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Abstract

Close encounters between stars in star-forming regions are important as they can perturb or destroy protoplanetary
disks, young planetary systems, and multiple-star systems. We simulate simple, virialized, equal-mass N-body star
clusters and find that both the rate and the total number of encounters between stars vary by factors of several in
statistically identical clusters due to the stochastic/chaotic details of the orbits and stellar dynamics. Encounters
tend to “saturate” rapidly in the core of a cluster, with stars there each having many encounters, while more distant
stars have none. However, we find that the fraction of stars that has had at least one encounter within a particular
distance grows in the same way (scaling with the crossing time and half-mass radius) in all clusters, and we present
a new (empirical) way of estimating the fraction of stars that has had at least one encounter at a particular distance.

Unified Astronomy Thesaurus concepts: Star clusters (1567); Circumstellar disks (235); N-body simulations

(1083); Gravitational interaction (669)

1. Introduction

Young stars are commonly found with circumstellar disks
(e.g., Hillenbrand et al. 1998; Haisch et al. 2000; Lada et al.
2000; Haisch et al. 2001), and these disks are thought to be
where planet formation occurs. Since most stars are formed in
relatively dense environments (e.g., Lada & Lada 2003), it is
possible for the disks, and the ongoing planet formation process
within, to be affected by close encounters between stars.

Simulations have shown that the effect of tidal perturbations
from a stellar flyby can range from slightly changing the
density distribution in the disk to truncating or even destroying
it (e.g., Clarke & Pringle 1993; Cuello et al. 2023), depending
on how close the encounter is. This dynamical truncation, as
well as photoevaporation (e.g., Concha-Ramirez et al. 2022),
and face-on accretion (Wijnen et al. 2017), can significantly
affect the population of young stars with disks in the early
stages of star formation. Perturbations can also trigger disk
instabilities (e.g., Thies et al. 2005, 2010) and may determine
the population of planets forming in the disk (Ndugu et al.
2022). Another interesting effect of encounters on the disk is
the misalignment between the rotational planes of the disk and
the host star due to a noncoplanar encounter (e.g., Heller 1993;
Larwood 1997). Encounters may alter already formed planetary
systems, changing orbits (e.g., Breslau & Pfalzner 2019) or
disrupting them (e.g., Parker & Quanz 2012). And encounters
can similarly alter or destroy multiple-star systems (e.g.,
Goodwin 2010; Reipurth et al. 2014).

Young stars with masses <1 M, typically have disks with
radii of a few hundreds of astronomical units (e.g., Andrews &
Williams 2007). For the disks of those stars to be significantly
perturbed in encounters, the periastron distance between the
encountering stars needs to be less than ~1000 au. Therefore,
to understand how important encounters are in affecting disks/
planet formation, a key question is how many young stars have
encounters within 1000 au?

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

There are two approaches one might take to finding the rates
and numbers of encounters in some star cluster of interest. The
first is to perform N-body simulations of a variety of similar
systems, which is time consuming and computationally
expensive (e.g., Parker & Quanz 2012; Craig & Krumholz 2013),
the second would be to have some (ideally analytic) estimate to
get at least a “feel” for the expected values quickly.

In this paper, we examine the encounter rate in a number of
N-body simulations of bound star clusters. We show that
encounter rates can vary by up to an order of magnitude
between statistically identical clusters, but the fraction of stars
that has had an encounter remains statistically the same. We
present an empirical way of estimating the fraction of stars in a
cluster that has had at least one encounter within a particular
distance.

2. The Encounter Rate

The number of encounters per unit time (¢) for a star seems
like it should depend on several factors: the encounter distance
of interest, some average number density of stars, and the
typical velocity of the stars. The velocities of the stars will
affect the encounter rate by both changing how often stars
encounter other stars, and also changing how effective
gravitational focusing is.

2.1. The Standard Method

The most common method of calculating encounter times is
based on the fundamental assumptions that a star is traveling
through an effectively infinite, uniform density medium at a
constant speed (see, e.g., the derivation in Binney &
Tremaine 2008; note that these assumptions are perfectly
adequate if one is interested in, e.g., the Galactic disk).

The encounter rate for any individual star is typically given
by

e = 4ﬁna(r3 + G—Tr) (1)
o
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where n is the number density of the stars, o is the velocity
dispersion, . is the closest distance during the encounter, G is
the gravitational constant, and m is the typical mass of the stars
(Binney & Tremaine 2008). The second term in the brackets is
associated with the gravitational focusing effect, which deflects
the trajectories and decreases the distance of closest approach
for slow encounters or encounters between more-massive stars.

For an ensemble of N stars (e.g., a cluster), it seems
reasonable to assume that the total encounter rate (total number
of encounters per unit time, £) scales with the total number of
stars. Since each encounter involves two stars, the encounter
rate should scale with N/2, i.e., £ ~ Ne/2.

