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SUMMARY
Exons are regions of DNA that are transcribed to RNA and retained after introns are spliced out. However, the
term ‘‘exon’’ is often misused as synonymous to ‘‘protein coding,’’ including in some literature and textbook
definitions. In contrast, only a fraction of exonic sequences are protein coding (<30% in humans). Both exons
and introns are also present in untranslated regions (UTRs) and non-coding RNAs. Misuse of the term exon is
problematic, for example, ‘‘whole-exome sequencing’’ technology targets <25% of the human exome, pri-
marily regions that are protein coding. Here, we argue for the importance of the original definition of an
exon for making functional distinctions in genetics and genomics. Further, we recommend the use of clearer
language referring to coding exonic regions and non-coding exonic regions. We propose the use of coding
exome sequencing, or CES, tomore appropriately describe sequencing approaches that target primarily pro-
tein-coding regions rather than all transcribed regions.
WHAT IS AN EXON?

A region of eukaryotic DNA that is transcribed into RNA may

contain any number of exons and introns. The sections that are

retained in the mature RNA molecule after RNA splicing are

termed exons, with the regions that are removed referred to as

introns (Figure 1A).1 The term exon refers to these regions in

both DNA and RNA sequences.

Exons and introns were named by Walter Gilbert in 1978.2

The notion of the cistron, the genetic unit of function that

one thought corresponded to a polypeptide chain, now

must be replaced by that of a transcription unit containing

regions which will be lost from the mature messenger -

which I suggest we call introns (for intragenic regions) -

alternating with regions which will be expressed - exons.

It is important to note that annotation of an exon is transcript

specific. A region that is exonic in one transcript may be intronic

in another, as a result of alternative splicing.3 For transcripts

where splicing does not occur, the entire transcribed sequence

comprises a single exon.

Regions of a transcript that encode protein are always within

exons, but protein-coding transcripts also contain exonic regions

that do not form part of the final coding sequence, termed un-

translated regions (UTRs; Figure 1B). Minimally, the first and

last protein-coding exons of a transcript also contain sections

of UTRs. Interestingly, the discovery of untranslated RNA regions

(by 19704,5) predated the discovery of introns (19776,7). Since
This is an open access article under the CC BY-N
1978,8 the term exon has been used for both protein-coding

and non-coding regions to distinguish those that are retained af-

ter splicing and is still used among molecular biologists in this

way.1,9 Additionally, an exon (or part of an exon) may be protein

coding in one transcript but non-coding in another, for example,

due to alternative start codon usage.

Non-coding RNAs (>25,000 of which are known to exist in hu-

mans) are often subject to splicing but are not translated, i.e.,

they are composed of non-coding exons (Figure 1C).

A common misconception
Across the field of genetics, there is ambiguity in the use of the

term exon, which is often used to refer to regions of the genome

that code directly for protein, while introns are often classed as

the non-coding parts of genes. Several textbooks refer to exons

as simply protein coding,10,11 which is incorrect, and fail to

mention UTRs and non-coding RNAs when defining exons and

introns. Many public resources also perpetuate this common

misuse: for example, theOxford English Dictionary’s second edi-

tion defines an exon as ‘‘a section of a DNA or RNAmolecule that

codes for a protein, in cases where such sections are separated

by non-coding ones.’’12 The definition offered by Google is

similar (Figure S1). These definitions are incorrect.13

Only a fraction of exonic sequences code for protein
To illustrate the impact of distinguishing exonic from protein-

coding sequences, we quantified the amount of an exonic

sequence that codes for protein across six different organisms
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Figure 1. Schematics showing the position of the exons and introns with reference to the coding sequence (CDS) and untranslated regions

(UTRs)

(A) The genomic region of a protein-coding transcript with six exons. Exons 3, 4, and 5 are entirely CDSs, exon 1 is entirely 50 UTR, and exons 2 and 6 contain both

CDSs and UTR sequences.

(B) The mature mRNA (after removal of introns by splicing) of the same protein-coding transcript as represented in (A).

(C) ThematureRNAofa longnon-codingRNA (lncRNA)alsowithsix exons,all ofwhichareentirely non-coding.50 UTRscontainingexonsare indicated inyellow,CDSs
containing exons are in green, 30 UTRs containing exons are in pink, and lncRNA exons are in purple. The poly-A signal is in blue. This figure wasmade in BioRender.
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in all transcripts downloaded from Ensembl (Figure 2A; see

Methods S1). While in fission yeast S. pombe and roundworm

C. elegans, the proportion of exonic bases that are annotated

as protein coding is high, at 68.4% and 75%, respectively, this

proportion generally decreases with increased organism

complexity. This decrease coincides with an increase in the

length of 30 UTRs and a greater number of non-coding RNA

genes in these more complex organisms (Figure 2A). Only

28.1% of exonic bases in mice and 23.0% in humans are

annotated as protein coding, while 30.8% and 32.4% are anno-

tated as UTRs and 29.0% and 37.4% as non-coding RNA,

respectively.

