. 

This feeds back into 

the macroeconomic 

model to generate a 

new equilibrium.

Dynamic: The simulations 

are run over a 20 years 

time horizon.

 The model estimated 

the health-related 

economic, disease and 

population burden 

of palm cooking 

oil consumption in 

Thailand.

 The multi-sector CGE 

model comprehensively 

captured economic 

spill-overs, interactions 

and wage effects to 

value productive labor.

 The model allowed the full 

integration of a health 

sub-model to capture 

transmission between 

consumption of food 

commodities and health 

outcomes. The feedback 

between health and 

the economy could be 

captured in the model.

 The model provides a 

full valuation of the 

macroeconomic impacts 

of the policies and can 

estimate these impacts 

by sectors to observe 

how the impacts are 

distributed across the 

economy.

Feedback: The model 

captures feedback from 

the macroeconomy 

to household 

consumption, health, 

and the population. 

Changes in palm oil 

consumption lead to 

changes in health, 

which impacts the 

demographic profile, 

labor market supply, 

income, savings and 

further modifies 

consumption behavior 

in the population.

Non-linearity: The disease 

burden model accounts 

for interactions and 

feedback effects 

between health, the 

macro-economy and 

the population. These 

feedback loops create 

non-linear relationships 

between the policies 

and model outcomes.

Interactions: The CGE 

framework captures 

interactions between 

economic sectors.
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BREEZE ET AL.10

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Stankov et al. (2019) To explore factors 

that influence the 

prevalence of alcohol 

misuse and depression 

in adults and to 

investigate the impact 

of tax policies and 

social connectedness 

interventions on 

the prevalence of 

depression and alcohol 

misuse.

 Agent-based model.

 The model included 540 

agents representing 

older adults (65 years 

old or above) and 

the alcohol outlets in 

their neighbourhoods. 

Agents' drinking 

status was assigned in 

each time step based 

on a combination 

of individual, social 

and environmental 

factors. Individual 

factors included 

affinity for excessive 

consumption and 

depression, social 

factors included 

alcohol consumption 

of neighbors and 

cohabitants, and 

environmental factors 

alcohol pricing and 

access to retailers. 

Depression was 

influenced by past 

predisposition to 

depression, social 

connectedness, 

and affinity toward 

excessive drinking.

Dynamic: Individuals 

are simulated over a 

5-year period. 260 

time steps were used, 

with each time step 

covering a week of real 

time. An individual's 

characteristics such as 

risk of depression, risk 

of excessive drinking 

change over time.

 The model was able to 

adequately reproduce 

the prevalence of 

depression and alcohol 

misuse found in the 

real-world data. The 

model calibration 

suggested that 

alcohol misuse and 

depression were related 

bi-directionally, but 

the size of the best fit 

parameters were quite 

small suggesting that 

the feedback effect 

might only be slight.

 The model also provides 

quantitative evidence on 

the plausible effects of 

various interventions, 

specifically the effect 

of increasing taxation 

on alcohol and the 

effect of increasing 

social connectedness 

on depression and 

alcohol consumption. 

Within the model, tax 

interventions resulted 

in lower alcohol 

consumption, but had 

a minimal impact on 

depression, whilst 

social connectedness 

interventions reduced 

the prevalence of 

depression without 

substantially impacting 

alcohol misuse. 

Combinations of the 

interventions did not 

impact depression or 

alcohol misuse more 

than each intervention 

alone. This further 

suggested that feedback 

processes within the 

model were relatively 

weak.

Feedback: Feedback exists 

in the model between 

individuals' likelihood 

of excessive drinking 

and their likelihood of 

being depressed.

Non-linearity: 

Non-linearity exists 

in the model through 

feedback loops, as well 

as through effects from 

the agents' personal 

networks. Individuals 

both affect and are 

affected by the drinking 

status of those in their 

personal network.

