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Abstract We demonstrate a spontaneous tendency of quan-

tum wave packets to become quasi-classical, providing a

classical limit for the Universe dynamics. However, this limit

is not maintained in the future (after a critical value of the

relational time) and a spreading process is turned on. We

show that the onset of an inflationary scenario is not able

to make this localization stable of the wave packets for the

Bianchi I model. Instead, when we implement a perturbative

inflationary scenario for the isotropic Universe a mechanism

of stable classicalization of the Universe emerges. This result

outlines a sharp difference between the standard relativistic

cosmology and a modified f (R) paradigm.

1 Introduction

It is well-known [1–3] that the implementation of General

Relativity to the cosmological problem leads to the emer-

gence of a primordial singularity which is commonly dubbed

Big-Bang [4] for the isotropic Universe. This fact suggests

that for a sufficiently high value of the space-time curvature

and matter-energy density, the predictability of the Einstein

equation becomes questionable. To reformulate the dynam-

ics of the gravitational field in a singularity-free picture, two

main approaches have been pursued over the years. On one

hand, it was argued that the Einstein–Hilbert action must be

replaced by a more general setting, with particular reference

to the simplest one of a metric f (R)gravity [5,6]; on the other

hand, it was suggested that a quantum dynamics of the grav-

itational field must replace the classical Einsteinian picture

[7–9], especially given a canonical quantization procedure

of the metric field [10].
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The present analysis investigates the physical implication

of joining together these two points of view, i.e. our the-

oretical framework to study the dynamics of the Bianchi

Universes [11–13] namely, we canonically quantize a met-

ric f(R) theory as viewed in the so-called Jordan frame

[5,6,14].

This both classical and quantum reformulation of the Ein-

steinian picture has also a specific motivation in the problem

of time, which affects the canonical method of quantizing

the gravitational field [15]. Indeed, the Hamiltonian function

of the gravitational field identically vanishes [16] so that the

resulting quantum dynamics, described in terms of the Uni-

verse wave functional, appears as frozen. The most widely

accepted solution to this problem consists of the so-called

“relational time” approach [15,17], i.e. a physical clock is

constructed via an internal gravity or matter degree of free-

dom [18]. Some examples of how to construct a time variable

for the quantum gravity dynamics via a specific field are [19–

21,23,24].

When the canonical method of quantization is applied to

the metric f (R) theory in the Jordan frame, the physical

clock is offered by the non-minimally coupled scalar field,

which is naturally present in such a formulation.

This point of view was first explored in [25], where the

cosmological problem has been formulated for the f (R)

gravity in the Jordan frame with particular reference to the

Bianchi Universes. There, the question concerning the canon-

ical quantum evolution of the primordial Universe in terms

of the non-minimally coupled scalar field has been also dis-

cussed in some detail.

Furthermore, in [26], it was analysed the reduced phase

space quantum dynamics for an isotropic Universe in the

same conceptual paradigm by showing that, if the non-

minimally coupled scalar field plays the role of a clock a

very peculiar feature emerges: a wave packet, evolved by the
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corresponding Schrödinger equation, manifests a progressive

localization as the Universe expands. This surprising feature

is however not stable along the Universe dynamics, since

a delocalization phenomenon, soon or later, will star again.

There, it was argued that a possible mechanism to make sta-

ble such a process of Universe classicalization could emerge

during a de Sitter phase, typical of an inflationary scenario

[27].

The present study continues and completes the investi-

gation pursued in [26] by generalizing the dynamics to the

anisotropic homogeneous Bianchi Universes and by demon-

strating that the conjecture that the de Sitter phase can stabi-

lize the Universe classicalization is well-grounded.

We first analyse under which conditions the dynamics of

a Bianchi model, as viewed in a f (R) theory in the Jordan

frame, is reducible essentially to the dynamics of a Bianchi

I model in the presence of a non-minimally coupled scalar

field. In other words, we argue that in agreement with the

analysis in [25], both the Universe spatial curvature (respon-

sible for a potential term in the Bianchi Universe Hamilto-

nian) and the potential term of the scalar mode (fixed by the

specific form of the f (R) function) can be neglected up to

the first approximation.

