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ABSTRACT

There is a challenge ahead in the rail industry to accommodate
increased demand. Time spent at the platform train interface (PTI)
as passengers board and alight, rather than on the move, represents
a limitation on system capacity. To overcome this, we propose
RateSetter: an evolutionary optimiser that for the �rst time provides
more e�ective PTI design choices based on passenger �ow time and
safety. An agent based passenger simulation model validated with
CCTV footage is employed for �tness evaluation. The initial results
provide guidelines not only for future PTI designs but also for retro-
�t designs to existing infrastructure, evaluating the e�ectiveness
and diminishing returns of PTI features for the considered scenarios.
Furthermore, it is observed that the proposed optimal PTI designs
could signi�cantly reduce the �ow time for the cases examined.
Results show that retro-�t designs could reduce the �ow time in
the range of 10%-35%.
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1 INTRODUCTION

The British mainline railway network includes approximately 6,000
platforms at over 2,500 stations. With an estimated 1.6 billion pas-
senger journeys each year this equates to more than three billion
crossings of the platform train interface (PTI) as passengers board
and alight [19]. There is a challenge ahead in the rail industry to
accommodate increased demand, and time spent by trains in the
station as passengers board, rather than on the move, represents a
limitation on system capacity [20]. In the shorter term the solution
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is likely to be better utilisation of existing infrastructure, includ-
ing enabling faster passenger boarding behaviour. However, it is
unlikely that these remedies alone will be able to support longer-
term growth projections. As such, it is necessary to consider the
design of future platforms and train interiors to reduce boarding
and alighting times.

Interactions between platform and train features are key to iden-
tifying the best design and operational choices: improved �ow rate
of people from a train can only be realised if the platform is able
to absorb the people (and vice versa for people boarding the train).
With many thousands of design combinations possible it is not
feasible to test all of them through building physical mock-ups
for trial with extensive and representative passenger cohorts. To
explore the feasibility of applying modern computing techniques
to PTI design, this work was undertaken through a funding call by
the Rail Safety and Standards Board (RSSB) in Great Britain (GB).
Here, an alternative to physical mock-ups is proposed that employs
parallel computing to rapidly evaluate the options, making use of
existing models [17, 24] of people movement. Passenger cohorts for
testing the designs are replaced by real-world human behaviours
captured from CCTV on existing railway systems and represented
within a people movement model.

The class of popular heuristic optimisation algorithms namely
genetic algorithms (GA) is used in the current project to �nd the
strongest combinations of train and platform design. Owing to their
general purpose appeal and ease of use evolutionary algorithms
have gained a wide popularity in past decades [3, 12, 18]. To our
knowledge this project is the �rst to employ evolutionary optimi-
sation for PTI design. Real-world CCTV footage from trains and
platforms is used to validate simulated passenger �ows for existing
�eets, giving con�dence in predictive application for novel train
and platform designs. The emergent outputs of a passenger simula-
tion model serve as the �tness criterion of the optimisation process.
optimised outputs of the project focus on quick-win retro-�t op-
tions for improving existing trains and platforms, but could extend
to more radical options for future stations and �eets.

The organisation of the rest of the paper is as follows. Section 2
discusses existing work and identi�es key PTI features. Section 3
presents the passenger simulation model that serves as the �tness
criterion of the evolutionary optimiser. Section 4 focuses on the
evolutionary optimisation process, followed by Section 5 present-
ing the results. Section 6 presents concluding remarks and future
extensions.
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2 BACKGROUND

2.1 Crowd Modelling

To build a realistic model of a operating PTI, realistic modelling
of the boarders and alighters plays an important role. We consider
the methods of general pedestrian modelling for train alighters and
boarders. There have been numerous studies conducted to simulate
pedestrian behaviour. Previous research into pedestrian modelling
can be broadly categorised into two main approaches, microscopic
and macroscopic.

