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A B S T R A C T

Robust and resilient agri-food supply chain management (AFSCM) is paramount to agribusinesses, given the 
many challenges and risks that this increased demand will bring in the coming decades. Interruptions caused by 
various risks to this crucial supply chain network, particularly in emerging economies, can put the lives of 
millions in danger, not to mention creating devastating impacts on the economy and the environment. Even so, 
there are only a limited number of quantitative risk management studies in the AFSCM literature. In this study, 
an integrated modified risk mitigation matrix (M-RMM) is developed to analyze the mitigation strategies for 
dealing with various risks in the context of the agri-food supply chain. The M-RMM is integrated with the grey 
multi-objective binary linear programming (GMOBLP) model to obtain the optimal risk mitigation strategies 
related to the three objective functions of risk, cost, and time minimization. The proposed model is a useful tool 
for formulating sustainable business policies and reducing food waste, and acquiring a context-specific (i.e., a 
developing economy), sector-specific (i.e., the agri-food processing sector), and multi-product (i.e., fresh and 
non-perishable) approach. The findings reveal that continuous training and development and vulnerability 
analysis of IT systems are the most effective risk mitigation strategies to lessen the impacts of lack of skilled 
personnel, sub-standard leadership, failure in IT systems, insufficient capacity to produce quality products, and 
poor customer relationships. The findings assist practitioners in managing risks in supply chains.

1. Introduction

It has been almost two decades since the agri-food industry began to 
embrace supply chain management (SCM) as a core concept for its 
competitiveness [88]. Agri-food supply chains (AFSCs) involve a set of 
activities in a farm-to-fork sequence encompassing land cultivation and 
the production of crops, as well as the processing, testing, packaging, 
warehousing, transportation, marketing, and distribution of food pro-
ducts [17,50,88]. AFSCs are distinctive from other supply chains (SCs) 
in many ways; relevant differences include (1) the nature of production, 
which is partly based on biological processes, thus increasing variability 
and risk; (2) the nature of the products, which have specific char-
acteristics like perishability and bulkiness that require a certain type of 
SC; and (3) societal and consumer attitudes toward issues like food 
safety, animal welfare, and environmental impacts [25,66,68,99].

The vulnerability of SCs, including AFSCs, is of critical importance, 
because a single disruption may result in the collapse of the entire SC 
[39,42,49]. In addition, globalization and outsourcing have increased 
the severity and frequency of SC disruptions [55,105]. These concerns, 
coupled with potentially severe repercussions resulting from SC risk 
uncertainty, have given rise to an ever-increasing interest in SC risk 
research [43,51,91,104]. However, AFSC risk management is particu-
larly important due to the specific characteristics of AFSCs, including 
the nature of the products and the production processes as well as so-
cietal and consumer concerns around food and agricultural goods. Be-
cause of these distinctive characteristics, risk management in AFSCs 
requires specially designed mathematical models and methods, since 
AFSCs, in comparison with manufacturing SCs, encompass more 
sources of uncertainty [12,14,31,86]. Fahimnia et al. [32], stressed that 
risk management has been less researched in the realm of agribusiness 
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than in fields like engineering and decision sciences.
Robust strategies and resilient strategies refer to two modeling ap-

proaches that have been used for risk-mitigation management. Robust 
strategies in SCs are recognized as proactive risk mitigation measures 
and are suitable for business-as-usual risks (i.e., high probability, low 
consequence risks). On the other hand, resilient strategies are more 
concerned with the post-disruption recovery capacity and are apt for 
disruption risks (i.e., low probability, high consequence risks) 
[14,44,45]. Robustness in AFSCs is of special importance, because it can 
help organizations avoid food and resource wastage, while also en-
abling them to deal with risks efficiently by providing proactive miti-
gation strategies.

Borodin et al. [16] highlighted the significance of combining mod-
eling and optimization approaches in the design of agricultural systems. 
Behzadi et al. [14] indicated that mathematical models for agricultural 
goods have attracted little attention, which is surprising as risk man-
agement in AFSCs is a highly critical task. Thus, the problem statement 
in our study is as follows: “there is a paramount need to research the 
critical risks of AFSCs and advance proactive risk mitigation practices by 
suitable mathematical models, particularly in developing countries, to im-
prove the robustness of this important SC and have an impact on the 
economy”. In response to this call in the literature, as described in our 
problem statement, we define the following research question: “RQ: 
How can a reliable and yet easy-to-use mathematical model be defined to 
effectively analyze supply chain risk impacts and mitigation strategies in the 
agri-food processing sector in Bangladesh?”.

The research objectives (ROs) are as follows: RO1: to develop a 
reliable mathematical model to deal with supply chain risks and miti-
gation strategies. RO2: to apply the model in real-world cases in the 
agri-food processing sector in Bangladesh in order to construct a sus-
tainable business policy to reduce food wastage.

To respond to the research question and reach our research objec-
tives, we position our research mainly based on extending the risk 

mitigation matrix (RMM) introduced by Aqlan and Lam [9] and pro-
posing a mathematical enhancement to the framework proposed by Ali 
et al. [4] to assessing risks in the food supply chain in Bangladesh with 
an emphasis on food wastage minimization. RMM is a very useful 
matrix-based tool that uses both semi-qualitative and quantitative data 
inputs to evaluate mitigation strategies against risks. We used the risks 
and mitigation strategies proposed by Ali et al. [4] as part of the inputs 
to our model. Ali et al. [4] identified risks by consulting 130 experts 
from food companies in Bangladesh. Although they identified risks and 
ranked them using a multi-criteria decision-making approach and 
proposed mitigation strategies, there was no analysis of the perfor-
mance of those risk mitigation strategies in response to the identified 
risks. We adopted the risks and mitigations strategies from Ali et al. [4]
and applied them in the same sector of the industry that is the agri-food 
processing sector in Bangladesh, utilizing our proposed model and then 
provided a comparative analysis. Thus, we believe our research con-
tributes to the body of knowledge in the following terms: 

(I) An incremental contribution: A modified risk mitigation matrix (M- 
RMM) for supply chain risk management is proposed. The proposed 
M-RMM is integrated with grey multi-objective binary linear pro-
gramming (GMOBLP) model to obtain the optimal risk mitigation 
strategies in relation to the three objective functions of risk, cost 
and time minimization. As defined by Nicholson et al. [65], one 
aspect of incremental contribution is neglect that could apply to 
theories or methodologies. Our intent in this contribution fits this 
incremental contribution definition by Nicholson et al. [65] via 
focusing on neglected aspects in the original RMM model with the 
aim to improve it (see Section 7.1).

(II) A replicatory contribution: We apply the proposed model in the agri- 
food processing sector of the food supply chain by adopting a multi- 
product approach (both fresh and non-perishable products) in 
Bangladesh. We adapt and implement risks and mitigation 

Table 1 
Risks in agri-food supply chains. 

Contribution Food supply chain risks Country/context

Zhao et al.,[106] explored the AFSC literature by evaluating risks 
using a multi-method approach. In this study, the authors 
identified and evaluated AFSC risks using a total interpretive 
structural modeling (TISM) approach and also fuzzy MICMAC.

• Lack of information sharing, supply-demand imbalance, shortage 
of skilled labor, fluctuation in market price, economic and 
political instability, lack of investment facility, faster 
technological development, insufficient infrastructural capacity.

Spain, France, 
Argentina and Italy

Khan et al.,[48] identified risks involved in the Halal food supply 
chain and evaluated these risks using a fuzzy analytic hierarchy 
process (AHP) model.

• Supply-related risks: raw-materials integrity problems, supplier 
failure, raw materials’ cost.

• Demand-related risks: Bullwhip effect risks, willingness to pay, 
Halal market, problems with production.

• Production-related risks: equipment failure, process design 
problems, lack of skilled labor, problems with understanding Halal 
traditions.

• Outsourcing risks: transportation, warehousing, marketing, and 
packaging issues.

• Policy risks: lack of Halal-compliant policy, regulatory problems, 
information-flow problems.

India

Yazdani, Gonzalez, and Chatterjee[103] identified food risk drivers in 
the context of circular economies. The researchers used extended 
step-wise weight assessment ratio analysis (SWARA), failure 
mode and effect analysis (FMEA), and evaluation of data based on 
average assessment (EDAS) methods.

• Climate change, policy, human behaviors, financial risk. Spain

Assefa, Meuwissen, and Oude[11] conducted in-depth interviews to 
understand price risk perceptions and management strategies in 
AFSC.

• High price of input items, instability, low volume, low quality of 
input products, late delivery, price volatility, demand uncertainty, 
instability in quality specification, poor on-time payment rates.

EU food chains

Nyamah et al.,[67] identified AFSC risks using a structured 
questionnaire. In addition, to clarify the relationship between 
identified risks and firms’ performance, Pearson correlations were 
utilized. Finally, to interpret the impact of risks in AFSC, an 
ordinary least square regression model was used.

• Risks related to supply demand, environmental and biological 
issues, weather, operations and managerial issues, financial issues, 
policy, and infrastructure.

Ghana

Diabat, Govindan, and Panicker[28] investigated the interactions 
among food supply chain risks using an approach based on 
interpretive structural modeling (ISM).

• Micro-level, demand-related, supply-related and product/service- 
related risks, as well as information management-related risks.

Indian food products 
company

Guan, Dong, and Li[35] identified and assessed the food supply chain 
risk using a model based on the fuzzy AHP.

• Natural disasters, animal and plant diseases, quality defects, 
fluctuations in demand, quality of raw materials.

Dairy
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strategies proposed by Ali et al. [4] as part of the inputs to our 
model to offer a differentiated replication or quasi-replication 
contribution [89]. A study by Ali et al. [4] lacks a performance 
analysis of mitigation strategies against identified risks. Thus, it is 
important to achieve empirical generalizations as without any 
benchmark to compare and contrast, findings are just isolated facts. 
We postulate this comparison between the outcome in Ali et al. [4]
and the findings of our study both in the context of Bangladesh and 
in the sector of agri-food processing can yield a meaningful re-
plicatory contribution as coined by Nicholson et al. [65].

The above contributions are discussed in detail in theoretical im-
plications (Section 7.1) and practical implications (Section 7.2). The 
research gaps and highlights are also discussed in Section 2.3. The rest 
of the paper is organized as follows. In Section 2, the research context 
and literature are reviewed. The methodology is explained in Section 3. 
Case application and data collection are elaborated in Section 4. Results 
and sensitivity analysis are discussed in Sections 5 and 6, respectively. 
Section 7 discusses the implications of the findings and limitations. In 
Section 8, conclusions are provided.

2. Research context

In this section, we review the existing literature on issues relevant to 
our study, including AFSC risk assessment and treatment (Section 2.1) 
and quantitative decision tools in AFSCs (Section 2.2). We also identify 
key research gaps that the present study seeks to fill (Section 2.3).

