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Contactless hand tremor amplitude measurement using smartphones:

development and pilot evaluation

James Bungay1, Osasenaga Emokpae1, Samuel D. Relton2, Jane Alty3, Stefan Williams4, Hui Fang5

and David C. Wong2

Abstract— Background - Physiological tremor is defined as an
involuntary and rhythmic shaking. Tremor of the hand is a key
symptom of multiple neurological diseases, and its frequency
and amplitude differs according to both disease type and disease
progression. In routine clinical practice, tremor frequency and
amplitude are assessed by expert rating using a 0 to 4 integer
scale. Such ratings are subjective and have poor inter-rater
reliability. There is thus a clinical need for a practical and
accurate method for objectively assessing hand tremor.

Objective - to develop a proof-of-principle method to measure
hand tremor amplitude from smartphone videos.

Methods - We created a computer vision pipeline that
automatically extracts salient points on the hand and produces
a 1-D time series of movement due to tremor, in pixels. Using
the smartphones’ depth measurement, we convert this measure
into real distance units. We assessed the accuracy of the method
using 60 videos of simulated tremor of different amplitudes
from two healthy adults. Videos were taken at distances of 50,
75 and 100 cm between hand and camera. The participants
had skin tone II and VI on the Fitzpatrick scale. We compared
our method to a gold-standard measurement from a slide rule.
Bland-Altman methods agreement analysis indicated a bias of
0.04 cm and 95% limits of agreement from -1.27 to 1.20 cm.
Furthermore, we qualitatively observed that the method was
robust to limited occlusion.

Clinical relevance - We have demonstrated how tremor
amplitude can be measured from smartphone videos. In con-
junction with tremor frequency, this approach could be used
to help diagnose and monitor neurological diseases.

I. INTRODUCTION

Hand tremor is a common symptom of multiple diseases,

including Parkinson’s disease, essential tremor, and multiple

sclerosis. Assessment of tremor activity is an important clin-

ical task that can help in diagnosis of disease and evaluating

response to treatment.

Tremor is assessed clinically by considering its frequency

and amplitude. The standard clinical methods of measuring

both tremor amplitude and frequency are subjective. A

clinician visually observes a patient tremor and makes an

estimate of both measures, categorising it with a severity
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rating [1], [2]. Such visual estimates of movement disorders

are usually performed in face-to-face consultations, and there

is large inter-rater variability between expert clinicians such

that tremor diagnoses are frequently incorrect [3], [4]

Objective measurement of tremor frequency is possible

using an accelerometer strapped to the hand [5]. Tremor

amplitude is rarely derived directly, and instead, the am-

plitude of the acceleration signal is taken as a proxy for

the amplitude of the displacement. The practical use of

accelerometers is limited in two respects; it requires non-

standard specialist equipment, and also adds weight to the

hand in a way that may alter tremor characteristics.

Instead, it may be possible to derive tremor frequency and

amplitude measurements directly from smartphone videos.

Analysis of smartphone videos has been used to assess

other biomarkers of neurological conditions [6], [7]. The

ubiquity of smartphones means that such computer vision

approaches have the potential to be used in multiple contexts.

For example, they could be used for remote consultations

or for monitoring of disease progression. Recently, we have

developed a method for extracting tremor frequency directly

from smartphone video recordings of hand tremor [8].

Here, we propose and demonstrate proof-of-principle for a

method that enables measurement of tremor amplitude, with

respect to the image plane, from smartphone videos.

II. METHOD

A. Technical Description

The method consists of four main parts, shown in figure

1. We assume that data have been collected via a modern

smartphone that can capture both video and a depth mea-

surement at the centre of the camera frame. In our work, we

used an iPhone XR to provide both measurements.

1. Extract hand features - Using the video data, we

extracted salient points on the hand using the Mediapipe

hand tracker [9]. This two-stage process identifies the palm

region using a U-net and then fits salient points that are

consistent with pre-specified hand pose model. The hand

tracker returns a tuple of {x, y, t} corresponding to the x and

y pixels, and time. For robustness, we monitored movement

over multiple points, corresponding to the base (metacarpal),

middle (interphalangeal) and tip of thumb and forefinger.

2. Calculate tremor amplitude in pixels - In our con-

trolled scenarios, the primary direction of tremor was hori-

zontal. We therefore used only {x, t} to represent the motion

waveform over time. To filter out low frequency motion due

to gross arm movements, we processed the waveform by



Fig. 1: Overview of hand-tremor amplitude measurement using smartphone video analysis

first extracting peaks and troughs. We used a simple forward-

difference to estimate the gradient and located zero crossings.