Interactions: Agents 

interact with both 

other agents and their 

environment. The 

characteristics of the 

other agents within this 

personal network, and 

the characteristics of 

the local environment 

around their residence 

influence the agents' 

likelihood of being 

depressed and drinking 

excessively.
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BREEZE ET AL. 11

is, theory, data, or calibration. Combining multiple theories and adding parameters to be calibrated will make it harder 

to validate using external data, takes time and risks becoming less transparent and useful to stakeholders (Whitty, 2015). 

Increasing the number of model parameters to estimate with calibration may lead to overfitting to the data (Basu & 

Andrews, 2013).

It is worth considering how data gaps and the features of complexity might amplify uncertainty in the model. Calibrating 

multiple inputs can identify combinations of inputs that generate very different outcomes. Similarly, increasing the number of 

complex relationships can make the model highly sensitive to initial conditions and increase uncertainty in model outcomes. 

As the stimulus works its way through each set of relationships it can result in large differences in consequences (Calder 

et al., 2018). Additional resources may be needed to understand which relationships impact outcomes and communicate uncer-

tainty to decision makers. Nevertheless, decisions are uncertain and simplification of the relationships risks generating incor-

rect and artificially precise results. Decision uncertainty is not removed by adopting a simple model, and simplification can be 

damaging to user confidence. Complexity will affect how the model is used and valued, so it is important to be sensitive to the 

needs of the decision maker in order to avoid over-simplification or overwhelming the audience with complexity.

T A B L E  1  (Continued)

Authors Aims Study description

Why it counts as complex 

systems model

What useful insights did 

the CSM provide?

Viana et al., 2014 To understand how 

chlamydia screening 

and service provision 

impact interact to 

reduce overall disease 

incidence

 Hybrid models.

 A systems dynamic 

model generates the 

monthly demand 

for Chlamydia 

services to input 

into a discrete 

event simulation. 

The discrete event 

simulation exports 

the treated and 

untreated populations 

back to the systems 

dynamics model.

Dynamic: The two models 

would produce data to 

input into each model 

in monthly intervals.

 Each individual model 

produced interesting 

insights. In the DES 

model staffing levels 

can be altered. In the 

SD screening strategies 

were tested.

 When interventions were 

combined the models 

illustrated that poor 

performance at the 

Chlamydia clinic could 

lead to higher rate 

of infections in the 

community because of 

the bad reputation (long 

waiting times) from the 

clinic.

 The model can support 

decision making for 

community screening, 

or within the clinic, 

to observe how the 

changes impact on 

the other aspects of 

the system and will 

feedback to the primary 

system of interest.

Feedback: In the systems 

dynamics model there 

are feedback loops 

to determine the 

susceptible and infected 

populations. These 

are impacted by the 

proportion of patients 

with a full recovery 

and one representing 

recovery with sequelae.

Non-linearity: In 

the DES waiting 

times influence the 

proportion of untreated 

patients. In the SD 

model Chlamydia 

infections were 

conditional on many 

dynamic parameters 

including feedback and 

interactions with the 

DES model.

Interactions: The 

aggregate population 

prevalence and detected 

levels of Chlamydia 

interact with the DES 

model, to produce 

estimates of transitions 

between high and low 

risk groups and update 

the level of infection in 

the population.

Abbreviation: DES, Discrete Event Simulation.
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BREEZE ET AL.12

Non-CSMs impose assumptions that exposure variables are independent, and relationships between exposures and outcomes 

are unidirectional, linear, and constant through time (Page et al., 2018). If a non-CSM modeling approach is adopted, it is 

important to consider how the system violates these assumptions and be explicit about the direction of bias in the description of 

the model. If the features of complexity are believed to be important to the decision problem, but cannot be incorporated it will 

be necessary to discuss the potential limitations. Occhipinti et al. modeled suicidal behavior due to psychological distress where 

social determinants of psychological distress are also consequences of it (Occhipinti et al., 2021). It would be possible to have 

a unidirectional relationship between the social determinants and psychological distress, without feedback and under-estimate 

F I G U R E  1  A decision tool to identify whether a complex systems model is recommended to address a decision problem.
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BREEZE ET AL. 13

the benefits of interventions to reduce psychological distress. By recognizing this limitation, a discussion of the direction and 

implications of bias in the model is possible. However, some complex relationships will be difficult to assess without incorpo-

rating the complexity in the model. For example, a similar CSM illustrated how unintended consequences for service demand 

negated intervention effects to produce much lower health benefits than predicted in a linear model, allowing policymakers to 

have strategic discussion about the whole system (Atkinson et al., 2020).

