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1. Introduction

Glare arises when part of the visual field, a light 
source or a surface, is much brighter than the rest 
of the field. Two common visual impacts of glare 
are disability and discomfort, and these outcomes 
may persist individually or together. Disability 
from glare is a situation where the glare source 
impairs visibility or visual performance.1,2 
Discomfort from glare is a situation when the 
observer feels visual discomfort due to the glare 
source but does not necessarily experience a 

visual disability.1,2 The induced discomfort can 
be described as a sensation of annoyance or pain 
from a glare source located within the field of 
view. The magnitude of discomfort is usually 
described on a scale ranging from barely notice-
able to unbearable.

One aim of a lighting design is to minimize 
discomfort for pedestrians (and other road users) 
and to do so designers might refer to the quanti-
tative recommendations of lighting guidance 
documents. For interior lighting, glare limits 
such as the Unified Glare Rating (UGR) are cal-
culated based on the luminances of light sources 
and their background, the size subtended by each 
light source at the observer’s eye and its position 
in the visual field: a UGR of 22 is the threshold 
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for unacceptable glare in office and classroom 
spaces, and hence, the design targets a UGR of 
less than 22.3,4

Several models for predicting discomfort from 
road lighting have been proposed. CIE 243:2021 
reviews various models,5 but some models may 
not apply to pedestrians because they include 
terms related to drivers. Examples include the 
number of luminaires per kilometre in the Glare 
Control Mark model,6 the considered road area 
in Vos’s Glare Index,7 and duration of light pulse 
in Lehnert’s model.8 Other models described in 
CIE 243:2021 might be relevant to pedestrian 
applications but are not discussed in this article 
because either we did not have access to their 
underlying studies or the underlying study was 
not published in English. The remaining models 
that did not include terms specific to drivers 
might be applicable to pedestrians, given that the 
eye does not discriminate between purposes of 
lighting.9–13

While multiple models can be relevant for 
pedestrian applications, it remains unclear which 
model performs better and can be used in prac-
tice. The objective of this article is to evaluate 
candidate models including luminance-contrast-
based models by Petherbridge and Hopkinson 
and Lin et al.,9,10 a model by Schmidt-Clausen 
and Bindels that uses both luminance and illumi-
nance quantities,11 illuminance-based models by 
Bullough et al. and Lin et al.,12,13 as well as two 
single-term models: direct illuminance from the 
source and average luminance. These models 
vary in complexity due to differences in the num-
ber of variables considered and the type of quan-
tities used (luminance and/or illuminance).

The first model is that proposed by Petherbridge 
and Hopkinson.9 In a laboratory experiment, they 
varied average source luminance (Lavg), source 
size in solid angle (ω), source eccentricity (θ) and 
source shape, and evaluated discomfort by asking 
subjects to adjust background luminance (Lb) to 
meet four discomfort criteria: just intolerable, just 
uncomfortable, just acceptable and just impercep-
tible. Eccentricity in this context refers to the 

angular displacement of the source from the point 
of fixation. Their model (see Equation (1)), 
referred to as Pet50, is based on the contrast 
between the luminances of the source and its 
background, with account also taken of the size 
subtended by the source at the observer’s eyes.
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Consider next the model proposed by Schmidt-
Clausen and Bindels for assessing discomfort 
glare from vehicle head lights.11 Their data were 
obtained in a laboratory experiment that varied 
Lb, direct illuminance from source (Ed) and θ. 
Discomfort evaluations were given using a 
9-point category rating scale, where subjects fix-
ated on a test object and evaluated discomfort 
glare from a source that subtended 0.13° at the 
observer’s eye and was positioned at eccentrici-
ties ranging from 0.17° to 90° from central 
vision. The Schmidt-Clausen and Bindels’ model 
(Equation (2)), referred to as Sch74, uses the 
ratio of direct illuminance from the source and its 
background luminance. This model did not 
include a term for source size instead included a 
term for eccentricity from the point of visual 
fixation.
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Petherbridge and Hopkinson9 examined the effect 
of source eccentricity and suggested that when 
visual tasks do not involve a fixed direction of 
view, it is preferable to neglect the effect of eccen-
tricity up to 50°. They showed that for the same 
level of discomfort, source luminance was expo-
nentially related to source eccentricity. This 
means that source luminance was proportionally 
related to 10θ. Although modifications of source 
eccentricity up to 50° can affect the degree of per-
ceived discomfort, such modifications were 
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considered relatively insignificant, compared to 
modifications beyond 50°. For example, for the 
same source and background luminance, uncom-
fortable discomfort glare from a source at 5° 
eccentricity will only be reduced to ‘just accept-
able’ at 50°, but discomfort will drop to ‘just 
imperceptible’ at 60° eccentricity. Petherbridge 
and Hopkinson’s model would be advantageous 
if the model is able to predict discomfort from 
glare in practical situations because a pedestrian’s 
gaze scans the whole environment and does not 
seem to fixate in a specific direction. This model 
does not require information about glare source 
position within the field of view, potentially mak-
ing it easier to implement the design.

The Schmidt-Clausen and Bindels model, on 
the other hand, does not accommodate conditions 
with direct viewing of the source (θ = 0°), even 
though an approximation can be established by 
adopting a very small eccentricity in Equation (2).

Equations (1) and (2) both include background 
luminance. For pedestrians, it is unclear whether 
the luminance of a single surface, such as road 
surface, can be assumed to represent background 
luminance. In laboratory settings, it is possible to 
construct the visual field so that the background 
to the glare source is uniform and therefore rela-
tively simple to characterize. In practical situa-
tions, such simplicities are unlikely: causes of 
non-uniformity include variations in background 
surfaces (such as traffic signs, trees and pave-
ment materials) and luminance distribution is 
unlikely to be uniform. Such complexity makes 
it difficult to measure and characterize back-
ground luminance with one value. An alternative 
approach is to measure instead illuminance at the 
eye due to background.

Bullough et al. developed a model for predict-
ing discomfort using direct illuminance at the 
eye from source (Ed), indirect illuminance from 
source (Ei) and ambient illuminance (Ea).

12 
Ambient illuminance is the illuminance at the 
eye from sources of light other than the glare 
source, as might be measured with the glare 
source switched off. The sum of these three 

illuminances is the total illuminance at the eye 
(Et). In their work, Ed was measured using a baf-
fle that blocked light surrounding the source, and 
Ea was measured when the source was switched 
off: to calculate Ei, the terms Ed and Ea were sub-
tracted from Et, as shown in Figure 1. To develop 
this model, Bullough et al. conducted a series of 
experiments in outdoor and indoor settings: they 
varied Ed, Ei and Ea and asked participants to 
look directly at the source and rate discomfort 
glare using a 9-point scale. Their proposed model 
shown in Equation (3) is used for calculating dis-
comfort glare (DG), and Equation (4) is then 
used for transforming DG to a value on a 9-point 
De Boer-type scale (Bul08). This model did not 
include any measure of luminance nor the size 
nor position of the glare source, since observers 
were looking directly at the source.