The difference in x between adjacent zero crossings was an

instantaneous estimate of the amplitude - this was calculated

for all adjacent pairs of zero crossings. From this set, we

used the median value to be robust against artificial increase

in tremor due to ‘ramp-up’ of the tremor motion from an

at-rest state.

Camera Property Symbol Value

Physical Lens Focal Length f 2.87 mm

35mm Equiv. Lens Focal Length fe 32 mm

Sensor Aspect Ratio as 0.75 (i.e. 3:4)

Video Aspect Ratio av 0.5625 (i.e. 9:16)

Horizontal Video Resolution rh 1080 px

TABLE I: Specifications of the iPhone XR front facing

camera.

3. Convert amplitude from pixels to distance units:

Finally, we converted the pixel distance into true distance

units. The conversion relies on the distance between the

smartphone and the hand. We measured this distance using

the Apple TrueDepth sensor, using the front-facing camera

on an iPhone XR. In controlled experiments, we assessed

the accuracy of the depth sensor by reading the TrueDepth

sensor distance to an object at known depths. In these

experiments, the camera was affixed to a tripod in good

lighting conditions. At a known distance of 40cm, the root

mean squared error over six sensor measurements, taken over

one minute, was 0.12 cm. At 100 cm, the error increased

slightly to 0.38 cm.

The conversion also requires knowledge of physical char-

acteristics of the camera described in Table I. For a video

shot in portrait, the width of the physical sensor within the

camera, vw is given by:

vw =
feav
fas

From this, we can calculate the width of the view in the

scene, w, at a given depth, d:

w = vw
f

d

The conversion between pixels to distance is:

dist = pix
w

rh

Code for extracting the depth measurement

and for computing the amplitude is available

at https://github.com/jamesbungay/

cv-tremor-amplitude. The output of the entire

process, for two example waveforms, is shown in Figure

2. In figure 2a, the dominant frequency of the tremor is

visible, and the median peak-trough distance is 5.77 cm. In

contrast, Figure 2b shows an example in which there is a

gross change in x over the 12 second video recording, but

there is no high frequency oscillation caused by tremor. In

this case, the method correctly determines that there is no

meaningful tremor (Median tremor amplitude = 0.09 cm)

B. Method Validation

We undertook a methods agreement analysis to assess

the performance of the tremor amplitude algorithm. No

participants were recruited; all data were self-recordings

containing no personally identifiable information. Given this,

the University of Manchester advised that local ethics was

not required.

Data Collection: We recorded a set of videos of two

members of the study team (JB, OE) Videos were recorded

using an iPhone XR smartphone at 1080p resolution and at

60 fps. The smartphone was attached to a tripod, and we

ensured that the videoed area was lit well using a ring light.

A ruler was placed directly behind the hand. This allowed

us retrospectively to measure the tremor amplitude from the

video recording.

We simulated two common types of tremor. Resting tremor

was simulated by the subject resting their forearm on a chair

arm and rotating their wrist to create side-to-side motion

as shown in Figure 3. Postural tremor was simulated by

the subject raising an outstretched arm parallel to the floor,

and with the thumb closest to the camera. The subject

made oscillatory hand movements up and down. The camera

was oriented so that the principal direction of tremor was

horizontal, with respect to a portrait video frame.

For both resting and postural tremor, we simulated tremor

amplitudes according to five categories (No tremor, small

(<1cm), medium (≈2cm), large (≈5cm) and very large

(>10cm), which correspond to the tremor categories used

within both the Unified Parkinson’s Disease Rating Scale and

Essential Tremor Rating Assessment Scale [1], [2]. Videos

were recorded at three depths 50 cm, 75 cm, 100 cm. The two

team members had skin tones of II and VI on the Fitzpatrick

scale. In total 2× 2× 5× 3 = 60 videos were recorded.



(a)

(b)

Fig. 2: (a) shows a ’typical’ tremor signal with a consistent

dominant frequency. The median peak-trough distance is

5.77 cm. (b) shows gross translational movement over time

that does not correspond to tremor, which is correctly ignored

when amplitude is calculated.

We recorded an additional set of 8 videos to assess how

well hand detection worked under various types of occlusion.

For both subjects, we recorded videos of each wearing a ring,

a plaster on the dorsum of the hand that simulated having an

accelerometer strapped to the hand, and a hand with fewer

than five fingers showing.