5 | SECTIONS C: WHAT MODEL TYPES SHOULD BE USED?

5.1 | How to select model types?

The selection of the type of model should be integrated into the decision on whether a CSM is needed with similar consider-

ations for the decision problem, system features, and data (Figure 1). Each model type will imply different abstractions and 

assumptions about the system being modeled. Whilst there is a range of modeling types available, they typically differ across a 

few dimensions namely deterministic/non-deterministic, static/dynamic, discrete/continuous, individual/population, mathemat-

ical logic/algebra (Calder et al., 2018). Therefore, modelers can consider the problem across these dimensions when selecting 

a model type. Some will accommodate certain features more easily than others.

A toolkit for model selection can be used to guide modelers to what methodology is preferred for a given problem (Jin 

et al., 2021). The revised Brennan toolkit includes three tools: (a) the taxonomy (Table 2), (b) the checklist (Jin et al., 2021) and 

(c) a decision flowchart (Squires et al., 2016). Other useful resources have been developed to map the purpose and object of the 

problem to system dynamics, ABM and discrete-event simulation models simulations (Marshall et al., 2015).

5.2 | Suggested model types for Complex System Model

System dynamics models and ABMs are commonly presented as the methods available in complex systems problems (Morshed 

et al., 2019). Typically, a system dynamics approach adopts an aggregate perspective, whereas ABMs allow for individual-level 

simulation of behaviors, heterogeneity, and interactions between agents. However, the options for CSMs extend beyond these 

two dominant methods.

In other disciplines different labels may be used for model types and these are also relevant to the public health context. For 

example, Computable General Equilibrium (CGE) models have been used to model choices that have cross sector impacts that 

influence the indicators of the national economy (Keogh-Brown et al., 2019). Partial differential equation models can be used 

to describe the dynamics of infectious disease transmission (Dodd et al., 2010). Both CGE and Partial differential equation 

models have key similarities to system dynamics and describe aggregated populations. In infectious disease modeling, the term 

individual-based model is often used for ABMs. IBMs have long been used to include spatial and social population structure 

relevant to transmission (Riley & Ferguson, 2006), and have been commonly used in modeling COVID-19 and impacting 

policy decisions (Ferguson et al., 2020). IBMs allow easy inclusion of behavioral change to project its effects on transmission 

dynamics (Verelst et al., 2016). Moreover, multiple approaches can be combined in what some have called Hybrid models 

(Brailsford et al., 2019), integrating ABM, system dynamics and discrete-event simulation approaches into a unified model. A 

framework for hybrid simulation methods has been proposed (Mykoniatis & Angelopoulou, 2020), although to date very few 

applications have been identified within public health (Brailsford et al., 2019; Freebairn et al., 2020). We provide summary 

descriptions of modeling approaches in Appendix C as an introduction to the broad range of modeling options available, also 

providing links to relevant examples, good practice guides and web resources for further information.

Given the broad overlap among the methods described above, it may not be advisable to prescribe model types to specific 

public health problems, as it should depend on the nature of the question to be answered. Clusters in the adoption of model 

types can be driven by the research disciplines, expertise, and traditions from which they develop. Systems dynamics and 

CGE models are often used where the problem has broad boundaries, such as policies impacting more than public service 

(Keogh-Brown et al., 2019; Occhipinti et al., 2021); ABMs tend to be used in public health where human behavior and social 

networks are considered important, such as understanding health behaviors around alcohol, smoking, diet and physical activ-

ity (Probst et al., 2020; Stankov et al., 2019); and discrete-event simulations where healthcare resource constraints need to 

be modeled, such as cancer screening and mental health services (Brailsford et al., 2012; Viana et al., 2014). Individual level 

models are better at estimating the effects of heterogeneity, and exploring equity impacts.
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6 | SECTION D: WHAT PROCESSES ARE IMPORTANT WHEN DEVELOPING CSMS?