2.1. Agri-food supply chain risk assessment and treatment

Gerhold, Wahl, and Dombrowsky [33] investigated risk perception 
and emergency food preparedness in Germany to improve the efficiency 
and resilience of food SCs. Sun and Wang [84], meanwhile, investigated 
food traceability vis-à-vis issues of food security; their study concerns 
ways to ensure food quality and SC efficiency by focusing on sourcing 
decisions that allow suppliers to be traced. Wang, Rodrigues, and Demir 
[96] outlined the role of inventory control in mitigating food waste. 
They indicated that food SC risk could be minimized by controlling 
inventory properly. Leat and Revoredo‐Giha [52] investigated the 
challenges and risks in developing resilient AFSCs in the context of 
Scotland.

Esteso, Alemany, and Ortiz [31] reviewed current conceptual fra-
meworks (CF) dealing with the “configuration of SC networks,” 
drawing on the hierarchical decision-making framework proposed by 
Tsolakis et al. [88]. Bode and Wagner [15] explored the frequency of SC 
disruptions by focusing on an upstream SC. Pereira, Scarpin, and Neto 
[72] conducted a survey to identify the risk and mitigation strategies 
used in mango supply chains in the Brazilian context. Janssen et al., 
[46] offered a stochastic model for perishable goods, taking into ac-
count micro-periodic inventory replenishment policies.

Table 1 provides a list of studies related to AFSC risks, summarizing 
the studies’ key contributions.

2.2. Quantitative decision tools in agri-food supply chains

Behzadi et al. [14] reviewed quantitative decision models used in 
studies of AFSC risk management; their findings emphasized the limited 
use of mathematical models within the field. Here, we provide a review 
of research on the quantitative decision tools that have been applied to 
supply chain risk management in the agri-food sector in the past few 
years (2015–2022).

Yang and Xu [101] demonstrated patterns of disruption and resi-
lience in agri-grain supply chains in China using an analytical quanti-
tative model. Chebolu-Subramanian and Gaukler [21] studied a food 
contamination event in a simplified SC model. Soto-Silva et al. [80]
reviewed operational research models applied in fresh fruit SCs. An and 

Ouyang [7] developed a bi-level optimization model for a three-echelon 
food supply chain network, considering case studies from Illinois and 
Brazil. This model suggested solutions for maximizing profit while 
minimizing post-harvest loss (PHL). Nakandala, Lau, and Zhao [62]
proposed an integrated model for risk assessment in a fresh food SC; the 
model combined fuzzy logic and hierarchical holographic modeling 
methods. Song and Zhuang [79] proposed a game-theoretical model for 
food risk assessment focusing on governments, manufacturers, and 
farms. Rathore, Thakkar, and Jha [76] investigated food SC disruptions 
using an integrated grey AHP and grey technique for order of pre-
ference by similarity to ideal solution (TOPSIS) methods. Prakash et al. 
[75] developed a framework for perishable food SC risk assessment 
using ISM, while Moazzam et al. [59] utilized an analytical model to 
investigate food quality and risk-related indicators for performance 
measurement systems. Chodur et al. [22] assessed the vulnerability of 
food systems using a fault tree analysis. Utomo, Onggo, and Eldridge 
[90] reviewed agent-based simulation in previous research on AFSC. 
Zhu et al. [107] reviewed the literature of mathematical modeling 
techniques to address problems in the sustainable food supply chain 
field. Ali et al. [4] analyzed food SC risks using a grey decision-making 
trial and evaluation laboratory (DEMATEL) approach, recommending 
mitigation strategies for food wastage management. Bottani et al. [19]
developed a resilient food SC model for mitigating sudden risks; they 
proposed a bi-objective mixed-integer programming model and solved 
it using ant colony optimization technique. Srinivasan et al. [81] pro-
posed a three-stage approach that supports food-sourcing decisions by 
incorporating climate change data. Onggo et al., [69] developed a 
mixed integer programming model for perishable inventory routing 
problems for AFSCs.

Boshkoska et al., [18] presented a decision support system based on 
machine learning and ontology technologies. Their study investigated 
the knowledge boundaries of the agri-food value chain. Voldrich, 
Wieser, and Zufferey [95] offered a multi-objective model for devel-
oping food supply chain monitoring systems. Mogale, Kumar, and Ti-
wari [60] developed a multi-period single objective mathematical 
model for food supply chains, with the aim of minimizing costs related 
to silo establishment, food-grain loss, transportation, carbon emissions, 
inventory holding, and risk penalty.

Negra et al., [64] offered science-based indicators and other deci-
sion tools that are able to find the index of the indicator in the domain 
of agri-sector companies. Assa, Sharifi, and Lyons [10] employed two 
frameworks (Pareto optimal and Stackelberg game setups) to model 
risk-management strategies by offering commodity-price insurance in 
AFSC.

Wei et al., [97] offered a unified modeling approach for in-
vestigating pricing and dual-channel selection in the retail food in-
dustry. The study confirmed that the optimizing of both operational 
process and logistics might give high profit from both channels without 
broadening the size of the service area. Yakavenka, et al., [102] de-
veloped a multi-objective model for designing a sustainable perishable 
food supply chain. In this study, a multi-objective (i.e., social-time, cost, 
and emission minimization) mixed-integer linear programming model 
was proposed to make the perishable food supply chain sustainable in 
the context of the North-Eastern European region.

Recently, Gupta, et al., [37] offered a fuzzy-based multi-objective 
Linear Program (FMOLP) model to integrate food storage, procurement, 
and distribution under resilience, quality, and cost. The study optimized 
the cost focusing the resilience maximization and food loss minimiza-
tion in the case of India. Srivastava and Dashora, [82] identified the 
enablers from the literature to implement electronic traceability in the 
agri-food supply chain in India using fuzzy-based interpretive structural 
modeling approach and fuzzy MICMAC analysis. Pourmohammad-Zia, 
et al., [74] offered inventory control policies and dynamic pricing 
strategies in a two-level AFSC. The study developed an analytical model 
based on non-linear convex programming to solve the constructed 
model.
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Moreno-Camacho, et al., [61] designed a sustainable food supply 
chain network for the Colombian dairy sector. The study offered a 
multi-objective mixed-integer linear programming model where three 
criteria and four decisions were considered (i.e., carbon emissions as 
environmental, total network costs as economic and work conditions 
and societal development as social criteria).

2.3. Research gaps and highlights

After reviewing the literature, it is realized that there is a limited use 
of mathematical models within the AFSC field [13,14] while the gap is 
wider within the context of developing economies in particular, Ban-
gladesh. Furthermore, risk management has been less researched in the 
realm of agribusiness than in fields like engineering and decision sci-
ences [32]. On the other hand, there is a necessity for multi-product 
models, including both fresh and non-perishable agri-food products in 
AFSCs, as it has been gaining momentum in recent years [30]. To the 
best of our knowledge, there is no research in the literature applying 
this type of context-specific (i.e., a developing economy), sector-specific 
(i.e., the agri-food processing sector), mathematical model-oriented 
(i.e., the M-RMM model and mathematical programming optimization) 
and multi-product (i.e., fresh and non-perishable) approach in Bangla-
deshi AFSCs. Thus, the research gap is articulated as follows: “There is 
an explicit need in the extant literature for a context-specific model-oriented 
and multi-product robust mathematical model to effectively evaluate supply 
chain risks in the agri-food processing sector in Bangladesh”. Our research 
bridges this research gap by proposing a modified M-RMM and 
GMOBLP model and applying it in the context of the agri-food pro-
cessing sector, accounting for a multi-product approach in Bangladesh. 
Our specific research highlights are summarized as follows: 

• A new M-RMM is proposed.

• The proposed M-RMM is integrated with the GMOBLP model to 
obtain the optimal risk mitigation strategies in relation to the three 
objective functions of risk, cost, and time minimization.

• The proposed model is context-specific (i.e., a developing economy), 
sector-specific (i.e., the agri-food processing sector), mathematical 
model-oriented (i.e., the M-RMM model and mathematical pro-
gramming optimization), and multi-product (i.e., fresh and non- 
perishable) in Bangladeshi AFSCs.

• The proposed integrated model is applied in the agri-food processing 
sector in Bangladesh. An empirical generalization in the context of 
AFSC in Bangladesh is provided by a comparative analysis of the 
findings between the outcome in prior research.

3. Methodology

This research is comprised of four main steps, which are presented in 
Fig. 1. In step 1, risks and proper risk mitigation strategies in AFSCs in 
Bangladesh are identified based on the findings of Ali et al. [4]. In step 2, 
the CRW for each identified risk is obtained utilizing the BWM (Section 
3.2.). In step 3, the proposed M-RMM model is constructed by acquiring 
the required data (Section 3.3.). Eventually, the optimal risk mitigation 
strategies considering risk reduction, budget, and time schedule objectives 
are determined by solving a GMOBLP model (Section 3.4.).

3.1. Grey systems theory

Grey systems theory is an efficient approach utilized to solve un-
certainty problems with discrete data and incomplete information. The 
systems which lack information are referred to as grey systems, and 
grey means poor, incomplete, or uncertain [24,54,58,83,94]. We have 
used grey systems theory due to its characteristics of dealing correctly 
with poor information and small samples of data [29,34,56,92]. The 
definitions in grey systems theory are presented in Appendix A of the 
supplementary material.

3.2. Best-worst method

The BWM, proposed by Rezaei [77,78], is a new method that can be 
used in complex multiple criteria decision-making problems. It is a very 
convenient decision-making tool compared to other similar decision- 
making approaches [71,93]. Implementation steps of BWM are pro-
vided in Appendix B of the supplementary material.

3.3. Modified risk mitigation matrix model

After identifying suitable mitigation strategies as well as de-
termining each risk’s weight, the M-RMM is proposed as an extension of 
the original risk mitigation matrix (RMM), introduced by Aqlan and 
Lam [9]. The RMM is a two-dimensional matrix, where the columns 
represent the risks, and the rows show the mitigation strategies. Table 2
represents a typical example of our proposed M-RMM. In our proposed 
M-RMM, the following developments of the RMM are introduced: (1) A 
dimension of mitigation time is added, where values are shown in grey 
numbers; (2) CRW values are calculated based on BWM; (3) Mitigation 
cost values are shown in grey numbers. In Fig. 2, the process in the 
proposed model is shown in a flow diagram.

3.3.1. Risks and mitigation strategies
Risks and suitable mitigation strategies should be identified and 

utilized in the M-RMM model in order to assess the mitigation strategies 
which can be obtained from the literature or field studies.