Macroscopic models are a course-grained approach to pedes-
trian modelling. Rather than focusing on the individual, the fo-
cus is applied to the density of individuals. These methods use a
mathematical approach to describe pedestrians’ motion and their
interaction within the model [23]. These models have the bene�t
of a lower computational cost compared to microscopic models.
However, they do not consider more complex psychological factors
such as reaction to alarm and group interaction.

Microscopic modelling is a �ne-grained approach. Pedestrians
are modelled as heterogeneous elements, allowing for a variable be-
haviour between pedestrians. Three di�erent methodologies are ev-
ident within microscopic modelling: cellular automata [11], entity-
based [22] and multi-agent-based [4, 14, 21]. The microscopic ap-
proach has the bene�t of being able to assign di�erent behaviours to
pedestrians, removing behavioural assumptions evident in macro-
scopic approaches hence being able to predict emergent crowd
behaviour [4]. Within microscopic models, it is possible to study
the e�ects on the physical domain such as movement, force and
crowd safety when human behaviour such as information process-
ing and communication is introduced [15]. Further aspects, such as
collision avoidance can also be also integrated [24]. Moreover, in-
corporating visualisation into a microscopic simulation can greatly
assist in the veri�cation and validation of the model, ensuring that
the model behaves as desired and re�ects the real-world, for exam-
ple, with queue formation on railway station platforms. However,
these bene�ts come at the cost of increased computation. Both the
computation of each individual entity interacting with the environ-
ment and the visualisation of the model are increased greatly.

Within our work, an agent based passenger simulation model for
the PTI is developed using an agent based simulation framework
called FlameGPU [17] that runs on a GPU (graphics processing unit),
which o�ers massively parallel computation on desktop graphics
card hardware. Using this approach the bene�ts of the microscopic
modelling are captured while overcoming the challenges of high
computational demand. Our simulation model is equipped with a
graphical user interface as well.

2.2 Platform and Train-speci�c Models

In the current project we consider several existing train and plat-
form architectures to determine the key design features that can
be optimised to improve the passenger �ow time and safety as-
pects of a PTI. Figure 1 shows an example of train layout for trains
operating in GB. Figure 2 shows examples of door-step designs
indicating a signi�cant di�erence in passenger experience in board-
ing or alighting, especially for passengers with luggage. From the
example designs we can identify basic features such as the heights
of the platform and train, the horizontal gap between the two, the

Figure 1: Train layout map example for class 185 of

TransPennine Express (TPE)

Figure 2: Examples of door-step and step-free design

number of steps, and step height. The following section brie�y re-
views some models speci�c to rail and station design, informing the
selection of train and platform features we consider in this project.

The work by Adamko et al. [2] proposes the optimisation of rail-
way terminal design using a simulation model. However, this work
does not incorporate a crowd model that represents pedestrians
individually at the platform.

Passenger boarding and train alighting is studied in the work
by Zhang et al. [25] where personal characteristics (gender, age,
etc.) that in�uence behaviour are represented by a coe�cient with
a distribution dependent on the population. However, this model
does not include the collective behaviour of passengers such as
their distribution on the platform, choosing and changing target
doors and other detailed behaviour that may in�uence alighting
and boarding performance.

The impact of platform edge door (PED) design is studied in the
work by Gonzalo et al. [13] who claim that while the presence of
PEDs does not have a negative impact on the boarding and alighting
time, it does a�ect passenger behaviour at the platform, inducing
a more organised boarding and alighting process where boarders
wait beside the door rather than in front of them, and give way to
alighters more often than without PEDs.

Watts et al. [10] have investigated the factors in�uencing fac-
tors dwell time for high speed trains. Factors governing passenger
boarding and alighting were identi�ed as the exterior door width,
the entry step height, platform gap, the layout of the vestibule, how
and where luggage is stored, how passengers �nd their seat and
the quality of information provided to passengers on the platform
and on board. Their experimental study observing (actual) people
movement showed poor boarding experience for people with lots
of large luggage or small children when steps are present. A wider
door width was observed to support easier/faster �ow of people.