CSMs introduce additional challenges for the modeler, which can be addressed with processes, approaches, and methods 

described in this section and highlighted in case study examples (Table S4: supplementary material).

6.1 | Stakeholder engagement

Strong communication with all relevant stakeholders throughout model development is essential to ensure that the model is fit 

for purpose (Squires et al., 2016). Within a CSM there may be broad and diverse perspectives and the choice of stakeholders 

may evolve during the project as the understanding of the complex system develops. Engaging stakeholders in co-production 

of a CSMs has been shown to improve model transparency, understanding of the modeling process, and may build trust and 

acceptability of the model and its outputs (Freebairn et al., 2018). Stakeholder engagement should also include engagement 

with public representatives in line with recommendations for public health research (Staniszewska et al., 2021).

6.2 | Understand and identify the problem

A documented understanding of the problem is imperative to develop and justify the model structure and type (Squires 

et al., 2016). The understanding of the problem will evolve as evidence becomes available, new stakeholder perspectives iden-

tified, or changes to the system occur within the timeframe of the project.

Diagrammatic representation of the system can be very useful to develop consensus and agreement between modelers and 

stakeholders, particularly where stakeholders have diverse perspectives. There is a vast array of approaches and methods that can 

be employed to develop a systems map. Commonly used methods in public health modeling include: group concept mapping (Koh 

et al., 2019; Lich et al., 2017), causal loop diagrams (Urwannachotima et al., 2019), and soft systems methodology (Checkland, 2000).

6.3 | Setting the model boundary

The specification of the model boundary is somewhat subjective. The decision on the model boundary should be made transpar-

ently, justifying and documenting reasons for inclusion and exclusion of each component in the understanding of the problem 

(Squires et al., 2016). It is important that CSM boundaries are well described, including the level of detail for each element 

(Robinson, 2008). This will facilitate appropriate interpretation of the model results, considering the broader elements of the 

T A B L E  2  Brennan taxonomy of model structures.

A B C D

Cohort/aggregate-level/counts Individual-level

Expected value, continuous 

state, deterministic

Markovian, discreet 

state, stochastic

Markovian, 

discrete date

Non-markovian, 

discrete state

1 No interaction Untimed Decision tree rollback 

or comparative risk 

assessment

Simulation decision 

tree or comparative 

risk assessment

Individual sampling model. Simulated 

patient-level decision tree or 

comparative risk assessment

2 Timed Markov Model deterministic Simulation Markov 

Model

Individual sampling model: Simulated 

patient-level Markov model

3 Interaction between 

entity and 

environment

Discrete time System dynamics (finite 

difference equation)

Discrete Markov chain 

model

Discrete-time 

individual event 

history model

Discrete-time 

discrete event 

simulation

4 Continuous time Systems dynamics (ordinary 

differential equations)

Continuous time 

Markov chain 

model

Continuous time 

individual event 

history model

Continuous-time 

discrete event 

simulation

5 Interaction between heterogenous 

entities/spatial aspects important

x x x Agent-based 

simulation

Note: Based on the original Brennan taxonomy, and revisions (Brennan et al., 2006; A. D. Briggs et al., 2016).
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system which have not been quantified. Understanding the key variables and concepts will aid the parameterization of the 

model and help to prioritize where investment of resources is justified.

6.4 | Incorporating data and evidence

Health economic models are often based on epidemiological models derived from empirical data. However, CSMs can be based on 

empirical observations or abstract constructions. For health economic policy evaluation CSM may use both techniques, but in most 

cases will require some empirical estimates and statistical techniques and causal inference. Table S4 in the supplementary material 

shows example statistical techniques used in our eight exemplar complex systems models. Model building and data processing 

require expert methodological knowledge to implement, and this can increase the expertise required for a modeling project.

