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Abstract

A computational data-driven fuzzy set-based methodology is proposed and

applied to determine, with high accuracy, the manufacturing parameters of 3D-

printed polylactide (PLA) components, ensuring user-specified failure tensile

strength and design requirements (here: the notch root radius). Hence, the

novel decision-making tool to estimate 3D-printing process parameters is

offered, ensuring desired design characteristics and the mechanical perfor-

mance. The estimated manufacturing angle and infill density have been

adjusted to provide meaningful values for real applications, still resulting in

accurate predictions through the validation process. Following the success of

these design and strength driven estimations, an extension of the proposed

methodology to the cost-saving problem has then been suggested by introducing

printing period and material cost as extra inputs to the decision-making process.
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Highlights

• Technical parameters of 3D-printed PLA are estimated, using fuzzy infer-

ence system.

• Estimations are optimized, ensuring user-specified geometrical and strength

parameters.

• Cost-control parameters are included together with geometrical and

strength parameters.

• Accuracy of the proposed approach is checked through a devised validation

test.
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1 | INTRODUCTION

Rapid prototyping, also known as additive manufacturing

or 3D-printing, has brought a remarkable digital revolu-

tion to the manufacturing industry in the last decades.

Compared with the conventional subtractive manufactur-

ing process such as machining, milling, and shaping,

parts are additively built layer by layer in 3D-printing,

allowing more flexibility and area of applications. For

example, 3D-printing has been widely used in tissue engi-

neering for fabricating artificial tissue constructs with

solid1,2 and hollow3,4 structures due to its high accuracy

in vitro models.5 Additionally, during the 2020 pandemic,

3D-printing was successfully used (based on the open-

source design data) to manufacture in-house, on-demand

face shields to be used as extra personal protective equip-

ment (PPE).6 Recent research has also demonstrated that

laser sintering-3D-printed body armor can achieve stab

protection to UK body armor standards, due to the high

degree of design freedom provided by 3D-printing.7

As a branch of the giant 3D-printing family, fused

deposition modeling (FDM) is one of the most common

AM technologies based on material extrusion by deposit-

ing melted materials selectively on the printing platform

layer by layer. The most commonly used materials in

FDM are polymers, such as polylactide (PLA), as thermo-

plastic materials can be easily melted and extruded from

the nozzle of a 3D-printer. The path of the nozzle is gen-

erated based on the layer geometry which is the outcome

of the part being sliced into super-thin layers with the

help of computer-aided-design (CAD) software pack-

ages.8 Upon cooling on the printing platform, layers of

thermoplastic materials bond together and eventually

form a three-dimensional part as designed.

Generally, aiming at material and time saving, the

internal structure of a printed object can be partly hollow

where the amount of material-filled volume is defined as

the infill density. Infill density is found to significantly

affect the weight,9 strength,10 stiffness,11 and printing

time12 of the printed part. In addition, various types of

infill pattern (internal shape of a part) have been

reported to cause different levels of anisotropy,13 which

leads to significant mechanical performance variance.14,15

As such, if the 3D-printed part has to comply with speci-

fied mechanical requirements, it is vital to take into

account the infill density.

In addition to the infill density, the mechanical

behavior of printed objects with FDM can be influenced

by multiple processing parameters, including tempera-

tures of nozzle and printing plate, layer thickness, print-

ing speed, feed rate, and printing direction.16,17 Printing

direction, which has recently raised increasing interests

of the international research community, is seen to have

a significant influence on the mechanical response of

common FDM materials, such as PLA. The change in

printing direction has been shown to cause anisotropic

behavior which is one of the main characteristics of 3D-

printing.18 It has been suggested that anisotropy plays a

role of primary importance, as far as the mechanical

response of 3D-printed object is concerned.19,20 This is

also seen in experiments where three different printing

orientations (perpendicularly, on-edge and flat) cause

variations in both strength performance and fracture

behavior.21,22 Furthermore, when it comes to objects

printed flat on the build plate, the mechanical behavior

depends on the manufacturing raster angle.19,23,24 This is

because, by changing the manufacturing raster angle, the

strength performance of the printed objects vary based

on the average layer adhesion and the ultimate tensile

strength of the 3D-printed material.25,26 Specifically,

Weake et al.27 found that the tensile strength of an acry-

lonitrile butadiene styrene (ABS) part could be up to

150% higher when the applied force is parallel to the

material filaments (manufacturing angle equals to 0�)

than perpendicular (manufacturing angle equals to 90�).

