
This is a repository copy of Automated Reasoning for Physical Quantities, Units, and 
Measurements in Isabelle/HOL.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198263/

Version: Accepted Version

Proceedings Paper:
Foster, Simon David orcid.org/0000-0002-9889-9514 and Wolff, Burkhart (Accepted: 2023)
Automated Reasoning for Physical Quantities, Units, and Measurements in Isabelle/HOL. 
In: The 27th Internation Conference on Engineering of Complex Computer Systems 
(ICECCS 2023). IEEE (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Automated Reasoning for Physical Quantities,

Units, and Measurements in Isabelle/HOL

Simon Foster

University of York, UK

simon.foster@york.ac.uk

Burkhart Wolff

Université Paris-Saclay, France

wolff@lri.fr

Abstract—Formal verification of cyber-physical systems re-
quires that we can accurately model physical quantities. SI units
allow a higher degree of rigour, since we can ensure compatibility
of quantities in calculations. In this paper, we contribute a
mechanisation of the International System of Quantities (ISQ)
and the SI unit system in Isabelle/HOL. We show how Isabelle
can be used to provide a type system for physical quantities,
and automated proof support. Quantities are parameterised by
dimension types and so only quantities of the same dimension can
be equated. Our construction is validated by a test-set of known
equivalences between both quantities and SI units. Moreover, the
presented theory can be used for type-safe conversions between
the SI system and others, like the British Imperial System (BIS).

I. Introduction

The International System of Quantities [1] (ISQ) is a

standard for the definition of physical quantities, units, and

measurement. It defines seven base quantities, such as mass,

length, time, and current, along with several derived quantities,

such as velocity, force, and energy. Each quantity has a cor-

responding unit of measurement, defined in the International

System of Units [2] (SI). This is a coherent system of units,

built on seven base units (metre, kilogram, second, etc.), 22

derived units (farad, lumen, watt, etc.), and 24 prefixes.

With the advent of cyber-physical and robotic systems,

software needs to account for the physical environment in

which a system operates and sensed measurements [3]. The

integration of physical quantities into software engineering is

therefore important to ensure that physical equations, models,

and program code respect the physical units [4], [5]. As an

example, a recent industrial case study on a certification of an

autonomous underwater vehicle [6] develops a model-based

assurance case, which includes system-level specifications and

physical properties such as its dimensions and velocity.

The contribution of this paper is a mechanisation of the

ISQ and SI in Isabelle/HOL, through a deep integration into

Isabelle’s polymorphic type system [7]. Our aim is two-fold:

(1) to provide a coherent mechanisation of the ISQ and its

ontology of units; and (2) to support the use of units in formal

models for cyber-physical systems [6], [3]. Our treatment of

physical quantities allows the use of Isabelle’s type system

in checking for correct use of units and reasoning about

physical quantities. Our construction is validated by a test-

set of known equivalences between both quantities and SI

units [2]. Moreover, the presented theory can be used for type-

safe conversions between the SI and non-metric systems.

We introduce a parametric quantity type, N[D,S], where N

is a numeric type, D is a dimension type (e.g. L, M, T), and

S is the system of units. We can specify quantities like 20 m

with type R[L, SI], which is 20 metres in the SI (dimension

length), and 30 lb of type R[M,BIS], which is 30 pounds in the

BIS (dimension mass). Only quantities of the same dimension

and unit system are comparable, and so “20 m = 30 lb” is

a type error. We can also convert between different systems

using function metrify, such that metrify(30 lb) ≈ 9.07 kg.

In summary, our contributions are: (1) an embedding of

the ISQ into Isabelle/HOL, including dimensions, quantities,

units, and conversions; (2) a sound-by-construction quantity

type system that checks dimensions and employs dimension

coercions; (3) automated proof support for theorems involving

quantities; (4) a formal ontology of units from the VIM [1]

and SI Brochure [2], for use in specifications and models.

The structure of our paper is as follows. In §II we briefly

survey related work. In §III we begin our contributions with

dimension types. In §IV we use dimensions to implement

the quantity type. In §V, we implement the SI unit system,

and an associated ontology of units and equations. In §VI we

describe conversions between unit systems. Finally, in §VII

we and conclude. Our Isabelle development can be found on

the Archive of Formal Proofs [8].