In subsequent work, Bullough et al.14 con-
cluded that maximum source luminance (Lmax) 
was important for sources of size larger than 0.3° 
and hence added an additional term to their 
model (Equation (5)), referred to as Bul11, which 
transforms DG to a 9-point De Boer scale.
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It is possible, however, that the results from the 
underlying study were confounded by effects of 
source size and luminance uniformity. Bullough15 
used three sources that were generally larger than 
0.3°: a bare LED array with maximum luminance 
(Lmax) of 1 000 000 cd/m2, the LED array covered 
with a plastic diffuser that produced Lmax of 
50 000 cd/m2, and the same LED array but with 
the diffuser placed farther away from the LED 
array, producing Lmax of 15 000 cd/m2. For the 
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same illuminance at the eye, a comparison 
between these three sources showed an effect of 
Lmax on DG.

The term Ea in Equation (3) represents illumi-
nance at the eye from sources of light other than 
the glare source, measured while the glare source 
is turned off. Precise measurement of this is not 
possible in the field, and instead, Ea must be 
defined by an assumed value: Bullough et al.12 
suggested values of 0.02 lx, 0.2 lx and 2 lx for very 
dark, suburban and urban districts, respectively.

Lin and colleagues10,13 proposed two models 
based on laboratory studies, one model being 
luminance based and one being illuminance 
based. Their first model (Lin14 shown in 
Equation (6)) is based on the contrast between 
Lavg and Lb. The study underlying this model 
found that Ed (as represented by the term Lavg × ω) 
was the most influential factor followed by Lb, 
then source eccentricity θ.10 Their second model 
(Lin15) includes illuminance from the source, 
ambient illuminance, as well as source eccentric-
ity.13 In this later model, it is unclear whether 
their measurements of illuminance from source 
included only the direct component or both direct 
and indirect components. Because their use of 

illuminance from source was meant to replace 
the (Lavg × ω) term from Lin14, we assumed here 
that the Lin15 model refers to Ed (Equation (7)). 
Note that Lin14 and Lin15 have terms with simi-
lar exponents.

Lin15 was developed based on an experi-
ment with varied Ed, Ea and θ and source-corre-
lated colour temperature (CCT). Using a 
category rating procedure with a 9-point 
response scale, they found effects of illumi-
nance from the source, Ea, and θ on DG ratings, 
but no effects of CCT.

Equation (7) was developed using a source 
that subtended 10° at the observer’s eye, but 
did not include a term for maximum source 
luminance as previously suggested by Bullough 
et al. for sources larger than 0.3°.14 Similar to 
the model of Schmidt-Clausen and Bindels 
(Equation (2)), Equation (7) uses eccentricity 
in the denominator, hence it yields an infinite 
value when directly looking at the source (i.e. 
when θ = 0°).
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Figure 1 The three illuminance components used in Bul08 model (right) and the four steps needed to measure them (left)
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The presented models result in predictions that 
are mapped to different scales, hence not all 
model predictions are comparable with each 
other. For example, low and high DG descriptors 
were mapped to Pet50 predictions in the range 
from 8 to 600, and to Sch74 predictions in the 
range from 3–7.9,11 On the other hand, Bul08, 
Bul11, Lin14 and Lin15 provide predictions on a 
1–9 De Boer scale.

Each of the models described above uses mul-
tiple variables to predict discomfort from glare 
– the luminance or illuminance from the source 
and its background, the size and/or location of 
the glare source relative to the observation point. 
However, they do not use the same variables: for 
example, Bullough et al. did not include any 
terms for source position because their experi-
ments used on-axis viewing. In an experiment, 
the researcher’s decision to vary a certain param-
eter may lead to variation in the outcome meas-
ure, and hence to a conclusion that that parameter 
is important for discomfort from glare. Such a 
conclusion may not be correct: it depends on 
what other parameters were varied in the experi-
ment and their relative degrees of prominence. 
This raises the question of which variables are 
essential for pedestrian application and consider-
ing practical constraints.

In outdoor environments after dark, pedestri-
ans may experience discomfort from glare caused 
by street, path or public space lighting. The 
mounting height varies depending on lighting 
purpose; luminaires installed to illuminate paths 
and public spaces for pedestrians are mounted at 
shorter heights, for example, 3.7 m, and they are 
more closely spaced compared to street light-
ing.16,17 Pedestrians scan the general environment 
to perform different tasks such as detecting trip 
hazards and identifying the intention and/or iden-
tity of an oncoming person.18,19 This wide distri-
bution in gaze directions means that a source of 

glare may appear at a wide range of locations in 
the visual field and at a wide range of distances 
and hence subtended sizes; the background field 
and the adaptation level will also vary.

While there is a broad range of possible scenes 
in which discomfort from glare is experienced, 
experimental work tends to consider only one or a 
small number of specific variations. This raises the 
question about the degree to which any such 
derived model, fitted precisely to those conditions, 
fits other situations: does precision in one context 
prevent sufficiency in broader contexts? In other 
words, is it possible to establish a simple model for 
discomfort which is satisfactory in most outdoor 
nighttime situations? One simple approach would 
be to characterize discomfort using Ed. This was 
considered in four studies12,20–22 that generally 
found large (r > 0.5) correlations between Ed and 
subjective ratings of discomfort.23 Similarly, it 
would be interesting to consider whether charac-
terization of discomfort using only glare source 
luminance (e.g. Lavg or Lmax) would be sufficient 
without the inclusion of a background luminance 
term to help define the contrast between light 
source and the background.

Authors will suggest their model to be useful if 
it successfully predicts the outcomes of the exper-
iments from which it was developed. Success, 
usually indicated by an apparently high value of 
Pearson’s r or goodness of fit (R2), is not entirely 
surprising given the authors’ ability to adjust the 
constants and coefficients in their model to ensure 
that it gives a good fit. For a model to be general-
izable to a broader range of applications, a better 
evaluation of success is the degree to which it 
predicts the outcomes of experiments carried out 
under a similar context but conducted by others. 
This was the approach taken in studies by Villa 
et al.20 and Tyukhova and Waters.24

Table 1 shows the reported correlations and 
goodness of fit for model predictions against DG 
ratings from their original data and also from inde-
pendent data. This illustrates the importance of 
testing a model using independent data; for exam-
ple, while Lin et al.10 reported r ⩾ 0.87 for their 
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model, when that model was tested by Villa et al.20 
by using independent data, they reported a lower 
degree of association (Spearman’s rho = 0.38). 
The Villa et al. data suggest a better fit for other 
models. Table 2 shows correlations and goodness 
of fit for Ed and Lavg that were extended for pedes-
trian application. Several studies reported high 
correlations and goodness of fit for Ed and Lavg.