Based on this statement, we study the quantum dynamics

of the Bianchi I model both in a vacuum and in the presence

of the on-set of an inflationary paradigm by clarifying that the

classicalization process (the standard deviation of the density

probability significantly decreases) is always present with

similar features to those one discussed for the isotropic Uni-

verse in [26]. However, in both the cases mentioned above,

the localized wave packet is, soon or later, subjected to subse-

quent spreading dynamics, i.e. the Universe becomes a fully

quantum system.

The analysis is then completed by demonstrating that the

presence of a cosmological constant in the quantum dynamics

(mimicking an inflationary phase) of the isotropic Universe

is really the mechanism responsible for the emergence of a

stable classical one from the Planckian era, i.e. no subsequent

spreading of the wave packets after the localization takes

place.

This result leads us to infer that also for a Bianchi I Uni-

verse, the presence of cosmological dynamics could imply

the same stability of the emergent classical dynamics. In par-

ticular, we argue that such a classicalization of the anisotropic

Bianchi I model passes before through quasi-isotropization

dynamics and then the classical isotropic limit is approached.

More specifically, as discussed for standard gravity in [28],

the presence of a cosmological constant term in the quan-

tum dynamics is expected to induce an isotropization pro-

cess on average ( the anisotropic variables are essentially

suppressed). From this stage, the classical limit is obtained

similarly to what we show here for the exact isotropic Uni-

verse.

The manuscript is structured as follows. In Sect. 2, we

present the modified theory of gravity f (R) in scalar-tensor

representation, focusing the attention on the Jordan frame

in which the non-minimally coupled scalar field to grav-

ity is present. In Sect. 3, we consider the f (R) theories

in scalar-tensor representation to achieve the Hamiltonian

formalism of gravity for homogeneous and anisotropic Uni-

verses, namely the Bianchi models. In Sect. 4, we analyse

the behaviour of a Bianchi I cosmology in the paradigm of

Schrödinger-like formulation of canonical quantum gravity.

Moreover in Sect. 5, we investigate whether introducing the

cosmological constant, the analysis of the Bianchi I model

in the vacuum can be modified. Furthermore, in Sect. 6 we

repeat the analysis of the quantum dynamics for the FRLW

model in the presence of a perturbative cosmological constant

to clarify how the isotropic model is subjected to a stable

process of localization, approaching a classical expanding

Universe. Finally, in Sect. 7 conclusions are drawn.

2 F(R) theories in the Jordan frame

Einstein’s General Relativity is largely accepted as the fun-

damental theory for describing the geometrical properties of

space time. Actually, the Einstein–Hilbert action is only the

most simple proposal (providing second-order field equa-

tions, see the Lovelock theorem [29]) and even if the deter-

mination of the gravitational field kinematics (tensor formal-

ism) is a naturally consistent formulation, different schemes

are admitted by the dynamics of the gravitational field. One

of the simplest modifications to GR is the f (R) gravity in

which the Lagrangian density f is an arbitrary function of

R [5,30–33]. In order to derive Einstein’s field equations, in

literature two main approaches are present: affine and met-

ric formulation [6,34] and in this paper, we will take into

consideration the last one. We start with the 4-dimensional

action in f (R) gravity

S = − 1

2κ

∫

d4x
√

−g f (R) +
∫

d4x LM (gμν, �M ), (1)

where κ ≡ 8πG (G being the Newton constant, using c=1), g

is the determinant of the metric tensor gμν and LM is a matter

Lagrangian which depends on the matter fields �M and the

metric too. The field equations can be derived by varying the

action (1) with respect to gμν and they are characterized by

fourth-order differentiation

f (R)′ Rμν − 1

2
f (R)gμν − [∇μ∇ν − gμν�] f ′(R) = κTμν,

(2)

where Tμν is the matter source energy momentum tensor,

f ′(R) ≡ d f/d R, ∇μ the covariant differential derivative

with respect to the metric gμν and � ≡ gμν∇μ∇ν is the
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d’Alambert operator in curved manifolds. We can introduce

a new field χ and write the dynamically equivalent action

[35]

S = − 1

2κ

∫

d4x
√

−g( f (χ) + f ′(χ)(R − χ))

+SM (gμν, �M ). (3)