In convenient units where r, is in au, ¢ in km s_l, nin pc_3 R
and m in Mg, the encounter rate in a cluster of N stars is then

E=185x 10’”Nnor(re2 + 886%@) Myr—L 2)
o

Therefore, it would seem that to calculate the rate of
encounters, £, at a particular distance of interest, r,, in an
ensemble of N stars, the correct values of the number density,
n, and velocity dispersion, o, are required. If there is a
distribution of stellar masses, an appropriate value for m must
be taken.

While various assumptions that go into this simple
calculation are clearly wrong for star clusters (e.g., moving
through an effectively infinite uniform density medium at a
constant speed) one might think that some simple variation on
this approach might work (e.g., taking some appropriate
average speed and density). However, we will show that this
approach in star clusters gives an often wrong, and an always
misleading, “answer.”

2.2. What Do We Want to Know?

It is important to clarify what we want to know about
encounters in a cluster. In most cases, what we would like is an
estimate of what fraction of stars has had a close encounter as
this tells us the relative levels of disk/planetary system/
multiple system perturbation/destruction. It is important to
remember that this is not what an estimate of an encounter rate
gives without a further assumption of how the encounters are
distributed between stars.

As an example let us take a cluster that we shall examine in
detail later: an N =300, M =300 Mg, equal-mass (so m =1
Myg,) virialized Plummer sphere cluster with half-mass radius
r, = 0.5 pc. If we want to know the number of stars that have
had an encounter within, e.g., r. = 1000 au, we can calculate
that £ ~ 25 Myr ' by taking the values for the velocity
dispersion and half-mass density of this cluster and putting
them into Equation (2).

If we assume this encounter rate estimate is correct, to
calculate how many stars have had an encounter after some
time we need to make a further assumption that encounters are
random so that after 2 Myr there will be 50 stars that have had
an encounter, and after 10 Myr 250 stars (i.e., >80%) will have
had an encounter. (One could be somewhat more sophisticated
and estimate as the encounter fraction starts to approach unity
how many stars have had zero, one, two, etc., encounters.)

In assuming encounters are random, this calculation ignores
that encounters are much more likely to occur in the core, and
that after a few crossing times some stars in the core are likely
to have had multiple encounters, while those in the halo may
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Table 1
The Properties of the Cluster Ensembles
Cluster IDs N m (Mg) rh (pc) tor (Myr)
N3SMRO50-A to J 0.5 1.0
N3SMRO75-A to J 300 1 0.75 1.9
N3SMR100-A to J 1 3.1
N6SMRO50-A to J 600 1 0.5 0.74

Note. Each ensemble contains 10 clusters with different random number seeds
(labeled A to J) with the same number of stars (N), stellar masses (m), half-
mass radii (), and crossing times (f.). The ID of a simulation contains
information on the initial conditions: N3 and N6 are N = 300 and N = 600,
respectively, SM stands for single-mass, and after R is the initial half-mass
radius of the cluster.

have had none. Indeed, when stated like this, this approach
does seem extremely naive and it would be surprising if it gave
the correct answer.

3. Simulations

We investigate encounter rates in clusters by performing N-
body simulations in which we can record individual encoun-
ters, the stars involved, and their distances of closest approach.
The simulations we report here are of the simplest bound
systems: virialized Plummer spheres of equal-mass stars.

We simulate N=300 and N=600 virialized Plummer
spheres (Plummer 1911) initialized by the method described
in Aarseth et al. (1974) with initial half-mass radii of 0.5, 0.75,
and 1 pc. Simulations are run only with equal-mass stars so that
we can ignore any complicating effects of mass spectra.

The number of stars (), the stellar mass (), the initial half-
mass radius (r,), and the labels of simulated clusters are shown
in Table 1. Clusters with r, = 0.5 pc are truncated at 3 pc, those
with r, = 0.75 pc are truncated at 5 pc, and 1, = 1 pc clusters
are truncated at 7 pc so that they have approximately the same
relative sizes.

All simulations are run for 10 Myr using our own N-body
code. The code uses a fourth-order Hermite scheme (Makino &
Aarseth 1992) as the integrator. We keep the energy error well
below 10~* by employing an adaptive time step, i.e., using
Equation (7) from Makino & Aarseth (1992) with parameter
n=4x10"* for N=300 clusters and n=1x10"* for
N=0600 clusters. We also use block time stepping for
N =600 runs to speed up the calculations.

The separation between any pair of stars is monitored at
every time step. Once two stars are closer to each other than
1000 au, whether they are bound or unbound, they are
considered as having a close encounter. During this period,
the closest separation is recorded and taken as the encounter
distance once the stars move away from each other beyond
1000 au. In binaries, multiple “encounters” will occur if the
separation stays below 1000 au; this is only counted as one
“encounter.” This is to prevent hard binaries inflating the close
encounter rate; however as we discuss below, hard binaries
form extremely rarely in our simulations.