Data Analysis: We compared the gold-standard ruler-

measured amplitude with our computer vision approach us-

ing Bland-Altman agreement analysis [10]. The output of this

is bias, which is the mean difference between the computer

vision and gold standard and 95% limits of agreement (LoA),

which may be regarded as the maximum difference between

the two methods for 95% of future measurements. In sub-

group analysis, we assessed whether there were differences

in the bias and LoA for skin tones II and VI using a t-test.

The additional videos with occlusion were analysed qual-

Fig. 3: A research participant in position to measure resting

tremor.

itatively in two stages. First, we assessed whether the hand

tracker could correctly and reliably identify the salient

points. Second, we compared the calculated tremor ampli-

tude against the ruler-based amplitude measurement. Bland-

Altman plots were not plotted in these cases, as the small

number of videos would render them meaningless.

III. RESULTS

Bland-Altman analysis showed a mean difference of -

0.04cm, with 95% LoA of -1.27cm to 1.20cm; the associated

Bland-Altman plot is shown in Figure 4. There was no

meaningful or statistically significant difference in bias and

LoA when the cohort was split according to Fitzpatrick score.

The high limits of agreement can be explained by the

manual measurements having a low precision of ±1 cm.

This low precision resulted from two factors. First, the

resolution of some of the videos was insufficient to be able to

discern the millimetre markings on the ruler. Second, parts

of the ruler were occasionally obscured from view by the

hand. Measurements thus had to be taken by extrapolating

neighbouring ruler markings. Mean difference is not affected

by the low precision of manual measurements.

DISCUSSION

This pilot work shows, for the first time, a smartphone

video method for estimating amplitude of hand tremor.

In our controlled tests on simulated tremor from healthy

individuals, our method showed minimal bias and 95% limits

of agreement -1.27cm to 1.20cm over a wide range of tremor

amplitudes, for two different skin tones. In addition, ad hoc

tests qualitatively showed this approach to be robust under a

range of simulated real world conditions.

Previous research for measuring hand tremor amplitude

has used bespoke sensors. The acceleration signal amplitude

recorded by wrist-worn accelerometers has been used as

a proxy for the true tremor size [11]. In principle, the



Fig. 4: Bland-Altman plot of CV-measured and manually-

measured amplitude range.

acceleration signal can be integrated to provide true distance,

but the resulting signal is likely to be noisy. Electromagnetic

position sensors have been used, and claim a fidelity of

0.45 mm [12]. Our approach differs by using common

sensor modalities that are readily available on most modern

smartphones.

While our results are slightly poorer than some existing

methods, we believe that these are mainly due to limitations

with our experimental setup. Our method contains three

potential sources of error. First, from rounding error due to

discretization of distance in pixels. For a modern smartphone

camera with high resolution, we can assume this to be

negligible. Second, from errors in depth measurement. In

local tests, we showed an average depth error of 0.38 cm

at true distance 100 cm. Using trigonometry, we calculate

that this would correspond to a possible error of up to

0.38/100 = 0.38%. These sources of error are limitations

of the camera technology and their sum can be considered

a maximum lower bound on error. In addition, a third error,

caused by rounding rounding the visual gold standard to the

nearest centimeter, leads to an error of ±0.5 cm.

While this pilot work provides proof of principle, it is

limited in a few key respects. First, the tremor amplitude is

only calculated in the plane of the camera image. While this

is sufficient for some clinical scenarios, we know that tremor

can be very heterogeneous, depending on clinical condition.

For instance, tremor associated with Parkinson’s disease

is commonly described as a ‘pill-rolling’ tremor, which is

characterised by rotation of the wrist. Second, the ruler used

to provide a reference amplitude measurement was often

occluded by the hand. This meant that we were unable to

make accurate reference measurements, instead rounding to

the nearest centimeter. This in turn led to unreliable estimates

of the true agreement with the video-based method. Third,

data collection was undertaken using an iPhone only. We note

that most modern smartphones contain at least one method

for measuring depth data, and that our approach should

therefore be generalisable to other devices. An alternative,

where there is no direct method to measure depth, would be

to estimate depth via depth-from-motion methods [13].

To address these issues, we are currently conducting a

larger validation study using data from patients with multiple

types and acuity of tremor. In this study, we will also

investigate whether full 3D depth map videos can improve

estimation of tremor amplitude.

CONCLUSION

We have demonstrated a smartphone video approach for

measuring tremor amplitude. In conjunction with a method

for measuring frequency (see [8]), this method could objec-

tively and contactlessly measure the key clinical components

of tremor in near real-time. The method has potential uses

for diagnosis, and remote monitoring of disease progression

or drug response.
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