It can be problematic to draw conclusions 
about model performance using only the results 
of one study. A certain dataset may have inad-
vertently favoured one model due to the context 
or the range of lighting conditions used in that 
experiment. To provide a more exhaustive analy-
sis, we follow the comparison of models for pre-
dicting discomfort from daylight as reported by 
Wienold et al.25 In that study they compared the 
predictions of 22 models using seven datasets, 
comparing the performance of different models 
using diagnostic tests based on receiver operat-
ing characteristic (ROC) curve characteristics 
such as true positive rate, true negative rate, area 
under the curve and squared distance.

The current work investigated the perfor-
mance of seven models for predicting discomfort 
from glare in an outdoor context using four inde-
pendent datasets. These were five previously 
proposed multi-term models (Equations (1), (2), 
(4), (6) and (7)) and two one-term models (the 
quantities Ed and Lavg).

2. Method

2.1 Evaluated models

The evaluated models include Pet50, Sch74, 
Bul08, Lin14, Lin 15, Ed and Lavg. The intent was 
also to include the Bul11 model, but as discussed 
below in Section ‘Included studies and datasets’, 
not all datasets reported maximum luminance as 
needed in that model, and hence it was not pos-
sible to include it.

2.2 Study and data inclusion criteria

A search was conducted to identify experi-
mental studies of discomfort from glare having 
relevance to lighting conditions experienced by 

Table 1 Summary of reported Pearson’s r and Spearman’s rho correlation coefficients, and goodness of fit (R2) for 
pedestrian context models

Model Reported performance in model development 
study

Tyukhova and 
Waters24 (n = 1692)

Villa et al.20†

(n = 1056)

Pet50 (Equation (1)) Not reported – –

Sch74 (Equation (2)) Not reported r = 0.79§ rho = 0.75§

Bul08 (Equation (4)) R2 = 0.70§ (n = 796) r = 0.86§ for predictions 
from Bul08 and Bul11

–

Bul11 (Equation (5)) Not reported r = 0.86§ for predictions 
from Bul08 and Bul11

–

Lin14 (Equation (6)) r = 0.87§ for 3000 K source (n = 168); r ⩾0.95§ 
for 5000 K (n = 54) and 6500 K (n=80) sources

– rho = 0.37§

Lin15 (Equation (7)) R2 = 0.96** for young subjects (n = 960), 
R2 = 0.88** for seniors (n = 240)

– rho = 0.75§

**Denotes significance at 1% level (p < 0.01).
†The values reported for Villa et al.20 are for conditions with one glare source, using the ‘static’ procedure, with the area 
surrounding target as background area (‘disk zone’).
§Denotes that the p-value was not reported.
A correlation coefficient Pearson’s r or Spearman’s rho of 0.3–0.5 is moderate, and a coefficient >0.5 is large.23

The goodness of fit R2 ⩾ 0.26 is a large effect.23

A dash (–) denotes that model performance was not studied.
n refers to the number of observations in each study, this being the combination of participant sample and number of scenes 
evaluated.
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pedestrians. These conditions include low levels 
of luminance adaptation, a wide range of source 
eccentricities and a wide range of source sizes 
that can result from combinations of different 
eccentricities and distances from source. The 
search was conducted using common keywords: 
‘discomfort glare’, ‘nighttime’ and ‘pedestrians’ 
and only peer-reviewed journal articles written in 
English were retained. These articles were 
reviewed, and study parameters were evaluated 
according to inclusion criteria:

•• Lighting conditions should include a dark 
background representative of nighttime 
environments.

•• Only one light source. This criterion was used 
to isolate and omit effects related to multiple 
light sources and the different approaches 
that may be used.26

•• Only data related to white sources. Coloured 
sources were not included.

•• Where relevant, viewing distance or mount-
ing height low enough to mimic pedestrians 
viewing conditions.

•• Test participants were stationary (standing 
still or sitting) whilst observing and evaluat-
ing the scene. Dynamic viewing protocols, 
where subjects walked on a specified path 
then provided a rating, were not considered.

•• Details of the visual scene including average 
luminance of source, background luminance, 
direct, indirect, and ambient illuminances, 
source size, and eccentricity were reported.

•• During trials, presentation order of lighting 
conditions was randomized to offset order 
bias.

•• Experimental data were independent of the 
models evaluated in the current work.

•• The authors responded to our request to pro-
vide experimental data.

We do not consider the impacts of multiple 
sources and dynamic viewing to be unimportant. 
They were excluded here to simplify the analysis 
because it is unclear how the seven models can be 
used with more than one glare source. For ratings 
collected using a dynamic viewing procedure, it 
is unclear which viewing position parameters, for 
example, eccentricity, to use in the models: that 
again suggests an advantage of predicting dis-
comfort using a simplified measure such as Ed.

2.3 Included studies and datasets

The search identified eleven relevant studies. 
Four studies were not included because they did 
not report required quantities such as Lavg

22,27,28 or 
did not randomize the presentation order of light-
ing conditions.21 Other studies were not included 

Table 2 Summary of reported Spearman’s rho and goodness of fit (R2) for simple models that may be extended for 
pedestrian application

Model Villa et al.20† 
(n = 1056)

Kohko et al.21 (n = 1617) Sivak et al.22 
(n = 400)

Bullough et al.12 (n = 796)‡

Ed rho = 0.72§ R2 = 0.70§ for central; R2= 0.53§ 
for peripheral viewing

R2 = 0.99** R2 = 0.93§ (exp 2), 0.73§ (exp 5), 
and 0.45§ (in/out exp)

Lavg rho = 0.74§ R2 = 0.80§, 0.81§ for central 
and peripheral viewing

– R2 = 0.02§ (exp 2)

**Denotes significance at 1% level (p < 0.01). § denotes that the p-value was not reported.
†The values reported for Villa et al.20 are for conditions with one glare source, using the ‘static’ procedure, and Lavg being 
measured luminance of the LED.
‡exp refers to the experiment number in Bullough et al. study.12

A Spearman rho correlation coefficient >0.5 is large.23

The goodness of fit R2 ⩾ 0.26 is a large effect.23

A dash (–) denotes that model performance was not studied.
n refers to the number of observations in each study.
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either because our attempts to contact those 
authors were unsuccessful or those data were not 
independent of the current analysis, having been 
used to develop a model assessed in the current 
analysis.10,12,13 Four studies met the inclusion cri-
teria: in all four cases, those authors responded to 
our requests to provide study data.20,24,29,30 Not all 
four studies measured and reported maximum 
luminance, hence Bul11 (Equation (5)) was not 
evaluated.