Adam et al. [1] have studied the factors a�ecting dwell time
using agent based simulation. The experimental results suggest
that designated boarding/alighting doors, and an active passenger
information system give reductions in loading times of around 7.0%.
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The analysis of the real-world data from PTI interfaces by Daa-
men et al. [9] suggests that there are clear concentrations of waiting
and boarding passengers around platform access points. Stairs at
the end of the platform lead to higher concentrations than locations
in the middle or at one third/two thirds along the platform.

RSSB project T1054 investigated the impact of the gap �llers to
increase safety at the PTI. The outcomes suggest that gap �llers
should be considered as a part of the whole system to reach an
optimal solution [5].

The work by Coxon et al. [8] focuses on building an agent based
simulation model with 3D characters to simulate the PTI design.
The authors propose to have a “peak door”, i.e. a train door only
for peak hours, and the adjacent space inside is transformed into
a folding seating area during o� peak. Furthermore, the door clo-
sure arrangements are found to play a crucial role in minimising
potential passenger injuries. The ongoing RSSB project T1102 in-
vestigates the impact of various door closure arrangements and
passenger familiarity with them [7].

The RSSB project T1057 is a study on the e�ect of luggage and
suggests certain features to minimise the e�ects of luggage [6].
These include improved on-board signage for alighting passengers
to reduce the chances of them obstructing or causing crowding on
the platform or near the train doors while they work out where to
go, and to display “Mind the gap” signs on train doors to increase
awareness of PTI risks when encumbered with luggage.

It is interesting that existing work has evaluated the e�ective-
ness of several PTI features. However, none of the existing work
has studied PTI geometry and operation as a whole in a simulated
environment rather than one or few individual features. Such a
complete model of PTI is essential to predict the �ow time accu-
rately. Within RateSetter we study the e�ectiveness of not only
individual PTI features but also the PTI system as a whole and how
to improve it. We identify e�ective PTI features from the above
existing work, and additionally, consider new features by analysis
of CCTV footage. The set of considered PTI features is presented
in Section 4.1.

3 PASSENGER SIMULATION MODEL

The passenger simulation in the project follows agent based mod-
elling principles. The simulation model is built on FlameGPU, an
agent based simulation framework that makes use of highly par-
allel computing on Graphics Processing Units (GPUs) [17]. Each
passenger is an agent with an individual goal that falls in to the
category of either alighting or boarding the train. Passengers with
the goal of alighting from the train are seeded inside the train at
the start of the simulation and choose the shortest route towards
the platform. Conversely, passengers with the goal of boarding the
train are seeded on the platform at the start of the simulation. These
passengers are in fact a distribution based on di�erent mobility lev-
els resembling the real world. After all passengers have alighted, a
certain percentage of boarding passengers, as de�ned in the initial
con�guration �le, will navigate towards a pre-chosen seat on the
train or stand in the vestibule area. The simulation ends after all
passengers have boarded the train.

The Optimal Reciprocal Collision Avoidance (ORCA) algorithm
[24] is used by the passenger agents to perform local collision

Figure 3: Sample geometrical layout de�ned by the PTI fea-

tures

avoidance from walls and each other. It is an approach where by
each passenger agent observes the velocity of others in order to
�nd a velocity that will lead to a collision free path. The reciprocal
nature of the algorithm means that the pair of potentially colliding
agents takes half the responsibility for avoiding each other making
the manoeuvre oscillation-free. Control of each passenger agent is
done by providing each one with a two-dimensional velocity vector
to their current target destination.

3.1 Use of CCTV Data

An agent based simulation depends for its validity on the quality of
data de�ning the behaviour of the agents and their interactions. For
the current study, the data on passenger behaviour at the PTI and
in its vicinity were derived from CCTV footage captured on trains
and platforms using existing cameras installed for security/safety
monitoring. The locations at which this data was captured, and the
division of the data into separate batches for model de�nition and
later model validation, is expanded in Section 3.3. The use of CCTV
data in this way is a major distinguishing feature of the RateSetter
approach.