3.3.2. CRW of each risk (wi)
Each CRW value shows the severity of each risk, ranging from 0, 

meaning not being critical, to 1, meaning fully critical. From a quali-
tative perspective, risks can be categorized into three groups: red, 
yellow, and green conditions. Risks associated with the red condition 
are critical and need urgent consideration. The red condition means 
they are due to happen and have severe consequences for the system, 
whereas, on the other side, risks with the green condition are con-
sidered normal with a stable status, which means the system will re-
main safe. Within this spectrum, there are yellow risks, which are 
neither red nor green, but lie somewhere in the middle. In this study, a 

Fig. 1. Research steps. 
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quantitative approach was adopted rather than a qualitative approach 
by obtaining a CRW from applying BWM. The g *

i
(target or acceptable 

level of risk i) is also defined, which is set by decision-makers, and risks 
with a CRW lower than the threshold are acceptable and do not require 
urgent consideration; however, they still need to be dealt with.

3.3.3. Risk reduction/increase by each mitigation strategy (rij)
The risk reduction/increase by each mitigation strategy is re-

presented by a number and a sign. The number represents the value of 
the risk reduction/increase, which is set by experts and can be cate-
gorized into levels, as shown in Table 3. The sign can be positive (+) 
for a risk impact increase or negative (-) for a risk impact decrease. The 
possible values of rij are shown in Eq. (1). 

= + + + + +r { 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5}ij (1) 

3.3.4. Average value of risk reduction/increase (µi)
The µi is the average value of risk reduction/increase in the scale of 

1–5, which is represented in Eq. (2). It is calculated for each risk and 
shows to what extent mitigation strategies can reduce or increase the 
risk’s impact. 

= = …

=

µ
r

m
i n1, ,i

j

m
ij1

(2) 

3.3.5. Percentage of risk reduction/increase (pi)
To calculate the percentage of risk reduction/increase, Eq. (3) can 

be applied and is shown by pi. 

Table 2 
A general M-RMM. 

Risks / Strategies Risk 1 Risk 2 … Risk i … Risk n MS MC MT

Mitigation Strategy 1 r11 r21 … ri1 … rn1 1 c1 t1

Mitigation Strategy 2 r12 r22 … ri2 … rn2 2 c2 t2

… … … … … … … … … …

Mitigation Strategy j r j1 r j2 … rij … rnj j cj tj

… … … … … … … … … …
Mitigation Strategy m r m1 r m2 … rim … rnm m

cm tm

CRW w1 w2 … wi … wn

AMRW
1 2

…
i

…
n

Normalized AMRW 1 2 … i …
n

Fig. 2. The proposed model. 

Table 3 
Risk reduction/increase via a mitigation strategy [9]. 

Linguistic scale Numerical scale

No Reduction or Increase (NR/I) 0
Very Low Increase (VLI) + 1
Low Increase (LI) + 2
Medium Increase (MI) + 3
High Increase (HI) + 4
Very High Increase (VHI) + 5
Very Low Reduction (VLR) -1
Low Reduction (LR) -2
Medium Reduction (MR) -3
High Reduction (HR) -4
Very High Reduction (VHR) -5

A. Vafadarnikjoo, Md. A. Moktadir, S.K. Paul et al.                                                                                                                             Supply Chain Analytics 2 (2023) 100012

5



= × = = …p
µ
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3.3.6. After-mitigation risk weight (AMRW) (
i
)

AMRW values represent the new weights of risks after implementing 
mitigation strategies and can be obtained based on Eq. (4). 

= + × = …w w
µ

i n
5

1, ,i i i
i

(4) 

3.3.7. Normalized AMRW ( i)
The normalized values of AMRW is shown as i and calculated by 

Eq. (5). 

= = …

=

i n1, ,i

i

i

n

i1 (5) 

3.3.8. Mitigation cost (MC) (cj)
The projected MC of mitigation strategy j (i.e., cj) is derived from 

experts’ estimation and, in order to capture the uncertainty of involved 
experts, values are realized in the form of grey numbers.

3.3.9. Mitigation time (MT) (tj)
The estimated MT is signified as tj for mitigation strategy j and is 

obtained based on the expected required time declared by experts. 
Values are acquired in grey numbers in order to incorporate the inbuilt 
uncertainty in identifying MT.

3.3.10. Mitigation score (MS) ( j)
The j value is calculated for mitigation strategy j, as shown in Eq. 

(6). The negative sign of the j for a mitigation strategy j shows that, on 
average, strategy j is able to decrease risks’ impact. On the other hand, 
the positive value of j indicates that the mitigation strategy is not a 
suitable strategy for dealing with the risks under evaluation. 

= = …
=

r

n
j m1, ,j

i

n
ij1

(6) 

3.4. GMOBLP model

By solving a GMOBLP, which includes optimizing three objectives, 
optimal mitigation strategies can be obtained: (1) minimizing risk, (2) 
minimizing the implementation cost of the mitigation strategies, and 
(3) minimizing the implementation time of the mitigation strategies. It 
means the resulting best strategies satisfy risk reduction, budget, and 
time schedule constraints under uncertainty in time and cost values, 
which are represented in grey numbers. The variables and parameters 
used in the mathematical model and their descriptions are presented as 
follows.

Notations

Sets
N Set of risks ( = …i n1, , )
n Number of risks
M Set of mitigation strategies ( = …j m1, , )

m Number of strategies
Parameters

Whitening coefficient [0,1]

wi Current level of risk i before implementing mitigation strate-
gies

rij Amount of reduction in risk i after implementing mitigation 
strategy j

µi Average value of risk reduction/increase for risk i

pi Percentage of risk reduction/increase for risk i

i
After-mitigation risk weight (AMRW) for risk i

i Normalized AMRW for risk i

cj Evaluated cost of implementing mitigation strategy j (grey 
number)

j Mitigation score (MS) for strategy j

g *i Target (acceptable) level of risk i

B Dedicated budget for risk mitigation (grey number)

Percentage of budget to be spent on mitigation strategies

tj Assessed time of implementing mitigation strategy j (grey 
number)

S Dedicated time for risk mitigation (grey number)

Percentage of time to be spent on mitigation strategies

l Weight of the lth objective function ( =l 1, 2, 3)
Decision Variab-

les
Xj if mitigation strategy j is selected

otherwise

1

0

3.4.1. Model assumptions and parameter setting

• It is assumed that and , which are the percentage of budget and 
time to be spent on mitigation strategies, are equal to 100% (i.e., 
= = 1).

• It is assumed that the g *
i

values are set by decision-makers as 0.75 
(i.e., =g * 0.75

i
), meaning that risks with weights higher than this 

threshold can be assigned the red condition.

• It is assumed that whitening coefficient is equal to 0.50 (i.e., 
= 0.50).

• It is assumed that all three objective functions are equally important 
(i.e., = = = 0.33

1 2 3
).

• The wi values, which are the current levels of risks before im-
plementing response strategies, are the same as CRW values shown 
in Table 2 and obtained via BWM.

• The cj values (i.e., the evaluated cost of implementing mitigation 
strategy j) are shown in column MC in M-RMM and are in grey 
numbers, which can incorporate the uncertainty about the cost by 
providing a grey interval and are acquired based on the data pro-
vided by experts.

• The rij values indicate the amount of reduction in risk i after im-
plementing the mitigation strategy j. They are acquired based on the 
data provided by experts.

• The tj values (i.e., assessed time of implementing mitigation strategy 
j) are shown in column MT, which are also in grey numbers and are 
acquired based on the data provided by experts.

• B and S , which are the dedicated budget and time for the total 
implementation of risk mitigation strategies, respectively, are con-
sidered as grey numbers and are acquired based on the data pro-
vided by experts.

3.4.2. GMOBLP model
The GMOBLP is formulated as follows. Eq. (7) is the risk reduction 

objective function. Cost and time minimization objective functions are 
represented in Eqs. (8) and (9), respectively. Constraint (10) guarantees 
that the total cost is lower than the assigned percentage of budget. 
Constraint (11) ensures the total implementation of risk mitigation 
strategies should be accomplished in the specified timescale. Con-
straints (12) guarantee that the sum of risk reduction/increase for each 
risk by all mitigation strategies should be negative or equal to zero. 
While Constraints (13) indicate that the sum of risk reduction/increase 
by each mitigation strategy should be negative or equal to zero. Con-
straints (14) ensure that the normalized value of AMRW for each risk i is 
lower or equal to the g *

i
(target or acceptable level of risk i), which is 

defined by a decision-maker. Finally, Constraints (15) represent that all 
variables are binary values (0 or 1). 

=

= =

MinZ r X
i

n

j

m

ij j1
1 1 (7)  
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X j M{0, 1}j (15) 

4. Case application: the agri-food processing sector

The proposed model is applied in the agri-food processing sector of 
Bangladesh’s AFSCs. Bangladesh is a developing country with rapidly 
growing agri-food processing companies. Demand for food is increasing 
throughout the country, which has a fast-growing population. However, 
around 5.5% of procured food is wasted in Bangladesh due to spoilage and 
other factors [26,27]. Hence, it is necessary to build robust AFSCs to fulfil 
the demand and reduce food wastage, while also minimizing the impact of 
SC risks. We selected 10 case companies from the approximately 246 
medium-sized agri-food processing companies in Bangladesh. During the 
selection process, the size of the companies, market share, and reputation 
in the market were considered. Company-1 is a dairy processing company 
located in the Gazipur, Dhaka area. The main products of this dairy pro-
cessing company are fresh milk and powdered milk. Case company-2 is a 
rice and wheat processing company located in Chittagong that produces 
various types of bread and cookies for the local market as well as the 
international market. Company-3 operates in the confectionery industry 
producing various types of sweets, and is located in Dhaka. Companies-4 
and 5 are oilseed processing businesses located in Chittagon and produce 
coconut oil, olive oil, and soybean oil. Company-6 is a fruit and vegetable 
processing company and is located in the Gazipur, Dhaka area, processing 
fresh fruits (mainly bananas, mangos, jackfruit, and guavas) and fresh 
vegetables (mainly potatoes, tomatoes, eggplants, water gourds, pump-
kins, and leafy green vegetables). Companies 7–10 are meat, poultry, and 
fish processing companies operating in the Mymensingh, Dhaka, and 
Chittagong regions.

Details about the experts herein are provided in Table 4. Experts are 
selected based on their years of experience and knowledge of AFSCs in 
Bangladesh.

4.1. Data collection

The data collection process is explained in two sections for the BWM 
(Section 4.1.1.) and the M-RMM model (Section 4.1.2.).

4.1.1. Data collection for the BWM
Initially, 10 experts were contacted to obtain their consent for 

participation in this study. Then, a meeting was arranged to conduct 

data collection. In the session, the research topic and the potential 
contribution of the study, as well as the data collection, were explained. 
The survey that was used for the BWM method, together with all the 
related data for our BWM calculations, are provided in Appendix B of 
the supplementary material (Tables B1-B5).

4.1.2. Data collection for the M-RMM model
The data collection questionnaires for the M-RMM model are pro-

vided in Appendix C of the supplementary material. The required steps 
of the data collection procedure for M-RMM are explained as follows.