The first dataset was from a study conducted 
by Villa et al.20 in an outdoor test track. Here we 
use the data from their 32 conditions (4 luminaire 
types × 4 distances from luminaire × 2 view 
directions) with one source of glare observed 
from a stationary location and ignore data from 
their trials with either two sources of glare and/or 
dynamic viewing. This dataset is referred as V17. 
The 33 test participants were asked to rate each 
lighting condition using a 9-point scale. Villa 
et al. used high dynamic range images to estab-
lish two background luminance measurements: 
the first measurement was based on a circle with 
30° diameter surrounding the visual target 
(named by the authors as ‘disk zone’); whereas 
the second measurement was based on a rectan-
gular area that included the two viewing targets 
and the road surface. In the current analysis, we 
used the disk zone measurement, given that both 
measurements yielded similar results in their 
analysis. To calculate Ei, Lb of the disk zone area 
was converted using Equation (8) assuming a 
Lambertian distribution.

 E L
i b disk zone
= ×π  (8)

The second dataset from Sweater-Hickcox 
et al.,29 named as S13, included data from their 
three experiments that were conducted in a labo-
ratory room. Conditions related to the white LED 
array with a white surround were included (13 
lighting conditions). Conditions where the LED 
array had yellow or blue surround were not 
included because these conditions were ineligi-
ble according to the criteria in ‘Study and data 

inclusion criteria’. Conditions with a dark sur-
round were not included because information 
about the LED source size was not available. In 
the first experiment, ten participants sat 3 m away 
from the LED array and rated DG at four levels 
of Ed, whereas in the second experiment eight 
participants repeated this procedure while being 
seated 6 m away from the LED array. In the third 
experiment, the source size was decreased, and 
the procedure was repeated with six participants 
seated 3 m away. Each participant rated the same 
lighting condition three times using a 9-point 
scale, and the mean of these three ratings was 
used in the current analysis as was done in the 
published study.

The third dataset, from Tyukhova and 
Waters,24,31 named here as T18, examined small 
bright sources (subtending 0.0001 sr and 0.00001 sr 
at the observer’s eyes) and included 36 lighting 
conditions (3 levels of Lavg × 2 eccentricities × 2 
source sizes × 3 levels of Lb) which were rated by 
47 test participants. This was a laboratory experi-
ment with participants seated in a spherical appa-
ratus. Evaluations of discomfort were given using 
a 7-point scale: for the current analysis, these were 
transformed to a 9-point scale by mapping the end 
points of the original scale from 0 (No discomfort 
glare) and 6 (Glare intolerable) to 9 (Unnoticeable) 
and 1 (Unbearable),32 respectively, with equal 
incremental steps. The transformation between 
scales, shown in Table 3, was necessary for the 
analysis of a combined dataset described in 
Section 2.4. This conversion assumed that partici-
pants linearly map their responses to the range of 
the scale presented. This scale transformation 
meant that ratings in the three studies were along 
similar response scales.

The fourth dataset from Tashiro et al.,30 named 
here as T15, examined sources with different LED 
arrangements, intensity levels and background 
luminances (17 sources × 7 intensity levels × 3 
background luminances) that were rated by 8, 12, 
19 and 11 participants in four experiments con-
ducted in a laboratory room. This dataset (labelled 
here as T15) initially included ratings on a 9-point 
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scale where points 1, 5 and 9 corresponded to unno-
ticeable, beginning to feel unbearable and unbear-
able levels of discomfort, respectively. This scale 
was reversed to align with the magnitude direction 
used in the other datasets. Tashiro et al. study did 
not measure Ed, Ei and Ea, but because the experi-
ment apparatus was surrounded by a black curtain 
of low reflectance (~3%), we assumed that Ei is 
negligible = 0.0001 lx. At the lowest background 
luminance level of 0.1 cd/m2, we also assumed that 
Ea is negligible = 0.0001 lx. At the other two back-
ground luminance levels (1 cd/m2 and 10 cd/m2), Ea 
was calculated for each source by subtracting total 
illuminance at the lowest source intensity under 
0.1 cd/m2 from corresponding total illuminance 
under 1 cd/m2 and 10 cd/m2. This yielded an ambi-
ent illuminance value for each source that was used 
for all intensities.

The four datasets included a wide range of Ed 
as shown in Table 4. Indirect illuminance and 
illuminance from other light sources were small 
(<4 lx) representing a dark background. Given 
that Bul08 model was suggested for sources 
<0.3°, we also show in Table 4 source sizes in 
plane degrees for each dataset. The conversion 
from steradians to degrees was done using 
Equation (9) assuming a conical solid angle.33

 Plane angle ( )° = × −








×2 1

2

180
arccos

ω

π π
 (9)

2.4 Model performance evaluation

Models of discomfort from glare were tested 
by using them to predict the outcome of previous 
work (the datasets defined in Section ‘Included 
studies and datasets’) and comparing those pre-
dictions with the results of each experiment. The 
relative performance of each model was estab-
lished using a range of statistical tests following 
the example of Wienold et al.25

In order for a DG model to be useful for pedes-
trian applications, model performance can be 
judged based on two criteria: (1) the degree of cor-
relation between model predictions and evalua-
tion responses from test participants; and (2) the 
ability to distinguish between discomfort and non-
discomfort situations. The models were expected 
to provide a relative – not absolute – indication of 
glare. Hence, evaluations based on absolute model 
values such as root mean square error and the con-
sistency of borderline between comfort and dis-
comfort (BCD) were not considered.

The degree of association was assessed using 
Spearman rank correlation rho, a nonparametric 
test that determines the degree to which a mono-
tonic relationship exists between two sets of 
ranks.34 A rho value 0–0.1 is considered very 
small, 0.1–0.3 is small, 0.3–0.5 is moderate, 
⩾0.5 is large.23

The p-values of these Spearman correlations 
were compared to the Holm’s sequential 
Bonferroni thresholds, which provides protection 

Table 3 The rating scales used in the four studies (V17, S13, T18 and T15).20,24,29,30 Also shown is the scale from Tyukhova 
and Waters (T18) converted to a common 9-point scale. The scale from Tashiro et al. (T15) is shown here with the 
magnitude direction reversed to match the other scales

V17 S13 T18-original scale T18-converted scale T15-converted scale

9 (Unnoticeable)
8
7 (Satisfactory)
6
5 (Just admissible)
4
3 (Disturbing)
2
1 (Unbearable)

9 (Unnoticeable)
8
7 (Satisfactory)
6
5 (Just acceptable)
4
3 (Disturbing)
2
1 (Unbearable)

0 (No discomfort glare) 9 (Unnoticeable) 9 (Unnoticeable)
8
7
6
5 (Beginning to feel 
unbearable)
4
3
2
1 (Unbearable)

1 (Glare between non-existent 
and noticeable)

7.7

2 (Glare noticeable) 6.3

3 (Glare between noticeable 
and disagreeable)

5

4 (Glare disagreeable) 3.7

5 (Glare between disagreeable 
and intolerable)

2.3

6 (Glare intolerable) 1 (Unbearable)
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against type I error.35 This method orders  
the p-values from smallest to largest and uses  
progressively less stringent significance thresh-
olds based on the number of remaining tests  
(α/k, α/(k-1), α/(k-2), etc. where k is the number 
of tests and α is the significance level).