In the former case, the overall strength is related to the

axial strength of each material filament, whereas in the

latter case, the overall strength only depends on the

bonding forces between adjacent filaments.19 Thus, by

comparing the average layer adhesion25 and the ultimate

tensile strength of the material,24 it is identified that

parallel loading leads to larger overall tensile strength

than perpendicular loading. As such, manufacturing

angle is definitely worth of extra attention as far as the

mechanical performance of a 3D-printed object is

concerned.

It has been seen in numerous experimental studies

that both infill density and manufacturing angle can

influence simultaneously the mechanical behavior of 3D-

printed objects. Although the individual effect of these

parameters was analyzed,27,28 due to the complexity of

the cross-correlations between them, the estimation of

the mechanical strength can be highly inaccurate where

both infill density and manufacturing angle vary. The

determination of the mechanical behavior of a 3D-

printed part still relies on either numerous tests or

empirical relations which are in any case the outcome

from comprehensive experimental investigations. Hence,

it has become a priority to provide an alternative

methodology requiring fewer experimental tests for for-

mulating the relationship between the mechanical

behavior of a 3D-printed object and multiple manufactur-

ing parameters.

Data-driven solution has shown its capability of over-

coming the above difficulties by gaining knowledge and

recognizing and creating patterns among the data
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directly. Typical data-driven methods, including artificial

neural networks (ANN), fuzzy inference system (FIS),

and other techniques, are widely applied to study the

mechanical behavior of 3D-printed object.27,29 The com-

plexity caused by the joint effect of multiple parameters

is seen to be effectively solved by the application of non-

linear regression solutions included in the aforemen-

tioned techniques.26 Specifically, compared with ANN—a

“black box” structure, FIS framework has a “grey box”

structure which benefits from its fuzzy rules, allowing

more user control through the relatively transparent

structure. Apart from the user-friendly characteristic of

FIS, ease to use and less required data make FIS a highly

welcome data-driven solution in scientific community.

Considering the error that always exists in manufacturing

and testing 3D-printed components, FIS is an appropriate

method for this application due to its tolerance of data

imprecision.30

Previous studies have proven that FIS has the capabil-

ity to estimate the tensile strength with given manufactur-

ing and geometrical parameters.26 However, the current

industrial problem is that with both strength and geomet-

rical design requirements set for a 3D-printed object, the

optimal combination of manufacturing parameters can be

impossible to be determined a priori. Therefore, in this

paper, attempts have been made to solve such a problem

by estimating manufacturing angle and infill density with

the provided requirement of strength and geometry.

Besides, adjustments are conducted to identify the most

appropriate combination of both manufacturing parame-

ters in order to meet specific industrial needs, for example,

setting material-saving as a top priority. Due to the fact

that the estimation in the present work seeks for

manufacturing parameters which lead to required strength

and geometry, it will be referred to as inverse estimation in

the following sections, contrary to direct estimation, result-

ing in strength based on the given manufacturing parame-

ters reported in our previous work.26

In Section 2, the design and manufacturing of tested

components will be introduced. Then, in Section 3, the

classification of experimental data will be explained,

followed by the construction of FIS. Adjustments and

analysis of estimation results as well as the validation

process will be illustrated in the same section. Section 4

will introduce an extra case study where cost related vari-

ables are included.

