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ABSTRACT 

 

This paper provides an initial step towards developing 

a phonetically interpretable method of language 

identification which aims to determine a speaker’s L1 
given their L2 English speech. In the present study, 

112 male L2 English speakers representing five L1s 

were selected from the Speech Accent Archive. F1, 

F2, and duration were measured for four 

monophthongal vowel phonemes (/ɪ/, /i/, /ɛ/, and /ɔ/). 
These phonetic features were then used to calculate 

by-phoneme probabilities using an adapted version of 

Aitken and Lucy’s multivariate kernel density 
method. Findings suggest that for computational 

analysis, individual segmental acoustics in isolation 

are unlikely to be sufficient for making good 

predictions. Additionally, the features that are most 

effective for identifying a language will depend on 

both the segment and comparison under 

investigation. 
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1. INTRODUCTION 

Language identification systems, as the name 

suggests, attempt to automatically identify the native 

language (L1) of a speaker based on a sample of his 

or her speech. Such systems have wide usage for 

commercial purposes (e.g., as a front-end for speech 

recognition) and for forensic and security purposes 

(e.g., to identify the language being spoken by a 

person of interest in an incriminating recording). 

Most language identification systems approach 

this task from either an acoustic-phonetic approach 

(e.g. [6,17]) exploiting the segmental realisations, or 

a purely acoustic approach which works on the more 

abstract, mathematical representations of the speech 

signal extracted across an entire recording (e.g., 

MFCCs) e.g. [4]).  

Current state-of-the-art systems which use Deep 

Neural Networks (DNN), have been shown to out-

perform other approaches when the number of 

possible L1s is high. For example, previous studies 

have cited classification rates (CR) of 71.9% for a 6-

way comparison task using DNN [27] and 83.63% for 

a 10-way comparison using TDNN [24].  

One drawback of purely acoustic systems, and 

particularly those that utilise deep learning, is that 

they lack the interpretability that segmental 

approaches provide, and that is often required for use 

in forensic applications. However, interpretability 

often means sacrificing performance. Systems such 

as in [6] is a recent example of an acoustic-phonetic 

approach which uses distance measures between 

segments to determine the L1 (CR of 61.4% on a 7-

way comparison).  

Despite the many recent advances in speech 

technology, language identification based on a 

speaker’s L2 speech remains a relatively difficult and 

under-researched area. Factors like proficiency, 

regional variations in the L1, along with other social 

factors such as attitude, will impact L2 realisation and 

which features are acquired [9,12,23]. These factors 

introduce inconsistencies within a group making the 

L2 variety classes difficult to model. Additionally, 

similar target pronunciations mean differences are 

expected to be more subtle than between dialects or 

with language identification based on L1 speech. 

Whether the L2 varieties should be grouped by their 

L1 and not a finer grain label is a separate issue not 

discussed in this paper (see [19]). 

The present study specifically deals with General 

American English as the target L2 of a set of speakers 

with a wide range of L1. We also aim to explore L2 

English phoneme data through the lens of language 

identification. This presents an initial step towards 

developing a larger (i.e., based on a wider range of 

features at different linguistic levels), phonetically 

interpretable system that can recognise a speaker's L1 

based on samples of their L2 English.  

This paper will first explore the distributions of 

F1, F2, and duration values for four vowel phonemes, 

followed by an evaluation of classification rate and 

probability scores. Finally, we consider whether the 

phonetic realisations of the different L1 groups are 

different enough that they can be accurately identified 

and whether classification performance can be 

explained in a phonetically interpretable way. 



2. METHODS 

2.1. Data 

The speakers used for this study were 112 male 

speakers of five varieties of non-native English 

selected from the Speech Accent Archive [28]. 

(Referred to by their L1 as labelled in [28]: Arabic, 

French, German, Mandarin, Portuguese). Each 

recording contained approximately 30 seconds of a 

speaker reading the “Stella'' passage. The Montreal 
Forced Aligner (MFA) [20] was used to segment each 

sample at the phone level and generate a time aligned 

Praat TextGrid. The General American acoustic 

model and grapheme-to-phoneme dictionary were 

used (english_arpa_us and english_us_ipa_g2p). 

Therefore, all segment labels are based on the 

expected phoneme, not the actual realisation. Some 

alignment error is to be expected but should be 

sufficient for the purposes of this paper. A study of 

the performance of the MFA on a subset of this 

dataset found that 80-93% of boundary placements 

were within 20ms and 66.8-83.9% were within 10ms 

[29]. Taking measurements at the midpoint of the 

segment should somewhat mitigate the impact of 

alignment errors. 

2.2. Feature extraction 

F1 and F2 measurements were automatically 

extracted from a 25ms midpoint frame for all 

monophthongal vowel segments contained in the 

passage along with duration (of the segment) using a 

Praat script [13]. The reference formant values were 

set based on manually corrected values for 2-3 male 

speakers from each of the varieties1. 