3.2 Inputs and Outputs

The PTI cases to be explored are variations around those for the
trains from which the CCTV footage was captured, and therefore,
our aim is to operate within the validity of this underlying data
which focused on busy commuter and inter-city services. It would
be inappropriate to over extend a simulation beyond the input char-
acteristics captured, for example, PTI behaviour on an extremely
busy commuter service could not be adequately predicted based on
data collected on an under-utilised late-night train. The passenger
model aims to capture the �ow rate and interactions of passen-
gers alighting and boarding carriages of various di�erent designs.
For each scenario, the simulation accepts the input parameters for
initialisation. Then the layout generator tool translates these pa-
rameters and certain other meta parameters (i.e. walkable areas,
o�sets etc) required by the simulator to a geometrical layout used
in the simulation. A sample layout is shown in Figure 3. Then as
described in the beginning of the section the simulation runs for the
generated PTI design (see Figure 4). The outputs are the passenger
�ow time i.e. the time from the start of the �rst passenger alighting
to the end of last passenger boarding and the number of collisions.

3.3 Predictions for Validation Cases

The passenger behaviour and �ow data previously extracted from
CCTV analysis has been used for validation of the model. The
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Figure 4: Sample behaviour at the PTI at alighting (top) and

after boarding

Table 5: Flow time predictions plotted against real measured

data. The line marked is a 1:1 line, not a line of best �t to the

data.

simulationmodel was run for these cases (10 repetitions and average
is taken) and the outputs were compared with the actual passenger
�ow time and collision data extracted from CCTV analysis for each
case. Note that two similar but distinct extracts of CCTVwere taken
for each case (the same station at similar times but on two di�erent
days) where one sample is used to train the model and the other to
validate.

For validation, a diverse range of datasets was used covering
busy, regional, terminal and through stations in GB. Locations
include Manchester Airport (MIA), Hudders�eld (HUD), Preston
(PRE), Stalybridge (SYB), Manchester Piccadilly (MAN), Birming-
ham New Street (BHM) and London Euston (EUS). Figure 5 presents
the validation results.

4 EVOLUTIONARY OPTIMISATION FOR PTI

The previous section discussed the passenger simulation model
which serves as the �tness function. This section focuses on the
evolutionary optimisation process together with other required
components.

4.1 Platform Train Interface Features

The geometry of the PTI is captured in parameters as input to build
an instance of PTI within the simulation. In this initial version of
RateSetter we consider a subset of PTI features identi�ed at the
literature survey [1, 2, 5, 6, 8–10, 25]. These are the door width, the
carriage length, the carriage width, the horizontal distance of the
door for train car origin (horizontal origin is the left side exterior
of the body), the space between left and right seats, i.e. aisle width,
the seat width, the platform width, the standing area length, the
seat leg room, and the step gap/in�uence region (see Section 5.9).
Distances were measured in metres throughout.

4.2 Evolutionary optimisation Framework

The PTI optimiser framework is built using the genetic algorithm
library ParadiseEO [16] which is available under an open source
licence. For the GA the PTI design is captured as a real valued vector
where each PTI feature is represented by a real valued variable (we
call it a PTI individual). “Fitness” or quality is evaluated through a
�tness function (see Section 4.6) which captures the objectives and
the constraints discussed in the above sections. Algorithm 1 outlines
the evolutionary optimisation process in general. The following
sections will elaborate the problem speci�c design of each step in
the algorithm.

Algorithm 1 (µ + λ)-EA: Evolutionary Algorithm

1: Initialise the population P with µ PTI individuals, i.e. a spread
of potential PTI designs.

2: Select C ✓ P where |C | = λ.
3: For each I1, I2 2 C , produce o�spring I

0

1
I
0

2
by crossover and

mutation. Add o�spring’s to P .
4: Fitness evaluation of all I 2 P
5: Select D ✓ P where |D | = µ.
6: P := D

7: Repeat step 2 to 5 until termination criterion is reached.