Step 1: Acquiring rij values.
Each expert was asked to provide their assessment of the risk re-

ductions/increases associated with each mitigation strategy using a 
verbal scale represented in Table 3. For example, a question for eval-
uating risk reduction/increase by leadership training (S2) strategy is 
provided in Table C1 in the Appendix C of the supplementary material. 
Then, by replacing the linguistic phrases with the corresponding values 
provided in Table 3 and getting the average values of 10 experts, the 
final rij obtained, as shown in Table 8.

Step 2: Obtaining cj values (MC).
The projected cost of each mitigation strategy j (i.e., cj), which is 

defined in 100,000 TK,4 is obtained from the experts’ inputs in the form 
of grey numbers so as to provide experts with a flexible range to handle 
uncertainty (i.e., lower bound is the minimum approximate cost and 
upper bound is the maximum approximate cost). The question utilized 
for data collection in this step is provided in Appendix C of the sup-
plementary material - Table C2. Then, by calculating the average of all 
MC values provided by the ten experts, the final MC values are obtained 
and shown in grey numbers (Table 5). The crisp values are obtained 
based on Equation (A8), considering = 0.50.

Step 3: Obtaining B value.
The estimated budget for the total implementation of risk mitigation 

strategies is acquired from experts (Appendix C in supplementary ma-
terial-Table C3). The average budget is 21,250,000 TK using Equation 
(A9).

Step 4: Obtaining tj values (MT).
Similar to step 2, the estimated time for each mitigation strategy can 

be obtained using the question provided in Appendix C in supplemen-
tary material-Table C4. The aggregated MT values of all experts are 
provided in Table 6.

Step 5: Obtaining S value.
The time for the total implementation of risk mitigation strategies is 

estimated by asking experts (Appendix C in supplementary material- 
Table C5). The average is calculated as approximately 27 months and 9 
days using Equation (A9).

Table 4 
Profiles of experts involved in the study. 

Expert no. Position Experience (Years)

1 Supply chain manager (company 1) 24
2 Logistics manager (company 2) 18
3 Quality control manager (company 

3)
20

4 Chief chemist (company 4) 22
5 Senior production manager 

(company 5)
26

6 Production manager (company 6) 21
7 Supply chain manager (company 7) 23
8 Quality control manager (company 

8)
19

9 Food chemist (company 9) 18
10 Logistics executive (company 10) 15

4 TK stands for the Bangladeshi taka, the currency of Bangladesh.
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5. Results

This section illustrates the results of the BWM analysis, the M-RMM, 
and GMOBLP analysis.

5.1. The best-worst method analysis

Based on the findings in Ali et al. [4], the most critical risks in 
Bangladesh’s AFSCs are listed in Table 7. Then, the BWM is applied 
using the required data (Section 4.1.1). The related calculations are 
carried out based on steps in Appendix B in supplementary material, 
and their respective CRW values are obtained and represented in 
Table 7.

As can be seen in Table 7, the most critical risks in prioritized order 
are lack of skilled personnel (R1), sub-standard leadership (R2), failure 
in IT systems (R3), insufficient capacity (R4), and poor customer re-
lationships (R5).

5.2. The M-RMM and GMOBLP analysis

In this section, the five suggested mitigation strategies in Ali et al. 
[4] are considered as continuous training and development (S1), lea-
dership training (S2), vulnerability analysis of IT systems (S3), capacity 
planning (S4), and big data-enabled CRM (S5). The M-RMM is con-
structed (Table 8) based on the collected data (Section 4.1.2.), and the 
CRW values are calculated by BWM analysis.

As it is evident in the M-RMM (Table 8), the order of AMRW is 
almost the same as CRW, and the only change is the order of insufficient 
capacity (R4) and poor customer relationships (R5). However, the cri-
ticality of all risks is reduced, as shown in the AMRW row of the M- 
RMM (Table 8). Due to normalization, the values for AMRW indicate a 
slight increase for R1 and R5 compared to the CRW values. Nonetheless, 
three out of five risks (i.e., R2, R3, R4) have lower normalized AMRW 
values in comparison with the CRW values.

Using values in Table 8, the GMOBLP is constructed based on Eqs. 
(7)–(15), considering that = =n m 5, =g * 0.75

i
, =B [180.00, 245.00], 

= = 1, and =S [23.00, 31.60]. For solving the GMOBLP, the grey 
numbers were converted into crisp values and then the mathematical 
model was solved using a weighted max-min approach [6,47,108]. 
Utilizing Equation (A9), the crisp values of MC and MT are calculated 
assuming that = 0.5, where [0, 1] is a whitening coefficient. The 
MC and MT are represented as cj and tj values in our mathematical 
model, respectively. Also, by using Equation (A9), the crisp value for 
the dedicated budget for risk mitigation strategy implementation is 
determined to be 212.50 (in 100,000 TK), while the dedicated time for 
the total implementation of risk mitigation strategies is calculated as 
27.30 (in months). The obtained payoff values for the three objective 
functions are shown in Table 9. It provides the optimal objective 
function values and solutions, and each is solved separately. The ideal 
solution (IS) and non-ideal solution (NIS) represent the minimum 
(ideal) and maximum (worst or non-ideal) values for our minimization 
objective functions, respectively.

Ultimately, to construct Model (17), which is a single objective 
function, we need to consider Eq. (16) based on the weighted max-min 
model formulation [6]. This is because all three objective functions are 
minimization functions. 

=

<

>

µ

Z Z

Z Z Z

Z Z

1

0

Z

IS

Z Z

Z Z

IS NIS

NIS

NIS

NIS IS

(16) 

Thus, we have for Z1: 

=

<

=

>

+
µ

Z

Z

Z

1 35.70

35.70 0

0 0

Z

Z Z

1

0

0 35.70 35.70
1

1

1

1 1

For Z2: 

Table 5 
The aggregated MC values by all experts (in 100,000 TK). 

Strategies MC Crisp value = 0 50.

Continuous training and development (S1) [16.20, 20.70] 18.45
Leadership training (S2) [21.10, 27.40] 24.25
Vulnerability analysis of IT systems (S3) [22.10, 28.60] 25.35
Capacity planning (S4) [31.70, 38.30] 35.00
Big data-enabled CRM (S5) [15.90, 21.20] 18.55

Table 6 
The aggregated MT values by all experts (in months). 

Strategies MT Crisp value = 0 50.

Continuous training and development (S1) [7.70, 12.90] 10.30
Leadership training (S2) [6.30, 10.20] 8.25
Vulnerability analysis of IT systems (S3) [4.70, 7.90] 6.30
Capacity planning (S4) [9.30, 15.80] 12.55
Big data-enabled CRM (S5) [7.00, 11.10] 9.05

Table 7 
The five AFSC risks in Bangladesh and the calculated CRW [4]. 

Risks Definition CRW obtained from 
BWM

Lack of skilled personnel (R1) Unskilled personnel might pose considerable risks in executing business processes or supply chains. 0.3283
Sub-standard leadership (R2) Sub-standard leadership hampers reaching enterprise and supply chain objectives. 0.2794
Failure in IT systems (R3) IT system failure can disrupt business operations, such as sales, production, and cash flow in the supply 

chain.
0.2399

Insufficient capacity (R4) The necessary capacity to produce quality products and meet customer demand is insufficient. 0.0791
Poor customer relationships (R5) Providing a structure such as a customer relationship management (CRM) to maintain a good 

relationship with customers is necessary for supply chain.
0.0733
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The 
l

is the weight of the lth objective function ( =l 1,2,3). In this 
study, all objectives are considered equally important 
( = = = 0.333

1 2 3
). In Model (17), Z1, Z2 and Z3 can be replaced by 

Eqs. (7)–(9), and cj and tj can be obtained based on Tables 5 and 6, 
respectively ( = 0.5). 
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We reached global optimum points in a matter of milliseconds by 
solving Model (17) on a laptop computer model MacBook Air-2013 
(Technical specification: 1.3 GHz dual-core Intel Core i5, and 4 GB of 
1600 MHz LPDDR3 onboard memory) using LINGO software. The op-
timal values are obtained as = 1.0 and =X (1, 0, 1, 0, 0). It shows 
that, under current parameter settings, only risk mitigation strategies 
S1 (i.e., continuous training and development) and S3 (i.e., vulner-
ability analysis of IT systems) should be adopted and implemented to 
achieve a Pareto-optimal solution for the three objective functions. The 
compromise point obtained for objective function values are 

=Z 21.101 , =Z 43.802 and =Z 16.603 . It indicates that by im-
plementing S1 and S3 mitigation strategies, which are the best trade-off 
solutions under current parameter settings, the total implementation 
cost of risk mitigation strategies is estimated as 4380,000 TK within the 
timescale of approximately 16 months and 18 days.

6. Sensitivity analysis

To evaluate the reliability of our model, a set of scenarios were 
designed with the aim to analyze the sensitivity of the obtained result 
based on model’s all possible parameters in order to reach a reliable 
solution for the model. The sensitivity of results is tested by taking into 
account various values for and , signifying the weights of each ob-
jective function and whitening coefficient, respectively (see Section 
6.1.). In Section 6.2. and Section 6.3., the sensitivity of results is ana-
lyzed by changing and , which are the percentage of budget and time 
available for mitigation strategies. In Section 6.4. the sensitivity of 
various g *

i
values is explored. It should be noted that the benchmark 

results in Section 5.2. were obtained under a base scenario, which is 
defined as = = = 0.33

1 2 3
, = 1, = 1, =g * 0.75

i
and = 0.50,

indicating strategy 1 (i.e., S1: continuous training and development) 
and strategy 3 (i.e., S3: vulnerability analysis of IT systems) should be 
chosen as the optimal risk mitigation strategies.

6.1. Sensitivity analysis for and values

Assuming = 1, = 1, =g * 0.75
i

are fixed and = 0.15, seven sce-
narios for various weights of the three objective functions – risk re-
duction, cost, and time (i.e., 

1
, 

2
, 

3
) – are defined (Table 10). In 

scenario 1, under equal weights, the same strategies, S1 and S3, are 

Table 8 
The M-RMM for AFSC risk management in Bangladesh. 

Risks / Strategies R1 R2 R3 R4 R5 MS MCa MTb

S1 -4.60 -4.70 0.00 0.00 -0.60 -1.98 [16.2, 20.7] [7.7, 12.9]
S2 -3.90 -5.00 -0.20 0.00 -2.10 -2.24 [21.1, 27.4] [6.3, 10.2]
S3 0.00 -3.00 -5.00 -3.20 0.00 -2.24 [22.1, 28.6] [4.7, 7.9]
S4 0.00 -1.80 -4.40 -5.00 -2.10 -2.66 [31.7, 38.3] [9.3, 15.8]
S5 0.00 0.00 -4.60 -4.00 -4.40 -2.60 [15.9, 21.2] [7.0, 11.1]
CRW 0.3283 0.2794 0.2399 0.0791 0.0733
AMRW 0.2167 0.1173 0.1036 0.0405 0.0463
Normalized AMRW 0.4131 0.2237 0.1976 0.0772 0.0883

a in 100,000 TK
b in months

Table 9 
Payoff table. 