2 | MANUFACTURING OF
SPECIMENS

3D-printed specimens used in the present research were

manufactured with 3D-printer Ultimaker 2 Extended+,

using 2.85-mm-diameter PLA filaments. The manufactur-

ing parameters were set as shown in Table 1. All speci-

mens were tested with a Shimadzu universal axial

machine where the displacement rate was equal to

2 mm/min.31

The drawings seen in Figure 1A include the dimen-

sions of all specimens used in the present investigation

with different geometrical characteristics. Figure 1B

shows the definition of the manufacturing angle being

adopted, which refers to the angle between the longitudi-

nal axis of the specimen and the positive y-axis of the

building plate. The particular choice of geometries

(notched specimens in Figure 1A) was used to support

the extensive testing of FIS methodology discussed in our

previous investigation.26

3 | INVERSE ESTIMATION
USING FIS

A FIS is based on the idea of fuzzy sets which was first

proposed by Zadeh32 in 1965. The system can be used to

TABLE 1 Predetermined manufacturing parameters for 3D-

printing process.31

Manufacturing parameters Values/selections

Layer height 0.1 mm

Shell thickness 0.4 mm

Infill pattern Grid

Build-plate temperature 60�C

Printing speed 30 mm/s

Nozzle size 0.4 mm

Nozzle temperature 240�C

FIGURE 1 (A) Technical drawings of 3D-printed specimens

with three different dimensions and (B) manufacturing angle

between the longitudinal axis and the main printing direction.31

[Colour figure can be viewed at wileyonlinelibrary.com]
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model complicated problems with nonlinearities in a way

similar to human reasoning process. Particularly in engi-

neering applications, fuzzy sets theory aims at efficient

computational methods that tolerate suboptimality and

imprecision.33

In traditional dual logic, a statement has to be

either true or false (nothing in between). In the theory

of sets, an element can either belong to a set or not.34

However, in the theory of fuzzy sets, the truth of any

statement becomes a matter of degree35 (degree of

membership), which helps formulate the mapping from

a given input to an output. Such mapping can be for-

mulated by a group of IF–THEN rules which are

extracted from the historical data and the formulation

is normally considered as the “training” stage of a

FIS.36 With new input data provided, the trained FIS

can provide an estimation of the unknown output. In

the present investigation, the input refers to

manufacturing and geometrical design parameters and

the output refers to the failure tensile strength of

3D-printed parts. For readers' easier understanding,

the fundamentals and calculations of FIS will be pre-

sented in Sections 3.3 and 3.4 with a simplified

example.

3.1 | Inverse problem setup

Before stepping into the fundamentals of FIS, it is impor-

tant to first identify the engineering problem. As men-

tioned in Section 1, generally, the goal of an industrial

process is to find the optimal solution of manufacturing

parameters that ensures predetermined values of strength

and geometry. Owing to the success of FIS in the previ-

ously investigated direct estimation (from manufacturing

parameters to strength),26 the new input of the inverse

FIS in the present investigation is set to be strength and

geometrical parameters, that is, tensile strength and

notch root radius. Hence, the manufacturing angle and

the infill density have become the output of this new

inverse estimation.

3.2 | Experimental data and
classification

After the inverse problem has been set up, the introduc-

tion of experimental data for training and validating FIS

is also of great importance. The experimental data are

originally adopted from Ahmed and Susmel31 and

reported in Table 2 where every value of the reported fail-

ure strength was calculated by averaging 3.26 Therefore,

there are 27 experimental data sets, each of which has a

unique combination of four parameters. Relevant param-

eters in Table 2 are referred to as radius—notch root

radius (mm), σf—failure tensile strength (MPa),

θp—manufacturing angle (�), infill density (%).

To show the reliability of the FIS methodology, it is

necessary to have not only enough data for defining the

fuzzy rules but also a group of data needed exclusively

for validation. In this paper, a new classification principle

is adopted where all specimens with radius equal to

1 mm are treated as unknown data and classified as the

validation group. This is to evaluate the performance of

FIS to deal with the unseen value—that is, how well FIS

will deal with the unseen data with notch root radius

equal to 1 mm if the system has only seen data with 0.5

and 3 mm.