Simulations are run with a gravitational softening length of
0.01 au to avoid collisions or computationally expensive very
close encounters. This is only of importance for the details of
extremely close encounters at <10 au, which are much closer
than the vast majority of encounters and at a distance that
would completely disrupt disks or planetary systems.
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3.1. Number Density and Velocity Dispersion

It would seem reasonable to assume that the encounter rates
and fractions should depend in some way on both the number
density and velocity dispersion. Below we go into some detail
on how the number density and velocity dispersion of a cluster
might be quantified. It is important to show that the encounter
rates we measure in the simulations disagree with simple
calculations, because the assumptions that underlie them are
wrong for clusters, rather than that we are using the “wrong”
values for the number density or velocity dispersion, or not
accounting for how they change with time. A reader happy to
take our word for this can skip the details below.

3.1.1. Number Density

The derivation of Equation (2) assumes that stars are
uniformly distributed and so n is constant in time and space.
This is a reasonable assumption for, e.g., encounters in the
Galactic disk, but not for encounters in a cluster (or any region
where the number density varies on short length scales).

There are a number of ways one could quantify some
average number density, and they can result in very different
values for the estimated encounter rate.

The first average number density we use is simply calculated
from the half-mass radius of the cluster (r},)

S 3N
" 4rrd '

3)

The second average number density is the mean number
density defined by

“nfd o
w2 )
S rdr o

where n and f are, respectively, the number density and the
probability density function of the distance of stars from the
center of mass of the cluster (r). In practice, we can
approximate the integral by

Nm ™ Arz nif, 5)

where Ar and Ny, are the size and the number of bins of stellar
distances from the center of mass of the cluster, respectively.

Theoretically, the probability density function is defined as
f=dP/dr, where dP is the probability of finding stars at
distance between r and r 4 dr from the center of mass of the
cluster. But practically, the value of f; in Equation (5) may be

obtained from
AP N;
Ji =( ) = (6)

Ar ). NAF

where N; is the number of stars in the ith bin and N is the
number of stars in the cluster. The number density n; in
Equation (5) is related to f; via

ni:(AN) N (AP) _ Ni A

A_V i_ 471'7'[2 E i_ 47”"1'2’
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where AV is a spherical volume element containing AN stars.
Substituting Equations (6) and (7) in (5) gives

N 1 My l’z
4rNAr = r?

l

®)

Nm

The half-mass number density is often used as it is simple to
calculate, and the more complex mean number density has the
advantage of including information on the full density
distribution of the cluster. We also note here that the half-
mass radius is often used as a characteristic radius as it remains
roughly constant over the long-term evolution of a cluster
(Aarseth et al. 1974); however the half-mass radius does
fluctuate, especially at early times and so even the half-mass
density changes (sometimes by factors of several).

3.1.2. Velocity Dispersion

The velocity dispersion (o) in Equations (1) and (2) comes
from the assumption that the velocity distribution of the stars in
the cluster is Maxwellian. From the Maxwell-Boltzmann
distribution, the velocity dispersion is related to the mode of
the distribution (v,,) by 0 = v,/ V2. The mode can simply be
determined by constructing a velocity histogram and then
fitting it with a polynomial regression to find the position of
the peak.

It should be noted that this way of finding the velocity
dispersion is only possible when all (3D) velocities are well
known. In any observation the value of ¢ is either “guessed” by
assuming virial equilibrium, or observed in either 1D (radial
velocities) or 2D (proper motions) with usually quite significant
errors and biases (e.g., binary inflation; see Cottaar et al. 2012).

3.1.3. Time averaging

There are two ways to calculate the number density and
velocity dispersion to use in Equation (2). One is to take the
values of n or o calculated instantaneously at the end of the
simulation, the other is to take a time average.

In a simulation it is possible to calculate full 3D time-
averaged values for various quantities. However, to estimate
encounter rates in an observed region or for a single snapshot
only the current values for any quantity can be calculated, and
even they might be uncertain/guesstimated (e.g., no velocity
data are available and there are only 2D positions).

For later reference, Table 2 shows the initial, time-averaged,
and final (i.e., those at 10 Myr) values of o, ny,, and n,, for all
simulations.

4. Results

In our simulations we follow all encounters at distances of
<1000 au. We record when an encounter occurred, which two
stars were involved, and the distance of closest approach. This
allows us to find the encounter rate within a particular distance
(i.e., what Equation (2) attempts to estimate), and the number
of stars that have had such an encounter—something
Equation (2) cannot tell us without further assumptions, but
is often what we wish to know.