One barrier to extending this analysis wider in the Tree of Life is

that available genome annotations tend to be incomplete and

inconsistent about how they include UTRs and other non-coding

exons. Genome annotation focuses on protein-coding regions

and is aided by their high levels of sequence conservation.

Non-coding regions are less well conserved, hindering

automated annotation. Hence, non-coding exon annotation

often requires data beyond the DNA sequence, such as RNA

sequencing (RNA-seq) and cap analysis gene expression

(CAGE), which are unavailable for many species.

‘‘Whole-exome sequencing’’ captures less than 40% of
exonic sequences
Whole-exome sequencing (WES) only covers a fraction of the

exons within the genome, and for some of those exons (namely

those that also contain UTRs), only a sub-portion is included

within the sequencing capture region. In almost all cases, WES

only directly captures the regions of exons that are protein cod-

ing, although variants in the directly adjacent sequence, or buffer

region, may also be detected, some of whichmay be functionally
2 Cell Genomics 3, 100296, April 12, 2023
important.14 We assessed the overlap of the human WES cap-

ture regions used to sequence the UK Biobank dataset with

different categories of exonic sequences from Ensembl (Fig-

ure 2B; Table S1). The vast majority of captured bases are within

the coding sequence (89.1%). In total, WES-captured regions

only cover 24.2% of exonic bases, indicating that the name

WES is misleading. These captured regions cover 93.7% of ba-

ses annotated as protein coding but only 11.3% of 50 UTR, 5.3%
of 30 UTR, and 1.3% of non-coding RNA exonic bases. When ac-

counting for a 50 bp buffer on either side of each captured

region, the proportion of exonic bases covered increases only

marginally, to 27.3% (including 21.0% and 8.4% of 50 UTR and

30 UTR bases, respectively). Recent comparison of WES and

WES data from the UK Biobank calculated that WES missed

72.2% and 89.4% of 50 UTR and 30 UTR variants, respectively.15

There is no doubt that the naming of WES technology has

increased the confusion surrounding the definition of the exon,

promoting its misuse as synonymous to protein coding.

The non-coding exome plays important roles in
regulation, disease, and biotechnology
The non-coding exome plays important roles throughout eukary-

otes, with deletion or disruption of these elements linked to

dysfunction and many different diseases.16,17

UTRs, the non-coding exonic regions of protein-coding genes,

are important regulators of RNA stability, localization, and trans-

lation, controlling the amount of protein that is produced in the

cell.18–20 This regulation is mediated via interaction with RNA-

binding proteins and microRNAs (miRNAs)18,21 and through

regulatory sequence elements including upstream open reading

frames (uORFs)22 and secondary structures.19 Genetic variants

that disrupt these regulatory elements can cause disease; for



Figure 2. Proportion of exonic sequences and representation in whole-exome sequencing

(A) Comparison of the proportion of exonic bases with annotations of protein coding, 50 UTR, 30 UTR, non-coding RNA, and other (including transposable element

gene or pseudogene exons not annotated as protein coding) across six different organisms.

(B) A bar plot of the total size of exonic bases in humanswith different annotations showing the overlap with whole-exome sequencing capture regions. Bases that

are within the capture are shown in color with bases that are not in gray. The raw numbers behind this figure are in Table S1.
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example, variants that create or disrupt uORFs in the 50 UTR of

NF1 cause neurofibromatosis type 1.23 UTRs may also regulate

protein function. In humans, CD47 proteins encoded by tran-

script isoforms that differ only in their 30 UTR (i.e., the protein

sequence is identical) interact with different protein complexes18

due to different cellular localization of the mRNAs. Furthermore,

UTR sequences have been demonstrated to tune protein

expression in synthetic biology24 and in mRNA therapeutics.25

Non-coding RNAs are also composed of non-coding exons

and have a range of important functions, with many yet to be

discovered. For example, in humans, the microRNA miR-204 is

essential for normal photoreceptor function. Genetic variants in

the miR-204 seed region (the conserved sequence where miR-

NAs bind to an RNA molecule) that disrupt miR-204 targeting

can cause a dominant retinal dystrophy.26 Furthermore, many

long non-coding RNAs (lncRNAs) have important roles in devel-

opment, such as Xist, which is required for X chromosome inac-

tivation in early development.27

Recommendations
We recommend clearer use of language that more accurately re-

flects the regions being described by, for example, referring to

‘‘coding exonic regions’’ and ‘‘non-coding exonic regions.’’ We

also suggest that capture technologies that target primarily coding

exons should be named in a way that better describes what they

are assessing. We propose the use of coding exome sequencing,

or CES, as an alternative to WES. Improving the way we refer to

these approaches will remove confusion about what they are

capturing, aswell as improve understandingof the range of exonic

regions in the genome with important functions.

We also recommend more thorough measurement and anno-

tation of the non-coding exome across species. Accurate tran-

script maps are essential to understand all aspects of gene
expression regulation and to interpret genetic variation, particu-

larly as our knowledge of the role of non-coding regions and

variation within them continues to evolve.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100296.
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