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Efficient numerical methods to approximate the
parallel transport operators of the induced connection
on a sub-bundle of a vector bundle are presented.
These methods are simpler than naive applications
of a Runge–Kutta algorithm and have accuracy
up to order 4. They have the desirable property
of being insensitive to choices of trivialization of
the sub-bundle. The methods were developed to
solve a problem of computing skyrmions using
the Atiyah–Manton–Sutcliffe and Atiyah–Drinfeld–
Hitchin–Manin constructions, but are applicable to
a broader range of problems in computational
geometry.

1. Introduction
Given a hermitian vector bundle equipped with a unitary
connection ∇, any sub-bundle E comes equipped with
a natural connection ∇E. The covariant derivative ∇Es
of any section s of E is defined to be the orthogonal
projection of ∇s onto E. Induced connections feature
prominently in submanifold geometry, where the tangent
and normal bundles of a submanifold inherit natural
connections from the Levi-Civita connection of the
ambient manifold, and in quantum mechanics, where
they are known as Berry connections. They also play
a central role in the Atiyah–Drinfeld–Hitchin–Manin
(ADHM) construction of instantons, which constructs
solutions of the anti-self-dual Yang–Mills equation using
induced connections (for reviews, see [1–4]).

A fundamental property of any connection is the
collection of its parallel transport operators. These are
linear maps between fibres Ep → Eq that depend on
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a choice of curve γ from p to q. They determine the holonomy group of the connection, and in
discrete geometry, they are used to form a discrete representation of the connection [5]. Parallel
transport operators of induced connections arise naturally in quantum mechanics, e.g. where they
are known as Berry phases. The main result of this note is a collection of high-order numerical
methods to approximate the parallel transport operators of an induced connection.

The results that we presented here are motivated by the ongoing work to approximate
skyrmions using the Atiyah–Manton–Sutcliffe construction [6–18]. This construction approximates
soliton solutions of a nonlinear field theory, the Skyrme model, using parallel transport operators
of Yang–Mills instantons. The simplest and most effective way of constructing instantons is
the ADHM method, which uses induced connections. To obtain a skyrmion from an instanton
entails computing hundreds of parallel transports. Moreover, to compute quantities relevant to
applications in nuclear physics, one may need to compute skyrmions from hundreds of different
instantons. So an efficient and accurate method to compute parallel transport of an induced
connection is highly desirable in this context.

Computing parallel transport amounts to solving an initial value problem

Ω ′(x, 0) = −A(x)Ω(x, 0) and Ω(0, 0) = Id, (1.1)

where A = V†∇γ ′ V is the connection matrix with respect to a chosen orthonormal frame V(x). The
most obvious method to compute Ω (used, e.g. in [14]) is to first find an orthonormal frame V(xi)
at a finite set of points x1, . . . , xn (using a Gram–Schmidt algorithm), then approximate A using
finite differences and finally approximate the solution Ω using a Runge–Kutta method.

There are two problems with this naive method. The first is that it is not gauge-covariant.
The matrix Ω(x, 0) represents a linear map between the fibres of E at 0 and x, so depends on the
choice of bases V(0) and V(x), but does not depend on the choice of bases V(w) at intermediate
points 0 < w < x. However, any approximate solution obtained using the naive method described
earlier would depend on V(w) at intermediate points w. In particular, if V(w) happens to depend
on w in a discontinuous way, then the accuracy of methods such as Runge–Kutta (which assume
analyticity of all functions involved) is questionable. A second criticism of the naive method is
that it is inefficient. It entails computing derivatives (to obtain A) and then partially undoing this
by computing integrals (to solve the parallel transport equation).

The methods that we present below compute parallel transport directly from V(x), and so
avoid this inefficiency. Our methods are derived using an algebraic approach that raises some
intriguing questions and may be of independent mathematical interest.

Given the ubiquity of induced connections, it seems likely that our results will prove useful in
other contexts. We sketch one possible further application to the geometry of curves at the end of
§4. An outline of this article is as follows: in §2, we establish our notation and derive some simple
approximations to parallel transport. In §3, we introduce an operator formalism and use this to
derive more sophisticated approximations to parallel transport. In §4, we illustrate our method in
a simple example and describe some applications. Section 5 discusses some interesting theoretical
questions about our method.

2. Simple approximations to parallel transport

(a) Statement of the problem
Throughout this article, we will take our ambient vector bundle to be the trivial bundle C

n × R

over the manifold R, equipped with the standard hermitian metric and the trivial connection.
No generality is lost here, because parallel transport is always defined along a one-dimensional
submanifold of the ambient manifold, and all vector bundles and connections over R are trivial.

We will let E be a rank m sub-bundle with orthonormal frame v1, . . . , vm. This means that, for
each x ∈ R, the fibre Ex is the span of vectors v1(x), . . . , vm(x) satisfying vi(x)†vj(x) = δij. Let V be
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the n × m matrix-valued function whose columns are v1, . . . vm; note that V†V = Idm. A section of
E can be written in the following form:

z(x) = V(x)y(x), y : R → C
m. (2.1)

A section z is parallel if z′ ∈ E⊥. This is equivalent to V†z′ = 0, which is in turn equivalent to

y′(x) + A(x)y(x) = 0, A(x) := V(x)†V′(x). (2.2)

Equation (2.2) is known as the parallel transport equation, and A = V†V′ is the matrix of the
induced connection.