4.3 Initialisation

A GA individual in the population represents a potential platform
train interface (PTI) instance. Such an individual is represented by
a real valued vector, where each GA gene [12] represents a real
valued PTI parameter described in Section 4.1, i.e. this numerically
captures the full description of a particular instance of the PTI. Ini-
tiation of the optimisation can start with a population of randomly
generated combinations of PTI parameters (generated within re-
alistic bounds), or can use heuristics. In our case we use a hybrid
approach, initialising the search using (i) existing PTI, and (ii) a
proportion of randomly generated cases (i.e. combinations of door
width and train interior layout which are feasible but do not exist
at present). This hybrid approach aims to give a good starting point
to the simulation without limiting the diversity in the population.
In this way we can preserve diversity and still bias the process
towards likely good solutions.

4.4 Parent Selection

Each step of the genetic simulation process requires the existing
PTI designs to be taken in pairs as “parents” from which the next
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generation of PTI is created. We employ random selection without
repetitions to choose which PTI to combine as parents at each step.

4.5 Variation Operators

Genetic operators are applied to the selected parents to create new
o�spring. These operators are inspired by the biological evolution-
ary operators of "crossover" and "mutation". Crossover is the process
by which the next generation inherits genes from multiple (typi-
cally two) parents to create new o�spring. Once two parents are
selected, we choose the value for a given PTI parameter (a "gene")
uniformly at random from either parent, a process of "uniform
crossover "[12]. The mutation process chooses one gene uniformly
at random out of the all genes in PTI individual and adds a small
random perturbation to its value (e.g. a small change in door or
aisle width). The exact value of the perturbation is calculated as a
percentage of the current value of the gene. A percentage between
-10% and +10% is drawn from a uniform distribution. The value 10%
is considered based on trail runs with di�erent values.

4.6 Fitness Evaluation

The �tness of an individual (i.e. a PTI design) is evaluated using the
passenger simulator model to predict the �ow time of passengers.
As described in Section 3.2 the passenger simulation model is run
on the PTI individual, with Flowtime de�ned as

Flowtime := TimeBn �TimeA0

where A0 denotes the time of the �rst passenger alighting, and Bn
the time of the last passenger boarding. The respective �ow time
output from the passenger model is assigned to the PTI individual
as the �tness score and the feasibility of the individual is decided
based on the collision score.

Fitness := (Flowtime |collisions == 0)

where collisions de�nes the number of collisions.

4.7 Survivor Selection

Based on the �tness value and constraint violations feasible indi-
viduals are sorted and the best, λ individuals are selected for next
generation as survivors.

5 OPTIMISATION RESULTS FOR NEW
DESIGNS AND RETRO-FIT CASES

5.1 Experimental Set-up

First, PTI features were considered in subsets to explore the im-
pact of these features on the optimisation of passenger �ow rate
keeping the rest of the features untouched. This was conducted by
keeping speci�c gene(s) representing an individual/PTI constant
by restricting the application of variation operators to them. The
approach allowed, for example, features relevant to a retro-�t to be
considered separately from those which could only be changed for
a new-build case. Second, PTI design was optimised allowing all
the features to vary simultaneously aiming for future PTI design.

For the passenger simulator, an input con�guration �le was
employed to con�gure the simulation for a busy station with people
of varying mobility levels aiming to get into a loaded train where a
subset of the people intend to alight at the station. The people are

generated probabilistically from a normal distribution and therefore
exact behaviour varies slightly in each run.

For these initial experiments, we consider parent and o�spring
population sizes µ, and λ as one and the penalties for soft constraint
violations as zero for the sake of simplicity. Owing to the variability
of the agent behaviour (which in fact is the case for human pas-
sengers in real-world) the passenger simulation model is invoked
on each PTI design for 10 repetitions and the average �owtime is
recorded as the �tness of the particular PTI design/individual. The
algorithm is run for 2000 generations.

The experiments were run on a Linux Ubuntu 17.04 64 bit PC
with Intel Core i7-7700HQ CPU @ 2.80GHz x 8 processor, 15.5 GB
memory and a GeForce GTX 1050 Ti/PCIe/SSE2. Throughout the
experiments time was recorded in seconds and lengths in metres.