6.4.1 | Creating synthetic individual data from observed data

Synthetic data creation techniques can be used if individual level data are not available for individual-level models (Probst 

et al., 2020) and data are not available for all parts of the system. Drawing on spatial microsimulation techniques, microdata can 

be constructed where there is detailed attribute information available from a survey or sample dataset and sample representation 

from census or administrative data. Techniques such as Iterative Proportional Fitting (Lomax & Norman, 2016) can be used to 

reweight sample data. Alternatively, Combinatorial Optimization (Smith et al., 2021), can be used to synthesize and replicate 

individuals. In both cases the resulting dataset is a combination of the attribute rich (micro) data and the sample representation 

of the administrative (macro) data.

6.4.2 | Making causal inferences from observational data

Feedback loops are a critical feature of CSM, but the model parameters within feedback loops may be difficult to measure due 

to time-varying confounding by other variables. A confounder is a variable that influences both the exposure and outcome 

variable. Time-varying confounding occurs when confounders have values that change over time because they are also 

affected by the (changing) exposure (Daniel et al., 2013). Therefore, in feedback loops between exposures and confounders, 

time-varying confounding is expected. In the presence of such exposure-confounder loops, simple regression does not identify 

causal effects because it provides a biased estimate of the true effect of the exposure on outcome (Kuehne et al., 2022). It may 

be necessary to develop bespoke statistical analyses if resources and data availability allow it. Analyses should be designed 

alongside the conceptual mapping. A taxonomy of methods to control for time-fixed confounding in observational studies 

has been developed to support statistical model selection (Ali et al., 2019). The causal analysis of empirical data affected 

by time-varying confounding requires more sophisticated causal inference methods (e.g., g-methods) (Johnson et al., 2009; 

Robins et al., 2004).

6.4.3 | Calibration of model inputs to model outputs

Calibration is the process of estimating the model parameters to obtain a match between observed and simulated patterns. A 

Bayesian calibration framework seeks to generate a posterior distribution of calibration parameters and model outputs, condi-

tional on the calibration target (Chrysanthopoulou et al., 2021; Menzies et al., 2017). Non-Bayesian methods aim to identify 

sets of calibration parameters for which the model best reproduces the calibration target (Chrysanthopoulou et al., 2021). 

Bayesian calibration has the advantage of capturing uncertainty using probability distributions, which is compatible with 

probabilistic sensitivity analyses (Chrysanthopoulou et al., 2021; Vanni et al., 2011), but it can be computationally demand-

ing (Chrysanthopoulou et al., 2021). In contrast frequentist calibration methods can overfit the model by implying no uncer-

tainty exists in the model parameters (Vanni et al., 2011). Calibration will be a necessary step in the parameterization of many 

CSMs, and a strength of a modeling approach, as certain parts of the model will not have data that can be used to parame-

terize them a priori (Occhipinti et al., 2021; Probst et al., 2020). Regardless of what calibration process is used, calibration 

can encounter identifiability problems where there is insufficient data for the number of parameters to calibrate (Basu & 

Andrews, 2013).
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There are a broad range of calibration methods, although their use is often poorly documented, and non-reproducible 

(Hazelbag et al., 2020). Calibration reporting guidelines have been developed (Stout et al., 2009), and should be adopted when 

reporting calibration.

6.5 | Computational efficiency

Complex System Model models may encounter problems with computational capacity, particularly with micro-level models. A 

computational expensive model that has many parameters to calibrate may exceed the project resource limits. Consideration of 

computational efficiency is important and will depend on how and when the outputs will be used. Computational limitations may 

require the model boundary to be revised to reduce complexity and still maintain tractability. Approaches to deal with computa-

tional efficiency, such as model emulation (Rothery et al., 2020) and distributed simulation (Taylor, 2019), could be used.

6.6 | Model uncertainty

Sensitivity analysis and parameter uncertainty analysis can be used to communicate uncertainty to stakeholders. This can be 

challenging in CSMs because analyses of uncertainty may be limited by computational capacity, and other time constraints 

(Rothery et al., 2020), the model developers may not understand the source of uncertainty, and uncertainty  can affect how 

answers from the model are used. Model structures, as well as parameters, may be uncertain and recent approaches have 

used machine learning to search across different structural configurations of a CSM (Vu et al., 2020). Proponents of a 

Weight of Evidence approach to evaluate and weight evidence (Dion et al., 2021) advocate holding space for multiple ways 

of understanding the same issue. The modeler should consider what uncertainties exist beyond what has been programmed 

into the model and report where complex features have not been included in the model, and how this might impact findings.

