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Extrapolation beyond the end of trials to estimate long term 

survival and cost effectiveness
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KEY MESSAGES

 ⇒ Extrapolation beyond time periods studied in clinical trials is usually 

necessary to estimate long term effects of treatments

 ⇒ Many statistical survival models can be used to extrapolate data, but these 

can have widely varying results, which affects estimated clinical effectiveness 

and cost effectiveness

 ⇒ The choice of survival model and credibility of the extrapolations should be 

inspected carefully when making policy decisions that inform the allocation 

of healthcare resources

This paper explains the importance of extrapolating 

beyond the end of trials to estimate the long term 

benefits associated with new treatments, why this is 

done, and the limitations of various approaches.

Introduction

Policy makers worldwide use economic evaluation to 

inform decisions when allocating limited healthcare 

resources. A critical part of this evaluation involves 

accurately estimating long term effects of treatments. 

Yet, evidence is usually from clinical trials of short 

duration. Rarely do all participants encounter the 

clinical event of interest by the trial’s end. When 

people might benefit from a long term treatment, 

health technology assessment agencies recommend 

that economic evaluations extrapolate beyond the 

trial period to estimate lifetime benefits.1 2 This kind 

of evaluation is common for people with cancer, 

when effective treatments delay disease progression 

and improve survival.

Use of survival modelling: rationale

To make funding decisions, health technology 

assessment agencies rely on accurate estimates of 

the benefits and costs of new treatments compared 

with existing treatments. For treatments that 

improve survival, accurate estimates of survival 

benefits are crucial. Policy makers use estimates of 

mean (average) survival rather than median survival, 

taking into account the probability of death over 

a lifetime across all patients with the disease. This 

mean is represented by the area under survival 

curves that plot the proportion of patients alive over 

time by treatment.

In figure  1, the purple area represents a mean 

survival benefit associated with an experimental 

compared with a control treatment, but this benefit 

is a restricted mean, limited to the trial period. The 

curves separate early, and remain separated at the 

end of the trial, so it is reasonable to expect that bene-

fits would continue to accrue beyond the trial’s end. 

The orange smooth curves represent survival models 

fitted to the trial data and extrapolated beyond the 

trial. The area between the orange curves estimates 

the mean lifetime survival benefit associated with 

the experimental treatment. This area is much larger 

than the purple area, and is relevant for economic 

evaluation.

Description of survival models

Survival models extrapolate beyond the trial. They 

typically have a parametric specification, which 

means that they rely on an assumed distribution of 

probabilities of, for example, death over time, which 

is defined by a set of parameters such as shape and 

scale. The chosen parametric model is fitted to the 

observed trial survival data, and values estimated for 

each parameter. The model is then used to generate 

survival probabilities beyond the trial period to 

predict what would have happened had the trial 

continued until everyone died.

In health technology assessments, a set of 

standard models typically include: exponential, 

Weibull, Gompertz, log- logistic, log- normal, and 

generalised gamma models.3 Each survival model 

involves different assumptions about the shape of 

the hazard function—that is, the risk over time of the 

event of interest,—which is usually death. Figure  2 

shows the hazard function shapes assumed when 

using standard parametric models; over time these 

can stay the same, increase, decrease, or have one 

turning point (that is, the hazard increases then 

decreases, or decreases then increases).

Selecting a model

Extrapolating survival curves predicts the unknown. 

No one can know which models most accurately 

predict survival—although it might be possible to 

determine which models produce extrapolations 

that are plausible. Different models often result in 

substantially different estimates of survival and cost 

effectiveness.4 Figure  3 shows a range of survival 

models fitted to the same data. While all the para-

metric models seem to fit the observed trial data well, 

they predict large differences in longer term and 

mean survival. The more immature the trial data, 

the more likely the long term predictions will differ. 

Model choice affects estimated treatment benefits 

and, consequently, cost effectiveness.

To choose clinically plausible survival models, model-

lers must assess fit to the trial data, but also, crucially, 

assess the credibility of the extrapolations.4 5 This 

approach involves considering external data sources 

with longer term data such as other trials, disease regis-

tries, and general population mortality rates. Biological 
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plausibility, pharmacological mechanisms, and clin-

ical opinion should also be considered. Although 

identifying a single best model might not be possible, 

this approach ensures that policy makers use credible 

models.

Limitations of standard survival models

Standard parametric survival models have limi-

tations. They might rely on hazard functions with 

implausible shapes (figure 2), and might neither fit 

the data well nor provide credible extrapolations. As 

illustrated in figure 3, the implications of choosing 

the wrong survival model are serious, because the 

choice of model affects survival predictions. Figure 4 

illustrates a hypothetical hazard function of death 

from a cancer. No standard parametric models could 

capture the shape of this function, although more 

complex survival models can, such as flexible para-

metric models, fractional polynomials, piecewise 

models, or mixture cure models.