II. RelatedWork

The need for physical quantities and measurement in soft-

ware engineering is widely acknowledged [9], [4], [5]. Quan-

tity types are implemented in systems like MATLAB and

Mathematica to support conversion between units, checking

for unit consistency, and simplification of dimensions. There

have also been numerous direct implementations of ISQ and

SI for programming languages. Dimension Types have been

presented by Kennedy [10], [11] for F♯, and a more recent

account is by Garrigue and Ly [12]. These works directly

implement a type system for dimensions and units, while our

approach formally derives such type inference inside HOL’s

parametric polymorphism. In contrast to direct implementa-

tions, our approach assures correctness by construction.

Hayes et al. [9] extend the Z notation with an operation

M ⊙ D for a quantity of numeric type M and dimension

type D, which has served as inspiration for our approach.



Fig. 1. Mapping dimension types into the dimension universe

Similarly, Gibson et al. [13] extend Event-B with dimensions,

measurements, and unit conversions via a dimension universe

construction. Aragon [14] formalises quantities as ordered

pairs called q-numbers, consisting of a complex number and a

unit label, and explores their algebraic structures. His algebraic

properties have served as a benchmark.

Our work provides an implementation of the ISQ that is

foundational, in that we precisely implement the quantity

calculus, but also applicable, because it permits automatic

type checking of dimensions, efficient proof support, and code

generation [15] to provide a verified baseline implementation.

III. Dimensions

Dimensions differentiate quantities of different kinds. Quan-

tities 10 m and 10 kg have the same magnitude, but are

incomparable since they have the dimensions of length and

mass, respectively. The seven base dimensions of the ISQ

are each denoted by a symbol, such as L, M, T etc., and a

dimension is a product of symbols, each raised to an integer

power. For example, the area quantity has dimension L2, and

the velocity quantity L · T−1. Here, we support a generic

dimension system based on vectors for different unit systems.

In a type-theoretic context, we can parametrise a quantity

by its dimension type. Our approach is shown in Figure 1. We

define (1) a universe for dimensions; (2) a type class (dim-

type) to syntactically characterise dimension types that can be

injected into the universe; (3) define a set of unitary types and

type constructors that instantiate dim-type, and can parametrise

quantities. Effectively, this gives an inductive definition for a

family of types over the dimension arithmetic operators.

Universe of Dimensions. Assume there are k ∈ N base

quantities. A dimension has the form d
x1

1
·d

x2

2
· · · d

xk
n , a product

of dimension symbols (di) each raised to a power drawn from

the vector x. We model dimension vectors in Isabelle using the

type definition (N, I) dimvec , (I ⇒ N), where I is a finite type

isomorphic to {1..k} and N is a suitable numeric type. In par-

ticular, we define ISQ dimensions with the type Dimension ,
(Z, sdim) dimvec, where sdim = {Length,Mass,Time, ...}.

We now define the dimension constructors. The null di-

mension 1 , (λ i. 0) is for dimensionless quantities, such

as mathematical constants. Function b(i) , 1(i 7→ 1), for

i ∈ I, constructs a base dimension from the base quantity

i. A base dimension has exactly one entry in the vector

mapping to 1, with the others all 0. We also define a predicate

is-BaseDim :: (N, I) dimvec⇒ B, for base dimensions.

A product of two dimensions, x · y , (λ i. x(i) + y(i))

pointwise sums together all of the powers, and an inverse,

x−1 , (λ i. − x(i)) negates each of the powers. We obtain

division as x/y , x · y−1. Then, whenever (N,+, 0,−) forms

an abelian group, so does ((N, I) dimvec, ·, 1, −1). The group

laws can be used to equationally rewrite dimension expressions

using the simplifier.

Another avenue to efficient proof for dimensions is provided

through the Isabelle code generator [15]. Since the set of base

quantities I is enumerable, we can always convert a dimension

vector to a list of N, and vice-versa. Moreover, each of the

dimension operators can be represented as list operators, with

which we can perform efficient dimension arithmetic.

Dimension Types. We first introduce a dimension type class:

class dim-type = unitary+

fixes dim-ty-sem :: D itself ⇒ Dimension

class basedim-type = dim-type+

assumes is-BaseDim : is-BaseDim(QD(D))

A type class characterises a family of types that each im-

plement a given function signature with certain properties,

such as algebraic structures like monoids and groups. The

class command introduces a type class with a given name,

potentially extending existing classes. The fixes subcommand

declares a new typed symbol in the signature, and assumes

introduces a property of the symbols in the signature.