5.2 Aisle Width and Seat Width

Aisle width on the train is found to be a rate determining PTI
parameter. Slow movement into the aisle can cause a backlog of
people at the door as identi�ed in the literature survey. Therefore,
it is expected to have a signi�cant e�ect on passenger �ow rate
even though it may at �rst seem remote from the PTI itself. It was
assumed throughout that the train included rows of two seats either
side of an aisle and, since train width was also parameterised in the
model, the seat width was implicitly controlled by setting the aisle
width. The simulation began with a narrow aisle (at 0.384m, the
very low end of those that exist on real-world trains) to understand
the evolution of �ow time improvement as the aisle was widened.

The results show that the bene�t to reduced �ow time through
increasing aisle width plateaued at an aisle width of 1.0m. Some
additional marginal bene�t could be produced by going to a 1.4m
aisle width, with the downside that seat width would become very
narrow for little �ow time improvement. No constraint was placed
on seat width in the simulation but, in future work a minimum
acceptable seat width could be considered depending on the type
of journey to be undertaken, e.g. a narrow seat and more rapid
boarding would be acceptable for a short journey, but not for long,
inter-city journeys.

Figure 6 shows the progression of the optimisation of the aisle
width parameter. In summary, for the train layout and the busy sta-
tion scenario considered, the �ow time is reduced from 50 seconds
to 39 seconds by varying only aisle width from 0.4m (somewhat
narrow) to 1.4m (very wide) while keeping rest of the PTI features
constant.

5.3 Door width

A two door carriage design is considered to investigate the e�ect of
door width on �ow time. We considered door widths in the range
that exists in practice, starting from very narrow doors that were
used in older vehicles (e.g. BR Mark 1 coach) that have narrow door
as shown in Figure 7, through to later trains that have double doors
towards the centre of the vehicle length. It was found that after
some increase in width the �ow time sees no further improvement
with increase of door width within the range considered. This was
found to be due to the inter-dependency of the door width and
the vestibule capacity, and also the rate at which passengers could
move into the aisle. Even when the door is widened the overall
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Figure 6: optimisation of PTI : variation of aisle width (on

top) and �ow time (bottom) respectively over iterations

Figure 7: Door width variation over the optimisation algo-

rithm run

performance is limited by these other factors. Based on the studied
case diminishing return for increasing door width was achieved at
a width of 0.8m. The inter-dependency of this value on the train
interior design mean this is not a general conclusion, it is speci�c
to the vehicle considered.

5.4 PlatformWidth

A wider platform can increase personal space for passengers. How-
ever, when it is too wide the passengers might be distributed further
away from the door. This is re�ected in improved �ow time of 14s
(from 52s to 38s) with reduced platform width (from 4m to 2.9m).

5.5 Standing Area

Standing area within the train shows some correlation with the
�ow time where increase in the standing area length from 1.7m to
2.6m resulting in reduction of �ow time from 42.7s to 36.9s . When
there is more space available, more passengers can gather closer
to the door ready for alighting, reducing �ow time. This supports

the observation from the experiment on door-width, that vestibule
standing area and the door width are inter-dependant. Changing
one alone cannot make a signi�cant improvement.

5.6 Carriage Length

By increasing carriage length (from 18m to 25m) �ow time is also
increased (36s to 52s) because passengers have to walk further to
and from their seats. However, by increasing the length, the capacity
of the carriage is also increased. This highlights a case in which
reduction of boarding and alighting time needs to be considered
alongside wider factors a�ecting the system. Constraints on vehicle
capacity (potentially a�ecting the business case for the service)
were not within the scope de�ned for the PTI investigation, but
its consideration would give a better representation of the whole
system.

5.7 Carriage Width

In contrast to carriage length carriage width does not signi�cantly
increase transit distance for a passenger. For the current scenario
where the number of seats in a row is predetermined, this only
increases the space making it easier for passenger to walk. Hence
its increase (from 2.7m to 3m) improves (i.e. reduces) the �ow time
(from 44s to 39s). However, for an existing system the loading gauge
(cross-sectional envelope through which the train must pass) will
be restricted and such enlargement may not be possible.