The solution of the parallel transport equation with initial condition y(x0) = y0 can be written
as follows:

y(x) = Ω(x, x0)y0, (2.3)

where Ω is a U(m)-valued function, called the parallel transport operator. The parallel transport
operator is the unique solution to

d
dx

Ω(x, x0) + A(x)Ω(x, x0) = 0, Ω(x0, x0) = Idm. (2.4)

Gauge transformations g : R → U(m) correspond to an x-dependent change of basis. They act
as

V(x) �→ V(x)g(x) and y(x) �→ g(x)†y(x). (2.5)

The induced action on the parallel transport operator is

Ω(x, x0) �→ g(x)†Ω(x, x0)g(x0). (2.6)

The goal of this article is to find approximations Ωk(x + h, x) to Ω(x + h, x), such that

Ω(x + h, x) = Ωk(x + h, x) + O(hk+1). (2.7)

Our approximations will be written as rational functions of V(xi) for a finite set of points x0 < x1 <

x2 < · · · . We will require that, under gauge transformations, V(xi) �→ V(xi)g(xi), Ωk transforms in
the same way as Ω :

Ωk(x + h, x) �→ g(x + h)†Ωk(x + h, x)g(x). (2.8)

(b) Order 2 approximation
A simple solution to this problem (used earlier in [9]) is

Ω1(x + h, x) = V(x + h)†V(x). (2.9)

Notice that under gauge transformations, V(x + h)†V(x) �→ g(x + h)†V(x + h)†V(x)g(x), so Ω1

transforms in the desired way.
To see that the approximation is order 1, we use Taylor expansions. The parallel transport

equation (2.2) implies that

y′ = −V†V′y, (2.10)

y′′ = −(V′)†V′y − V†V′′y − V†V′y′ (2.11)

= (−(V′)†V′ − V†V′′ + (V†V′)2)y. (2.12)

So

Ω(x + h, x)y(x) = y(x + h) (2.13)

= y(x) + hy′(x) + h2

2
y′′(x) + O(h3) (2.14)

=
[

1 − hV†V′ + h2

2
(−(V′)†V′ − V†V′′ + (V†V′)2)

]
y + O(h3), (2.15)
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where in the last line, y, V, V′, V′′ are understood to be evaluated at x. Conversely,

V(x + h)†V(x) =
[

V(x) + hV′(x) + h2

2
V′′(x) + O(h3)

]†

V(x) (2.16)

= V†V + h(V′)†V + h2

2
(V′′)†V + O(h3) (2.17)

= 1 − hV†V′ − h2
(

(V′)†V′ + 1
2

V†V′′
)

+ O(h3), (2.18)

where in the last line, we used V†V = Idm, (V′)†V + V†V′ = 0 and (V′′)†V + 2(V′)†V′ + V†V′′ = 0.
Comparing the two calculations, we see that Ω(x + h, x) = V†(x + h)V(x) + O(h2).

To improve this method, we seek a second-order approximation in the following form:

Ω2(x + h, x) = aV(x + h)†V(x) + b[V(x)†V(x + h)]−1, (2.19)

where a, b ∈ R are to be determined. Note that the choice of operators on the right ensures that Ω2

transforms in the desired way under gauge transformations. To compare this with Ω , we need
the Taylor expansion of the second operator:

[V(x)†V(x + h)]−1 =
[

V†V + hV†V′ + h2

2
V†V′′ + O(h3)

]−1

(2.20)

= 1 − hV†V′ + h2
(

(V†V′)2 − 1
2

V†V′′
)

+ O(h3). (2.21)

So our approximation is

aV(x + h)†V(x) + b[V(x)†V(x + h)]−1

= (a + b)(1 − hV†V′) + h2
(

− a + b
2

V†V′′ − a(V′)†V′ + b(V†V′)2
)

+ O(h3). (2.22)

This agrees with the expansion (2.15) of Ω precisely when a = b = 1
2 . So our order two method is

Ω2(x + h, x) = 1
2

(V(x + h)†V(x) + [V(x)†V(x + h)]−1). (2.23)

3. Higher order approximations

(a) An operator expression forΩ
The method used earlier to derive a second-order approximation can in principle be used
to derive higher order approximations. However, in practice, the algebra quickly becomes
cumbersome. In this section, we derive an operator expression for Ω that allows for much simpler
derivations of approximations Ωk.

Let Γ (E) be the space of sections of E, or more precisely, the set of functions z : R → C
n such

that VV†z = z. Consider the operator ω(h) : Γ (E) → Γ (E) defined by

(ω(h)z)(x) = V(x)Ω(x, x − h)V†(x − h)z(x − h). (3.1)

The matrices Ω(x + h, x) determine, and are determined by, the operators ω(h). The advantage of
introducing the operators ω(h) is that they can be expressed in the following simple way:

ω(h)z = V exp(−h(D + A))V†z. (3.2)

In this expression, D denotes the operator d/dx, and V, V†, A act on vector-valued functions by
matrix multiplication.