Variation with respect to χ leads to the equation χ = R if

f ′′(χ) �= 0,1 which reproduces action (1). Now, by redefini-

tion of the field χ into ξ = f ′(χ) and collecting

V (ξ) = χ(ξ)ξ − f (χ(ξ)), (4)

the action reads as

SJ = − 1

2κ

∫

d4x
√

−g(ξ R − V (ξ)) + SM (gμν, �M ), (5)

and it is known as the f (R) gravitational action in the Jor-

dan frame. Thus, we get a dynamical scalar field which is

non-minimally coupled with the curvature R. Hence, field

equations turn out to be
{

Gμν = κ
ξ

Tμν − 1
2ξ

gμνV (ξ) + 1
ξ
(∇μ∇νξ − gμν�ξ)

R = V ′(ξ)
(6)

corresponding now to a second-order formulation. Taking

the trace of the first Eq. (6) and using the second one

3�ξ + 2V (ξ) − ξ
dV

dξ
= κT μ

μ , (7)

that determines the dynamics of the scalar field for a given

source of matter.

Above, we described the general structure of the f (R)

model in the Jordan frame also in the presence of matter

but it is worth stressing that, since from the very beginning,

the following analysis is performed always neglecting both

the thermal bath (radiation) energy density as well as the

potential term of ξ which is fixed by the specific form of the

function f (R), for a justification in the context of the Bianchi

Universe, see the end of the next section.

3 Bianchi universes in the Jordan frame

In this section, we analyse the Hamiltonian formulation of the

homogeneous Bianchi Universes [3,11,37], in order to pro-

vide a general theoretical framework interpreting the quan-

tum dynamics of the Bianchi I model developed below.

In the diagonal formulation of a Bianchi cosmology, we

deal with the following line element [38]

ds2 = N 2dt2 − eα
(

eβ
)

ab
ωaωb , (8)

1 This condition can be relaxed by requiring the injectivity of the func-

tion f , see [36].

where β ≡ diag{β+ +
√

3β−, β+ −
√

3β−,−2β+} is a

traceless matrix and ωa (a, b = 1, 2, 3) denote the 1-forms

characterizing the isometry group of one of the nine Bianchi

models [39]. Due to the homogeneity constraint, the lapse

function N and the Misner variables α, β± [38] are all func-

tions of time only and, it is rather straightforward to check

that in the Jordan frame of a f (R) modified gravity and

in the presence of a cosmological constant � [25,26], the

Bianchi Universes are associated to the following reduced

ADM-action [3,38]

SB =
∫

dξ

(

pα

dα

dξ
+ p+

dβ+
dξ

+ p−
dβ−
dξ

− HADM

)

,

(9)

where we adopted the non-minimally coupled scalar field as

a time variable. The associated reduced Hamiltonian reads

as

HADM

≡ 1

ξ

(

pα +
√

p2
α − p2

+ − p2
− − 6ξe2αVB(β±) − 6ξe3α (V (ξ) + �)

)

,

(10)

with pα and p± denoting the conjugate momenta to the cor-

responding variables and VB is fixed by the isometry of the

considered Bianchi model (we adopt geometrical units and

have been integrated, without loss of generality, on a unit

space volume). It is worth stressing that, the ADM-reduction

procedure requires the following specification of the tempo-

ral gauge

N = NADM ≡ 3e3α

2 (ξ HADM − pα)
. (11)

Now, it is well-known [40,41] that, for the Bianchi IX model

(the most general Bianchi Universe with an isotropic limit),

near the initial singularity, i.e. α → −∞, the potential term

admits the representation

e2αVB ∝ D2H1 + D2H2 + D2H3 , (12)

where

D = e3α,

H1 = 1

3
+ β+ −

√
3β−

3α
,

H2 = 1

3
+ β+ +

√
3β−

3α
,

H3 = 1

3
− 2β+

3α
.

Thus, asymptotically to the singularity D → 0, this term

leads to a triangular potential well, in which walls are defined

by the simultaneous conditions Ha ≡ 0 (a = 1, 2, 3) and

receding with the decreasing of α towards −∞.

123
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Fig. 1 Equipotential lines for the Bianchi IX potential in the plane

(β+, β−)

While in General Relativity the Bianchi IX Universe is

chaotic, in [25] it has been shown that for f (R) theories

considering V (ξ) ∼ ξn , with n < 6, the chaos of the asymp-

totic dynamics is no longer present and the so-called “Kasner

Stability Region” [42] emerges. By other words, in the men-

tioned theories, the singularity (for a bouncing Bianchi I cos-

mology and other quantum formulations of the Bianchi Mod-

els see [43–48]) is reached by a Kasner solution de facto cor-

responding to a Bianchi I (potential-free) cosmology. More

in general, a Kasner-like evolution takes place each time the

potential walls (associated to the spatial curvature of the Uni-

verse) are negligible, like in the centre of the triangular con-

figuration (Fig. 1).