To determine how well each model was able 
to distinguish between discomfort and non-dis-
comfort situations, four tests were employed as 
shown in Figure 2.

– True negative rate (TNR), also known as 
specificity, describes the ability of a model to 
accurately detect non-DG (subjective rating 
⩾5).

– True positive rate (TPR), also known as sen-
sitivity. TPR describes the ability of a model 
to accurately detect the presence of discom-
fort (subjective rating <5).

– Area under the curve (AUC) describes the 
diagnostic accuracy of a model: suggested 
thresholds for describing diagnostic accu-
racy are AUC 0.5 to 0.6 = fail, 0.6–0.7 = poor, 
0.7–0.8 = fair, 0.8–0.9 = good and 0.9–1 =  
excellent.36

– Squared distance (SqD) is the square of the 
distance between the point of ideal perfor-
mance (TPR = 1, TNR = 1) and any point on 
the ROC curve. The point on the curve clos-
est to the upper left corner (smallest SqD) is 
considered an optimal cut-off point for bal-
ancing TPR and TNR.37,38 In this analysis, 
we use 1-SqD instead of SqD so that a larger 
value is better, matching interpretation of 
TNR, TPR and AUC.

The mean of TNR, TPR, AUC and 1-SqD was 
calculated to provide an indication of overall per-
formance. This mean value is between 0 and 1 
where a higher value indicates a better perfor-
mance. We used the mean performance, rather 
than rank orders based on individual perfor-
mance scores as was used in a previous work25 
because this preserves the magnitude of differ-
ences between model performances. A difference 
in rank order of 1.0 would be given to two mod-
els regardless of whether the difference in their 
performance scores was large or small.

The data used for evaluation of the seven 
models were at the subject level, that is, lighting 

Table 4 Summary of the experimental conditions in the four datasets

Parameter Dataset

V17 S13 T18 T15

Number of participants 33 10; 8; 6 47 8; 12; 19; 11

Number of experimental conditions 32 5; 5; 3 36 63; 168; 63; 63

Number of observations 1056 108 1692 4410

Number of observations with ratings < 5 99 74 846 1836

Number of observations with ratings ⩾ 5 957 34 846 2574

Ed (lx) 4.2–25.2 4.7–15.0 0.2–81.5 0.02–92.3

Ei (lx) 0.11–0.74 0 0.02–0.06 0

Ea (lx) 0.05–0.09 0.2 0.11–3.58 0–0.95

Lavg (cd/m2) 11 000–152 000 401–1041† 20 477–766 440 1.56–177 617

Lb (cd/m2) 0.034–0.237 0 0.037-1.156 0.1; 1; 10

Eccentricity (°) 23–62 0 0; 10 8.5

Source size (sr) 0.00044–0.00823 0.00096; 0.00383 0.00001; 0.0001 0.0001–0.0081

Source size (°) 1.36–5.87 2; 4 0.2; 0.65 0.65–5.82

†Values represent the area-weighted average of LEDs and areas in between. In experiments 1 and 2, LEDs occupied 6% of 
the luminous area whereas in experiment 3, LEDs occupied 23% of luminous area.
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conditions and responses for each test partici-
pant were used as opposed to using grouped data 
such as mean ratings from a group of test partici-
pants for a certain lighting condition. This was 
done to uncover the uncertainty inherent in DG 
studies.39

The analyses used here (except for Spearman 
correlations) required that ratings were converted 
from a 9-point scale to binary evaluations of 
whether or not there was discomfort. This was 
done by assuming that ratings of less than 5 (just 
acceptable/admissible, the centre of the 9-point 
scale) were considered to cause discomfort, 
while ratings of 5 or greater were considered 
indicating no discomfort. Our assumption of 
using the centre of the scale is similar to the 
assumption made by Wienold et al.25 where a 
4-point scale was split in half and converted into 
a binary variable. Lin and others also found when 
50% of participants were comfortable, the bor-
derline between comfort and discomfort corre-
sponded to 4.7 on the 9-point rating scale.10 This 

aligns with the definition of borderline BCD at 
point 5 on a 9-point scale.40

Analyses were conducted using R Studio (ver-
sion 3.6.3) and the ROCR package.41 Model per-
formances were analysed for the four datasets 
combined and then for each dataset individually.

2.5 Assumptions

A few assumptions were required to calculate 
the seven models. First, Pet50 was applied to all 
eccentricities including two eccentricities above 
50° in V17 dataset. Although this model was 
suggested for eccentricities up to 50°, we imple-
mented the model using all datasets including 
two eccentricities (out of eight eccentricities 
tested) higher than 50° in the V17 dataset. The 
reason it was implemented even for cases higher 
than 50° in our analysis is because we were inter-
ested in evaluating the model relative to other 
models. If it performs well, it would be helpful 
for pedestrian applications, given that a specific 
eccentricity cannot be assumed.

Figure 2 An example ROC plot showing the point with smallest squared distance to the point (1, 1) and corresponding TNR 
and TPR. The darker shaded area represents AUC
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Second, to avoid infinite values resulting 
from zeros in the denominator or in logarithms, 
these zeros were replaced with a very small 
value (e.g. 0.0001 lx). This occurred in three 
cases: (1) because Ei and Ea were assumed to be 
negligible in T15 dataset as described in Section 
‘Included studies and datasets’, which would 
result in a zero in the denominator in Bul08; (2) 
when calculating Lin14 and Lin15 for viewing 
conditions with an eccentricity of zero as in S13 
and T18 datasets; and (3) when calculating 
Pet50 or Lin14 for conditions with negligible Lb 
as in S13 dataset.

Third, in Lin15, it is unclear whether their 
measured illuminance from the glare source 
includes both direct and indirect components or 
only the direct component. In this analysis, we 
assumed that their illuminance measurements 
from glare source are represented with Ed as 
shown in Equation (7).

3. Results

Figure 3 shows the mean of four diagnostic tests 
(TNR, TPR, AUC and 1-SqD) using the com-
bined dataset: results for the individual tests are 
shown in Figure 4. Table 5 shows results for each 
test using combined and individual datasets.

For the combined data set, the highest mean 
performance was found for Bul08, followed by Ed 
and Lin15, and the lowest scores were for Lavg and 

Pet50. The differences were, however, small, and 
in all cases the mean test performance was above 
0.7. AUC values suggested an excellent perfor-
mance for Bul08 and a good performance for Ed 
and Lin15. On the other hand, Lavg and Pet50 had 
lowest mean performance, and AUC values sug-
gested only a fair performance (Table 5). 
Spearman’s rho ranged from 0.45 to 0.78 and 
these values were suggested to be statistically sig-
nificant for all models.

Results of analyses using individual datasets 
varied and did not fully match results from the 
combined dataset (Figure 4, Table 5). Bul08 had 
the highest mean performance only for one data-
set (T18) and was tied with other models using 
S13 dataset. In another dataset (V17), Lavg and 
Lin15 had a higher mean performance than 
Bul08. Lin15 had lowest mean performance 
using T15 dataset. Differences between models 
varied by dataset. With the V17 and T15 data-
sets, each model gives a similar mean perfor-
mance; with S13 and T18 there is a wider range 
of mean performance scores.