4.1. Comparing an N =300 with an N =600 Cluster

We start by comparing encounter rates at various distances in
two clusters with N =300 and N = 600 equal-mass stars. Both



Table 2
The Final States of the Star Clusters in runs N3SMRO50-A. .J

Cluster o (km S’]) ny (pc’3) N (pc’3) & atr, <1 kau (Myr’])

Ini. Avg. End Ini. Avg. End Ini. Avg. End Eext(nn) Eest(m) Esim
N3SMR0O50-A 0.57 0.50 + 0.04 0.55 541 662 + 144 786 1925 1320 + 475 1650 38+ 8 76 + 28 77
N3SMR050-B 0.50 0.51 +0.05 0.43 543 634 + 112 693 1735 1018 £ 482 735 36+7 58 +£ 28 58
N3SMR0O50-C 0.55 0.49 + 0.04 0.43 557 382 + 66 247 1535 950 + 780 2402 22+4 56 + 46 131
N3SMR050-D 0.57 0.54 + 0.04 0.57 571 507 £ 92 474 1877 1396 + 948 1313 28£5 78 £ 53 143
N3SMR0O50-E 0.57 0.53 + 0.06 0.49 577 647 £ 120 475 964 1232 + 413 1813 36 +7 69 + 24 60
N3SMRO50-F 0.53 0.53 +0.05 0.42 571 682 + 102 532 766 669 + 174 484 38+6 38+ 10 30
N3SMR0O50-G 0.49 0.50 + 0.05 0.50 577 669 + 130 480 1906 1291 + 537 1158 39+8 75 + 31 90
N3SMR0O50-H 0.58 0.51 +0.04 0.48 555 582 + 125 551 1435 1710 £ 723 1100 33+7 98 + 42 112
N3SMR050-1I 0.57 0.50 + 0.04 0.43 549 437 £ 110 228 1029 956 + 497 531 25+6 55+ 29 208
N3SMR0O50-J 0.50 0.50 4+ 0.05 0.46 577 441 £ 103 375 2359 1583 £ 917 978 26+ 6 92 £ 53 198
N3SMR0O50-A..J 0.54 +0.03 0.51 +0.05 0.48 +0.05 562 + 14 564 £ 110 484 £ 175 1553 4+ 506 1213 £+ 595 1216 £+ 603 3247 69 + 34 111 £ 60

Note. The first three triple columns are the initial (Ini.), time averaged (Avg.), and final (End) values of the velocity dispersion (o), the half-mass number density (n,) and the mean number density (n,,) of the clusters
N3SMR0O50-A. . J (initial conditions in Table 1). In the last triple column are the analytic estimates of the encounter rates at r. < 1000 au, using the average half-mass number density (Ees (7)), and the average mean
number density (Eeq(711,)), compared with the actual values of the encounter rate measured in the simulations (€ ). Note that the encounter rate can also be calculated from the initial or final values of o, ny,, and ny,.

01 Tdy €20z ‘(ddQ1) Z1:L¥6 “TYNINO[ TVOISAHIOYISY THJ,
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Figure 1. Cumulative numbers of encounters in runs (a) N3SMR050-A and (b)
N6SMR0O50-A. The four curves in each panels are for encounter distances of
re < 50 (orange), 100 (green), 500 (magenta), and 1000 (blue) au, from bottom
to top. Numbers in the square brackets in the top left are the encounter rates
[gsim/gcst(nh)/gcsl(nm)J (SCC tCXt).

are initially virialized Plummer Spheres with r, = 0.5 pc, with
stars each of mass 1 Mg,

Figure 1 shows the cumulative number of encounters over
10 Myr in the N =300 (top panel) and N = 600 (bottom panel)
clusters. In each panel the lines from bottom to top are the
cumulative numbers of encounters at r. <50 (orange), 100
(green), 500 (magenta), and 1000 (blue) au respectively. At the
top left of each subfigure are three numbers for each of the
encounter distances: the first is the actual encounter rate
(Myrfl) as found in the simulation, the next two are time-
averaged estimates that we will return to later, but note for now
that all three numbers are often quite different. The two
simulations shown are N3SMRO50-A (top) and N6SMRO50-A
(bottom).

Figure 1 shows a number of features one might expect:

Rawiraswattana & Goodwin

1. The total number of encounters grows roughly linearly
with time (in these two clusters at least).

2. The number of encounters at different distances scales
very roughly with re2 (e.g., for N =300 after 10 Myr there
have been 317 encounters at r.<500au, and 27 at
<50 au).

3. Increasing both N (and therefore also n) by a factor of two
results in about 4 times more encounters (e.g., 317 when
N =300, and 1165 when N = 600 at r, < 500 au).

The second and third numbers in the top left are the
estimates of encounter rate as calculated from Equation (2)
using the time-averaged values of the half-mass number density
(n,) and the mean number density (n,,), respectively.