To show that the right-hand sides of (3.2) and (3.1) are equal, we first consider the case where
h = 0. In this situation, both (3.2) and (3.1) correspond to multiplying z(x) with the identity matrix,
so they agree.
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To show that they agree for all values of h, we differentiate both:(
∂

∂x
+ ∂

∂h

)
V(x)Ω(x, x − h)V†(x − h)z(x − h) (3.3)

= (V′(x) − V(x)A(x))Ω(x, x − h)V†(x − h)z(x − h) (3.4)

= (V′V†−VAV†)V(x)Ω(x, x − h)V†(x − h)z(x − h) (3.5)

and (
∂

∂x
+ ∂

∂h

)
(V exp(−h(D + A))V†z) (3.6)

= D(V exp(−h(D + A))V†z) − V(D + A) exp(−h(D + A))V†z (3.7)

= ([D, V] − VA) exp(−h(D + A))V†z (3.8)

= (V′V†−VAV†)V exp(−h(D + A))V†z. (3.9)

In the first of these calculations, we used the parallel transport equation (2.4), and in both
calculations, we inserted a factor of V†V = Idm. We find that the operators ω(h) defined by both
(3.1) and (3.2) satisfy

∂

∂h
ω(h) = (−D − VAV†+V′V†)ω(h). (3.10)

Since the two operators satisfy the same differential equation and agree when h = 0, they agree
for all values of h.

It will prove convenient to rewrite (3.2) as follows. Since V†V = Idm and A = V†[D, V], we have
that D + A = V†DV. Therefore,

ω(h) = V exp(−hV†DV)V† (3.11)

= 1 − hPD + h2

2
PDPD − h3

6
PDPDPD + h4

24
PDPDPDPD + O(h5), (3.12)

in which we have introduced the projection operator P = VV† onto Γ (E). Note that Pz = z for any
z ∈ Γ (E); we have used this fact (and the fact that ω(h) acts on Γ (E)) to eliminate operators P from
the right of all products in (3.12). We now seek operators ωk(h) that approximate ω(h) and from
these deduce approximations to Ω(x + h, x).

(b) Order 2
We begin by rederiving the second-order expression obtained earlier. We seek an approximation
ω2(h) to ω(h) using the operators π1, π2 : Γ (E) → Γ (E) defined by

(π1(h)z)(x) = V(x)V†(x)z(x − h) (3.13)

and
π2(h) = π1(−h)−1. (3.14)

We obtain Taylor expansions as follows:

π1(h) = VV† exp(−hD) (3.15)

= 1 − hPD + h2

2
PD2 + O(h3) (3.16)

and

π2(h) =
(

1 + hPD + h2

2
PD2

)−1

+ O(h3) (3.17)

= 1 − hPD − h2

2
PD2 + h2PDPD + O(h3). (3.18)
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Once again, we have used the fact that P = VV† acts as the identity on Γ (E).
If we compare equations (3.16) and (3.18) with the expansion (3.12) of ω(h), it is clear that

ω2(h) = 1
2

(π1(h) + π2(h)) (3.19)

is a second-order approximation to ω(h).
To compare equation (3.19) with our earlier approximation (2.23) to Ω , we rewrite π1(h) and

π2(h) as follows:

(π1(h)z)(x) = V(x)[V†(x)V(x − h)]V†(x − h)z(x − h) (3.20)

and

(π2(h)z)(x) = V(x)[V†(x − h)V(x)]−1V†(x − h)z(x − h). (3.21)

The first of these is obtained from (3.13) using the fact that VV†z = z for z ∈ Γ (E), and it can be
checked that the second satisfies π2(h)π1(−h) = π1(−h)π2(h) = 1, as required by (3.14). From these,
it follows that ω2 and Ω2 given in (3.19) and (2.23) satisfy

(ω2(h)z)(x) = V(x)Ω2(x, x − h)V†(x − h)z(x − h), (3.22)

and by comparing with (3.1), we see that ω2 reproduces our earlier approximation Ω2.

(c) Order 3
To obtain an order 3 approximation, we consider an ansatz

ω3(h) = a1ω
2
(

h
2

)
ω2
(

h
2

)
+ a2 ω2(h). (3.23)

To compare this with (3.12), we need an expansion for ω2. This is obtained in a similar way to the
expansions (3.16) and (3.18):

ω2(h) = 1 − hPD + h2

2
PDPD

+ h3
(

−1
6

PD3 + 1
4

PD2PD + 1
4

PDPD2 − 1
2

PDPDPD
)

+ h4
(

1
12

PD3PD + 1
8

PD2PD2 + 1
12

PDPD3 − 1
4

PD2PDP D

−1
4

PDPD2PD − 1
4

PDPDPD2 + 1
2

PDPDPDPD
)

+ O(h5). (3.24)

From this, it follows that

ω2(
h
2

)ω2(
h
2

) = 1 − hPD + h2

2
PDPD + h3

(
− 1

24
PD3

+ 1
16

PDPD2 + 1
16

PD2PD − 1
4

PDPDPD
)