5.8 Seat Leg Room

Seat leg room is another interesting feature that could a�ect the PTI
performance in two di�erent contrasting ways. It can in�uence the
total distance for a passenger to walk in the aisle to the designated
row of seats from the door and from the row to the door. It can also
a�ect the overall performance by avoiding any collisions due to
narrow leg room when seating (following boarding) and leaving
the seat (when alighting). The experiments suggest that the latter
aspect has stronger e�ect compared to the former. This is re�ected
in improved �ow time (from 41s to 38s) with the increasing leg
room (from 0.42m to 0.44m).

5.9 Region of In�uence for the Platform-train
Step

Most conventional PTI work has focused on the hard measurements
of platform to train step height and gap. In RateSetter we considered
instead the step as a region in which people slowed their movement
(based on the captured CCTV data). The distance from the train
and into the train over which they slowed when approaching or
passing this obstacle de�ned a region of in�uence for the step.

The step gap is identi�ed as a directly a�ecting PTI features in
literature. As would be expected the RateSetter prediction is that by
reducing the size of step gap region (1.92m to 0.78m) the �ow time is
reduced (from 41s to 37s). While that is not a surprising �nding, the
concept of a region of in�uence for the step/gap rather than a strict
measure of its height and width does o�er new insight. There may
be ways to reduce the area in�uenced by the gap (thereby speeding
boarding/alighting) even if the gap itself cannot be changed. This
may be with lighting, signage, gap �llers, or other means, the e�ect
of which on overall �ow rate can be assessed.
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Figure 8: optimisation of multiple features simultaneously

Figure 9: Train layout for optimised PTI �owrate. Seat-

ing (blue squares) is reduced, standing areas are enlarged

(turquoise rectangles), doors evenly and centrally spaced.

5.10 Position of the doors

Door position along the carriage was de�ned relative to an origin at
the left exterior wall of the vehicle. In the example case considered
the location of door 1 was optimised with door 2 located 15 metres
from the origin, for a carriage length of 20m. Flow time was found
to improve (from 45s to 40.6s) when door 1 was positioned further
away from door 2 (moving from 12m to 8m from the origin). This
might be owing to the assumed even distribution of passengers on
the platform. In addition, alighting passengers at the carriage ends
can reach the doors in less time compared to the case when door
1 is at 12m from the origin. Considering the position of door 2 to
be variable the �nding was again that �ow time is reduced when
giving reasonable space between the two doors.

5.11 Optimisation of Multiple PTI Features for
New Designs

In new train designs multiple PTI modi�cations can be implemented
relative to existing rolling stock. Figure 8 shows an example of a
signi�cant improvement in �ow time of 25 seconds from 53 to
28 seconds predicted for the case of optimising door width and
door locations simultaneously. An optimised design after 2000 GA
iterations for our busy station scenario is in Figure 9 with the
initial and optimised parameters are presented in Table 1. Here we
considered passengers as commuters without big luggage, �nding
the �ow time is reduced by 36 seconds, from 71s to 35s between
the two PTI/train geometries.

The RateSetter optimisation framework provides guidance for
platform and train design, as in the above case for busy stations/trains

PTI feature initial value (m) optimised value (m)

seat length 0.4 0.3
standing area length 2.31 3.84

platform width 2.56 1.96
aisle width 0.4 1.3
door width 0.6 1.1

step gap/in�uence region 1.0 0.8
seat leg room 0.29 0.31

door 1 distance from carriage start 7 6
door 2 distance from carriage start 15 14

carriage width 2.7 3.11
carriage length 20 17.1

�ow time 71.8s 37.6s

Table 1: Initial and optimised PTI feature values for a busy com-

muter station scenario. Initial values are inspired by the real world

but don’t represent a speci�c vehicle.