In both cases using n, underestimates the number of
encounters by a factor of ~2. Using n,, seems better, often
giving a reasonable estimate (but sometimes being off by a
factor of ~2). So at a first glance at just these two simulations
one might consider that using n,, often provides a reasonable
estimate of the encounter rate in a cluster.

However, we have only compared two simulations, which
just happened to be those labeled A in our ensembles. As we
show below, when we look at the whole ensemble the picture
becomes much more complicated, and this emphasizes the
importance of looking at ensembles of simulations when
dealing with N-body systems.

4.2. An Ensemble of Statistically Identical Clusters

We now consider all ten clusters in our N = 300 equal-mass
stars, and a half-mass radius of r, = 0.5 pc ensemble. The only
difference between these clusters is the random number seed
used to generate the initial positions and velocities. Therefore
one would expect that the encounter rates in each would be
similar—and ideally be close to an analytic estimate.

The top panel of Figure 2 shows the final encounter rates
(&sim) for each of our identical clusters measured after 10 Myr
from r. = 0 to 1000 au.” The simulation shown in the top panel
of Figure 1 is A, which is the black line toward the middle-
bottom of all the lines.

The most important thing to note about the top panel of
Figure 2 is the total encounter rates after 10 Myr vary very
significantly between clusters with a difference of almost an
order of magnitude. There appear to be no “typical” clusters
and some outliers—just a seemingly random spread in
encounter rates between clusters that are initially statistically
identical.

Interestingly, all of the curves in the top panel of Figure 2
follow a distribution that goes roughly as 7, suggesting that the
distribution of encounter distances is what would be expected
for unbound encounters. However, the distribution can slightly
deviate from r2, often due to three-body encounters between a
single star and a binary (which has formed during the
simulation). These encounters can cause an increase in the
encounter rate at r, ~ 1000 au, as can be most obviously seen
in cluster I (dark red line at the top of the figure).

The other panels of Figure 2 show the difference between the
analytically estimated encounter rates and the actual encounter
rates for each cluster. In the middle panel the half-mass density

3 The exact values of the encounter rates at separations of less than a few

astronomical units may be affected by our softening, and although such close
encounters do happen, we just might not be able to trust the distance of closest
approach too precisely.
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Figure 2. Top panel: the final encounter rates () against the encounter
distance (r.) from each cluster in the N =300, r, = 0.5 pc ensemble. Each
cluster has a different color as shown in the top left. Middle and bottom panels:
the ratio of the analytic estimate to the actual encounter rate using the half-mass
density (middle panel) and mean density (bottom panel).

(ny,) is used for the estimate, and in the bottom panel it is the
mean number density (n,). A good match to the analytic
estimate is the black dashed line at a ratio of unity.

Using the half-mass density never gives a good estimate, and
can be wrong by an order of magnitude. Using the mean
density is slightly better—three or four clusters stay reasonably
close to unity, but most clusters are always wrong by factors of
several.

One obvious explanation would be that different clusters
have changed significantly (are some expanding and some
contracting?).

In Table 2 we give the initial, time-averaged, and final values
of o, ny, and n,, for all ten clusters, as well as the final
cumulative encounter rate. The average and variance of each
quantity over all the clusters are given in the bottom line.

The velocity dispersions (o) are very similar between all
clusters, but the measures of density can change significantly
over time with quite different time-averaged and final values,
and between different measures (half mass or mean).

However, these variations do not seem to correlate with the
vastly different encounter rates. The last three columns show
the encounter rates estimated with ny, and n,;, and then the actual
encounter rates from the simulations. Only once (cluster F)
does n;, get close to predicting the actual encounter rate.

Rawiraswattana & Goodwin
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Figure 3. The evolution of encounter rates and densities for cluster
N3SMR050-D (black lines) and cluster N3SMRO50-TI (red lines). Top panel
(a): the number of encounters with time for r. < 1000 au. Middle panel (b): the
half-mass density ny,. Bottom panel (c): the mean density ny,.

Estimates using n,, are reasonable for 5/10 of the clusters, but
very wrong for 5/10. We think this was seen by Craig &
Krumholz (2013) who note that their simulations had far more
encounters than one might expect, but substructure complicated
their analysis.

What is particularly interesting is that there is no systematic
change in the encounters rates with any measure of density or
how they evolve. Cluster F has the lowest final mean density
(484 pc_l) and the lowest encounter rate (30 Myr_l), but
cluster I has the second lowest final mean density (531 pc™")
and the highest encounter rate (208 Myr"). Clusters B and E
have almost the same encounter rates, but final mean densities
that are different by a factor of over two (735 and 1813 pcfl).

One might think that maybe there was some extreme
deviation in density at some point in time that the time-
averaged densities do not properly include, however this is not
the case. In Figure 3 we show the numbers of encounters with
r. < 1000 au (top panel), half-mass density (middle panel), and
mean density (lower panel) for clusters D and I (see Figure 1).