Flexible parametric models (such as restricted 

cubic spline models) segment the survival curve 

into portions, using knots to model hazard func-

tions that have many turning points.6 However, 

flexible parametric models will not generate 

turning points beyond the period of observed trial 

data unless modellers use external information, 

which they rarely do, such as longer term hazard 

rates from registry data. Indeed, while flexible 

parametric models are likely to fit the data well, 

beyond the data they reduce to standard Weibull, 

log- normal, or log- logistic models (therefore 

assuming that a transformation of the survival 

function is a linear function of log- time), and might 

generate implausible extrapolations. In figure 4, if 

the trial were short and ended in the period where 

the hazard function is rising, a flexible parametric 

model would extrapolate that rising hazard, based 

on the observed segment of data.
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Figure 1 | Survival modelling to extrapolate beyond the 

trial—mean survival restricted to the trial period, and 

extrapolated
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Figure 2 | Survival modelling to extrapolate beyond the 

trial—hazard shapes associated with standard parametric 

survival models
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Figure 3 | Survival modelling to extrapolate beyond the 

trial—a variety of standard parametric models fitted to 

the same data
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Figure 4 | Survival modelling to extrapolate beyond the 

trial—a hypothesised, realistic hazard function
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An alternative option is to use fractional polyno-

mials to model a hazard function with a complex 

shape, placing no restrictions on the hazard and 

survival functions beyond the period of observed 

data. However, while these models might fit the 

observed data well, the lack of restrictions on the 

extrapolation can lead to implausible predictions.7 

Other options include piecewise models, where sepa-

rate survival models are fitted to defined portions 

of the observed survival data using cut- off points. 

The extrapolation is based on the model fitted to 

the final observed period. Piecewise models can be 

sensitive to the choice of cut- off points, and lead 

to extrapolations based on the last portion of data 

where numbers of trial participants and numbers 

of deaths among these participants are often low.8 

Generalised additive models and dynamic survival 

models have recently been suggested as poten-

tially valuable novel approaches for modelling and 

extrapolating survival data.7

Mixture cure models can capture complex hazard 

functions because they predict survival separately 

for cured and uncured patients,9 and estimate a 

cure fraction—that is, the proportion of patients who 

would be cured. Predicting survival for cured and 

uncured patients separately could result in a model 

that generates credible extrapolations. However, a 

key issue that is difficult—or perhaps impossible—is 

to estimate a cure fraction reliably based on short 

term data. When the cure fraction is estimated inac-

curately, cure models can result in poor survival 

predictions.

Extrapolation in practice

Decision makers, such as those on committees of 

the National Institute for Health and Care Excellence 

(NICE), discuss, document, and assess the approaches 

that pharmaceutical companies use to predict long term 

survival. Often the approach has a large impact on cost 

effectiveness estimates (box 1). Typically, NICE reviews 

appraisals three years after the initial recommenda-

tion, and some drugs are placed in the Cancer Drugs 

Fund, providing an opportunity for checking extrapo-

lations once longer term data are available, often from 

the key trial. However, while drugs in the Cancer Drugs 

Fund undergo rigorous reappraisal, other reviews are 

rarely done comprehensively, leaving extrapolations 

unchecked.

Conclusions

When treatments make people live longer, it is impor-

tant to extrapolate beyond the end of clinical trials to 

estimate mean survival gains and cost effectiveness 

over a period longer than the trial. Several survival 

models are available, and these result in widely 

varying estimates. To choose a model, researchers 

should consider a model’s fit to the observed trial 

survival data, and the credibility of predictions 

beyond the trial. More complex models could, but 

do not necessarily, result in better extrapolations. 

To inform decision making, survival models must 

be scrutinised while considering a range of plau-

sible models and their impact on cost effectiveness. 

Analysts should follow recommended processes, 

report analyses clearly, justify chosen models by 

describing why and how the models have been 

selected, detail how well models fit the observed 

data, and describe what the models predict about 

BOX 1 | IMPACT OF SURVIVAL MODELLING IN 
TECHNOLOGY APPRAISALS BY THE NATIONAL 
INSTITUTE FOR HEALTH AND CARE EXCEL-
LENCE (NICE)

When NICE appraised pembrolizumab for untreated, 

advanced oesophageal and gastro- oesophageal 

junction cancer, the appraisal committee identified 

four approaches to survival modelling that it 

considered to be credible.10 These approaches 

were a log- logistic piecewise model, a log- logistic 

piecewise model incorporating an assumed waning 

of the treatment effect over time, a log- logistic 

model not fitted using a piecewise approach, 

and a generalised gamma piecewise model. The 

incremental gains in quality adjusted life years 

(QALYs) associated with pembrolizumab ranged 

from 0.50 to 1.07 QALYs per person over a lifetime, 

with the estimated cost per incremental QALY 

doubling between the most and least optimistic 

analysis.11

When NICE appraised tisagenlecleucel (a chimeric 

antigen receptor T cell treatment) for relapsed or 

refractory, diffuse, large B cell, acute lymphoblastic 

leukaemia, the committee acknowledged that 

survival was a key uncertainty, considered cure 

possible, and discussed several mixture cure 

models. Cure fractions varied by 35 percentage 

points depending on the model, with cost 

effectiveness estimates that varied from potentially 

acceptable to unacceptable.12 The committee 

accepted using a mixture cure model based on 

clinical experts suggesting that some patients 

could be cured. However, the committee preferred 

a model that estimated a lower cure fraction than 

that estimated by the manufacturer’s preferred 

model, because the manufacturer’s model 

predicted a cure fraction that was higher than the 

proportion of patients who remained event- free in 

the tisangenlecleucel trials. Tisagenlecleucel was 

recommended for use in the Cancer Drugs Fund 

to allow the trial to accrue more data on overall 

survival before making a final decision on its routine 

use in the NHS.12
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hazards and survival.4 8 This approach provides deci-

sion makers with the reassurance needed to make 

decisions when allocating healthcare resources.
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