+ O(h4). (3.25)
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By comparing these two expansions with (3.12), we see that ω3 given in (3.23) is an order 3
approximation to ω if and only if⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

−1 −1

1
2

1
2

− 1
24

−1
6

1
16

1
4

1
16

1
4

−1
4

−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝a1

a2

⎞⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1

1
2

0

0

0

−1
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.26)

The unique solution is a1 = 4
3 and a2 = − 1

3 . The corresponding order 3 approximation to Ω is

Ω3(x + h, x) = 4
3
Ω2

(
x + h, x + h

2

)
Ω2

(
x + h

2
, x
)

− 1
3
Ω2(x + h, x). (3.27)

(d) Order 4
To obtain an order 4 approximation, we consider operators of the following form:

ω4(h) = a1ω
2
(

h
3

)
ω2
(

h
3

)
ω2
(

h
3

)
+ a2ω

2
(

h
3

)
ω2
(

2h
3

)
+ a3ω

2
(

2h
3

)
ω2
(

h
3

)
+ a4ω

2(h). (3.28)

The expansion of the final operator appearing on the right is given in (3.24), and the expansions
of the remaining three operators can all be derived from (3.24):

ω2
(

h
3

)
ω2
(

h
3

)
ω2
(

h
3

)
= 1 − hPD + h2

2
PDPD

+ h3
(

− 1
54

PD3 + 1
36

PD2PD + 1
36

PDPD2 − 11
54

PDPDPD
)

+ h4
(

1
108

PD3PD + 1
216

PD2PD2 + 1
108

PDPD3 − 1
54

PD2PDPD

− 1
36

PDPD2PD − 1
54

PDPDPD2 + 1
12

PDPDPDPD
)

+ O(h5), (3.29)

ω2
(

h
3

)
ω2
(

2h
3

)
= 1 − hPD + h2

2
PDPD

+ h3
(

− 1
18

PD3 + 1
12

PD2PD + 1
12

PDPD2 − 5
18

PDPDPD
)

+ h4
(

7
324

PD3PD + 17
648

PD2PD2 + 11
324

PDPD3 − 19
324

PD2PDPD

− 1
12

PDPD2PD − 25
324

PDPDPD2 + 29
162

PDPDPDPD
)

+ O(h5) (3.30)
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and ω2
(

2h
3

)
ω2
(

h
3

)
= 1 − hPD + h2

2
PDPD

+ h3
(

− 1
18

PD3 + 1
12

PD2PD + 1
12

PDPD2 − 5
18

PDPDPD
)

+ h4
(

11
324

PD3PD + 17
648

PD2PD2 + 7
324

PDPD3 − 25
324

PD2PDPD

− 1
12

PDPD2PD − 19
324

PDPDPD2 + 29
162

PDPDPDPD
)

+ O(h5). (3.31)

It follows that ω4 given in equation (3.28) is an order 4 approximation to ω given in (3.12) if and
only if a1, a2, a3 and a4 satisfy the linear equation,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

−1 −1 −1 −1

1
2

1
2

1
2

1
2

− 1
54

− 1
18

− 1
18

−1
6

1
36

1
12

1
12

1
4

1
36

1
12

1
12

1
4

−11
54

− 5
18

− 5
18

−1
2

1
108

7
324

11
324

1
12

1
216

17
648

17
648

1
8

1
108

11
324

7
324

1
12

− 1
54

− 19
324

− 25
324

−1
4

− 1
36

− 1
12

− 1
12

−1
4

− 1
54

− 25
324

− 19
324

−1
4

1
12

29
162

29
162

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
a1

a2

a3

a4

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1

1
2
0

0

0

−1
6

0

0

0

0

0

0

1
24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.32)

The unique solution is given by (a1, a2, a3, a4) = 1
44 (90, −27, −27, 8). So our order 4 approximation

to Ω is

Ω4(x + h, x) = 1
44

(
90Ω2

(
x + h, x + 2h

3

)
Ω2

(
x + 2h

3
, x + h

3

)
Ω2

(
x + h

3
, x
)

− 27Ω2
(

x + h, x + 2h
3

)
Ω2

(
x + 2h

3
, x
)

−27Ω2
(

x + h, x + h
3

)
Ω2

(
x + h

3
, x
)

+ 8Ω2(x + h, x)
)

. (3.33)
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(e) Improved methods
The connection matrix A = V†V′ that appears in the parallel transport equation (2.2) is anti-
hermitian. It follows that Ω(x + h, x) is a unitary m × m matrix, and hence that

| det(Ω(x + h, x))| = 1. (3.34)

Therefore,

Ω̂k(x + h, x) := | det(Ωk(x + h, x))|−(1/m)Ωk(x + h, x) (3.35)

satisfies | det(Ω̂k(x + h, x))| = 1 and hence is a better approximation to parallel transport that Ωk.
In fact, in certain situations, Ω̂k(x + h, x) − Ω(x + h, x) = O(hk+2), so this improved approximation
is an order of magnitude better than Ωk. We review these situations below.