The dim-type class characterises a unitary type D (i.e. with

cardinality 1) associated with a dimension. D itself represents

a type as a value in Isabelle/HOL. Thus, dim-ty-sem is a func-

tion from types inhabiting dim-type to particular dimensions,

as shown in Figure 1. We can use the syntactic constructor

TYPE(α) to obtain a value of type α itself , for a particular

type α. This effectively introduces an isomorphism between

dimensions at the value level and the type level. We introduce

the notation QD(D) , dim-ty-sem TYPE(D), which obtains

the dimension of a given dimension type. The class basedim-

type further specialises dim-type for base dimensions.

We use these classes to capture the dimension type con-

structors. The base dimension types are distinct unitary types,

for example Length , {()}1. We define such a type for each of

the seven base quantities, along with a special type called 1

for dimensionless quantities. Each base dimension instantiates

basedim-type by mapping to the corresponding dimension

symbol, such that, for example, QD(Length) = Length.

Next, we introduce syntactic types to represesent type-level

dimension arithmetic. For product, we define a unitary type

(D1,D2) DimTimes, whose parameters D1 and D2 inhabit the

dim-type class. For inverse, we define (D) DimInv, with D in

dim-type. We assign these dim-ty-sem implementations:

dim-ty-sem(d :: (D1,D2) DimTimes) = QD(D1) · QD(D2)

dim-ty-sem(d :: (D) DimInv) = QD(D)−1

The semantics of a DimTimes type calculates the underlying

value-level dimension of each parameter, D1 and D2, and

multiplies them together. The DimInv type calculates the di-

mension and then takes the inverse. We provide mathematical

1Types have a different namespace to definitions, so there is no clash.



syntax, so that we can write dimension types like M · L and

T−1. We also define a type synonym for division, namely

(D1,D2) DimDiv , D1 · D
−1
2

, and give it the usual syntax.

Moreover, we define a fixed number of powers and inverse

powers at the type level, such as D−3 = (D · D · D)−1.

We can now also create the set of derived dimensions

specified in the ISQ using type synonyms. For example,

Velocity , L·T−1 and Pressure , L−1 ·M·T−1, which provides

a terminology of dimensions for use in formal specifications.

We show further examples below, which also demonstrates the

mathematical syntax for dimensions in Isabelle/HOL:

Dimension Normalisation. Dimension types with different

syntactic forms are incomparable, because they have distinct

type expressions. For example, whilst intuitively L·T−1 ·T = L,

these two expressions are different, and no built-in normal-

isation is available. As a result, we implement our own

normalisation function, normalise(D), for ISQ dimensions in

Isabelle/ML, so that quantities over dimensions with distinct

syntax can be related. This evaluates the vector of a dimension

expression, and then uses this to produce a normal form.

We implement typ-to-dim :: typ ⇒ int list, which eval-

uates types formed of base dimensions and arithmetic op-

erators. For example, typ-to-dim(L) = [1, 0, 0, 0, 0, 0, 0] and

typ-to-dim(D−1) = map (λ x. − x) (typ-to-dim(D)). Following

evaluation, we can construct a normal form as an ordered

dimension expression: Lx1 ·Mx2 ·Tx3 · · · Jx7 , with terms where

xi = 0 omitted. If every term is 0, then the function produces

the dimensionless quantity, 1. For example, normalise(T4 ·L−2 ·

M−1 · I2 ·M) yields the dimension type L−2 · T4 · I2.

IV. Physical Quantities andMeasurement

As for dimensions, we model quantities at both the value

and type level, through a universe construction.

Quantity Universe. We specify our quantity universe as a

record type (N, I) Quantity by pairing a magnitude of type

N with a dimension vector of type (int, I) dimvec. N is a

suitable numeric type (e.g. Q, R), and I is the dimension

index. For example, we define the zero and one quantities

as 0 , (0, 1) and 1 , (1, 1), which are both dimension-

less. We define functions mag :: (N, I) Quantity ⇒ N and

dim :: (N, I) Quantity ⇒ I, which extract resp. the magnitude

and dimension. The arithmetic operators are defined as below:

(x,D1) · (y,D2) = (x · y,D1 · D2)

(x,D)−1 = (x−1,D−1)

(x,D1)/(y,D2) = (x/y,D1/D2)

(x,D) + (y,D) = (x + y,D)

(x,D) − (y,D) = (x − y,D)

(x,D1) ≤ (y,D2)⇔ (x ≤ y ∧ D1 = D2)

The arithmetic operators are overloaded, and so can appear

on both sides of these equations. Multiplication, inverse, and

division are total operations that distribute through the pair.