for which lower passenger �ow time is predicted for shorter car-
riages with fewer seats and more standing space, a smaller region
over which people perceive and slow for the gap, and wide plat-
forms with no obstacles. These outcomes have been reached by
direct optimisation rather than application of prior knowledge, and
it is useful to have a framework capable of highlighting diminishing
returns in the factors identi�ed. For example, the outcome that wide
platforms are more e�cient also shows that for the case examined
most bene�t has been achieved by a width of just under 2 metres.
This needs to be placed in context as only the PTI has been con-
sidered, and not wider circulation issues such as passengers for
other destinations passing through the same area. Similarly, for
the case considered in Section 5.3, widening the door beyond 0.8m
is predicted to give little improvement in the passenger �ow time
because it will be limited by congestion at the standing area and in
the aisle. For retro-�t cases the range of variables to be considered
can be restricted to those which are viable to change.

An important outcome of the RateSetter feasibility study has
been identifying that factors beyond the PTI itself need to be consid-
ered in the optimisation process. As currently de�ned an optimisa-
tion will, for example, predict that reduced passenger �ow time will
be produced by shorter and wider vehicles since this brings more
people closer to the doors. However, this neglects that capacity may
be reduced, or that �nancially a larger number of shorter vehicles
may be unacceptable. Similarly, the loading gauge may be violated
by a wider train. Loading gauge was thought to be out of scope for
the project at its inception, but in future work should be included
to ensure the PTI optimisation operates within realistic constraints
of the system overall. Such constraints may be relaxed if planning
a completely new system without legacy compatibility issues.

6 CONCLUSIONS AND FUTUREWORK

RateSetter, an evolutionary optimiser framework, has been devel-
oped as a feasibility study to test the applicability of optimisation
and modern parallel computer processing to PTI design for reduced
passenger �ow times. A key factor was capturing real world passen-
ger behaviour through analysis of CCTV of movements on current
platforms and stations. Through alternative CCTV datasets, a pas-
senger simulator model was validated and serves as the �tness
function within a genetic algorithm optimisation process. The fea-
sibility study test cases provide insight to the relative importance
of PTI features and how a future PTI could be developed.
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Instead of the conventional focus on train to platform step height
and gap, this PTI feature was evaluated as a region in which peo-
ple slowed their movement (based on the captured CCTV data).
The distance from the train and into the train over which they
slowed when approaching or passing this obstacle de�ned a region
of in�uence for the step. This approach may be used to evaluate
ways to reduce the area in�uenced by the gap (thereby speeding
boarding/alighting) even if the gap itself cannot be changed. This
may be with lighting, signage, gap �llers, or other means, the e�ect
of which on overall �ow rate can be assessed.

An important �nding is the wide range of factors which need to
be considered to achieve meaningful PTI optimisation, for example,
avoiding an investment in a new door design, if this simply moves
a �ow bottleneck to the aisle. The RateSetter feasibility project has
demonstrated investigation of such interactions is possible through
modelling. For meaningful predictions, the optimisation needs to
consider wider issues such as train capacity and loading gauge,
which were initially thought to be beyond the scope of the PTI.

In future work it is expected to conduct further validation of
the RateSetter approach, for example through blind prediction of
‘before’ and ‘after’ cases of changes already being made on the
network. These can help increase con�dence in the approach, and
highlight areas of further development needed, whether that is
through improvements to the computing approach, the pedestrian
model, or inclusion of additional aspects of the platform and train
interior environment within the simulation. Application to opera-
tional rather than system re-design issues is also an area of great
potential, for example predicting dwell time increases if a short
formed train runs on a service, or if a train runs with a door out of
use. This can support business decisions about how to manage such
cases, and increase understanding of the value of avoiding them.
Furthermore, experimentation on regional trains transporting long
distance passengers with big luggage is also another potential fu-
ture extension. For this, the current PTI individual is to be extended
with further features namely luggage rack position and size. As ob-
served in the current optimisation predictions, the service capacity
and therefore its business case is also an important aspect that can
be considered in the optimisation criterion. Through developing an
updated �tness evaluation the current evolutionary optimisation
can be extended to multi-objective optimisation where we consider
both �ow-time and system capacity as objectives.
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