=X 0 1 1 1 0( , , , , ) =X 0 0 0 0 0( , , , , ) Ideal Solution (IS) Non-Ideal Solution (NIS)

MinZ1 -35.70 0 -35.70 0

MinZ2 84.6 0 0 84.6

MinZ3 27.1 0 0 27.1
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obtained as optimal solutions. The S1 (i.e., continuous training and 
development) is obtained as one of the final solutions in four scenarios, 
S3 and S5 are obtained three times, S4 two times, and S2 once. In Fig. 3, 
the sensitivity analysis of the three objective functions (i.e., risk re-
duction, cost, and time) are depicted separately under seven defined 
scenarios in Table 10. In Fig. 3(a), the higher points, and in Fig. 3(b) 
and (c), the lower points are preferable. In Fig. 3(a), all values of the 
first objective function (Z1) are negative. Thus, the absolute values re-
presenting the amount of risk reduction are considered.

The lower the value of whitening coefficient ( ), as in this case 
= 0.15, the corresponding values for evaluated cost of implementing 

mitigation strategy j (cj), dedicated budget for risk mitigation (B ), assessed 
time of implementing mitigation strategy j (tj), dedicated time for risk 

mitigation (S ) in the mathematical model all tend to be closer to the lower 
bound of their respective grey intervals (see Equation (A8)).

By comparing just Fig. 3(a), 3(b), and 3(c); or Fig. 4(a), 4(b), and 4(c); or 
Fig. 5(a), 5(b), and 5(c); the trend of changes can be compared while , , , 
g *
i

values are controlled for and values are changing in each scenario.
However, if we compare all three charts (a) among Figs. 3, 4 and 5

for instance, Fig. 3(a), Fig. 4(a), and Fig. 5(a); or Fig. 3(b), Fig. 4(b), 
and Fig. 5(b); or Fig. 3(c), Fig. 4(c), and Fig. 5(c), then we can get a 

Table 10 
Sensitivity of solutions under various values and = 0.15 ( = 1, = 1, =g * 0.75

i
). 

Scenario
1 2 3

Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

1 0.33 0.33 0.33 1.00 -21.10 39.96 13.66 0.56 0.45 0.41 S1, S3
2 0.10 0.10 0.80 0.97 -11.20 23.08 5.18 0.30 0.68 0.78 S3
3 0.80 0.10 0.10 1.00 -32.30 62.01 20.55 0.86 0.14 0.11 S1, S2, S3
4 0.10 0.80 0.10 0.96 -13.00 16.70 7.62 0.35 0.77 0.67 S5
5 0.70 0.15 0.15 1.00 -26.30 49.39 17.90 0.70 0.32 0.22 S4, S5
6 0.60 0.30 0.10 1.00 -23.20 49.57 18.76 0.62 0.32 0.19 S1, S4
7 0.60 0.10 0.30 1.00 -22.90 33.58 16.10 0.61 0.54 0.30 S1, S5

Fig. 3. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different scenarios of values and = 0.15. 
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sense of the extent of changes while , , , g *
i

values are controlled for 
and values are changing in each scenario. In other words, we are 
interested to observe the extent of changes by focusing on one specific 
objective function at a time.

Under = 0.15, compared to the scenario 1 in which all weights of 
objective functions are equal ( = = = 0.33

1 2 3
), the extent of 

changes in optimal objective function values are measured. The sum-
marized results for the sensitivity analysis by controlling for = 0.15, 
= 1, = 1, =g * 0.75

i
are as follows:

Scenario 2: the weight of time objective function (Z3) is the highest 
( = 0.80

3
) and weights of the risk reduction objective function (Z1) and 

the cost objective function (Z2) are the lowest ( = = 0.10
1 2

): 

• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 47% from −21.10 to 
−11.20 as can be observed in Fig. 3(a) (an undesirable change).

• The optimal value of the cost objective function (Z2) is decreased by 
42% from 39.96 to 23.08 as can be observed in Fig. 3(b) (a desirable 
change).

• The optimal value of the time objective function (Z3) is decreased by 
62% from 13.66 to 5.18 as can be observed in Fig. 3(c) (a desirable 
change).

The solution result from scenario 2 in this case, still confirms the S3 
as the selected strategy compared to the base scenario in which S1 
and S3 were selected. The analysis shows that by assigning higher 
weights to the time objective function (Z3) in this case, only optimal 
value of risk reduction objective function (Z1) changes undesirably 
while the optimal value of cost objective function (Z2) changes in a 
desirable direction.
Scenario 3: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.80

1
) and weights of the cost objective function 

(Z2) and the time objective function (Z3) are the lowest 
( = = 0.10

2 3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 53% from − 21.10 
to − 32.30 as can be observed in Fig. 3(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
55% from 39.96 to 62.01 as can be observed in Fig. 3(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
50% from 13.66 to 20.55 as can be observed in Fig. 3(c) (an un-
desirable change).
The solution result from scenario 3 in this case, confirms both S1 
and S3 as the selected strategies just like the base scenario in which 

Fig. 4. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different scenarios of values and = 0.50. 
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S1 and S3 were selected. However, S2 was also selected as an ad-
ditional strategy in the final solution. The analysis shows that by 
assigning higher weights to the risk reduction objective function (Z1) 
in this case, the optimal values of both cost objective function (Z2) 
and time objective function (Z3) change undesirably compared to 
scenario 1.
Scenario 4: the weight of cost objective function (Z2) is the highest 
( = 0.80

2
) and weights of the risk reduction objective function (Z1) 

and the time objective function (Z3) are the lowest ( = = 0.10
1 3

):

• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 38% from − 21.10 
to − 13.00 as can be observed in Fig. 3(a) (an undesirable change).

• The optimal value of the cost objective function (Z2) is decreased by 
58% from 39.96 to 16.70 as can be observed in Fig. 3(b) (a desirable 
change).

• The optimal value of the time objective function (Z3) is decreased by 
44% from 13.66 to 7.62 as can be observed in Fig. 3(c) (a desirable 
change).
The solution result from scenario 4 in this case, does not confirm any 
of the selected strategies in the base scenario in which S1 and S3 
were selected. Here, only S5 was selected as the chosen strategy in 

the final solution. The analysis shows that by assigning higher 
weights to the cost objective function (Z2) in this case, obviously, 
the optimal value of the cost objective function (Z2) will be the 
minimum. Moreover, the optimal value of the time objective func-
tion (Z3) changes in a desirable direction by 44% decrease in value 
from scenario 1. The optimal value of risk reduction objective 
function (Z1) changes undesirably compared to scenario 1 as the 
absolute value of the risk reduction is decreased by 38%. Thus, we 
can conclude that just like scenario 2, when either the cost or time 
objective functions (Z2) or (Z3) is the highest ( = 0.80

3
) then the 

other one either the time and cost objective functions will also 
change desirably, or, in other words, their changes are in the same 
direction, unlike the risk reduction objective function (Z1). This 
conclusion is not true in all scenarios (see scenario 7). The other 
conclusion is that in scenario 2 at least one of the strategies chosen 
in the base scenario is also identified as the solution (i.e., S3) 
whereas on the other hand, S5 is only selected which was not among 
chosen strategies in the base scenario. This result might indicate that 
giving higher weight to the time objective function (Z3) in scenario 2 
compared to assigning higher weight to the cost objective function 
(Z2) in scenario 4 would result in a more similar result to our base 

Fig. 5. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different scenarios of values and = 0.85. 
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scenario in which all weights of three objective functions were 
equal.
Scenario 5: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.70

1
) and weights of the cost objective function 

(Z2) and the time objective function (Z3) are equally low 
( = = 0.15

2 3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 25% from − 21.10 
to − 26.30 as can be observed in Fig. 3(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
24% from 39.96 to 49.39 as can be observed in Fig. 3(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
31% from 13.66 to 17.90 as can be observed in Fig. 3(c) (an un-
desirable change).
The solution result from scenario 5 in this case, does not confirm any 
of the selected strategies in the base scenario in which S1 and S3 
were selected. Scenario 5 is similar to scenario 3 in the sense that in 
both scenarios, the risk reduction objective function (Z1) has the 
highest weight while cost and time objective functions (Z2) or (Z3) 
both have equal weights. The results of sensitivity analysis in this 
case show that final solution is sensitive to any slight changes of 
objective function weights.
Scenario 6: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.60

1
) and the weight of the cost objective function 

(Z2) ( = 0.30
2

) is higher than the weight of the time objective 
function (Z3) ( = 0.10

3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 10% from − 21.10 
to − 23.20 as can be observed in Fig. 3(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
24% from 39.96 to 49.57 as can be observed in Fig. 3(b) (an un-
desirable change). This change is the same as the scenario 5.

• The optimal value of the time objective function (Z3) is increased by 
37% from 13.66 to 18.76 as can be observed in Fig. 3(c) (an un-
desirable change).
The solution result from scenario 6 in this case, still confirms the S1 
as the selected strategy compared to the base scenario in which S1 
and S3 were selected. The analysis shows that by assigning higher 
weights to the risk reduction objective function (Z1) in this case, 
only optimal value of the risk reduction objective function (Z1) 
changes desirably while optimal value of the cost objective function 
(Z2) and optimal value of the time objective function (Z3) change in 
an undesirable direction.
Scenario 7: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.60

1
) and weight of the time objective function 

(Z3) ( = 0.30
3

) is higher than the weight of the cost objective 
function (Z2) ( = 0.10

2
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 9% from − 21.10 to 
− 22.90 as can be observed in Fig. 3(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is decreased by 
16% from 39.96 to 33.58 as can be observed in Fig. 3(b) (a desirable 
change).

• The optimal value of the time objective function (Z3) is increased by 
18% from 13.66 to 16.10 as can be observed in Fig. 3(c) (an un-
desirable change).

The solution result from scenario 7 in this case, still confirms the S1 
as the selected strategy compared to the base scenario in which S1 and 
S3 were selected. The analysis shows that by assigning higher weights 
to the risk reduction objective function (Z1) in this case, optimal values 
of risk reduction objective function (Z1) and cost objective function (Z2) 
change in a desirable direction while only optimal value of time ob-
jective function (Z3) changes in an undesirable direction.

Assuming = 1, = 1, =g * 0.75
i

are fixed and = 0.50, seven sce-
narios (1 base scenario and six others) for various weights of three 
objective functions – risk reduction, cost, and time (i.e., 

1
, 

2
, 

3
) – are 

defined (Table 11). The S3 appeared in four scenarios as the final op-
timal solution, followed by S1 three times, and S2, S4 and S5 each two 
times. In Fig. 4, the sensitivity analysis of the three objective functions 
(i.e., risk reduction, cost, and time) are depicted separately under the 
seven defined scenarios in Table 11. In Fig. 4(a), the higher points, and 
in Fig. 4(b) and (c), the lower points are preferable. In Fig. 4(a), all 
values of the first objective function (Z1) are negative. Therefore, the 
absolute values representing the amount of risk reduction are con-
sidered.