The first case to consider is where our sub-bundle E has rank 1. In this case, Ωk is a 1 × 1
matrix, and so

det(Ωk(x + h, x)) = Ωk(x + h, x). (3.36)

Since Ω(x + h, x) is unitary and Ω(x + h, x)−1 = Ω(x, x + h), we have that

Ω(x + h, x)† = Ω(x, x + h). (3.37)

We will assume similarly that

Ωk(x + h, x)† = Ωk(x, x + h). (3.38)

This assumption is satisfied by all of the approximations Ω1, Ω2, Ω3 and Ω4 obtained earlier.
Now we introduce εk(x) such that

Ωk(x + h, x) = Ω(x + h, x) + hk+1εk(x) + O(hk+2). (3.39)

It follows that

Ωk(x, x + h) = Ω(x, x + h) + (−h)k+1εk(x + h) + O(hk+2) (3.40)

= Ω(x, x + h) + (−h)k+1εk(x) + O(hk+2), (3.41)

because εk(x + h) = εk(x) + O(h). Therefore,

| det(Ωk(x + h, x))|2 = Ωk(x + h, x)Ωk(x + h, x)† by (3.36) (3.42)

= Ωk(x + h, x)Ωk(x, x + h) by (3.38) (3.43)

= (Ω(x + h, x) + hk+1εk(x))

× (Ω(x, x + h) + (−h)k+1εk(x)) + O(hk+2) (3.44)

= 1 + [
1 + (−1)k+1]hk+1εk + O(hk+2). (3.45)

Here, in the final line, we used that Ω(x + h, x)Ω(x, x + h) = 1 and that Ω(x + h, x) = 1 + O(h).
Thus, in the case that k is odd, we obtain

Ω̂k(x + h, x) = Ωk(x + h, x)(1 + 2hk+1εk)−(1/2) + O(hk+2) (3.46)

= (Ω(x + h, x) + hk+1εk)(1 − hk+1εk) + O(hk+2) (3.47)

= Ω(x + h, x) + O(hk+2). (3.48)

Thus, if k is odd and E is a complex line bundle, Ω̂k is an order k + 1 approximation to Ω .
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We obtain a similar result if E is a symplectic bundle of rank 2. Recall that, if n is even, C
n

carries a symplectic structure defined by an anti-linear map J : C
n → C

n of the form

J :

⎛⎜⎜⎜⎜⎜⎜⎝
u1
u2
...

un−1
un

⎞⎟⎟⎟⎟⎟⎟⎠ �→

⎛⎜⎜⎜⎜⎜⎜⎝
ū2

−ū1
...

ūn

−ūn−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.49)

A subspace E is called symplectic if Ju ∈ E for all u ∈ E. If E is symplectic and of rank 2, it admits an
orthonormal basis of the form v1, Jv1. In this case, we can write the n × 2 basis matrix V = (v1 Jv1)
in the following form

V =

⎛⎜⎜⎝
q0

11 + q1
1i + q2

1j + q3
1k

...
q0

n/21 + q1
n/2i + q2

n/2j + q3
n/2k

⎞⎟⎟⎠ , (3.50)

where qμ

i are real and

1 =
(

1 0
0 1

)
, i =

(
0 −i
−i 0

)
, j =

(
0 −1
1 0

)
and k =

(
−i 0
0 i

)
. (3.51)

In other words, V can be written as a vector of quaternions. It follows that each of the
approximations Ωk(x + h, x) can be written as a real linear combination of 1, i, j, k, and hence that

| det Ωk(x + h, x)|21 = Ωk(x + h, x)Ωk(x + h, x)†. (3.52)

This means that the calculation starting with equation (3.42) goes through as in the rank 1 case,
and we again obtain that if k is odd, then Ω̂k is an order k + 1 approximation to Ω .

The final situation to consider is where E is a real rank 1 sub-bundle of a real vector bundle.
This case is trivial in the sense that the parallel transport operator is a 1 × 1 orthogonal matrix,
so is either 1 or −1. Similarly, Ω̂k(x + h, x) has determinant ±1 so is either 1 or −1. Thus, for
sufficiently small h, Ω̂k is a perfect approximation to Ωk.

4. Implementation

(a) Simple example
We now illustrate the methods developed earlier in a simple example. For t in the interval
[−π/2, π/2], let Et ⊂ C

4 be the kernel of the matrix,

Γ (t) =
(

cos t 0 sin t cos t
0 cos t − cos t sin t

)
. (4.1)

Then E is a rank 2 sub-bundle of the trivial rank 4 bundle over [−π/2, π/2]. We will approximate
the parallel transport operator Ω(π/2, −π/2).

To do so, we choose N + 1 equally-spaced points ti = −π/2 + iπ/N in the interval [−π/2, π/2],
with 0 ≤ i ≤ N. For each i, we find an orthonormal basis for the kernel of Γ (t) and arrange the
basis vectors into a 4 × 2 matrix V(ti) satisfying V(ti)†V(ti) = Id2. The kernels of Γ (t0) and Γ (tN)
are equal, and for both of these, we choose the basis

V(t0) = V(tN) =

⎛⎜⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎟⎠ . (4.2)
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Table 1. Error in calculating the parallel transport using the methodsΩ k over N intervals.