3.3 | Sugeno FIS

It is seen that both output parameters in Table 2, the

manufacturing angle and the infill density, have crisp

values—measurable, precise numbers/values; in other

words, these characteristics are members of classic,

rather than fuzzy set with a degree of membership

description. Hence, the Sugeno FIS37 is selected as it is

relatively more efficient to model the nonlinear relation-

ship between crisp values. Different from Mamdani FIS38

adopted in the past work,26 Sugeno FIS allows the output

membership function (MF) to be a constant or a linear

function of input values. It is more suitable for the cur-

rent research than Mamdani FIS as the latter has a

requirement of transforming crisp output values into

MFs, which could generate further numerical error if

the parameters of MFs are not set to optimal. Besides,

compared with Mamdani FIS, Sugeno FIS has the

advantage of computational efficiency since the calcula-

tion in defuzzification process refers to the weighted

average of multiple data (illustrated in following

paragraphs and Figure 2), rather than the centroid

solution in Mamdani FIS which has been previously

introduced.20,21,26

Being in itself a recap of the FIS, the general stages of

setting up a Sugeno FIS are illustrated as follows. In the

beginning, a group of “training data” is fed to formulate

the fuzzy rule base which builds mappings between exist-

ing input and output. In order to make predictions of a

new unknown output, the new known input data have to

be first fuzzified into a membership value using MF. One

of the typical MFs is triangular MF39 as shown in

Equation (1), which is popular due to its simplicity and

quick response:

4 TU ET AL.
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TABLE 2 Summary of

experimental data for testing U-notched

specimens. Specimen

Input Output

Radius (mm) σf (MPa) θp (�) Infill density (%)

1 0.5 9.7 0 30

2 1 9.5 0 30

3 3 10.9 0 30

4 0.5 13.1 0 50

5 1 13.8 0 50

6 3 14.4 0 50

7 0.5 17.4 0 70

8 1 16.9 0 70

9 3 18.6 0 70

10 0.5 8.2 30 30

11 1 8.5 30 30

12 3 10.0 30 30

13 0.5 11.5 30 50

14 1 12.0 30 50

15 3 12.5 30 50

16 0.5 12.2 30 70

17 1 11.9 30 70

18 3 13.9 30 70

19 0.5 8.0 45 30

20 1 8.1 45 30

21 3 9.8 45 30

22 0.5 11.0 45 50

23 1 11.9 45 50

24 3 13.5 45 50

25 0.5 15.1 45 70

26 1 15.2 45 70

27 3 16.4 45 70

FIGURE 2 Decomposition of a

Sugeno fuzzy inference system. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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μ xð Þ¼

0, x ≤ a,
x�a

b�a
, a< x ≤ b,

c�x

c�b
, b< x < c,

0, x ≥ c,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð1Þ

where a, b, and c are parameters of the function

defined by users and μ xð Þ is the membership value of

the corresponding input x. For various fuzzy rules,

parameters of the MF could be different so the fuzzifica-

tion of a FIS which contains several rules has a

parallel data processing pattern. Note here these

fuzzy rules have only helped on generating para-

meters of MF while they have not interfered with input

data yet.

Note that the triangular MF is used both in the fol-

lowing explanatory example in Section 3.4 and in the

estimation process for the general experimental data.

Moreover, with the focus of the current research being

applying the FIS methodology for the inverse estima-

tion of 3D-printing technical parameters, the effect of

various types of MF will not be detailed in this

content. However, the triangular MF is reported to

have a top-tier performance, compared with other

MFs.40,41

The derived membership values are then brought to

the fuzzy inference engine, which contains a group of

fuzzy calculus that can process the membership value

with respect to fuzzy rules. The detailed calculus will

be introduced in the later section, together with an

illustrative example. The output of a Sugeno fuzzy

inference engine is a combination of two values—mi

and ni where mi refers to the processed membership

value of the new input for ith fuzzy rule and ni refers to

the known output value (from training data) for the

same rule.