Cluster D (black line) shows a relatively linear increase in the
encounter number, ending with ~1400 encounters within
10 Myr. Cluster I (red line) is similar to cluster D until the
period between 6 and 7 Myr when the encounter rate increases
significantly.
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Table 3
The Total Number and Fraction of Stars that have had an Encounter in Each Cluster in the N3SM050 Ensemble

Cluster N Th ter Ny fs
N3SMR0O50-A 300 0.510 1.06 162 0.54
N3SMR050-B 300 0.509 1.06 163 0.54
N3SMR050-C 300 0.505 1.05 143 0.48
N3SMR050-D 300 0.500 1.03 155 0.52
N3SMR0O50-E 300 0.499 1.03 160 0.53
N3SMRO50-F 300 0.501 1.03 164 0.55
N3SMR050-G 300 0.499 1.03 170 0.57
N3SMR0O50-H 300 0.505 1.05 153 0.51
N3SMR0O50-1 300 0.507 1.05 144 0.48
N3SMR050-J 300 0.499 1.03 157 0.52
N3SMR0O50-A..J 300 0.503 + 0.004 1.04 +0.01 157 +9 0.52 +0.03

Note. For each cluster in the N = 300, r,, = 0.5 pc ensemble (column 1) with N stars (column 2), we show the half-mass radius r, (column 3), crossing time 7., (column
4), and the total number Ny (column 5) and fraction f; (column 6) of stars that have had an encounter within 1000 au in 10 Myr. Half mass radii and crossing times are
calculated explicitly for each cluster. The final row shows the means and variances of each quantity over the ensemble 10 Myr. The half-mass radii and crossing times
are calculated explicitly for each cluster. The final row shows the mean and variance of each quantity over the ensemble.

There is no reason to think that the increased encounter rate
in cluster I is due to density variations, however. The middle
panel shows that both cluster’s half-mass densities are very
similar, and both are fairly constant and declining slightly. The
bottom panel shows more variation in the mean densities with
short-lived fluctuations of factors of a few, but both clusters
show this behavior, and, if anything, cluster D has higher
densities. There are fluctuations in the mean density of cluster I
around when the encounter rate increases significantly, but
there are others when it does not.

Examination of the data shows that the large numbers of
encounters in cluster I at 6-7 Myr are due to a few pairs of
stars having multiple self-encounters in weakly bound pairs
(see Moeckel & Clarke 2011).

In all the ensembles of statistically identical clusters we have
run we find no systematic relationship between any measure of
cluster density and encounter rates (apart from occasionally in
just a few of the clusters, but these could be due to chance
given that many fluctuations do not correlate).

4.2.1. Binaries

All our simulations start with no binaries. An interesting
question is how many binaries can form, and how they might
alter the evolution.

Soft binaries are extremely easy to form (see Moeckel &
Clarke 2011), and can inflate the encounter rate. Any wide
binary with periastron below 1000au and apastron above
1000 au will be included as multiple encounters—however
such binaries are extremely soft and short lived in our
simulations (this was seen in cluster I).

Hard binaries, however, are much more difficult to form. The
soft binaries we find are very weakly bound and can appear due
to fluctuations in the global potential. However, to form a hard,
long-lived binary system requires a three-body encounter as the
third body is needed to carry away the excess energy (see
Goodman & Hut 1993). A back-of-the-envelope calculation
suggests hard binary formation should be rare in our clusters,
and an examination of the simulations finds only a few hard
binaries have managed to form (one every few simulations, and
never more than one in a simulation).

4.3. The Number of Stars Having Had an Encounter

We clearly see that the total number of encounters between
stars at any particular distance can be different by maybe an
order of magnitude in initially statistically identical clusters, in
a way that cannot be explained by density fluctuations.

The encounter rates we have shown in Figure 2 and Table 2
are the number of times two stars come closer together than a
particular distance. However, this measure does not include
information regarding if a particular star, or a particular pair of
stars, has had multiple encounters.

Star clusters have a density distribution with a high-density
core and increasingly lower density as one moves outwards,
and a Plummer profile is a reasonable approximation to young,
bound clusters.

Within this density distribution stars can have a variety of
orbits (which can change after encounters). Some stars will
spend a significant amount of their time in the high-density
core, some will spend most of their time in the low-density
halo, and various combinations in between (orbits can be radial
or circular, etc., and can change over time).

This means that each individual star will have a unique
encounter history. Those that spend a lot of time in the core
may have multiple encounters, while those in the halo may
have none. In addition (as seen above), some stars may get into
loosely bound multiples (see Moeckel & Clarke 2011) and
potentially have numerous self-encounters which can inflate the
encounter rate significantly (see above).