In this respect, within the framework of classical Gen-

eral Relativity and in the Wheeler–DeWitt scenario, in [28]

and [49] respectively, it has been investigated the situation in

which the cosmological constant term dominates the poten-

tial one, mimicking the trigger of an inflationary dynamics.

Here, we analyse the behaviour of a Bianchi I cosmology

without and with the presence of the cosmological constant

in the paradigm of Schrödinger-like formulation of canonical

quantum gravity. Thus, the analysis presented in the follow-

ing sections must be intended as a specific limit of the Bianchi

IX Universe evolution in which the momentum contribution

(the kinetic component) of the Hamiltonian (10) dominates

the potential terms. In particular, we are always neglecting

the contribution due to V (ξ) taking into account its suppres-

sion near the singularity by the small value of the factor e3α .

And, in the most interesting case when a cosmological term

is present, our Bianchi I study must be thought of as in cor-

respondence to the validity of the following inequalities

� ≫ V (ξ), � ≫ e−αVB . (13)

We stress that the second of these conditions is favoured

by the increasing value of α as the Universe expands, which

we will see below that corresponds to the decreasing values of

ξ towards zero in the case of a Bianchi I evolution. However,

this consideration relies on the idea that the behaviour of the

quantum anisotropies is under control, i.e. the average value

of the potential term VB is stable and it is also a slow function

of time.

The possibility to neglect the potential term V (ξ) in the

classical and quantum dynamics is rather natural towards the

initial singularity (α → −∞), since its contribution is sup-

pressed by the exponential decrease in the volume. Thus,

if not valid for any f (R) functional form (see the classical

analysis of the Bianchi IX model in [25]), the idea of deal-

ing, near enough to the singularity, with a potential-free non-

minimally coupled scalar field, appears well-grounded and in

the quantum sector, it should be regarded as a viable assump-

tion. Even more well-posed is the negligibility of the ther-

mal bath (radiation) energy density concerning the anisotropy

Hamiltonian kinetic term since the former diverges near the

singularity as the inverse fourth power of the cosmic scale

factor, while the latter diverges as the inverse sixth power and

therefore it will dominate the dynamics. The situation is quite

different when we consider an inflationary paradigm which is

associated with a rapid expansion of the Universe due to the

cosmological constant term, i.e. the vacuum energy. Indeed,

at least on a classical level, the possibility to neglect the poten-

tial term of ξ has to break down as a result of a large Universe

volume. It is just for this reason that, below, the Bianchi I and

the isotropic Universe dynamics in the presence of a cosmo-

logical constant are analysed on a perturbative scheme only,

i.e. before that the cosmological constant starts to really dom-

inate the system evolution. Also, the quantum analysis of the

isotropic inflationary model must be intended as the quan-

tum on-set of a de Sitter phase which can generate a classical

configuration. It is clearly expected that after the Universe

classicalization, the subsequent inflationary behaviour has to

be, soon or later, influenced by the specific form of the con-

sidered f (R) model, but this part of the evolution is out of

the purposes of this study. Instead, the possibility to neglect

the thermal bath contribution is still a natural assumption of

the inflationary paradigm, since the dynamics is by hypoth-

esis dominated by the vacuum energy of the Universe phase

transition [3,27].

4 Schrödinger dynamics of Bianchi I model

Quantum Cosmology aims to provide a quantum description

for homogeneous cosmological models. However, a major

issue to struggle with is the problem of the time. It relies on

the identification of a proper time-like variable avoiding the

frozen formalism which leads to different results whether it
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is tackled before or after quantization [50]. Two approaches

have been pursued to give a meaningful interpretation of

the wave function of the Universe in a probabilistic way.

In the first one, the super-Hamiltonian constraint is classi-

cally solved and the resulting Schrödinger equation is quan-

tized. This is the so-called reduced phase space quantisation

(RPSQ) that is the most straightforward procedure since it is

an exact algorithm requiring no WKB approximation based

on the wave function of the Universe, even if the Hamilto-

nian density can be non-local. The second one is achieved

by implementing both the WKB and Born-Oppenhaimer

approximations, namely, the Vilenkin approach, for details

see [21,22].