AUC was found to be greater than 0.6 for all 
models using the individual data sets, indicating 
that no models failed. There was, however, a dif-
ference in AUC ranges between data sets; all 
models had a poor performance (AUC 0.6 to 0.7) 
using V17 but an excellent performance 
(AUC > 0.9) using T15. Using S13, AUC values 
suggested a poor performance for Lin14 and 

Figure 3 Mean of the diagnostic tests (TNR, TPR, AUC and 1-SqD) for the seven models using the combined dataset. A 
higher mean value indicates a better performance
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Pet50. For T18, Bul08, Ed and Sch74 had an 
excellent performance.

For all models, Spearman’s correlations were 
small and statistically significant using V17, 
mostly moderate and significant using S13, and 
large and significant using T18 and T15. Detailed 
graphs of diagnostic test results and Spearman 
correlations for each model are included in 
Appendix A.

4. Discussion

4.1 Combined dataset

Consider first the performance of models 
using the combined data set, this being the wider 
range of lighting conditions and thus a better 
analysis of applicability in practice. The best per-
formance was obtained with Bul08, this model 
having the highest mean test score, including an 
AUC of 0.91, and the highest Spearman rho. The 
next best performance was given by Ed, this hav-
ing the second highest mean test score, AUC and 
Spearman’s rho. The improved performance of 
Bul08 over Ed might be due to the contrast term 
(Ed/Ei) which helps differentiate between situa-
tions that had the same influence of saturation, as 
is characterized by Ed, but with different indirect 
illuminances and hence different source to back-
ground contrast.

Lin15 performed only slightly less well than 
did Ed, having the third highest mean test score 
and Spearman’s rho. One feature of these three 
models (Bul08, Ed and Lin15) is that they charac-
terize source brightness using illuminance rather 
than luminance. Lavg, on the other hand, provided 
the lowest mean test score and Spearman’s rho of 
all models, although the AUC being 0.7 indicates 
that Lavg still had a fair performance. This is in 
line with Bullough et al. who reported that Lavg 
had lower association with DG ratings than did 
Ed as shown in Table 2.12

The use of Bul08 or Lin15 would be challeng-
ing in field evaluations where the source cannot 
be switched off to measure Ea. For Bul08, 
Bullough et al.12 suggested using typical values 
(0.02 lx, 0.2 lx and 2 lx for very dark, suburban 
and urban districts, respectively) but these may 
not match actual conditions: error within these 
assumptions may contribute to increased vari-
ance in the model performance. Compared to 
Bul08, another complication for using Lin15 in 
field evaluation is the need to make an assump-
tion of eccentricity.

Ed, a single measurement of illuminance, 
gives a similar performance to Bul08 and Lin15, 
despite those being more complex models which 
include multiple factors. This result holds even if 
one of the datasets is removed (see further 

Figure 4 Mean of five diagnostic tests (TNR, TPR, AUC and 1-SqD) for the seven models using individual datasets. A higher 
mean value indicates a better performance
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analysis in Appendix B). Log(Ed) returns the 
same diagnostic test results as Ed and might be 
preferred over Ed due to its linear relationship 
with DG responses. Ed, on the other hand, exhib-
its a decreasing exponential relationship with 
DG ratings.

4.2 Individual datasets

Analyses using the combined dataset reveal 
the order in which the models more accurately 
predict the discomfort data (Figure 3). When the 
datasets are considered individually, however, 
this order is not retained in any individual 

Table 5 Diagnostic test results based on each dataset as well as the combined dataset

Dataset Model TNR TPR AUC 1-SqD Mean§ Spearman rho

V17 Ed 0.66 0.64 0.67 0.75 0.68 −0.27**

Lavg 0.67 0.66 0.67 0.77 0.69 −0.25**

Lin14 0.59 0.65 0.62 0.71 0.64 0.21**

Lin15 0.61 0.69 0.69 0.75 0.69 0.29**

Bul08 0.63 0.58 0.63 0.69 0.63 0.22**

Pet50 0.62 0.65 0.63 0.73 0.66 −0.22**

Sch74 0.58 0.68 0.66 0.72 0.66 −0.25**

S13 Ed 0.80 0.67 0.78 0.85 0.78 −0.49**

Lavg 0.82 0.63 0.75 0.83 0.75 −0.51**

Lin14 0.73 0.48 0.64 0.66 0.63 0.21NS

Lin15 0.67 0.80 0.78 0.85 0.78 0.49**

Bul08 0.67 0.80 0.78 0.85 0.78 0.49**

Pet50 0.75 0.55 0.68 0.73 0.68 −0.28*

Sch74 0.67 0.80 0.78 0.85 0.78 −0.49**

T18 Ed 0.81 0.86 0.91 0.94 0.88 −0.8**

Lavg 0.68 0.71 0.78 0.82 0.75 −0.54**

Lin14 0.76 0.78 0.86 0.89 0.82 0.7**

Lin15 0.69 0.81 0.85 0.87 0.80 0.69**

Bul08 0.82 0.88 0.93 0.95 0.89 0.82**

Pet50 0.75 0.91 0.88 0.93 0.87 −0.74**

Sch74 0.83 0.83 0.91 0.94 0.88 −0.8**

T15 Ed 0.86 0.89 0.95 0.97 0.92 −0.86**

Lavg 0.83 0.88 0.92 0.95 0.89 −0.81**

Lin14 0.89 0.89 0.95 0.97 0.93 0.88**

Lin15 0.81 0.86 0.90 0.94 0.88 0.78**

Bul08 0.89 0.85 0.94 0.97 0.91 0.84**

Pet50 0.86 0.86 0.93 0.96 0.90 −0.84**

Sch74 0.88 0.81 0.91 0.95 0.89 −0.79**

Combined 
data set

Ed 0.78 0.79 0.86 0.91 0.83 −0.69**

Lavg 0.55 0.82 0.70 0.76 0.71 −0.45**

Lin14 0.84 0.63 0.75 0.84 0.76 0.54**

Lin15 0.81 0.73 0.84 0.89 0.82 0.68**

Bul08 0.84 0.84 0.91 0.95 0.88 0.78**

Pet50 0.58 0.79 0.71 0.78 0.72 −0.47**

Sch74 0.74 0.66 0.78 0.82 0.75 −0.58**

Shaded cells denote the model with best performance for each test within each dataset.
*Denotes significance at the Holm’s-corrected 5% level.
**Denotes significance at the Holm’s-corrected 1% level.
NSDenotes non-significance.
§The mean of the four diagnostic tests (TNR, TPR, AUC and 1-SqD).
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dataset, although the differences between models 
in many cases are small. In other words, certain 
datasets favour certain models. Bul08, the model 
which performs best for the combined dataset, 
also performs well for S13, T15 and T18 but per-
forms less well than other models for V17. Given 
that Bul08 was developed with direct viewing, 
the reduced performance of Bul08 using V17 
might be due to the larger eccentricities used in 
V17 compared to those in S13, T18 and T15.