N 6 12 24 48 96

Ω 1 3.56 × 10−1 1.96 × 10−1 1.03 × 10−1 5.31 × 10−2 2.69 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω 2 1.25 × 10−1 3.04 × 10−2 7.55 × 10−3 1.88 × 10−3 4.71 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω 3 5.61 × 10−3 2.28 × 10−3 3.78 × 10−4 5.01 × 10−5 6.36 × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω 4 2.79 × 10−2 2.23 × 10−3 7.94 × 10−5 3.08 × 10−6 1.51 × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Error in calculating the parallel transport using the improved methods Ω̂ k over N intervals.

N 6 12 24 48 96

Ω̂ 1 1.23 × 10−1 3.03 × 10−3 7.54 × 10−3 1.88 × 10−3 4.71 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω̂ 2 1.23 × 10−1 3.03 × 10−3 7.54 × 10−3 1.88 × 10−3 4.71 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω̂ 3 4.30 × 10−5 6.50 × 10−4 4.27 × 10−5 2.64 × 10−6 1.65 × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω̂ 4 9.80 × 10−3 4.39 × 10−4 3.52 × 10−5 2.19 × 10−6 1.36 × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To approximate parallel transport to accuracy 1/Nk, we compute the matrices Ωk(t(i+1)(k−1), ti(k−1))
for 0 ≤ i < N/(k − 1). We then compute

U = Ωk(tN , tN−k+1))Ω
k(tN−k+1, tN−2k+2) . . . Ωk(tk−1, t0). (4.3)

Our earlier results imply that Ω(π/2, −π/2) = U + O(1/Nk).
The matrix Ω(π/2, −π/2) can in fact be computed exactly by solving the differential equation

(2.4). The result is

Ω

(
π

2
,
−π

2

)
=

⎛⎜⎝− cos
(

π√
2

)
− sin

(
π√

2

)
sin

(
π√

2

)
− cos

(
π√

2

)
⎞⎟⎠ . (4.4)

We can assess the accuracy of our approximation by computing the error E = 1
2 Tr(

†), where


 = U − Ω(π/2, −π/2). The results are displayed in table 1. As expected, using a higher order
method allows one to attain a desired accuracy with fewer points than would be necessary with
a lower order method.

Now we consider the improved method. Recall that the improved method asks as to
multiply each matrix Ωk(t(i+1)(k−1), ti(k−1)) with a positive real number so that the modulus
of its determinant is 1. Since scalar multiplication commutes with matrix multiplication and
determinants are multiplicative, this is equivalent to computing U as in (4.3) and then computing
Û = U/

√
det(U). Thus, the additional computational cost associated with the improved method

is minimal.
Nevertheless, in the cases where k is odd, the improved method Ω̂k is a substantial

improvement over Ωk and comparable in accuracy with Ωk+1, as can be seen in table 2. The reason
for this improvement is that the kernel of our matrix E is a rank 2 symplectic subspace of C

4, so by
our earlier results, Û − Ω(π/2, −π/2) = O(1/Nk+1) when k is odd (whereas U − Ω(π/2, −π/2) =
O(1/Nk)).

Table 2 also shows that the errors obtained with the methods Ω̂1 and Ω̂2 are identical: this is
because these two methods are in fact mathematically equivalent. To see this, one simply needs
to note that

(V†(x)V(x + h))−1 = (V†(x)V(x + h))†

|V†(x)V(x + h)|2 = V†(x + h)V(x)
|V†(x)V(x + h)|2 (4.5)
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using the fact that V†(x)V(x + h) can be written as a quaternion. Thus, Ω1 and Ω2 given in
equations (2.9) and (2.23) agree up to scalar multiplication, and their normalized counterparts
Ω̂1 and Ω̂2 agree exactly.

(b) Application to instantons and skyrmions
The ADHM construction produces instantons (i.e. finite-action solutions of the self-dual Yang–
Mills equations) using induced connections [1–4,19]. In fact, all instantons can be produced by
the ADHM method.

In the case of gauge group SU(2), the method starts with an (n + 1) × n matrix 
 of quaternions
that depends on a point x ∈ R

4. This must be written in the following form:


(x1, x2, x3, x4) =
(

L
M − (x41 + x1i + x2j + x3k) ⊗ Idn

)
(4.6)

with L, M matrices of quaternions of size 1 × n and n × n such that M is symmetric. The matrix
must be such that 
(x)†
(x) is a real invertible matrix for all x. This constraint ensures that the
kernel Ex of 
(x)† is of quaternion dimension 1 (or complex dimension 2). So one can choose a
column vector V(x) of quaternions satisfying V(x)†V(x) = 1 that spans the kernel. The instanton is
obtained by setting

Aμ(x) = V(x)† ∂V
∂xμ

(x). (4.7)

In other words, the instanton is the induced connection on the sub-bundle E.
Atiyah–Manton proposed [6,7] that holonomy of instantons could be used to approximate

skyrmions, which are used to model atomic nuclei. To be more precise, let A be a fixed instanton
with gauge group SU(2). For each (x1, x2, x3) ∈ R

3, let U(x1, x2, x3) be the parallel transport
operator from t = −∞ to t = ∞ along the line in R

4 parametrized as t �→ (x1, x2, x3, t). Atiyah–
Manton proposed that the resulting function U : R

3 → SU(2) can be used to approximate a
solution of the Euler–Lagrange equations of the Skyrme model.