6.7 | Model validation

Model verification and validation ensures that results from models are accurate and can be confidently used by decision 

makers. Model developers should consult validation typologies (Eddy et al., 2012), recommendations (Vermeer et al., 2022) 

and validation assessment tools, which can help assess whether sufficient validation of a CSM has been undertaken (Vemer 

et al., 2016). Verifying and validating a CSM is a continuous process to be performed throughout the life-cycle of a study 

(Balci, 1994) and needs to be designed based on the resources and data available. CSM's may introduce additional challenges 

during validation, and we propose potential solutions (Table 3). It is impossible to prove that a model is valid, so verifi-

cation and validation is a process of increasing confidence in a model to the point that it can be used for decision-making 

(Robinson. 1999).

Co-production and model transparency can be used to ensure models are subject to face validity and verification checks, 

which will help build trust from decision-makers. Examples include testing face validity and model verification through discus-

sion of model structures with experts (Brailsford et al., 2012; Occhipinti et al., 2021; Tobias et al., 2010), Verification through 

discussions with stakeholders should be an iterative and multifaceted process throughout all stages of conceptual modeling, 

model formulation, coding and use (Williams, 2018). Model transparency should at a minimum require detailed documentation 

of the model to allow for it to be reproduced (Eddy et al., 2012; Vermeer et al., 2022). However, calls for “Open-Source” models 

provide an opportunity to build trust in models, and improve validity (Dunlop et al., 2017).

External validation compares CSM output with retrospective data (Brailsford et al., 2012), and cross-validation compares 

CSM output with other models (Viana et al., 2014). The processes of external validation and calibration may be inherently 

intertwined, and the stages of model calibration and validation may be indistinguishable if there are not enough data available 

to separate these tasks (Stankov et al., 2019). Comparing model outcomes against data not used in to inform model parameters 

can be challenging for public health CSM models. The data may not be routinely measured, or only measured with sampling or 

reporting bias. Furthermore, the feedback loops may change over time changing the relationships between exposure, confound-

ers and outcomes. CSMs should be validated at the individual-level, or in constituent parts, to test whether each part represents 

the real world with sufficient accuracy, and system-level, or overall model, to confirm if the emergent dynamics of the system 

outcomes are reproduced, adding to the validation tasks required (Vermeer et al., 2022).
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T A B L E  3  Summary of challenges when undertaking validation of Public Health Complex Systems Models—categorized by ISPOR task force 

types of validation.

Validation type Description

Challenges for complex systems 

models Recommendations for CSM

Face validity A review of the model structure, 

evidence used, and results to 

ensure they all make clinical 

and logical sense.

Challenge 1: Face validity 

may be more challenging 

to interpret due to the 

complexities of relationships 

included, meaning it is not 

always possible to know what 

results are expected given 

the emergent properties and 

feedback loops.

 1)  Use scenario and sensitivity 

analysis.

 2)  Identify which parts of the model 

contribute to outcomes or behaviors 

and assess whether these are 

plausible. Techniques developed 

in systems dynamics models, but 

applicable elsewhere, can be used 

to understand the contribution of 

feedback loops in a model and 

understand the origins of model 

behavior (Schoenberg et al., 2020)

 3)  Discuss results and outcomes 

with stakeholders to comment on 

whether results are consistent with 

expert opinion.

Verification (internal validity) Tests the accuracy of 

mathematical equations and 

whether model structure and 

parameters agree with the data 

informing them.

Challenge 2: Complex systems 

computation models often 

involve a large amount of 

coding, which may make 

internal validity more 

challenging in terms of the 

time required.

 1)  Maintain up to date documentation 

of the code.

 2)  Report visual representation of 

model boundary to allow the 

code to be verified against model 

structure.