Four vowel phonemes were selected for use in this 

study as a means of focusing on segments that were 

relatively easy to measure automatically and showed 

high or low variability between varieties based on the 

manually corrected values. This resulted in 577 (/ɔ/), 
925 (/ɪ/), 448 (/ɛ/), and 1232 (/i/) tokens. Further 

outlined in Section 3.1  

2.2.1. Normalisation 

Each feature was z-scored based on the mean across 

all speakers to bring the features onto the same scale 

while maintaining original differences between 

distributions. This was done to allow for the use of a 

single smoothing parameter in (1) [25]. Tokens with 

an absolute z-score above 3 for any of the features 

were considered measurement errors and removed 

from the analysis. Approximately 97% of the data 

was retained: 556 (/ɔ/), 893 (/ɪ/), 439 (/ɛ/), and 1187 
(/i/) tokens.  

2.3. Language identification 

For within-language comparisons, each language set 

was randomly split into 80% training and 20% test 

data using K-fold cross validation (K=5). An 

adaptation of Aitken and Lucy’s [1,2] multivariate 

kernel density (MVKD) likelihood ratio (LR) formula 

Figure 1: Density distributions for raw F1 and F2 values across vowel and L11.  



was used to calculate the probability of a given 

speaker’s data given a model of data for each 

language group. This was done via a modified version 

of Morrison’s [21] MATLAB MVKD 

implementation. MVKD has widely been used for the 

purposes of speaker comparison research (e.g., 

[10,22]) utilising phonetic features like those used in 

the present study and provides a transparent method 

of comparing distributions. Here, only an adapted 

version of the denominator of the MVKD LR was 

used. This involves modelling data for each language 

group with a multivariate kernel density distribution, 

made up of equally weighted Gaussians from each 

speaker in the training data. This also accounts for 

correlation between features. The mean probability of 

each feature vector (F1, F2, duration) from each token 

for each test speaker given each language model is 

then calculated:   

 

(1) 𝑓(𝘻|𝜇1, 𝐶, 𝑈, 𝐻𝑝) = ∫ 𝑓(𝙯|𝜃1, 𝑈)𝑓(𝜃1|𝞵, 𝐶)𝑑𝜃  𝜃  

 

Where 𝙯 is the measurements from the speaker, 𝞵1and 𝐶 are the within-group mean and covariance, 𝑈 is the within-speaker covariance and operating 

under the assumption of hypothesis p (where 𝐻𝑝  is 

the hypothesis that the speaker comes from a given 

language model). 

 

2.3.1 Evaluation 

 

For each test speaker, probabilities were ranked by 

language model and then compared against the 

ground truth to arrive at a conclusion which could 

then be evaluated in binary terms as correct or 

incorrect. This was then used to generate an overall 

classification rate. Additionally, logLRs, which 

estimate the strength of the evidence, (𝙯; i.e., the 

acoustic measures for a test speaker), were calculated 

for comparisons between target (H1) and non-target 

(H2) language pairs: 

 

(2) 𝑙𝑜𝑔𝐿𝑅1,2 =  𝑃(𝙯|𝐻1)𝑃(𝙯|𝐻2) 
 

LogLRs are widely used as the output of many 

automatic speech technologies and are particularly 

used within the forensic domain. For ease of 

interpretation, numerical logLRs here are converted 

to verbal equivalents using the scale in [7]. 

3. RESULTS 

3.1. Feature distributions 

Figures 1 and 2 display the distributions of raw F1, 

F2, and duration values for the five language groups 

for the four vowels. These vowels demonstrate high 

and low between-language variability (see 2.2). 

For instance, /i/ shows considerable overlap in the 

feature space for all selected varieties except 

Portuguese along F1 and Arabic along duration. 

However, due to the wider distribution, if a 

Portuguese speaker’s features fall towards the centre 
of the distribution (around 300Hz along F1 for 

example), there will always be a higher probability 

that the speaker belongs to one of the other L1s. This 

suggests there will be a lot of confusability between 

the varieties for this segment that will not result in a 

strong decision in any direction. Conversely, /ɛ/ 
shows variability across all three features. In between, 

/ɪ/ displays variability mainly along Duration and F2, 

while /ɔ/ is mainly along F1 and F2.   

The results predict that the performance ranking of 

the segments will be from best to worst: /ɛ/, /ɔ/, /ɪ/, /i/. 

3.2. Language identification results 

The overall classification rates were: 15% (French), 

9% (Arabic), 17% (Mandarin), 10.9% (Portuguese), 

and 47.9% (German). German had a noticeably better 

classification rate which is largely attributed to the 

performance on /ɔ/ and /i/. The performance rankings 

of each vowel based on how many speakers were 

correctly identified can be found in Table 1. Within a 

language group, /i/ was most frequently classified 

correctly, while /ɔ/, /ɪ/ and /ɛ/ tended to be correctly 
classified less frequently.  

Figure 2: Density distributions for raw duration values 

across vowel and L11. 