As mentioned previously, the Sugeno FIS does not

include any MF calculation in the output stage

apart from a weighted average calculation as shown

below:

Wa ¼

P

k

1

mi �ni

P

k

1

mi

, ð2Þ

where k refers to the total amount of fuzzy rules and Wa

refers to the calculated weighted average value. Eventu-

ally, the value of Wa is the estimated output value for the

new input.

3.4 | Sugeno FIS with an illustrative
example

Since the general stages of constructing a Sugeno FIS

have been introduced, it is possible now to illustrate the

detailed calculation with a synthetic example. Figure 2

shows the decomposition of a Sugeno FIS calculation for

some fabricated data. Note that in Figure 2, the calcula-

tion and setup of MF for input parameters have been

partly simplified, aimed at helping the readers to better

understand.

The process starts from the definition of two fuzzy

rules, formulated based on the existing experimental

data, which in the linguistic form are as follows:

Rule 1. “if radius is 3 mm and strength is 10 MPa, then

infill density will be 30%”;

Rule 2. “if radius is 0.5 mm and strength is 18 MPa, then

infill density will be 70%.”

As the next step, input parameters are fuzzified using

triangular MFs, resulting in membership values. For the

first parameter of synthetic data, radius ranges from 0.5

to 3 mm, and the membership value ranges from 0 to

1. Therefore, MFs for the radius (the first column from

left in Figure 2) can be calculated using Equation (3):

μ xð Þ¼

x�0:5

3�0:5
, if radius is large Rule 1ð Þ,

3�x

3�0:5
, if radius is small Rule 2ð Þ:

8

>

<

>

:

ð3Þ

With a new radius value equal to 1 (x¼ 1) as input,

the corresponding membership value of both rules can be

found as 1�0:5
3�0:5

¼ 0:2 and 3�1
3�0:5

¼ 0:8 based on Equation (3).

Similarly, membership values, 14�8
18�8

¼ 0:6 and 18�14
18�8

¼ 0:4,

can be obtained for the second parameter—strength (the

second column in Figure 2).

Then, the next step, the AND operation, mentioned

in both rules above, refers to as implication: for example,

for 30% infill density (consequent of Rule 1), the outcome

of this implication stage is a membership value (the prod-

uct of radius and strength membership values)

0.2 � 0.6 = 0.12. Therefore, combined with the 30% infill

density, the calculation result for the first row is 0.12/30%

(0.12 for the calculated membership value and 30% for

the consequent value). Similarly, the calculation result

for the second row is 0.176/70%, where 0.176 is obtained

from 0.8 � 0.22 = 0.176.

Exercising all existing rules (two in our case), the

weighted average of all outcomes is calculated as shown

in Figure 2, resulting in the estimated infill density.

Hence, in our illustrative example, with knowing data

6 TU ET AL.
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from Rules 1 and 2, the estimated infill density for a new

specimen (with “notch root radius—1 mm and tensile

strength—14 MPa”) is 0:12�30%þ0:176�70%
0:12þ0:176

¼ 53:8%. Note

that MFs of output parameters are now in form of con-

stants rather than functions thanks to Sugeno FIS.

3.5 | Estimation results and adjustments

Returning back to the original experimental data

reported in Table 2, a new FIS can be constructed from

all known (unshaded) specimens, following the procedure

introduced in Section 3.5. Then, the new unknown

(shaded in Table 2) data from the validation group is

fed into the system and the estimation result based

on the validation group is noted in Table 3. The “experi-

ment output” in Table 3 includes actual values of

manufacturing angles and infill densities repeated from

Table 2; they are eventually compared with “estimation

output.”

Since the outcome of this inverse FIS is values of

manufacturing parameters which are to be fed into

3D-printers, it is very likely that the estimation results will

be correct mathematically, but the values are somewhat

meaningless to the printer due to possible printer specifi-

cations. Hence, the adjustments of results based on real

applications (taking particular specifications of a 3D-

printer into account) are necessary in order to

avoid meaningless values. To take an example of the

adjustment of manufacturing angle, which follows the

principle of “proximity,” if two estimated manufacturing

angles are 4.3� and 12.9� for two different specimens, the

adjusted estimation result will be 0� and 15�, respectively.