When multiplying two quantities, we need to multiply both the

magnitudes and dimensions. For example, (7,L ·T−1) · (2,T) =

(14,L). Addition and subtraction are specified only when the

two quantities have the same dimension. Finally, the order on

quantities is simply the order on the magnitudes, but with the

requirement that the two dimensions are equal.

Measurement Systems. We extend the Quantity type to create

“measurement systems”, which additionally specify the system

of units being employed. A measurement system, with type

(N, I,S) Measurement-System, is a quantity that specifies the

system of units via type parameter S, which inhabits the type

class unit-system. This extra parameter allows us to distinguish

quantities using different systems of units, and so prevent

improper mixing. For example, the presence of the SI tag

means that length is measured in metres, whereas the presence

of a tag such as BIS may indicate that yards is used. This

also facilitates type-safe conversion between different systems.

All the arithmetic operators are lifted to measurement sys-

tems. Since all such functions are monomorphic (e.g. of type

α⇒ α⇒ α), mixing of systems is avoided by construction.

Dimension Typed Quantities. Having defined our universe

for quantities, we next enrich this representation with type-

level dimensions. For expediency, we assume that all such

quantities also have a measurement system attached. More-

over, we focus on quantities with dimensions from the ISQ.

We define a type (N,D,S) QuantT with characteristic set

{x :: (N, sdim, S) Measurement-System. dim(x) = QD(D)}

which is the set of ISQ quantities x whose dimension (dim(x))

agrees with the one in the dimension type D. For convenience,

we introduce the syntax N[D,S] for (N,D,S) QuantT.

Lifting of operators x+y and x−y is straightforward for typed

quantities, since they are monomorphic and only defined when

the dimensions of x and y agree. We can then easily show that

typed quantities form an additive abelian group. We also define

a scalar multiplication scaleQ :: N ⇒ N[D,S] ⇒ N[D,S],

with notation n ∗Q x, which scales a quantity by a given number

without changing the dimension. We can then show that typed

quantities form an additive abelian group, and a real vector

space, with (∗Q) as the scalar multiplication operator.

Things are more involved when dealing with multiplication

and division, since these need to perform type-level dimension

arithmetic. For example, if we have quantities x :: R[I, SI] and

y :: R[T, SI], then multiplication of x and y is well-defined,

and should have the type R[I ·T, SI]. As a result, we introduce

bespoke functions for these operations:

qtimes :: N[D1,S]⇒ N[D2,S]⇒ N[D1 · D2,S]

qinverse :: N[D,S]⇒ N[D−1,S]

qdivide :: N[D1,S]⇒ N[D2,S]⇒ N[D1/D2,S]

Function qtimes multiplies two quantities, with the same

measurement system, and “multiplies” the dimension types



using the type constructors in §III. Technically, no multipli-

cation computation takes place, but rather a type constructor

is inserted. Similarly, qinverse represents the inverse of the

parametrised dimension, and qdivide is division. What is

achieved here is analogous to dependent types, though with

additional machinery for normalising dimension types.

The definitions of qtimes and qinverse are obtained by

lifting of the underlying quantity operators [16]. We need

to prove that the invariant of the QuantT type is satisfied,

which involves showing that the family of typed quantities is

closed under the two functions. For qmult, we need to prove

that dim(x · y) = QD(D1 · D2), whenever dim(x) = QD(D1)

and dim(y) = QD(D2), which follows by definition. For

convenience, we give these functions the usual notation of

x• y, x−1, and x/y, but embolden the operators to syntactically

distinguish them. With qtimes and qinverse, we can also define

positive and negative powers, such as x−2 = (x • x)−1.

Equality (x = y) in HOL is a homogeneous function of

type α → α → B; therefore, it cannot be used to compare

objects of different types. Consequently, it cannot be used

to compare quantities whose dimension types have different

syntactic forms (e.g. L · T−1 · T and L). This motivates a

definition of heterogeneous (in)equality for quantities:

qequiv :: N[D1,S]⇒ N[D2,S]⇒ B

qless-eq :: N[D1,S]⇒ N[D2,S]⇒ B

These functions are defined by lifting the functions (=) and (≤)

on the underlying quantities. They ignore the dimension types,

but the underlying dimensions must nevertheless be equal. We

give these functions the notation x � y and x . y, respectively.