Under = 0.50, compared to the base scenario in which all weights 
of objective functions are equal ( = = = 0.33

1 2 3
), the extent of 

changes in optimal objective function values are measured. The sum-
marized results for the sensitivity analysis by controlling for = 0.50, 
= 1, = 1, =g * 0.75

i
are as follows:

Scenario 1: the weight of time objective function (Z3) is the highest 
( = 0.80

3
) and weights of the risk reduction objective function (Z1) and 

the cost objective function (Z2) are the lowest ( = = 0.10
1 2

): 

• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 47% from − 21.10 
to − 11.20 as can be observed in Fig. 4(a) (an undesirable 
change). This is the same as scenario 2 in Table 10 and depicted in 
Fig. 3(a).

• The optimal value of the cost objective function (Z2) is decreased by 
42% from 43.80 to 25.35 as can be observed in Fig. 4(b) (a desirable 
change). This amount of reduction (i.e., 42%) is the same as shown 
in scenario 2 in Fig. 3(b).

• The optimal value of the time objective function (Z3) is decreased by 
62% from 16.60 to 6.30 as can be observed in Fig. 4(c) (a desirable 
change). This amount of reduction (i.e., 62%) is the same as shown 
in scenario 2 in Fig. 3(c).
The solution result from scenario 1 in this case, confirms S3 as the 
selected strategy compared to the base scenario in which S1 and S3 
were selected. This result is like the result of scenario 2 in Table 10. 
The analysis shows that by assigning higher weights to the time 
objective function (Z3) in this case, only optimal value of risk re-
duction objective function (Z1) changes undesirably while the op-
timal value of cost objective function (Z2) and, obviously, the op-
timal value of time objective function (Z3) change in a desirable 
direction.

Table 11 
Sensitivity of solutions under various values and = 0.50 ( = 1, = 1, =g * 0.75

i
). 

Scenario
1 2 3

Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

base 0.33 0.33 0.33 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
1 0.10 0.10 0.80 0.96 -11.20 25.35 6.30 0.31 0.70 0.77 S3
2 0.80 0.10 0.10 1.00 -35.40 68.15 23.60 0.99 0.19 0.13 S2, S3, S5
3 0.10 0.80 0.10 0.98 -9.90 18.45 10.30 0.28 0.78 0.62 S1
4 0.70 0.15 0.15 1.00 -26.30 53.55 21.60 0.74 0.37 0.20 S4, S5
5 0.60 0.30 0.10 1.00 -23.20 53.45 22.85 0.65 0.37 0.16 S1, S4
6 0.60 0.10 0.30 1.00 -22.40 49.60 14.55 0.63 0.41 0.46 S2, S3
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Scenario 2: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.80

1
) and weights of the cost objective function 

(Z2) and the time objective function (Z3) are the lowest 
( = = 0.10

2 3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 68% from − 21.10 
to − 35.40 as can be observed in Fig. 4(a) (a desirable change). This 
increase in absolute value is higher than 53% in scenario 3 in 
Table 10 as shown in Fig. 3(a).

• The optimal value of the cost objective function (Z2) is increased by 
56% from 43.80 to 68.15 as can be observed in Fig. 4(b) (an un-
desirable change). This increase in 1% higher than in scenario 3 in 
Table 10 as depicted in Fig. 3(b).

• The optimal value of the time objective function (Z3) is increased by 
42% from 16.60 to 23.60 as can be observed in Fig. 4(c) (an un-
desirable change). This increase is 8% lower than the increase in 
scenario 3 in Table 10 as depicted in Fig. 3(c).
The solution result from scenario 2 in this case, confirms only S3 as 
the selected strategies while in the base scenario S1 and S3 were 
selected. However, S5 and S2 were also selected as additional stra-
tegies in the final solution. The analysis shows that by assigning 
higher weights to the risk reduction objective function (Z1) in this 
case, the optimal values of both cost objective function (Z2) and time 
objective function (Z3) change undesirably compared to the base 
scenario. The other conclusion is that by increasing the value of 
whitening coefficient from = 0.15 to = 0.50 in this case, the 
extent of change in the optimal value of the risk reduction objective 
function (Z1) is 15% higher. However, the undesirable change in the 
optimal value of the cost objective function (Z2) is 1% higher and 
the undesirable change in the optimal value of the time objective 
function (Z3) is 8% lower.
Scenario 3: the weight of cost objective function (Z2) is the highest 
( = 0.80

2
) and weights of the risk reduction objective function (Z1) 

and the time objective function (Z3) are the lowest ( = = 0.10
1 3

):

• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 53% from − 21.10 
to − 9.90 as can be observed in Fig. 4(a) (an undesirable change). 
This decrease in absolute value is 15% higher than the decrease in 
scenario 4 in Table 10 as shown in Fig. 3(a).

• The optimal value of the cost objective function (Z2) is decreased by 
58% from 43.80 to 18.45 as can be observed in Fig. 4(b) (a desirable 
change). The extent of change is the same as in scenario 4 in 
Table 10 as shown in Fig. 3(b).

• The optimal value of the time objective function (Z3) is decreased by 
38% from 16.60 to 10.30 as can be observed in Fig. 4(c) (a desirable 
change). This decrease is 6% lower than the decrease in scenario 4 
in Table 10 as depicted in Fig. 3(c).
The solution result from scenario 3 in this case, unlike scenario 4 in 
Table 10, partly confirms selected strategies in the base scenario in 
which S1 and S3 were selected. Here, only S1 was selected as the 
chosen strategy in the final solution. The analysis shows that by as-
signing higher weights to the cost objective function (Z2) in this case, 
obviously, the optimal value of the cost objective function (Z2) will be 
the minimum. Moreover, the optimal value of the time objective 
function (Z3) changes in a desirable direction by 38% decrease in value 
from the base scenario. The optimal value of risk reduction objective 
function (Z1) changes undesirably compared to the base scenario as the 
absolute value of the risk reduction is decreased by 53%. Thus, by 
increasing the value of whitening coefficient from = 0.15 to = 0.50

in this case, the extent of change in the optimal value of the risk re-
duction objective function (Z1) is 15% higher. However, the desirable 
change in the optimal value of the cost objective function (Z2) shows 
no change compared to the case under = 0.15 (i.e., again 58% de-
crease). Finally, the desirable change in the optimal value of the time 
objective function (Z3) is 6% lower than the 44% decrease in scenario 4 
under = 0.15 in Table 10 and Fig. 3(c).

Scenario 4: the weight of risk reduction objective function (Z1) is the 
highest ( = 0.70

1
) and weights of the cost objective function (Z2) and 

the time objective function (Z3) are equally low ( = = 0.15
2 3

):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 25% from − 21.10 
to − 26.30 as can be observed in Fig. 4(a) (a desirable change). The 
change of 25% rise is the same as in scenario 5 in Table 10 and 
shown in Fig. 3(a).

• The optimal value of the cost objective function (Z2) is increased by 
22% from 43.80 to 53.55 as can be observed in Fig. 4(b) (an un-
desirable change). The extent of this undesirable change is 2% lower 
than the 24% change in scenario 5 in Table 10 as depicted in 
Fig. 3(b).

• The optimal value of the time objective function (Z3) is increased by 
30% from 16.60 to 21.60 as can be observed in Fig. 4(c) (an un-
desirable change). This undesirable increase is 1% lower than the 
change in scenario 5 in Table 10 as depicted in Fig. 3(c).
The solution result from scenario 4 in this case does not confirm any 
of the selected strategies in the base scenario in which S1 and S3 
were selected. Scenario 4 is similar to scenario 2 in the sense that in 
both scenarios, the risk reduction objective function (Z1) has the 
highest weight while cost and time objective functions (Z2) or (Z3) 
both have equal weights. The results of sensitivity analysis in this 
case show that final solution is sensitive to any slight changes of 
objective function weights. The other conclusion is that by in-
creasing the value of whitening coefficient from = 0.15 to = 0.50

in this case, the solution (i.e., S4 and S5) did not change. Further-
more, the extent of change in the optimal value of the risk reduction 
objective function (Z1) is unchanged while the extent of change in 
the optimal value of the cost objective function (Z2) is 2% lower and 
the extent of change in the optimal value of the time objective 
function (Z3) is 1% lower.
Scenario 5: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.60

1
) and the weight of the cost objective function 

(Z2) ( = 0.30
2

) is higher than the weight of the time objective 
function (Z3) ( = 0.10

3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 10% from − 21.10 
to − 23.20 as can be observed in Fig. 4(a) (a desirable change). This 
is the same as scenario 6 in Table 10 and depicted in Fig. 3(a).

• The optimal value of the cost objective function (Z2) is increased by 
22% from 43.80 to 53.45 as can be observed in Fig. 4(b) (an un-
desirable change). This change is 2% lower than the undesirable 
change in the scenario 6 in Table 10 and plotted in Fig. 3(b).

• The optimal value of the time objective function (Z3) is increased by 
38% from 16.60 to 22.85 as can be observed in Fig. 4(c) (an un-
desirable change). The extent of the undesirable change is 1% 
higher than change in the scenario 6 in Table 10 and plotted in 
Fig. 3(c).
The solution result from scenario 5 in this case, still confirms the S1 
as the selected strategy compared to the base scenario in which S1 
and S3 were selected. The analysis shows that by assigning higher 
weights to the risk reduction objective function (Z1) in this case, 
only optimal value of the risk reduction objective function (Z1) 
changes desirably while optimal value of the cost objective function 
(Z2) and optimal value of the time objective function (Z3) change in 
an undesirable direction. The other conclusion is that by increasing 
the value of whitening coefficient from = 0.15 to = 0.50 in this 
case, the solution (i.e., S1 and S4) did not change (see scenario 6 in 
Table 10). Moreover, the extent of change in the optimal value of 
the risk reduction objective function (Z1) is unchanged while the 
extent of change in the optimal value of the cost objective function 
(Z2) is 2% lower and the change in the optimal value of the time 
objective function (Z3) is 1% higher.
Scenario 6: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.60

1
) and weight of the time objective function 
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(Z3) ( = 0.30
3

) is higher than the weight of the cost objective 
function (Z2) ( = 0.10

2
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 6% from − 21.10 to 
− 22.40 as can be observed in Fig. 4(a) (a desirable change). This is 
3% lower than the change in scenario 7 in Table 10 as depicted in 
Fig. 3(a).

• The optimal value of the cost objective function (Z2) is increased by 
13% from 43.80 to 49.60 as can be observed in Fig. 4(b) (an un-
desirable change). The extent and direction of change are both 
different from scenario 7 in Table 10 as it was 16% decrease in 
Fig. 3(b).