Similarly, for infill density, if two estimated infill

densities are 67.6% and 61.4% for two different specimens,

the adjusted estimation result will be 70% and 60%, respec-

tively. Both adjusted estimation results have been included

in Table 3, in “adjusted estimation” column.

3.6 | Estimation error calculation

In order to evaluate the accuracy of the proposed inverse

FIS methodology, estimated outputs (PestÞ are compared

with the actual experimental outputs Pexp

� �

, see Table 3,

where the absolute error is calculated according to this

simple definition:

Error¼ Pest�Pexp

�

�

�

�, ð4Þ

as the presence of “0” in the actual experimental

manufacturing angle (and hence in a denominator for

the case of relative error calculations) could cause

numerical issues.

As to the analyzing errors presented in Table 3, it is

interesting to note a high estimation error for

manufacturing angle of Specimen 5 (see 30� absolute

error). We attempted to analyze this relatively high value

and came up with the following explanations:

• the two adjacent rules influencing the estimation of

Specimen 5 are Specimens 18 and 24 (see Table 2),

since the strength of Specimen 5, which is 13.8 MPa,

lies in between 13.5 (Specimen 24) and 13.9 MPa

(Specimen 18);

• infill densities are also relatively close to each other

(identical in Specimens 5 and 24);

TABLE 3 Experimental output together with the estimation output and its corresponding adjustment.

Specimen

Experiment output Estimation output Adjusted estimation Absolute error

θp (
�) Infill (%) θp (

�) Infill (%) θp (
�) Infill (%) Error θp (

�) Error infill (%)

2 0 30 5.3 30 0 30 0 0

5 0 50 33.7 60 30 60 30 10

8 0 70 9 70 15 70 15 0

11 30 30 24.1 30 30 30 0 0

14 30 50 30 64.3 30 60 0 10

17 30 70 30 61.4 30 60 0 10

20 45 30 37.5 30 30 30 15 0

23 45 50 30 61.4 30 60 15 10

26 45 70 45 70 45 70 0 0

Average error 8.3 4.4

Note: The absolute error between the experimental output and the adjusted estimation.
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• therefore, intuitively, the estimated manufacturing

angle of Specimen 5 should lie somewhere between

30� (Specimen 18) and 45� (Specimen 24).

Moreover, it is seen that although Specimens 18 and

24 have the same radius (3 mm) and very close values of

strength, the experimental manufacturing parameters are

quite different (30�/70% vs. 45�/50%). Such ambiguity

causes the estimation inaccuracy for Specimen 5. Summa-

rizing the above, the estimation result of FIS depends on

the provided experimental data or fuzzy rules where

ambiguous conformity could cause extra estimation

error. Such ambiguity will be discussed in Section 4.

3.7 | Numerical validation

It can be seen from Table 3 that the two manufacturing

parameters of interest can be estimated accurately. The

average estimation error for manufacturing angle and

infill density were seen to be 8.3� and 4.4%, respectively.

At this stage, a validation test was designed in order to

demonstrate the full capability and accuracy of FIS meth-

odology. Authors appreciate the unconventional usage of

the word “validation” in a numerical rather than tradi-

tionally experimental sense but offer readers to

follow them.

In this numerical validation test, illustrated in

Figure 3, we start from the inverse FIS (denoted F1), in

order to estimate manufacturing parameters

(manufacturing angle and infill density) required to

obtain the desired strength values and notch root radius.

We follow the process described above in Sections 3.1–

3.4. These obtained manufacturing parameters, after

adjustments, discussed in Section 3.6, are then used

together with the notch root radius in the next step—the

direct FIS26 (denoted F2) to (re-)estimate values of the

strength. Eventually, these new (re-)estimated values

of the strength are compared to the original experimen-

tal failure strength values. The accuracy of the compari-

son will indicate whether FIS methodologies worked

well.