In the following analysis, we consider the RPSQ approach

to recover the model dynamics, namely, we chose here the

non-minimally coupled scalar field as a time variable before

quantizing the system [15].

After having solved the super-Hamiltonian constraint

without the cosmological constant term according to the

ADM procedure, for the Bianchi I model we deal with the

relation

pξ = 1

ξ

(

pα +
√

p2
α − p2

+ − p2
−

)

= −hξ , (14)

where hξ coincides with HADM in (10) once we neglect the

potential contributions. As a direct consequence of imple-

menting the classical Hamiltonian constraints on the operator

level, we derive the equation a la Schrödinger

i
∂ψ

∂ξ
= −1

ξ

(

−i∂α +
√

−∂2
α + ∂2

+ + ∂2
−

)

ψ; (15)

the evolution of the so-called “physical Hamiltonia”, i.e. ĥξ ,

is therefore described with respect to ξ namely the variable

canonically conjugate to pξ .

Now, making use of the plane wave

ψ(α, β±, ξ) = ei(kαα+k+β++k−β−)y(ξ) (16)

and by applying to it the square root derived from the non-

local Hamiltonian [51], we obtain

iξ∂ξ y(ξ) =
(

−kα −
√

k2
α − k2

+ − k2
−

)

y(ξ), (17)

in which we denote the derivative for ξ by the corresponding

subscript. Hence, the solution of the equation for y(ξ) is

found to be

y(ξ) = B ξ
i(kα+

√

k2
α−k2

+−k2
−)

, (18)

with B being the integration constant (set to 1). The complete

wave function can be written as

ψ(α, β±, ξ) = ei(kαα+k+β++k−β−)ξ
i(kα+

√

k2
α−k2

+−k2
−)

. (19)

The next step is to construct a localized wave packet by

using a Gaussian distribution on kα , k+ and k−, i.e.

�(α, β±, ξ) =
∫ +∞

−∞
dkαdk+dk− A(kα, k+, k−)ψ(α, β±, ξ),

(20)

with A(kα, k+, k−) being the product of three Gaussian func-

tions in kα, k+, k− respectively

A(ka) = 1√
2πσa

e
− (ka−k̄a )2

2σ2
a , (21)

where σa (a = α,+,−) is the standard deviation. Moreover,

we denoted by k̄a the mean value of the distribution.

Therefore, according to the natural scalar product for a

Scrödinger-like equation, the normalizable probability den-

sity is

|�|2 = ��∗, (22)

which provides the probability of finding the universe at a

certain instant ξ for a unit of β+, β− and α.

In Fig. 2 we observe a very peculiar feature concerning a

progressive localization of the wave packet from the singular-

ity up to a precise value of the relational time ξ . To better clar-

ify this behaviour let us consider the Universe volume related

to e3α for a fixed value of β− and different values of β+.

As it is shown, a behaviour of the wave packet approaching

a localization namely a classicalization emerges. However,

this classical state is not dynamically stable since between

ξ = 10 and ξ = 1 the spreading mechanism starts leading to

a de-localized wave packet, i.e. a quantum picture again. It

is worth noticing that it could suggest the introduction of the

inflationary scenario as a possible candidate for maintain-

ing a localized profile. Given this guess, the cosmological

constant � is considered in the section below.

Finally, we stress that our analysis concerns the very early

phases of the Universe in which its dynamics are properly

described by a canonical quantum picture, i.e. all the physi-

cal information is contained in the Universe wave function.

Thus, for this reason, the concept of space-time curvature is

no longer directly applicable. Nonetheless, the space curva-

ture and the extrinsic one of the Bianchi models can be still

recovered as average quantities. Indeed, the former comes

from the average value of the potential term present in the

Hamiltonian (vanishing for the Bianchi I model) and the lat-

ter can be reconstructed via the average values of the conju-

gate momenta to the Misner variables. Clearly, these average

quantities are expressed via the relational time, i.e. the scalar

field emerging from the f (R) theory in the Jordan frame and

their translation in terms of a labelled time coordinate is not

an immediate procedure when the classical limit has not still

achieved. However, the main issue of the following analysis

is just the possibility to achieve a state for the Universe which

is very close to the classical dynamics and, hence, the notion
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Fig. 2 Plots of |�|2 evaluated via numerical integration with working

precision of 0.1. Starting from top, the probability density has been

evaluated for different values of the relational time ξ = 103, 10, 1

respectively. We adopted a suitable choose of β− = 5

of classical space-time curvature is naturally recovered in

that limit.