(�) forms an equivalence relation, and (.) forms a preorder.

Moreover, (�) is a congruence relation for (•), (−1), and (∗Q).

Proof Support. We implement an interpretation-based proof

strategy for typed quantity (in)equalities. When proving HOL

(in)equalities, it suffices to show (in)equality of the magnitudes

as, owing to homogeneous nature of these relations, the

dimensions are equal by construction. For our heterogeneous

operators, we also need to prove that the two dimensions are

equal, for example using group laws.

We supply a proof method called si-simp, which uses the

simplifier to perform transfer, interpretation, and arithmetic

rewriting. An additional method called si-calc also compiles

dimension vectors using the code generator, and can thus

efficiently prove dimension equalities. We can, for example,

prove the following algebraic laws automatically:

a ∗Q(x+y) = (a ∗Q x)+(a ∗Q y) x•y � y•x (x•y)−1
� x−1 •y−1

Coercion and Normalisation. The need for heterogeneous

quantity relations (�, .) can be avoided by the use of coer-

cions to convert between syntactic representations of dimen-

sions. We can use Isabelle’s sophisticated syntax and checking

pipeline to normalise dimensions, and so automatically coerce

quantities to a normal form. This improves usability, since the

usual relations (=) and (≤) can be used directly.

We implement a function dnorm :: N[D1,S] ⇒ N[D2,S],

which converts between quantities with distinct but equivalent

dimension forms. It checks whether the source and target

dimensions (D1 and D2) are the same. If so, then it performs

the coercion by erasing the original type and instating D2.

Otherwise, it returns a valid quantity of the target dimension,

but with magnitude 0. This is acceptable because we guard the

use of dnorm with a dimension type-check to ensureD1 = D2.

For example, if we have x :: R[L ·T−1 ·T, SI], then we can use

dnorm(x) :: R[L, SI] to obtain a quantity with an equivalent

dimension, since QD(L ·T−1 ·T) = QD(L). For two equivalent

quantities x � y, we have it that dnorm(x) = y.

Next, we extend Isabelle’s checking pipeline to allow di-

mension normalisation, so that D2 can be automatically calcu-

lated. We implement an ML function check-quant, which takes

a term and enriches it with dimension information. Whenever

it encounters an instance of dnorm(t), it extracts the type of

t, which should be N[D,S]. We then enrich the instance of

dnorm to have the type N[D,S]⇒ N[normalise(D),S].

We insert check-quant into the term checking pipeline using

API function Syntax Phases.term check, which adds a

new checking phase. We add normalisation after type inference

so that we can use the unnormalised dimension type expression

as input to check-quant. The soundness of this transformation

does not depend on the correctness of normalise, since if an

incorrect dimension is calculated, dnorm returns 0.

V. Unit Systems and the SI

An SI unit is a quantity in the ISQ with magnitude 1. A base

unit in system S is a unit with a base dimension. Base units

are described by the predicate is-base-unit :: N[D,S] ⇒ B,

defined as is-base-unit(x) , (mag(x) = 1 ∧ is-BaseDim(x)).

We introduce the constructor BUNIT(D,S), which constructs

a base unit using the base dimension type D in the system S.

For the SI, we create a unitary type SI, and instantiate the

unit-system class. We then define the base units of the SI:

metre , BUNIT(L, SI) kilogram , BUNIT(M, SI)

ampere , BUNIT(I, SI) kelvin , BUNIT(Θ, SI)

mole , BUNIT(N, SI) candela , BUNIT(J, SI)

Since the second is very often the unit of time, we make it a

polymorphic base unit, so that it can exist in several systems.

For convenience, we create type synonyms for specifying units

at the type level, for example N metre , N[Length, SI].

We now can now express quantities with SI units. For

example, 20 ∗Q metre is the metre unit scaled by 20, and has

the inferred type of R[L, SI]. Compound units can also be

expressed, such as 10 ∗Q(metre • second−1), which has inferred

type R[L · T−1]. Unit equations, such as (metre • second−1) •

second � metre, can be proved using the si-calc proof strategy:

Similarly, coercions can be used to prove conjectures such as

dnorm(((5 ∗Q(metre/second)) • (10 ∗Q second)) = 50 ∗Q metre.