As shown in Table 4, “manufacturing parameters”

columns present the outcome of F1. These data are

FIGURE 3 Explanation of inverse

and direct estimation using FIS where

F1 refers to as inverse estimation and F2

is the direct validation estimation.

TABLE 4 Estimated manufacturing angle and infill density are brought back into the FIS direct estimation to estimate the failure

strength, which is to be compared with the experimental failure strength for R = 1 specimens.

Specimens (R = 1 mm)

Manufacturing parameters

(adjusted) Strength
Absolute error

θp (
�) Infill (%) Estimation σf (MPa) Experimental σf (MPa) σf

2 0 30 9.94 9.5 0.4

5 30 60 12.2 13.8 1.6

8 15 70 15.2 16.9 1.7

11 30 30 8.57 8.5 0.1

14 30 60 12.2 12.0 0.2

17 30 60 12.2 11.9 0.3

20 30 30 8.57 8.1 0.5

23 30 60 12.2 11.9 0.3

26 45 70 15.3 15.2 0.1

Average error 0.6
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then used in the new direct estimation FIS F2, together

with the radius in order to (re-)estimate failure strength

(presented in “strength estimation” column). The

new direct estimation still uses the aforementioned speci-

mens to set up fuzzy rules, and the validation group is

identical to that of inverse estimation. Estimated failure

strength is then compared with experimental failure

strength, and an absolute error is calculated. It can be

seen (from Table 4) that the average absolute error

is 0.6 MPa, which is relatively small, compared to

actual strength values. To reiterate, this error refers to

the difference of failure strength obtained from experi-

ments and estimated using our inverse-adjusted-direct

approach. It is noted that at the end of the direct estima-

tion process, the estimation error already includes errors

generated in both inverse and direct FIS. Therefore, it

can be concluded that FIS has proven to show a good

performance.

TABLE 5 Inverse FIS estimation of manufacturing parameters with printing period and material weight being included.

No.

Input

Experiment

output

Estimated

adjusted

output

Absolute error

without time and

weight (from

Table 3)

Absolute error

including time and

weight

Radius

(mm)

σf

(MPa)

Print

time

(min)

Mat.

weight

(g)

θp

(�)

Infill

(%)

θp

(�)

Infill

(%)

ABS

error

θp

ABS

error

infill

ABS

error

θp

ABS

error

infill

1 0.5 9.7 93 8 0 30

2 1 9.5 94 8 0 30 0 30 0 0 0 0

3 3 10.9 97 8 0 30

4 0.5 13.1 101 9 0 50

5 1 13.8 102 9 0 50 45 50 30 10 45 0

6 3 14.4 105 9 0 50

7 0.5 17.4 109 10 0 70

8 1 16.9 110 10 0 70 0 70 15 0 0 0

9 3 18.6 113 10 0 70

10 0.5 8.2 93 8 30 30

11 1 8.5 94 8 30 30 30 30 0 0 0 0

12 3 10.0 96 8 30 30

13 0.5 11.5 101 9 30 50

14 1 12.0 102 9 30 50 30 50 0 10 0 0

15 3 12.5 105 9 30 50

16 0.5 12.2 109 10 30 70

17 1 11.9 110 10 30 70 30 70 0 10 0 0

18 3 13.9 113 10 30 70

19 0.5 8.0 92 8 45 30

20 1 8.1 93 8 45 30 30 30 15 0 15 0

21 3 9.8 96 8 45 30

22 0.5 11.0 100 9 45 50

23 1 11.9 101 9 45 50 30 50 15 10 15 0

24 3 13.5 104 9 45 50

25 0.5 15.1 108 10 45 70

26 1 15.2 109 10 45 70 45 70 0 0 0 0

27 3 16.4 112 10 45 70

Average

error

8.3 4.4 8.3 0
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4 | EXTENSIVE STUDY OF COST-
CONTROL RELEVANT
PARAMETERS WITH FIS