 3)  Structured walk throughs of model 

processes.

 4)  Validate inputs against their 

sources.

 5)  Independent code review

 6)  Double programming

Check the model coding 

corresponds to the description 

of the model.

Cross-validation The process of comparing model 

results with those of other 

models produced for the same 

problem.

Challenge 3: There are less likely 

to be other models developed 

to address similar public health 

problems to compare against.

 1)  Adoption of our definition of 

complex systems models will 

help to identify similar modeling 

approaches.

 2)  Greater investment is needed to 

fund cross-validation of model 

programmes.

External validity Compares model results with real 

world data.

Challenge 4: If calibration 

is needed the process of 

calibration and validation 

becomes connected.

A detailed description of calibration 

and validation processes is needed 

to ensure transparency in model 

development methods. It should be 

clear that the process of validation 

uses different data sources from the 

calibration process.

Challenge 5: Real world data 

may not be available for all 

variables and consequences.

Detailed documentation of what 

variables and consequences have 

been, and have not, been validated.

(Continues)

 1
0
9
9
1
0
5
0
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/h

ec.4
6
8
1
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

6
/0

4
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



BREEZE ET AL.18

T A B L E  3  (Continued)

Validation type Description

Challenges for complex systems 

models Recommendations for CSM

Predictive validity Compares the predicted model 

results to prospective real 

world observed events when 

they become available.

Challenge 6: The predictive 

validity of complex systems 

models may be difficult to 

establish. Real-world shocks to 

the system, such as the Covid-

19 pandemic, may distort 

observations and change the 

mechanisms of the system. 

The feedback loops between 

exposure confounder and 

outcomes might change with 

time.

CSMs should be revisited and assessed 

for predictive validity as new data 

become available. The timelines 

and funding structures of public 

health projects may not facilitate 

this. However, public health CSMs 

require substantial investment 

and can be adapted and updated 

to address new public health 

questions. Adapting and updating 

models provides an opportunity for 

the model to develop and evolve as 

evidence and understanding of the 

system evolve.

7 | DISCUSSION

This paper provides a definition for CSMs and guidance on developing CSMs for public health economic modelers. It is 

intended as a helpful tool for economic modelers, but may also help stakeholders, those commissioning models, and those 

critically appraising models to identify when a CSM is justified. The definition specifies key features that distinguish complex 

models from non-complex models to provide clarity to health economic modelers in the context of growing demands for 

complex systems approaches to public health evaluations. The absence of a clear definition of a CSM may have led to incon-

sistent labeling of models, less effective evidence reviews, less efficient description of methods, barriers to interdisciplinary 

research, and may have hampered the adoption of complex systems models.

We recommend that CSMs are required when there are processes involving dynamics, feedback loops, non-linearity and 

interactions which produce emergent outcomes that matter to the decision problem. Such modeling provides a deeper under-

standing and analysis of the likely impact of changing factors which affect the system. We discussed useful resources to select 

and implement macro-level complex system models and individual-level models as well as hybrids of these. Finally, we identify 

challenges that modelers will face when modeling public health decisions and propose approaches and techniques that research-

ers may need to consider when designing CSMs.

Complex System Model is developing apace to support and inform public health and health policy decisions. Our hope in 

producing this guidance is that it can provide an accelerated learning curve, both for those new to this field and for those already 

involved in developing such models. We hope this document will be a lever for improved understanding and engagement with 

CSM and hence have an impact on public health systems policy and decision making.

This guidance document provides a step toward classifying computational models in public health according to the inclu-

sion of complexity. The aims of this guidance document do not extend to setting research priorities for methodological devel-

opment. However, workshop participants identified a lack of technical guidance specific to the task of developing CSMs for 

public health, meaning researchers need to access a diffuse and diverse literature from across multiple disciplines. Further 

research should consolidate best-practice guidance to support skills development and training in this field. Understanding and 

overcoming the barriers to CSMs, for example, the resources and technical expertise needed, data requirements, limitations of 

model validation, will be critical to support the adoption of these methods by modelers and policymakers.
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