On the other hand, Ed tends to be one of the 
better performing models for each of the four 
datasets. While analyses using the combined 
dataset suggested that Lavg gave the weakest per-
formance, Figure 4 shows that it performs simi-
lar to the other models for three datasets (V17, 
S13 and T15) and drops to the weakest perfor-
mance only for T18.

The performance of Lavg using T18 might have 
been affected by experimental conditions because 
this dataset included two source sizes that had 
the same Lavg but the larger source, expectedly, 
caused higher discomfort. For instance, for all 
experimental conditions, the mean DG rating 
was 3.3 for the larger source compared to 5.9 for 
the smaller source. Lin14 and Pet50 had a better 
performance than Lavg in T18 dataset as they both 
account for source size.

Bullough et al. suggested that the Bul08 model 
be used with sources subtending a size at the 
observer of smaller than 0.3°.14 For sources 
larger than 0.3° they proposed Bul11, a model 
which also includes maximum luminance. To 
evaluate whether Bul08 performance in the cur-
rent analyses might be further enhanced if only 
used with sources smaller than 0.3°, we used T18 
dataset where half of the cases had a source size 
of 0.2° and the other half was 0.65°. Contrary to 
the proposal to use Bul08 for sources smaller 
than 0.3°, we found that Bul08 performed simi-
larly well regardless of whether the source size 
was 0.2° or 0.65° (Table 6).

In contrast to T18 dataset, V17 works slightly 
better with Lavg than Bul08. In V17, variations in 

Lavg were affected by participant’s position and 
luminaire type. This might have improved the 
performance of Lavg in this dataset, compared to 
T18. Luminance-contrast-based models such as 
Pet50 and Lin14 models had lower mean model 
performance compared to Lavg, Sch74 or Lin15. 
The finding that Lin14 did not perform as well as 
Sch74 or Lin15 is consistent with results reported 
in Villa et al. for one glare source based on 
Spearman correlation and root mean square error. 
Our analysis using the V17 dataset and the analy-
sis in Villa et al. – for one glare source – also 
agree that Lin15 performs better than Sch74.

The mean performance of models using V17 
was lower than the other datasets, except Lin14. 
The outdoor field setting used by Villa et al.20 
might have affected overall performance of the 
models compared to S13 and T15 that were col-
lected in a laboratory room or T18 that used a 
spherical apparatus. It might be that outdoor set-
tings introduce some noise into the responses 
because of other elements in the environment-
like buildings, walkways and signs that are often 
abstracted in laboratory experiments. Nonetheless, 
field studies are important because they highlight 
that DG is one of many stimuli in outdoor 
environments.

Most models had a similar performance using 
S13, except for Lin14 and Pet50. The source 
used in this dataset consisted of a 3 × 3 LED 
array with a luminance ranging from 2044 cd/m2 
to 6556 cd/m2, and surrounding areas between 
LEDs having a lower luminance of 725 cd/m2. 
The area-weighted average luminance ranged 
from 401 cd/m2 to 1041 cd/m2. The (Lavg × ω) 
term in Lin14 assumes that source area is uni-
form, which was not the case in S13. Pet50 uses 
the (Lavg

1.6 × ω0.8) term and seems to have also 
been affected by the uniformity assumption, 
though to a less extent.

Using T15, the models Lin14, Ed and Bul08 
had highest mean performance, though the mean 
performance values for all seven models were 
within a small range between 0.86 and 0.92. The 
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experimental booth in the experiment by Tashiro 
et al. was surrounded by a black curtain, which 
led us to assume that the contribution of Ei was 
negligible. Contributions from the fluorescent 
tubes that were used to illuminate the background 
area were also limited to 0 lx–0.95 lx. This is 
likely the reason why models that used Ei and/or 
Ea, such as Bul08 and Lin15, did not gain an 
advantage over other models.

4.3 The performance of E
d
 using Bul08 

model development data

Ed performed well with each of the four data-
sets when considered individually and when 
combined into one dataset. This suggests that Ed 
might be appropriate when Ei and Ea ranges are 
similar to those in those four datasets. In the 
combined dataset Ei ranged from 0 lx to 0.74 lx, 
being negligible in S13 and T15, limited to a 
small range from 0.02 lx to 0.06 lx in T18, and 
0.11 lx to 0.74 lx in V17.

In Bullough et al.’s experiments that included 
one glare source, Ei ranged from 0.01 lx to 0.4 lx, 
which is within the range examined in the com-
bined dataset. This raises the question of how Ed 
would compare to Bul08 using Bul08 develop-
ment data. To address this question, we used 
published grouped mean data from Bullough 

et al.12 for outdoor experiments 1, 2 and 3, indoor 
experiments 1, 2, 3, 4 and 5, as well as the indoor/
outdoor experiment. Data from indoor experi-
ment 6 were not included because that experi-
ment used two sources of glare.

The results, shown in Table 7, suggest very 
similar performance for Bul08 and Ed. In their 
experiments, Ei ranged from 0.01 lx to 0.4 lx and 
Ea ranged from 0.01 lx to 1.6 lx. The relatively 
small ranges of Ei and Ea across these experiments 
might have reduced the usefulness of these terms 
at improving the prediction of discomfort, hence 
Ed performed similarly. For comparison, a linear 
regression model using log(Ed) instead of Ed had 
R2 = 0.66, F(1,64) = 123.6, p < 0.01, compared to 
R2 = 0.69, F(1,64) = 141.4, p < 0.01 for Bul08. 
Overall, these results support the use of Ed.

4.4 Limitations

There are several limitations to consider when 
interpreting the analyses presented in this article. 
Specifically, they are applicable under the range 
of lighting conditions in the considered datasets 
(see Table 4).

In the four datasets considered in this article, 
Ed was measured facing (i.e. normal) to the light 
source (S13 and T18 datasets), and with the 
source off axis (V17 and T15 datasets). Future 

Table 6 Analysis results of Bul08 model using T18 dataset broken down by source size

Source size TNR TPR AUC 1-SqD Spearman Rho Mean§

0.2° 0.912 0.704 0.871 0.905 0.705** 0.85

0.65° 0.903 0.846 0.924 0.9671 0.762** 0.91

§The mean of the four diagnostic tests (TNR, TPR, AUC and 1-SqD).
**Denotes significance at the 1% level (p < 0.01).

Table 7 Diagnostic analysis of Bul08 and Ed using Bullough et al.12 data from experiments that only included one source 
(excluding indoor experiment 6)

Model TNR TPR AUC SqD 1-SqD Spearman Rho

Bul08 0.98 0.89 0.96 0.013 0.99 0.72**

Ed 1.00 0.90 0.98 0.010 0.99 −0.78**

Denotes significance at the 1% level (p < 0.01). 
Diagnostic test results using log(Ed) produced same results as those for Ed.