In this section, we would like to return to the ambiguity

issue, discussed in Section 3.7. It is noted that Specimen

23, for example, has 45�/50% experimental setup but the

estimation result offers as preferred 30�/60% (see

Table 3). The difference between both pairs cannot be

disregarded; however, the 30�/60% provides a failure

strength similar to 45�/50% (see Table 4). It can be

referred to as the non-uniqueness of 3D-printing, that is,

different combinations of multiple parameters can lead to

similar results. Assuming there are no restrictions on

manufacturing angles with respect to cost, this ambiguity

of results can also be controlled by, for example, the

material cost of the printing, where the solution with less

infill density could be preferred (as discussed Section 1).

Hence, it has risen extensive interest of authors that from

the above inference process, parameters such as printing

period and material consumption are worth of extra

attention, especially for manufacturers.

Table 5 presents the study which includes not only

strength and notch root radius but also printing period

and material consumption for the estimation of optimal

manufacturing parameters. Both printing period and

material consumption have been acquired from the soft-

ware CURA with different design models loaded, where

the assumption has been made that the estimated time

and material usage shown in CURA is identical to real-

ity.31 The printing period refers to the time (minutes)

needed to complete the 3D-printing, while material con-

sumption can quantify the weight of the material being

consumed (grams). Both of them can be categorized as

cost-relevant parameters which represent special indus-

trial needs rather than manufacturing settings or geomet-

rical design. Thus, they are used together with radius and

strength as input of a new inverse FIS.

The setup of the new inverse FIS with two extra input

parameters is similar to the one discussed in Section 3.

Table 5 reports the new estimation error of recommended

manufacturing angle is 8.3� (estimation with time and

weight), which is identical to the outcome in Table 3

(estimation without time and weight). It is even more sat-

isfying to see the new estimation error for infill density

drops from 4.4% (without time and weight) to 0% (with

time and weight). Such comparison leads to the following

conclusions.

• Including additional parameters (such as printing time

and material consumption) can lead to better FIS esti-

mation accuracy for infill density while it has no signif-

icant impact on manufacturing angle.

• Generalizing further, it can be concluded that the

manufacturing angle does not significantly influence

the printing time and material consumption contrary

to infill density.

Once again, the above result proves that FIS is a use-

ful tool that can be used to estimate manufacturing

angles and infill densities with not only requirements of

failure strength and notch root radius but also cost-

control parameters such as printing time and material

consumption. Additional relevant parameters can con-

tribute to better estimation accuracy using FIS.

5 | CONCLUSION

Following the present study, key steps of setting up a

Sugeno FIS were discussed and demonstrated, together

with parameter settings. Different from the previous work,

here, FIS has shown its capability of estimating inversely,

that is, estimating manufacturing angle and infill density

with provided requirements of tensile strength and geo-

metrical characteristic (notch root radius) in 3D-printing

application. The necessity of having adjustments for esti-

mation results has been discussed due to the specification

of 3D-printers, and it has been shown that adjustments are

effective and not resulting in an evident reduction of the

estimation accuracy. It was concluded that FIS has a

highly accurate inverse estimation potential.

Due to the intrinsic versatility of FIS, it has been dem-

onstrated that during the inverse estimation, FIS is able

to deal with a variety of parameters, including not only

strength and geometry but also cost-relevant ones such as

printing period and material consumption. It shows a

comprehensive solution which allows manufacturers to

find the optimal manufacturing parameters and have a

cost-control tool at the same time.

Summarizing, FIS is able to offer high estimation

accuracy as a robust and simple methodology. It has great

potential of being an effective decision-making and cost-

control tool in design problems for modern industries. It

can be foreseen that FIS approach could be widely

applied in engineering fields for mechanical behavior

prediction, geometrical characteristics optimization, and

industrial user needs.
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R notch root radius
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yp printing direction of 3D-printer

Pest estimated parameter

Pexp experimental parameter

θp manufacturing angle of 3D-printing

μ membership value of corresponding data

σf tensile failure strength
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