We construct an ontology of derived units from the VIM

and SI Brochure [2, page 137]; a selection is shown below:

hertz , second−1

joule , kilogram • metre2 • second−2

watt , kilogram • metre2 • second−3

coulomb , ampere • second

Isabelle can infer the dimension type of each such unit, for

example watt has the dimension M · L2 · T−3.

The SI defines 24 prefixes, which can be used to scale SI

units. We give a selection of these below:

hecto , 102 kilo , 103 mega , 106 giga , 109

deci , 10−1 centi , 10−2 milli , 10−3 micro , 10−6

Prefixes are abstract numbers in N, which can be used to scale

units. For example, we can write 40 ∗Q milli ∗Q metre.

The SI also has a notion of “accepted” units [2, page 145],

which are quantities often used as units, but without a mag-

nitude of 1. We give a selection of these below:

minute , 60 ∗Q second hour , 60 ∗Q minute

day , 24 ∗Q hour degree , (π/180) ∗Q radian

litre , 1/1000 ∗Q metre3 tonne = 103 ∗Q kilogram

These quantities can readily be treated as units in our

mechanisation, though the type does not reflect the unit.

For example, the units day, hour, and year all have the

dimension T. We can prove unit equation theorems such as

1 ∗Q hour = 3600 ∗Q second, 1 ∗Q day = 86400 ∗Q second, and

1 ∗Q hectare = 1 ∗Q(hecto ∗Q metre)2 using si-simp, which can

act as the basis for unit conversions. Similarly, we can use

prefixes to express relations between derived quantities, such

as 25 ∗Q metre/second = 90 ∗Q(kilo ∗Q metre)/hour.

The SI units are defined in terms of exact values for 7

physical constants [2, page 127]. We define these in Isabelle:

∆vCs = 9192631770 ∗Q hertz

c = 299792458 ∗Q(metre • second−1)

h = (6.62607015 · 10−34) ∗Q(joule • second)

e = (1.602176634 · 10−19) ∗Q coulomb

k = (1.380649 · 10−23) ∗Q(joule/kelvin)

NA = 6.02214076 · 1023 ∗Q(mole−1)

Kcd = 683 ∗Q(lumen/watt)

∆vCs is the hyperfine transition frequency of the caesium 133

atom. Constant c is the speed of light in a vacuum, and h is

the Planck constant. Constant e is the elementary charge, and

k is the Boltzmann constant. NA is the Avagadro constant.

Kcd is the luminous efficacy of monochromatic radiation of

frequency 540 · 1012 Hz. With these constants, we can arrange

their equations to verify defining theorems for each unit:

second � (9192631770 ∗Q 1)/∆vCs

metre � (c/(299792458 ∗Q 1)) • second

kilogram � (h/(6.62607015 · 10−34) ∗Q 1) • metre−2 • second

The second is equal to the duration of 9192631770 periods

of the radiation of the 133Cs atom. The metre is the length

travelled by light in a period of 1/299792458 seconds. For

kilogram, the equation effectively defines the unit kg m s−1, and

then applies the unit m−2 s to obtain a quantity of dimension

M. Each equation is proved using si-calc, which serves to

validate our implementation of the SI. Finally, we complete

our ontology of derived units [2, page 137]:

newton , kilogram • metre • second−2

pascal , kilogram • metre−1 • second−2

volt , kilogram • metre2 • second−3 • ampere−1

We can prove the corresponding unit equations, which show

equivalences between SI units:

joule � newton • metre watt � joule/second

volt = watt/ampere farad � coloumb/volt

The remaining derived units are all mechanised.

Finally, temperature in the SI is defined in Kelvin, but

degrees celcius is more usual. So, we define T ◦C , (T +

273.15) ∗Q kelvin, where 273.15 is the freezing point of water.

VI. Unit Conversions and Non-SI Systems

Aside from the SI, other units systems remain in use, no-

tably metric systems such as CGS (centimetre-gram-second),

and imperial systems, including the United States Customary

system (USC) and the British Imperial System (BIS). With our

present system of quantities, we can already describe imperial

units, in terms of the SI units, as shown below:

yard , 0.9144 ∗Q metre mile , 1760 ∗Q yard

pound , 0.4535937 ∗Q kilogram stone , 14 ∗Q pound

pint , 0.56826125 ∗Q litre gallon , 8 ∗Q pint

Here, we define the international yard and pound, units of

length and mass, which have exact metric definitions, and

several derived units, for use in SI quantities.