Predicting discomfort from glare  241

Lighting Res. Technol. 2024; 56: 225–246

studies are recommended to compare these two 
illuminance measurement approaches.

For the comparison between Ed and Bul08, 
accounting for indirect and ambient illuminance 
might become crucial when comparing environ-
ments with a higher variation in indirect or ambi-
ent illuminance such as a busy city centre 
compared to a rural area. It is currently unclear 
how limited Ei and Ea ranges need to be in order 
to safely ignore them and only use Ed. To address 
this issue, it might be possible to develop differ-
ent Ed thresholds that pertain to outdoor environ-
ments with different common Ei and Ea. Future 
studies are warranted to explore this further.

As mentioned in the introduction, a previous 
study found differences in glare ratings when par-
ticipants viewed three different sources that pro-
vided the same illuminance at the eye.14,15 
However, the performance of Bul11, which 
includes a term for maximum luminance, was not 
reported,14,15 and it has not been clearly evaluated 
in subsequent studies. Villa et al. calculated Bul11 
using average luminance of the fixture instead of 
maximum luminance,20 and Tyukhova and Waters 
reported correlations between ratings and com-
bined predictions from Bul08 and Bul11.24 Further 
studies are needed to compare the performance of 
Bul11 (which uses a maximum luminance term) 
to Bul08. Furthermore, surveys of the level of 
optical diffusion used in street lighting fixtures 
would help determine the practical importance of 
accounting for maximum luminance and source 
luminance uniformity in DG models.

There are only a few studies of discomfort 
from glare in the pedestrian context. The number 
of studies available for subsequent analysis is 
further reduced due to inconsistency between 
studies in measured and reported quantities. The 
four combined datasets present a wider range of 
lighting conditions for pedestrian applications 
than any one individual study. Including addi-
tional datasets with larger variations in source 
sizes, eccentricity, indirect illuminance, ambient 
illuminance, and/or background luminance may 
change the conclusions drawn.

The analysis did not consider dynamic viewing 
or multiple glare sources because it is currently 
unclear how these two conditions can be accounted 
for using the evaluated seven models. For Lin14, 
Lin15 and Sch74, Villa et al. found a similar per-
formance for these models with one or two glare 
sources.20 They also found that ratings made using 
a dynamic viewing procedure were generally 
lower than ratings made with a static viewing pro-
cedure. A multi-dataset evaluation of the models 
using more than one glare source and using a 
dynamic viewing procedure is warranted.

In the presented analyses, it was assumed in this 
study that the comfort/ discomfort threshold in the 
9-point scale was drawn just below 5. Further work 
is needed determine whether the conclusions are 
robust to changes in this assumption.

In two of the datasets, the sample sizes were 
quite small. While the sample sizes for V17 and 
T18 exceeded 30, those for the individual experi-
ments within S13 and T15 ranged from 6 to 19. 
Small sample sizes can reduce a study’s power 
and ability to detect certain effect sizes.42,43

Further studies are needed to verify the pre-
sented results and evaluate other models, such as 
Bul11, the European model (RGI),

44 modified 
Daylight Glare Index (DGI),21 and the CIE maxi-
mum luminous intensity; the threshold is recom-
mended by CIE for controlling glare in pedestrian 
situations.45 These models were omitted from the 
current analysis because Lmax, which is needed to 
calculate Bul11 (see Equation 5), and maximum 
luminous intensity data were not available in all 
four datasets. The modified DGI was not included 
in the current analysis because it requires lumi-
nance distribution data which were not available. 
Lastly, luminous intensity and the projected 
luminous area are needed to calculate RGI, which 
were also not available. Future analysis of these 
models can be made possible if studies were to 
consistently report all needed quantities as pro-
posed in a recent article.46

Finally, the four datasets used sources with 
different CCTs (4000 K, 5700 K and 6500 K for 
V17, T18 and S13, respectively: T15 reported a 
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CCT of 5000 K for only their first experiment). 
While there is some evidence that variations in 
glare source spectral power distribution affect 
discomfort evaluations this was not evaluated in 
the current analysis.29,47,48

5. Conclusion

In this paper, we explored the predictions of dis-
comfort from glare in the context of pedestrian 
lighting given by seven models tested using four 
independent datasets. For the range of experi-
mental conditions used in these four datasets, we 
conclude that direct illuminance Ed is the most 
suitable model, as it tended to offer similar or 
better predictions than did the other models. The 
mean performance of Ed is slightly lower than 
Bul08, the model proposed by Bullough et al.12 
which exhibited the best performance, but Bul08 
requires additional measurements that may not 
be straightforward to predict at design stage or to 
measure in the field. While the mean perfor-
mance of Ed is slightly lower than Bul08, it offers 
a simpler approach for design and installation 
practice. For situations that deviate from the 
experimental conditions of the included datasets, 
the above conclusions should be considered ten-
tative pending further research using more data-
sets and testing other metrics, such as Bul11.
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Appendix A

Test results by dataset:

A1: Test results for the seven models using V17 dataset
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A2: Test results for the seven models using S13 dataset

A3: Test results for the seven models using T18 dataset

A4: Test results for the seven models using T15 dataset
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Appendix B

To evaluate whether one study influenced the 
findings more than others (using the combined 
data set), we conducted additional analyses simi-
lar to those shown in Table 5 but each time 
removing a different study dataset from the com-
bined dataset. The Table B1 shows the mean per-
formance for each model under each dataset 
removal scenario.

Similar to the reported results using all four 
datasets, we found that Bul08 had the highest 
mean performance in all scenarios. In the 

scenarios with T18 or S13 removed, Ed and 
Lin15 followed as having the second highest 
mean performance. In the scenario with V17 
removed, Ed had the same mean performance as 
Bul08 whereas Lin15 had a slightly lower mean 
performance than Lin14. In the scenario with 
T15 removed, Sch74 had the same mean perfor-
mance as Lin15, followed by Ed and Lavg. 
Although there were ties introduced when T15 
was removed, the additional analyses showed 
that the reported findings using the combined 
dataset with four datasets still hold.

A5: Test results for the seven models using the combined dataset

Table B1 Mean performance when each dataset was individually removed from the combined dataset, and using all 
datasets in the last column. Shaded cells denote the model with best performance

Model T18 removed S13 removed T15 removed V17 removed Combined datasets

Ed 0.82 0.83 0.77 0.90 0.83

Lavg 0.77 0.71 0.77 0.78 0.71

Lin14 0.80 0.77 0.74 0.85 0.76

Lin15 0.83 0.82 0.81 0.83 0.82

Bul08 0.88 0.89 0.83 0.90 0.88

Pet50 0.78 0.72 0.70 0.80 0.72

Sch74 0.77 0.75 0.81 0.82 0.75