Despite the large variation in encounter rates, when we
measure the encounter fraction in each of our ten clusters we
find that this value is statistically the same. In Table 3 we show
the number (N,) and fraction (f;) of stars in each of the ten
statistically identical clusters from Figure 2 and Table 2 that
have had an encounter within 1000 au after 10 Myr. This
number is between 143 and 170 (157 &£ 9)—statistically
consistent with being the same number, and a little over half
the stars in the cluster at f; = 0.58 £ 0.03.

This tells us that in all clusters in this ensemble the same
fraction of stars is having very different numbers of encounters.

We can also examine other ensembles of statistically
identical clusters and we find that the encounter fraction in
different clusters in the same ensemble is statistically the same.
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Table 4
Variation of Properties and Encounter Fractions for Different Ensembles of Clusters
Cluster N Th ter N fs
N3SMR050-A. .J 300 0.503 £ 0.004 1.04 £ 0.01 157+9 0.52 +£0.03
N3SMRO75-A..J 300 0.751 £ 0.002 1.90 £ 0.01 113+5 0.38 £0.02
N3SMR100-A..J 300 1.012 £+ 0.021 2.98 +0.09 84+ 8 0.28 +0.03
N6SMRO50-A. .J 600 0.503 £ 0.004 0.74 + 0.01 361 +13 0.60 £ 0.02

Note. For each ensemble (column 1) with N stars (column 2), we show the mean and variance of the half-mass radius r, (column 3), crossing time #., (column 4), and
the total number Ny (column 5) and fraction f; (column 5) of stars that have had an encounter within 1000 au in 10 Myr. The half-mass radii and crossing times are

calculated explicitly for each cluster.

The mean and variance of the encounter fraction for each
ensemble are given in Table 4, but to summarize for
7o < 1000 au: for N=300 clusters with r,=0.75 pc, the
encounter fraction is 0.38 & 0.02; for N =300 clusters with
=1 pc, the encounter fraction is 0.28 +0.03; and for
N=0600 clusters with r, =0.5 pc, the encounter fraction is
0.60 £+ 0.02.

We do not present the data here in detail, but the same is true
for different encounter distances: i.e., the encounter fraction is
lower when the distance is, e.g., 500 au, but the encounter
fraction is statistically the same within each ensemble. (It is
difficult to say anything about extremely close encounters as
we are into small-N statistics.)

That the encounter fraction is constant is extremely
interesting, as the most useful measure of encounters is often
how many stars have had at least one encounter closer than a
particular distance over a particular timescale.

4.3.1. Encounter Fractions in Different Clusters

As we saw above, within an ensemble of statistically
identical clusters the fraction of stars that has at least one
encounter within 1000 au within 10 Myr is statistically the
same, but it is different between different ensembles.

The top panel of Figure 4 shows how the encounter fraction,
[ increases with (absolute) time for all of our ensembles. The
blue line and shaded region, which shows the variance at the
top, are for the N = 600 clusters with r, = 0.5 pc. The red line
and shaded region are for the N = 300 clusters with r, = 0.5 pc.
The purple line and shaded region are for the N = 300 clusters
with r, = 0.75 pc. And at the bottom the green line and shaded
region are for the N =300 clusters with n, =1 pc.

As can be seen, in each case the encounter fraction within
ensembles evolves in the same general way—rising rapidly and
then flattening—but different ensembles seem to evolve at
different rates.

That encounters occur at different rates in these different
ensembles should not be a surprise as each of the clusters have
a different internal dynamical timescale set by their crossing
time. In the middle panel of Figure 4 we show the encounter
fraction by crossing time, rather than by physical time, and the
differences between the different ensembles becomes less
pronounced. That the (green) N =300 clusters with r, =1 pc
have had the fewest encounters is clearly, to a large extent,
because these clusters are dynamically much younger.

However, it is clearly not just dynamical age that is
important as the lines are still somewhat different. The reason
for this is that the cluster size plays a role. In all of these
simulations we are counting encounters within 1000 au, which
is a more significant fraction of the distances between stars in

an r, = 0.5 pc cluster than in an r, = 1 pc cluster. So, we would
expect the encounter timescale to also be sensitive to the
relative impact parameter (ry,/7.)%.

In the bottom panel of Figure 4, we plot encounter fraction
against an “encounter crossing time,” ¢%, defined as

* rn/pe ’
1=t ———1. )]
1./ 1000 au

Now in the bottom panel we appear to have found a
timescale on which all clusters show extremely similar
behavior. For encounters within 1000 au there is a sharp rise in
f. in the first 5 £ to a point where roughly a third of all stars
have had an encounter. It then takes another ~50 #.% for the next
third of stars to have an encounter.