5 Quantum dynamics with a cosmological constant

Here, we analyse the dynamics of the Bianchi I model con-

sidering the cosmological constant �. Hence, the relation

(14) becomes

pξ = 1

ξ

(

pα +
√

p2
α − p2

+ − p2
− − 6ξe3α�

)

= −hξ . (23)

It is worth noting that, as in the previous section and in

agreement with the condition (13), we are neglecting both

the scalar curvature of a given Bianchi model, as well as

the potential term of the field ξ . Actually, as discussed at

the end of Sect. 3 the former term can not be easily esti-

mated in a full quantum regime, due to the evolution of the

anisotropies β+ and β−. Thus, it can be reliably neglected

only in the initial phase of the inflationary evolution as con-

sidered below. Therefore, here we describe the wavepack-

ets dynamics during the on-set of the inflation phase and,

also to make more stable the numerical analysis, we expand

the ADM-Hamiltonian (23) with respect to the cosmological

constant term, obtaining as Schrödinger equation

iξ∂ξ y(ξ) =
(

−kα − K + 6ξ�e3α

2K

)

y(ξ), (24)

where K ≡
√

k2
α − k2

− − k2
+ and its solution is

y(ξ) = Ce
i

(

−3ξ�e3α+log(ξ)(K 2+kα K )
K

)

, (25)

with C being the integration constant.

Hence, the complete wave function reads

ψ(α, β±, ξ) = ei(kαα+k+β++k−β−)y(ξ). (26)

We aim to investigate if the on-set of a inflating evolu-

tion is already able to significantly modify the analysis of the

Bianchi I model in the vacuum, introducing a stabilization

phenomenon for the classicalization tendency we discussed

in the previous section. Since we are in geometrical units we

adopt here a value of 10−18 for the cosmological constant,

which is the expected relative value concerning a Planckian

order of magnitude. Hence, we proceed with the numerical

evolution of the probability density built as previously done

where we choose Gaussian weights to peak the wave packets

(22). In Fig. 3 we can easily see that the spontaneous ten-

dency to localize happens faster and for a smaller ξ value

than the previous case. In other words, from Fig. 2 one can

notice that the process of localization appears in at least three

orders of magnitude in the relational time while in the pres-

ence of the cosmological constant, it is already visible in one

order of magnitude only. A classical cosmology is reached

but in the later evolution the spreading process of the wave

packet is still present. The introduction of the cosmological

constant seems not to be the mechanism to make the model

a classical one. Even if the analysis has been developed with

a perturbative treatment, one can infer that new “physics”

has to be taken into consideration, in the case related to the

specific chosen f (R) and Bianchi model.
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Fig. 3 Evolution of the wave packet |�|2 evaluated via numerical inte-

gration. Starting from the top, the probability density has been calcu-

lated for different values of the relational time ξ = 10, 1, 10−2 respec-

tively, considering β− = 5 and � = 10−18. An integration step equal

to 0.1 has been used

6 Isotropic universe dynamics

As discussed in [26], considering an isotropic Universe in the

presence of a scalar field φ and a cosmological constant �,

a singular behaviour of the classical dynamics is recovered

for a smaller value of ξ . In other words, the quantity ∂α/∂ξ

approaches −∞ in correspondence to the singular instant of

the value

ξ = p2
α

2
(

3
k

p2
φ + �e3α

) . (27)

In this sense, they argued that all of the Universe’s inflation-

ary evolution is contained in such an asymptotic behaviour

since an asymptote for the function α(ξ) arises.