• The optimal value of the time objective function (Z3) is decreased by 
12% from 16.60 to 14.55 as can be observed in Fig. 4(c) (a desirable 
change). The extent and direction of change are both different from 
scenario 7 in Table 10 as it was 18% increase in Fig. 3(c).

The solution result from scenario 6 in this case, still confirms the S3 
as the selected strategy compared to the base scenario in which S1 and 
S3 were selected. The analysis shows that by assigning higher weights 
to the risk reduction objective function (Z1) in this case, optimal values 
of risk reduction objective function (Z1) and time objective function 
(Z3) change in a desirable direction while only optimal value of cost 
objective function (Z2) changes in an undesirable direction. The other 
conclusion is that by increasing the value of whitening coefficient from 
= 0.15 to = 0.50 in this case, the extent of change in the optimal 

value of the risk reduction objective function (Z1) is 3% lower. 
Furthermore, in the optimal value of the cost objective function (Z2) 
both the extent and direction of change is different accounting for 16% 
decrease in Fig. 3(b) and scenario 7. Finally, the extent and direction of 
change is also different in the optimal value of the time objective 
function (Z3) representing 18% increase as depicted in Fig. 3(c) and 
scenario 7.

Assuming = 1, = 1, =g * 0.75
i

are fixed and = 0.85, the seven 
scenarios for various weights of the three objective functions – risk 
reduction, cost and time (i.e., 

1
, 

2
, 

3
) – are defined (Table 12). The S3 

appeared in four scenarios as a final solution, followed by S5 three 
times, and S1, S2 and S4 each two times. In Fig. 5, the sensitivity 
analysis of the three objective functions (i.e., risk reduction, cost, and 
time) are depicted separately under the seven defined scenarios in 
Table 12. In Fig. 5(a), the higher points and, in Fig. 5(b) and (c), the 
lower points are preferable. In Fig. 5(a), all values of the first objective 
function (Z1) are negative. Thus, the absolute values representing the 
amount of risk reduction are considered.

Under = 0.85, compared to the scenario 1 in which all weights of 
objective functions are equal ( = = = 0.33

1 2 3
), the extent of 

changes in optimal objective function values are measured. The sum-
marized results for the sensitivity analysis by controlling for = 0.85, 
= 1, = 1, =g * 0.75

i
are as follows:

Scenario 2: the weight of time objective function (Z3) is the highest 
( = 0.80

3
) and weights of the risk reduction objective function (Z1) and 

the cost objective function (Z2) are the lowest ( = = 0.10
1 2

): 

• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 14% from − 13.00 
to − 11.20 as can be observed in Fig. 5(a) (an undesirable change).

• The optimal value of the cost objective function (Z2) is increased by 
38% from 16.70 to 23.08 as can be observed in Fig. 5(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is decreased by 
32% from 7.62 to 5.18 as can be observed in Fig. 5(c) (a desirable 
change).
The solution result from scenario 2 in this case, confirms S3 as the 
selected strategy compared to the base scenario in which S1 and S3 
were selected. This result is like the result of scenario 2 in Table 10
( = 0.15) and scenario 1 in Table 11 ( = 0.50). It can be under-
stood that by increasing the value of whitening coefficient to 
= 0.85 in this case, the extent of change in the optimal value of the 

risk reduction objective function (Z1) is 33% lower than 47% in both 
scenario 2 in Table 10 and depicted in Fig. 3(a) ( = 0.15) and in 
scenario 1 in Table 11 and depicted in Fig. 4(a) ( = 0.50). The 
extent and direction of change in the optimal value of the cost ob-
jective function (Z2) is different from 42% reduction both in sce-
nario 2 in Table 10 and depicted in Fig. 3(b) ( = 0.15) and in 
scenario 1 in Table 11 and depicted in Fig. 4(b) ( = 0.50). The 
extent of change in the optimal value of the time objective function 
(Z3) is 24% lower than 62% in both scenario 2 in Table 10 and 
depicted in Fig. 3(c) ( = 0.15) and in scenario 1 in Table 11 and 
depicted in Fig. 4(c) ( = 0.50).
Scenario 3: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.80

1
) and weights of the cost objective function 

(Z2) and the time objective function (Z3) are the lowest 
( = = 0.10

2 3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 86% from − 13.00 
to − 24.20 as can be observed in Fig. 5(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
138% from 16.70 to 39.78 as can be observed in Fig. 5(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
68% from 7.62 to 12.80 as can be observed in Fig. 5(c) (an un-
desirable change).
The solution result from scenario 3 in this case, confirms only S3 as 
the selected strategies while in the base scenario S1 and S3 were 
selected. However, S5 was also selected as additional strategies in 
the final solution. Both S3 and S5 were also selected in scenario 2 in 
Table 11 ( = 0.50) while only S3 was selected in scenario 3 in 
Table 10 ( = 0.15). By increasing the value of whitening coefficient 
to = 0.85 in this case, the extent of change in the optimal values of 
all three objective functions are higher than the extent of change 
under two other values of whitening coefficient.
Scenario 4: the weight of cost objective function (Z2) is the 
highest ( = 0.80

2
) and weights of the risk reduction objective 

function (Z1) and the time objective function (Z3) are the lowest 
( = = 0.10

1 3
):

Table 12 
Sensitivity of solutions under various values and = 0.85 ( = 1, = 1, =g * 0.75

i
). 

Scenario
1 2 3

Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

1 0.33 0.33 0.33 1.00 -13.00 16.70 7.62 0.37 0.73 0.61 S5
2 0.10 0.10 0.80 0.78 -11.20 23.08 5.18 0.32 0.63 0.74 S3
3 0.80 0.10 0.10 0.85 -24.20 39.78 12.80 0.68 0.36 0.35 S3, S5
4 0.10 0.80 0.10 0.84 -9.90 16.88 8.48 0.28 0.73 0.57 S1
5 0.70 0.15 0.15 0.83 -22.40 45.13 12.07 0.63 0.27 0.39 S2, S3
6 0.60 0.30 0.10 0.74 -24.20 39.78 12.80 0.68 0.36 0.35 S3, S5
7 0.60 0.10 0.30 0.63 -13.30 32.69 10.28 0.38 0.47 0.48 S4
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• The optimal value of the risk reduction objective function (Z1) is 
increased or the absolute value is decreased by 24% from − 13.00 
to − 9.90 as can be observed in Fig. 5(a) (an undesirable change).

• The optimal value of the cost objective function (Z2) is slightly in-
creased by 1% from 16.70 to 16.88 as can be observed in Fig. 5(b) 
(an undesirable change).

• The optimal value of the time objective function (Z3) is increased by 
11% from 7.62 to 8.48 as can be observed in Fig. 5(c) (an un-
desirable change).
The solution result from scenario 4 in this case, unlike scenario 4 in 
Table 10 ( = 0.15), partly confirms selected strategies in the base 
scenario in which S1 and S3 were selected. Here, only S1 was se-
lected as the chosen strategy in the final solution just similar to 
scenario 3 in Table 11 ( = 0.50). The analysis shows that by as-
signing higher weights to the cost objective function (Z2) in this 
case, almost all the optimal values of the three objective functions 
changed in an undesirable direction. By increasing the value of 
whitening coefficient to = 0.85 in this case, the direction of the 
change in the optimal value of the risk reduction objective function 
(Z1) just like previous values of is in an undesirable direction but 
the extent of the change is the lowest by 24% ( = 0.85), 38% in 
scenario 4 in Table 10 ( = 0.15), 53% in scenario 3 in Table 11
( = 0.50). The extent of the change in the optimal value of the cost 
objective function (Z2) is negligible compared to 58% decrease in 
both scenario 4 in Table 10 ( = 0.15), and in scenario 3 in Table 11
( = 0.50). The change in the optimal value of the cost objective 
function (Z3) is in the opposite direction to 38% decrease in scenario 
3 in Table 11 ( = 0.50) and 44% decrease in Table 10 ( = 0.15).
Scenario 5: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.70

1
) and weights of the cost objective function 

(Z2) and the time objective function (Z3) are equally low 
( = = 0.15

2 3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 72% from − 13.00 
to − 22.40 as can be observed in Fig. 5(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
170% from 16.70 to 45.13 as can be observed in Fig. 5(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
58% from 7.62 to 12.07 as can be observed in Fig. 5(c) (an un-
desirable change).
The solution result from scenario 5 in this case, identifies S2 and S3 as 
the selected strategies. This result confirms only S3 as one of the se-
lected strategies from the base scenario in which S1 and S3 were se-
lected. This solution is different from resulted solution in scenario 4 in 
Table 11 ( = 0.50) and in scenario 5 in Table 10 ( = 0.15) in which 
S4 and S5 were selected. Here, scenario 5 is similar to scenario 3 in the 
sense that in both scenarios, the risk reduction objective function (Z1) 
has the highest weight while cost and time objective functions (Z2) or 
(Z3) both have equal weights. The results of sensitivity analysis in this 
case show that final solution is sensitive to any slight changes of ob-
jective function weights. By increasing the value of whitening coeffi-
cient to = 0.85 in this case, the extent of the change in the optimal 
value of the risk reduction objective function (Z1) (i.e., 72%) is higher 
than 25% in scenario 4 in Table 11 as shown in Fig. 4(a) ( = 0.50) and 
in scenario 5 in Table 10 as shown in Fig. 3(a) ( = 0.15). Moreover, 
the extent of the undesirable change in the optimal value of the cost 
objective function (Z2) (i.e., 170%) is higher than 22% in scenario 4 in 
Table 11 as shown in Fig. 4(b) ( = 0.50) and 24% in scenario 5 in 
Table 10 as shown in Fig. 3(b) ( = 0.15). Finally, the extent of the 
undesirable change in the optimal value of the time objective function 
(Z3) (i.e., 58%) is higher than 30% in scenario 4 in Table 11 as depicted 
in Fig. 4(c) ( = 0.50) and 31% in scenario 5 in Table 10 as shown in 
Fig. 3(c) ( = 0.15).
Scenario 6: the weight of risk reduction objective function (Z1) is the 
highest ( = 0.60

1
) and the weight of the cost objective function (Z2) 

( = 0.30
2

) is higher than the weight of the time objective function (Z3) 
( = 0.10

3
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 86% from − 13.00 
to − 24.20 as can be observed in Fig. 5(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
138% from 16.70 to 39.78 as can be observed in Fig. 5(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
68% from 7.62 to 12.80 as can be observed in Fig. 5(c) (an un-
desirable change).
The solution result from scenario 6 in this case, identifies S3 and S5 
as the selected strategies. This result confirms only S3 as one of the 
selected strategies from the base scenario in which S1 and S3 were 
selected. This solution is different from resulted solution in scenario 
5 in Table 11 ( = 0.50) and in scenario 6 in Table 10 ( = 0.15) in 
which S1 and S4 were selected. By increasing the value of whitening 
coefficient to = 0.85 in this case, the extent of the change in the 
optimal value of the risk reduction objective function (Z1) (i.e., 
86%) is higher than 10% in scenario 5 in Table 11 as shown in 
Fig. 4(a) ( = 0.50) and in scenario 6 in Table 10 as shown in 
Fig. 3(a) ( = 0.15). Moreover, the extent of the undesirable change 
in the optimal value of the cost objective function (Z2) (i.e., 138%) is 
higher than 22% in scenario 5 in Table 11 as shown in Fig. 4(b) 
( = 0.50) and 24% in scenario 6 in Table 10 as shown in Fig. 3(b) 
( = 0.15). Finally, the extent of the undesirable change in the op-
timal value of the time objective function (Z3) (i.e., 68%) is higher 
than 38% in scenario 5 in Table 11 as depicted in Fig. 4(c) ( = 0.50) 
and 37% in scenario 6 in Table 10 as shown in Fig. 3(c) ( = 0.15).
Scenario 7: the weight of risk reduction objective function (Z1) is 
the highest ( = 0.60

1
) and weight of the time objective function 

(Z3) ( = 0.30
3

) is higher than the weight of the cost objective 
function (Z2) ( = 0.10

2
):

• The optimal value of the risk reduction objective function (Z1) is 
decreased or the absolute value is increased by 2% from − 13.00 to 
− 13.30 as can be observed in Fig. 5(a) (a desirable change).