This approximation was shown to work well in a number of situations [4,11–15]. Subsequently,
Sutcliffe gave a theoretical explanation of the success of the approximation [16]. Sutcliffe moreover
showed that instantons could also be used to approximate skyrmions coupled to vector mesons.
In Sutcliffe’s construction, one chooses a gauge transformation g : R

4 → SU(2) such that the gauge
transformed connection

Ãμ = g−1Aμg + g−1 ∂g
∂xμ

, (4.8)

satisfies A4 = 0. The vector mesons are then obtained by computing the integrals,

Wi(x
1, x2, x3) =

∫∞

−∞
φ(t)Ãi(x

1, x2, x3, t) dt (4.9)

for a certain function φ(t).
Our methods provide an efficient numerical implementation of the Atiyah–Manton–Sutcliffe

construction. If the ADHM data of an instanton is known, then to compute the holonomy matrix
U at a point (x1, x2, x3), one needs to divide the corresponding line in R

4 into a finite number of
sub-intervals. The holonomy matrix U can then be computed as a product of parallel transport
operators along these intervals. To obtain accurate results, it is important to include the points
(x1, x2, x3, ±∞) at the two ends of the line. The basis matrices V(x1, x2, x3, ±∞) at these two points
by definition span the kernel of

lim
x4→±∞

1
x4 
(x1, x2, x3, x4)†= ±

(
0 1 ⊗ Idn

)
. (4.10)

We note that the kernel of this matrix is the same in both the +∞ and −∞ cases and does not
depend on x1, x2, x3. It is important to choose the same basis V(x1, x2, x3, ±∞) = V∞ for all values
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of x1, x2, x3. A very natural choice is

V(x1, x2, x3, ±∞) =

⎛⎜⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎟⎠ . (4.11)

The choice of bases at other points is of no consequence because the approximation Ωk depends
only on the choice of bases at x4 = ±∞. The only constraint is that the columns of V should be
orthonormal vectors in C

2n+2.
The example described in the previous subsection corresponds to taking the holonomy of

a charge 1 instanton. In this case, n = 1, and the ADHM matrix is particularly simple and is
given by L = 1, M = 0. The matrix in equation (4.1) is just cos t
†(0, 1, 0, tan t), and the parallel
transport operator Ω(π/2, −π/2) that we computed was therefore U(0, 1, 0). Notice that our choice
of parametrization x4 = tan t maps the points x4 = ±∞ to t = ±π/2. This parametrization also
ensures that the points on the circle in S4 that corresponds under stereographic projection to our
line in R

4 are fairly evenly spaced. This is a sensible way to choose points because the instanton
on R

4 constructed by the ADHM construction is the pull-back of an instanton on S4.
Our method also aids the calculation of the vector mesons. This is because the constraint Ã4 = 0

imposed on the connection (4.8) is equivalent to the parallel transport equation:

∂g
∂x4 + A4g = 0. (4.12)

One can therefore calculate g(x1, x2, x3, x4) by calculating the parallel transport of A along the
straight line from (x1, x2, x3, −∞) to (x1, x2, x3, x4). In fact, if one was also computing U, then one
would already have calculated this parallel transport as part of that process. Having calculated g,
one can calculate Ãi efficiently using the identity

Ãi = Ṽ† ∂Ṽ
∂xi

, Ṽ = Vg, (4.13)

which is easily shown to be equivalent to (4.7) and (4.8). In practice, these derivatives would
be approximated as finite differences. Finally, the integral in the definition (4.9) of Wi can be
approximated by a finite sum.

(c) Calculating the total torsion of a space curve
In this section, we describe another possible application to the geometry of spacial curves. Let
x : [0, L] → R

3 be a smooth arclength-parametrized closed curve (meaning that x(L) = x(0) and
dnx/dsn(L) = dnx/dsn(0) for all n). Let u, n, b be its Frenet frame and let κ , τ be its curvature and
torsion. The total torsion of x is expressed as follows:

T :=
∫L

0
τ (s) ds. (4.14)

This quantity appears in a number of contexts. For example, all curves embedded in a sphere have
total torsion zero, and the sphere and plane are the only surfaces with this property [20]. The total
torsion is a conserved quantity for the localized induction equation for vortex filaments [21] (and
is the second such quantity in the hierarchy developed in [22]). The total torsion is related to the
self-linking number L ∈ Z and the writhe Wr ∈ R by the formula T/2π = L − Wr [23].