However, this masks an inherent problem with imperial

units: they have several definitions depending on the con-

text. Whilst the international yard is 0.9144 metres, the BIS

and USC both have slightly different definitions. For precise

measurements we must specify the unit system, and define

unit conversions. Even for metric systems, it is sometimes

desirable to use different units, such as in the CGS system,

where centimetres and grams are used as base units.

A conversion schema, S1 ⇒U S2, is a 7-tuple of rational

numbers each greater than zero that can convert quantities

between systems S1 and S2. Each rational number encodes a

conversion factor for each of the dimensions of the ISQ. We

define a quantity conversion function qconv :: (S1 ⇒U S2)⇒

N[D,S1]⇒ N[D,S2], whose definition is below:

qconvC(m,d) =

































∏

1≤i≤7

C
di

i

















· m,d

















Given a quantity (m,d), and a conversion schema C, qconv

calculates the conversion factor for m by raising each element



of C to the corresponding dimension element di. For example,

if we wish to convert cubic (international) yards to cubic

metres, then we first need the conversion factor from yards

to metres, which is 0.9144. Then, we take this value and raise

it to the power of 3, and so the overall conversion factor is

0.764555. The dimension is unchanged by this operation.

The BIS is a non-metric standard for weights and measures.

We model the BIS by creation of a unit system with the

type BIS, and define yard , BUNIT(L,BIS) and pound ,
BUNIT(M,BIS). Moreover, we can create derived units such

as foot , 1/3 ∗Q yard and inch , 1/12 ∗Q foot. Then, we can

formally specify quantities measured according to the BIS.

We can convert between the SI and BIS with schema

BSI :: BIS⇒U SI. The factors for length and mass required for

this conversion are 0.9143993 and 0.453592338, respectively.

We can then, for example, convert a BIS quantity of 1

ounce to grams using the conversion qconvBSI(1 ∗Q ounce) ≈

37.8 ∗Q gram2. We also create unit systems for the UCS and

CGS systems, with suitable conversion factors.

Whilst we can use quantity conversions between systems

directly, it is often more convenient to use the SI as a frame

of reference for different unit systems. We therefore create a

type class to representation metrification:

class metrifiable = unit-system+

fixes convschema :: S itself ⇒ (S ⇒U SI)

A unit system S is metrifiable if there is a conversion schema

from S to SI. Consequently, the BIS, UCS, CGS, and the

SI itself are all metrifiable. Consequently, for any pair of

metrifiable systems, S1 and S2, we define a generic conversion

function QMCS1→S2
:: N[D,S1]⇒ N[D,S2], which performs

conversion via metrification. This function first uses the con-

version schema for S1 to convert to the SI system, and then

uses the inverse schema for S2 to convert from SI to S2. For

example, we can show that QMCCGS→BIS(12 ∗Q centimetre) ≈

4.724 ∗Q inch. We can therefore use the Isabelle type system to

precisely specify what system a measurement is made in, and

seamlessly convert between a variety of other systems.

VII. Conclusions

We have presented a mechanisation of the ISQ in Is-

abelle/HOL, which allows us to precisely specify physical

dimensions, units, and unit systems. We use Isabelle’s type

system to ensure that only measurements of the same dimen-

sion and unit system can be combined. We have presented

a substantial theory development of about 2500 lines of

definitions and proofs that captures the ISQ and SI as defined

in the VIM [1]. Our type system for physical quantities is, by

construction, sound and complete. We provided a validation

of our theory by checking the mandatory definitions and

corollaries from the VIM and the SI Brochure [2]. An earlier

version of our implementation was also applied in an industrial

case study on a formal model for an autonomous underwater

vehicle [6], which provides further validation.

2We use exact rational arithmetic for this in Isabelle/HOL, but we present
an approximate decimal expansion for ease of comprehension.

There are a number of directions for future work. The

current approach to handling dimension mismatches using

coercions could be better automated by using the coercive

subtyping mechanism [17]. This effectively extends the type

inference algorithm so that type mismatches can be automat-

ically resolved by insertion of registered coercion functions.