To test the scaling with (r,/7.)?, in Figure 5 we compare
encounters within 500 au in an r, = 0.5 pc cluster (red) with
encounters within 1000 au in an r, = 1 pc cluster (green). Here
(rn/7.)? is the same in both clusters (half the encounter
distance, but half the half-mass radius), therefore we would
expect the growth of the different encounter fractions with just
the crossing time to be the same, which they are, as is clear in
the figure.

Note that there are various subtleties at play such as different
velocity dispersions causing the effect of gravitational focusing
to be different, and we are dealing with small-N stochastic
systems. But overall, the overlap between the evolution
between different clusters within ensembles and very different
ensembles is impressive when scaled by the crossing time and
relative encounter cross section.

4.3.2. An Empirical Relationship

The bottom panel of Figure 4 provides a way of getting a
rough estimate of the encounter fraction of stars, f;, at a
particular encounter distance, r., after some time, ¢, in any
cluster if one knows the crossing time, 7., and the half-mass
radius, r,. Then from Equation (9) one can calculate ts;, and
so t/tk.

It is worth pointing out that the curve in the bottom panel
looks like it should have a fairly simple function that would
provide a fit. However, we have struggled to find a simple (two
or three parameter) function that fits (the problem is that the
initial rise is much steeper than, e.g., an exponential will fit).
Therefore we would suggest simply reading off the value of f;
from the bottom panel of Figure 4 for whatever value of ¢/%..

We stress that this is a rough estimate, however, as rough
and ready as this may be, it will still almost certainly provide a
much better feeling for how many stars have had an encounter
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Figure 4. Encounter fractions for each ensemble against the absolute time 7 (top
panel), crossing time #., (middle panel), and the encounter crossing time tj
(bottom panel, see text). The top panel contains the legend for the ID of each
ensemble. The line is the mean value, and the shaded region shows the variance
for N = 600 clusters with r, = 0.5 pc (blue), N = 300 clusters with r, = 0.5 pc
(red), N = 300 clusters with r, = 0.75 pc (purple), and N = 300 clusters with
m =1 pc (green).

than any attempt to use Equation (2), and then to extrapolate to
an encounter fraction.

4.3.3. An Example

We can take a roughly Orion Nebula-like cluster with
M = 1000 Mg, N=2500, a half-mass radius r, = 0.7 pc, and
age 3 Myr and attempt to estimate what fraction of stars has had
an encounter at <1000 au. For such a cluster, n = 1800 pc >,
and assuming virial equilibrium ¢=2.6 kms ', and so
tr = 0.27 Myr.

From Equation (9) if r.=1000au, then t*= 0.5t, =
0.14 Myr. Therefore this cluster has an “encounter age” of
t/tk ~ 20. From the bottom panel of Figure 4 this would
suggest around 40% of stars will have had an encounter within
1000 au.

If we use Equation (2), we find € ~ 1000 Myr'. For an age
of 3 Myr this suggests 3000 encounters among the N = 2500

Rawiraswattana & Goodwin
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Figure 5. The encounter fraction against crossing time with 7. < 1000 au for
N =300, r, = 1 pc (green shaded region), and with r. < 500 au for N = 300,
r, = 0.5 pc (red shaded region).

stars. An extremely naive extrapolation might suggest that
therefore all stars had an encounter within 1000 au. One can be
a little more sophisticated and assume that encounters are
random, which finds that ~90% of the stars will have had an
encounter (as each one of the 3000 encounters involves two
stars, even if they are random, most stars will have been
involved in one). Even if the value of 3000 encounters in 3 Myr
happened, by luck, to be right, the extension of this encounter
number to the number of stars involved in encounters is
certainly not random.

5. Conclusions

We have performed N-body simulations of small star clusters
to investigate stellar encounters with separations r, < 1000 au.
This is the regime in which disks, planetary systems, and
multiple-star systems can be significantly perturbed or
destroyed.

We find that the encounter rates vary by up to an order of
magnitude between statistically identical clusters. However, we
find that the fraction of stars that has had an encounter is
statistically the same within statistically identical clusters.

The fraction of stars that has had an encounter increases
rapidly at early dynamical times before flattening significantly
once stars in orbits particularly susceptible to encounters have
had at least one encounter. This depends on both the dynamical
timescale of the cluster (#,), and the relative impact
parameter (r,/7.)%.

We find a consistent, and reasonably tight, relationship
between the fraction of stars that has had an encounter and a
modified crossing time tg'; X tor (rp/7:)2.

The relationship we have found has a seemingly solid
physical basis, but no detailed theoretical underpinning (we are
working on this). However, it provides a simple way of
extracting an estimate of the encounter fraction for a particular
cluster of a particular age from a figure. While this is empirical,
it almost certainly provides a much better estimate of the true
encounter fraction than any attempt to apply standard theory.

We would like to thank the anonymous referee for their
useful comments. S.G. was partly funded by the STFC
consolidated grant ST/V000853/1.
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