The torsion τ can be understood as the induced connection on the normal bundle to the curve.
To see this, choose the frame v1(s) = n(s) and v2(s) = b(s) for the normal bundle and combine these
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into a 3 × 2 matrix V. Then, by the Frenet equations, the induced connection is

A = V†V′ =
(

n · n′ n · b′

b · n′ b · b′

)
=
(

0 −τ

τ 0

)
. (4.15)

It follows that

Ω(L, 0) =
(

cos T sin T
− sin T cos T

)
. (4.16)

Thus Ω(L, 0) determines the fractional part of T/2π , and of Wr.
Our methods can be used to calculate the fractional part of T/2π , and hence of Wr, to high

precision. To do so with the order 3 method, one must first choose a finite set x0, . . . , x2N−1 of
points along the curve, written in the form xi = x(si) with s0 < s1 < · · · < s2N−1. Then the curve
can be approximated by a polygonal arc with edge vectors ui := xi+1 − xi, where the indices are
understood modulo 2N. For each edge vector, one must choose 3 × 2 matrices Vi satisfying VT

i ui =
0 and VT

i Vi = Id2. One then calculates

Ω2
i = 1

2
(VT

i+1Vi + (VT
i Vi+1)−1), (4.17)

Ω3
j = 4

3
Ω2

2j+1Ω
2
2j − 1

6
(VT

2j+2V2j + (VT
2jV2j+1)−1) (4.18)

and U = Ω3
N−1Ω

3
N−2 . . . Ω3

0 . (4.19)

Finally, one finds an angle θ ∈ [0, 2π ) by solving the system:

U11√
U2

11 + U2
12

= cos θ and
U12√

U2
11 + U2

12

= sin θ . (4.20)

The fractional part of T/2π is given by⌊
T

2π

⌋
= θ

2π
+ O

(
1

N3

)
. (4.21)

Obviously, higher precision could be obtained using the order 4 method. Note that it is not
necessary to choose the basis matrices Vi to approximate the Frenet frame—any choice of the
orthonormal frame would be suitable because our method respects changes of basis (and because
the group SO(2) is abelian).

With a little more effort, one could also compute the integer part of T. To do this, one
should choose the columns of Vi to be discrete approximations to the normal and binormal. For
example, applying Gram–Schmidt orthogonalization to the vectors ui, ui+1 − ui−1, ui × (ui+1 −
ui−1) results in a discrete approximation to the unit tangent, normal and binormal. One then
defines Hj = Ω3

j Ω3
j−1 . . . Ω3

0 . One can compute the integer part of T/2π by looking at sign changes
of the upper right entry of Hj. More precisely, let n+ be the number of integers j such that
(Hj)11 > 0, (Hj)12 < 0 and (Hj+1)12 ≥ 0, and let n− be the number of integers j such that (Hj)11 > 0,
(Hj)12 ≥ 0 and (Hj+1)12 < 0. Then the total torsion is given by T = 2π (n+ − n−) + θ + O(N−3).

5. Conclusion
We have derived numerical methods to approximate parallel transport operators for the induced
connection on a subbundle of a vector bundle. Our methods are simpler than a naive application
of the Runge–Kutta method and insensitive to choices of basis.

Our most accurate method has errors of order 4. This level of accuracy should be sufficient for
most applications. But the algebraic framework that we have presented could be used to derive
higher order methods if desired. We expect that an order k method could be obtained for any k ∈ N,
and it would be of interest to find a mathematical proof of (or counterexample to) this statement.

Another interesting question concerns the number of sub-intervals required to obtain an order
k method. Our order 3 method for approximating Ω(h, 0) required us to divide the interval [0, h]
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sub-intervals of length h/2, while our order 4 method requires 3 sub-intervals of length h/3. We
find it surprising that so few sub-intervals are needed. To see why, one only needs to look at
equation (3.31), whose solution was required to find an order 4 method. This is a linear system of
14 equations in 4 unknowns, so it is surprising that we were able to find a solution. Similarly,
the linear system (3.26) has a solution despite having more equations than unknowns. These
observations suggest that there is some underlying reason why solutions can be found, despite
the equations apparently being overdetermined, but we have been unable to find a satisfactory
explanation. It would be an interesting mathematical problem to determine the minimum number
of subdivisions required to obtain an order k method.

These questions have a natural algebraic formulation. The expressions that appear in our
calculations in §3 are sums of mononomials of the form PDiPDjPDk . . .. These can be represented
as elements Di ⊗ Dj ⊗ Dk · · · of the tensor algebra TR[D] over the space R[D] of polynomials
in D. In particular, the parallel transport operator ω(h) in equation (3.12) that we are trying
to approximate corresponds to exp(−hD) = 1 − hD + (h2/2)D ⊗ D − · · · (with h treated as a real
number). This is just the exponential of −hD using the tensor product. On the other hand,
the expression π1(h) in (3.16) is 1 − hD + (h2/2)D2 − · · · , which is the exponential of −hD
defined using the polynomial product. Our approximations (3.19), (3.23) and (3.28) are Laurent
polynomials in π1(nh/(k − 1)) that agree with ω(h) up to terms of total degree k + 1. So the
problem of finding approximations to the parallel transport operator amounts to comparing the
exponential maps defined by two different products on TR[D].
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