At the same time, our approach to characterising dimension

types, illustrated in Figure 1, is not specific to the ISQ, and

could be generalised to other problems that are typically solved

with dependent types. For example, we could normalise type

expressions containing arithmetic operators to relate vectors

parametrised by the length. Therefore, in future work we will

investigate a generic approach using universe constructions to

justify type-level functions and coercions.

References

[1] Bureau International des Poids et Mesures and Joint Committee for
Guides in Metrology, “Basic and general concepts and associated terms
(VIM) (3rd ed.).” BIPM, JCGM, Tech. Rep., 2012.

[2] ——, “The International System of Units (SI),” BIPM, JCGM, Tech.
Rep., 2019, 9th edition.

[3] A. Cavalcanti, J. Baxter, and G. Carvalho, “RoboWorld: Where can my
robot work?” in Software Engineering and Formal Methods (SEFM),
ser. LNCS, vol. 13085. Springer, 2021, pp. 3–22.

[4] B. D. Hall, “Software for calculation with physical quantities,” in 2020

IEEE International Workshop on Metrology for Industry 4.0 & IoT,
2020, pp. 458–463.

[5] D. Flater, “A system of quantities from software metrology,” Measure-

ment, vol. 168, 2021.
[6] S. Foster, Y. Nemouchi, C. O’Halloran, N. Tudor, and K. Stephen-

son, “Formal model-based assurance cases in Isabelle/SACM: An au-
tonomous underwater vehicle case study,” in Proc. 8th Intl. Conf. on

Formal Methods in Software Engineering (FormaliSE). ACM, 2020.
[7] T. Nipkow and G. Snelting, “Type classes and overloading resolution

via order-sorted unification,” in Functional Programming Languages

and Computer Architecture, 5th ACM Conference, ser. LNCS, vol. 523.
Springer, 1991, pp. 1–14.

[8] S. Foster and B. Wolff, “A sound type system for physical quantities,
units, and measurements,” Archive of Formal Proofs, October 2020,
https://isa-afp.org/entries/Physical Quantities.html.

[9] I. J. Hayes and B. P. Mahony, “Using units of measurement in formal
specifications,” Formal Aspects of Computing, vol. 7, no. 3, pp. 329–347,
1995. [Online]. Available: https://doi.org/10.1007/BF01211077

[10] A. Kennedy, “Dimension types,” in Programming Languages and Sys-

tems — ESOP ’94, D. Sannella, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 348–362.

[11] ——, “Types for units-of-measure: Theory and practice,” in Central

European Functional Programming School – Third Summer School,

(CEFP 2009), ser. LNCS, Z. Horváth, R. Plasmeijer, and V. Zsók, Eds.,
vol. 6299. Springer, 2009, pp. 268–305.

[12] J. Garrigue and D. Ly, “Des unités dans le typeur,” in 28ièmes Journées

Francophones des Langages Applicatifs, Gourette, France, Jan. 2017.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01503084

[13] J. P. Gibson and D. Méry, “Explicit modelling of physical measures:
From Event-B to Java,” in Proc. Workshop on Handling IMPlicit and

EXplicit knowledge in formal system development (IMPEX), ser. EPTCS,
R. Laleau, D. Méry, S. Nakajima, and E. Troubitsyna, Eds., vol. 271,
2017, pp. 64–79.

[14] S. Aragon, “The algebraic structure of physical quantities,” Journal of

Mathematical Chemistry, vol. 31, no. 1, May 2004.
[15] F. Haftmann and T. Nipkow, “Code generation via higher-order rewrite

systems,” in 10th Intl. Symp. on Functional and Logic Programming

(FLOPS), ser. LNCS, vol. 6009. Springer, 2010, pp. 103–117.
[16] B. Huffman and O. Kuncar, “Lifting and transfer: A modular design

for quotients in Isabelle/HOL,” in CPP 2013, ser. LNCS, vol. 8307.
Springer, 2013, pp. 131–146.

[17] D. Traytel, S. Berghofer, and T. Nipkow, “Extending hindley-milner
type inference with coercive structural subtyping,” in APLAS 2011, ser.
LNCS, vol. 7078. Springer, 2011, pp. 89–104.


	Introduction
	Related Work
	Dimensions
	Physical Quantities and Measurement
	Unit Systems and the SI
	Unit Conversions and Non-SI Systems
	Conclusions
	References