Our analysis relies on deepening this concept and clarifies

how, considering exclusively the cosmological constant, the

quantum isotropic model is subjected to a stable process of

localization, approaching a classical expanding Universe. To

do that, we solve the Hamiltonian constraint with respect to

the conjugate momentum of the time-like variable ξ obtain-

ing

pξ = pα +
√

p2
α − 6ξ�e3α

ξ
= −hξ . (28)

Hence, promoting again hξ to a quantum operator we achieve

the dynamical evolution through the equation

iξ∂ξ y(ξ) =
(

−kα −
√

k2
α − 6ξ�e3α

)

y(ξ). (29)

Now, focusing our attention on the onset of the infla-

tionary phase in which the condition in Sect. 3 can be still

retained as valid and according to the previous analysis of

the Bianchi I model, we expand the square root argument in

the Scrhödinger equation so that it reduces to the form

iξ∂ξ y(ξ) =
(

−2kα + 3ξ�e3α

kα

)

y(ξ), (30)

whose solution is

y(ξ) = De
i

(

− 3ξ�e3α

kα
+2ikα log(ξ)

)

, (31)

in which D is an integration constant. Therefore, the wave

function we obtain to compute the probability density

becomes

�(α, ξ) =
∫ +∞

−∞
dkα A(kα)eikαα y(ξ). (32)

Looking at Fig. 4, it is important to note that starting with

suitable initial conditions, i.e. a well-shaped Gaussian dis-

tribution, the evolution of |�|2 approaches a stable peaked

configuration, namely the classicalization.

It is worth stressing that when the cosmological constant is

present, even if the values of α are noticeably increasing dur-

ing the time evolution of the probability density and so e3α ,

condition (13) is retained valid for the whole phase. Hence, a

classical isotropic inflating Universe is recovered. This result

validates the idea proposed in [26] that the presence of a cos-

mological constant can stabilize the classicalization process

of the isotropic Universe. Thus, we are naturally led to infer

that also Bianchi I dynamics could be made definitely clas-

sical if the cosmological constant can sufficiently suppress

the anisotropy degrees of freedom. However, the analysis of

a full inflationary regime in the Bianchi I model could imply

the necessity to take into account the explicit form of the
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Fig. 4 Evolution of the wave packet |�|2 evaluated via numerical inte-

gration for different values of the relational time ξ , with an integration

step equal to 0.1

potential V (ξ), i.e. of the considered modified gravity the-

ory. This study is clearly of interest but out of the scope of

the present analysis.

7 Concluding remarks

The f (R) theory of gravity, as viewed in the Jordan frame,

offers a natural framework to search for an internal clock in

quantum dynamics, here identified with the non-minimally

coupled scalar field to the tensor structure of the model.

We generalize and complete the analysis originally devel-

oped in [26] by considering the Bianchi Universe and, under

suitable conditions (i.e. neglecting the potential term of the

scalar field and the spatial curvature of the model), we restrict

the analysis to the quantum dynamics of a Bianchi I cosmol-

ogy. We showed how both in the absence or in the presence

of the cosmological constant (here treated as a perturbative

phenomenon to the quantum dynamics), the behavior of a

wave packet, solution of the Schrödinger equation, is char-

acterized by a spontaneous tendency to localize, i.e. a classi-

cal cosmology is approached. However, this quasi-classical

state is not dynamically stable, since in the later evolution

the wave packets are subjected to a spreading process. For

the same behavior observed in the case of an isotropic Uni-

verse, in the presence of a scalar field in [26] it was argued

that the inflationary scenario could provide the stabilization

mechanism of the classical behavior, occurring at a given

value of the relational time. The analysis here developed in

Sect. 6 demonstrated the validity of this guess implying that

a classical isotropic inflating Universe emerges considering

a perturbative cosmological constant. The same result is not

proven by our study of the Bianchi I model, since the pres-

ence of the cosmological constant seems unable to provide

a stable localization of the quantum Universe. Actually, we

can describe only the onset phase of the inflation, since the

analysis of the wave packets has been numerically available

only when the cosmological constant term is a weak pertur-

bation of the free dynamics and only in this limit we can be

sure that the spatial curvature VB(β+, β−) is negligible. We

can infer that a more complete study could clarify how the

inflation dynamics is able to induce a decay of the quantum

anisotropy, marked by the behavior of their mean values and

standard deviations. If such a process was able to induce an

isotropic-like Universe, then the stabilization of the classical

dynamics would be reached according to the same picture of

Sect. 6, as discussed above.

The relevance of the scenario we discussed in the present

study relies on the possibility to extend this dynamical

scheme and all its implication in the context of a generic

cosmological solution [3] by implementing on a quantum

level the so-called “BKL-conjecture” [1,2]. The idea emerg-

ing from our study is that in a f (R) under certain con-

ditions, a generic inhomogeneous Universe could sponta-

neously evolve in the natural internal time ξ from a quan-

tum behavior to a classical quasi-isotropic inflating regime

[41,52].
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