 
L1 Vowel 

1st  2nd  3rd  4th  

Arabic /i/ /ɛ/ /ɔ/ /ɪ/ 
French /ɪ/ /ɛ/ /i/ /ɔ/ 
German /ɔ/ /i/ /ɪ/ /ɛ/ 

Mandarin /i/* /ɔ/* /ɪ/ /ɛ/ 
Portuguese /i/ /ɪ/ /ɔ/ /ɛ/ 

 
Table 1: Vowel phonemes ranked by performance 

(best to worst) for each L1. * Indicates a tie. 

 
L1 L1 (model) 

/i/ /ɔ/ /ɪ/ /ɛ/ 
Arabic (A) P G M M 

French (F) A/M G M M 

German (G) M - M M 

Mandarin (M) P G F P 

Portuguese (P) M G M M 

 

Table 2: Most common misidentification for each 

L1 and phoneme label. 

 

Table 2 displays the most common misidentification 

for each L1 and vowel. In most instances, the 

probability of the speaker having Mandarin as an L1 

was higher than for their correct L1. However, it is 

worthwhile to note that pairwise logLRs mostly fell 

between 0 and 2, but more often between 0 and 1. 

This indicates a very weak classification, meaning 

even if the segment was classified incorrectly, the 

strength of the evidence is considered limited to 

moderate on the verbal scale in [7]. 

There were some pairwise comparisons that 

showed greater strength of evidence. For example, 

speakers with French as their L1 tended to show 

logLRs around 3 in support of either hypothesis for 

/ɛ/. However, generally higher strength of evidence 

appeared to be speaker-specific rather than patterning 

with specific L1s. 

3. DISCUSSION 

The results from this study show that the performance 

ranking of the phonemes was not as expected. 

Surprisingly, the segment that showed the largest 

differences in Figures 1 and 2 between varieties 

tended to be the least well-classified. We suspect this 

is due to where in the feature space a speaker falls. 

For example, /ɔ/ has very wide distributions for F1 

across all varieties. Therefore, despite large 

differences between the overall distributions, the tails 

of a given distribution overlap with means of others.  

Conversely, the vowel with the smallest between-

language variation in mean values (/i/), had the best 

performance for most varieties. All of the tested 

varieties have a phoneme with this label in their 

native inventory [3,5,8,11,15,16,26]. This does not 

mean the L1 and L2 /i/ phonemes are acoustically 

equivalent, however, it is possible language-based 

differences were maintained in the L2 regardless of 

how subtle, in addition to less within-speaker 

variability. This is reflected in the strength of 

evidence for pairwise comparisons which often fell 

into limited or moderate strength of evidence on the 

verbal scale in [7]. Inclusion of a segment in the 

speaker’s native inventory, however, does not seem 
to generally impact performance. For example, 

comparing the overall performance of Mandarin and 

Arabic. Of the four vowels in this study, both, 

depending on the dialect, only have a phoneme 

labelled /i/ in the native variety [3,15,18,26]. There 

were also a lot more tokens of /i/ than the other 

phonemes, meaning the training data will better 

represent the L1. 

Surprisingly, many of the varieties were confused 

with Mandarin and German. We suspect this has more 

to do with the relatively smaller number of speakers 

compared with the other L1s in addition to a reduced 

number used to form the training set [14]. The 

German and Mandarin groups contained 12 and 13 

speakers respectively, compared with 39 Arabic 

speakers. Even with only three features, there could 

be an issue of dimensionality.  

Low strength of evidence was fairly consistent 

across all comparisons and suggests that while it is 

possible to correctly identify a speaker’s L1 based on 
their pronunciation of individual vowel phonemes, 

the classification based on this modelling method is 

not accurate or consistent enough. However, it does 

demonstrate issues that will translate to methods 

using more opaque measurements (such as MFCCs) 

in higher dimensions. The issue of large within-group 

variability and substantial overlap between varieties 

in the phonetic subspace. Also of note is that speakers 

were not consistent in their performance across 

segments which again highlights a challenge raised in 

the introduction about variability of speakers within 

groups due to proficiency etc. This inherently makes 

L1 recognition from an L2 more difficult than straight 

L1 recognition. 

Many factors could have played a role in this aside 

from the expected factors impacting variability, 

including alignment error from the MFA, 

measurement error from Praat formant tracking, and 

scarcity of data. 

4. CONCLUSION 

The lack of strong results in general leads us to 

conclude that each segment in isolation does not 

provide enough language-specific information to 

make good predictions. However, clearly, some 



phonemes work better for some languages (and likely 

some speakers) than others. So, the way forward is to 

(a) consider a wider range of features at different 

linguistic levels and (b) tailor the choice of linguistic 

features to the language (this may be determined by a 

combination of knowledge of the languages and 

through empirical testing). It’s clear that the features 

and segments that are most effective for identifying a 

language, along with the strength of evidence, will 

depend on the pairwise comparison.  
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