• The optimal value of the cost objective function (Z2) is increased by 
96% from 16.70 to 32.69 as can be observed in Fig. 5(b) (an un-
desirable change).

• The optimal value of the time objective function (Z3) is increased by 
35% from 7.62 to 10.28 as can be observed in Fig. 5(c) (an un-
desirable change).

The sensitivity analysis under scenario 7 shows erratic changes. The 
solution result from scenario 7 in this case is S4, that does not confirm 
any of the selected strategies in the base scenario in which S1 and S3 
were selected. This solution is different from resulted solution from 
scenario 6 in Table 11 ( = 0.50) in which S2 and S3 were selected and 
also different from scenario 7 in Table 10 ( = 0.15) in which S1 and S5 
were selected. By increasing the value of whitening coefficient to 
= 0.85 in this case, the extent of the change in the optimal value of the 

risk reduction objective function (Z1) (i.e., 2%) is lower than the 6% in 
scenario 6 in Table 11 as shown in Fig. 4(a) ( = 0.50) and also the 9% 
in scenario 7 in Table 10 as shown in Fig. 3(a) ( = 0.15). Moreover, the 
extent of the undesirable change (i.e., increase) in the optimal value of 
the cost objective function (Z2) (i.e., 96%) is higher than 13% increase 
in scenario 6 in Table 11 as shown in Fig. 4(b) ( = 0.50). However, the 
direction and extent of the change in the optimal value of the cost 
objective function (Z2) in scenario 7 in Table 10 as shown in Fig. 3(b) 
( = 0.15) is decrease and 16%. Finally, the extent of the undesirable 
change (i.e., increase) in the optimal value of the time objective func-
tion (Z3) (i.e., 35%) is higher than 18% increase in scenario 7 in 
Table 10 as depicted in Fig. 3(c) ( = 0.15). However, the direction and 
extent of the change in the optimal value of the time objective function 
(Z3) in scenario 6 in Table 11 as shown in Fig. 4(c) ( = 0.50) is de-
crease and 12%.
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Putting all the sensitivity analyses in this section together, as pre-
sented in Table 13, the frequency that each strategy appeared in the 
obtained optimal solutions is counted based on Tables 10–12. It can be 
realized that S3, S1, and S5 are the most significant optimal solutions by 
appearing 11, 8, and 8 times in the optimal solutions. Overall, the 
sensitivity analysis for and values shows that the chosen strategies 
S1 and S3, obtained from the base scenario, are meaningful and con-
firmed.

6.2. Sensitivity analysis for values

The sensitivity of the optimal solutions is analyzed by changing the 
percentage values of the budget to be spent on mitigation strategies ( ) 
under the six defined scenarios and one base scenario (Table 14). In 
Fig. 6, the sensitivity analysis of the three objective functions (i.e., risk 
reduction, cost, and time) are depicted separately under the seven de-
fined scenarios in Table 14. As can be seen, only in scenario one with 
the lowest percentage (i.e., = 0.10) did the optimal solution change, 
indicating that the results are not sensitive to changes in the available 
budget unless it is exceptionally insufficient and low.

6.3. Sensitivity analysis for values

The sensitivity of the optimal solutions is analyzed by changing the 
time available for mitigation strategies ( ) under the six defined sce-
narios and one base scenario (Table 15). In Fig. 7, the sensitivity ana-
lysis of the three objective functions (i.e., risk reduction, cost, and time) 
are depicted separately under the seven defined scenarios in Table 15. It 
is observed that by providing at least 70% of the available time, the 
optimal strategies did not change; however, under scenarios 3 and 4, 
new optimal strategies (i.e., S5 and S4) were obtained, indicating a 
slight sensitivity to the values.

6.4. Sensitivity analysis for g *
i
values

The sensitivity of the optimal solutions is analyzed by changing g *
i

values under the four defined scenarios and one base scenario 
(Table 16). In Fig. 8, the sensitivity analysis of the three objective 
functions (i.e., risk reduction, cost, and time) are depicted separately 
under the seven defined scenarios in Table 16. Given these results, 
optimal solutions are confirmed, and sensitivity is negligible.

To summarize the analysis, findings are illustrated in Fig. 9.

7. Discussions and implications

7.1. Theoretical implications

The versatile proposed mathematical model (i.e., the hybrid M- 
RMM and GMOBLP) is novel within the current body of knowledge on 
AFSC risk management. It can facilitate the decision-making process of 
identifying the optimal risk mitigation strategies for dealing with 
identified risks in any decision-making context. The theoretical im-
plications of the research are twofold. First, we develop a risk mitiga-
tion model, M-RMM, by (a) adding mitigation time dimension, (b) using 
BWM to calculate CRW, and (c) adding mitigation cost values. Second, 
we apply GMOBLP to obtain optimal risk mitigation strategies in rela-
tion to the three objective functions of risk impact minimization, cost 
minimization, and time minimization. Gupta et al. [38] discovered that 
applying multiple mitigation strategies is more efficient than applying 
one stand-alone strategy in risk reduction. Grey systems theory has the 
merit of dealing properly with poor information and small samples of 
data [56]. In our mathematical model, we have to deal with the un-
certainty regarding estimating cost, time and budget as well as col-
lecting data from a small sample of experts. In our proposed M-RMM, 
the following extensions of the original RMM are introduced: 

(1) A new dimension of mitigation time is added, where values are shown in 
grey numbers.
This was missing in the original RMM as time plays a critical role in 
dealing with risk mitigation strategies in risk management.

(2) CRW values are calculated based on BWM.
In previous studies for quantifying risks, researchers primarily used 
the traditional approach of multiplying the occurrence likelihood or 
probability of each risk by its impact severity [9,40,62]. In this 
study, we have instead introduced CRW values, which estimate 
current risk weight using the BWM. In this way, the critical im-
portance of risks can be captured more efficiently relative to the 
current status of the system and the purpose of the risk analysis at 
the firm level. The reason is that BWM can uncover the pair-wise 
relationships between risks by comparing risks with each other. 
Thus, one final weight can be estimated by experts through pair- 
wise comparisons accounting for the consistency of the compar-
isons. This method contrasts with the traditional approach, in 
which two values have to be estimated for each risk (i.e., impact 
and likelihood).

(3) Mitigation cost values are shown in grey numbers.

Table 13 
Optimal solution frequency of each strategy under various values ( = 1, = 1, =g * 0.75

i
). 

Risk mitigation strategies = 0 15. = 0 50. = 0 85. Total

Continuous training and development (S1) 4 3 1 8
Leadership training (S2) 1 2 1 4
Vulnerability analysis of IT systems (S3) 3 4 4 11
Capacity planning (S4) 2 2 1 5
Big data-enabled CRM (S5) 3 2 3 8
Total 13 13 10 36

Table 14 
Sensitivity of solutions under various values ( = = = 0.33

1 2 3
, = 0.50, = 1, =g * 0.75

i
). 

Scenario Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

1 0.10 1.00 -13.00 18.55 9.05 0.36 0.78 0.67 S5
2 0.25 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
3 0.40 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
4 0.55 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
5 0.70 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
6 0.90 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
base 1.00 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
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The grey numbers provide an opportunity to incorporate the un-
certainty around the cost estimations by offering a range instead of a 
single point cost value. It is believed that a range of cost estimations can 
represent the real-world situation better.

7.2. Practical implications

It is imperative for decision-makers in Bangladeshi AFSCs to realize the 
practical implications of the study in order to improve the robustness of 

AFSCs. The findings can help policymakers understand the most critical 
risks and, thereby, the most effective risk mitigation strategies to reduce 
food wastage in Bangladesh. The proposed model is context-specific (i.e., a 
developing economy), sector-specific (i.e., the agri-food processing sector), 
mathematical model-oriented (i.e., the M-RMM model and mathematical 
programming optimization), and multi-product (i.e., fresh and non-per-
ishable) in Bangladeshi AFSCs. The results from the BWM analysis in the 
M-RMM revealed that R1 (lack of skilled personnel) (i.e., =w 0.32831 ) is 
the most critical risk in AFSCs in Bangladesh, as shown in the M-RMM by 

Fig. 6. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different percentages of dedicated budget for all mitigation 
strategies ( ).

Table 15 
Sensitivity of solutions under various values ( = = = 0.33

1 2 3
, = 0.50, = 1, =g * 0.75

i
). 

Scenario Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

1 0.10 0.00 0.00 0.00 0.00 0.00 1.00 1.00 N/A*
2 0.25 0.95 -11.20 25.35 6.30 0.31 0.70 0.77 S3
3 0.40 1.00 -13.00 18.55 9.05 0.36 0.78 0.67 S5
4 0.55 1.00 -13.30 35.00 12.55 0.37 0.59 0.54 S4
5 0.70 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
6 0.90 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
base 1.00 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3

N/A* = no feasible solution
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having the highest CRW (see Table 7). The other risks in order of im-
portance are R2 (sub-standard leadership) ( =w 0.27942 ), R3 (failure in IT 
systems ( =w 0.23993 ), R4 (insufficient capacity) ( =w 0.07914 ) and R5 
(poor customer relationships) ( =w 0.07335 ). The order of all important 

risks in Ali et al. [4] is also confirmed in our study. The lack of skilled 
personnel in both studies is identified as the most critical risk, followed by 
sub-standard leadership, failure in IT systems, insufficient capacity, and poor 
customer relationships.

Fig. 7. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different percentages of dedicated time for all mitigation 
strategies ( ).

Table 16 
Sensitivity of solutions under various g *

i
values ( = = = 0.33

1 2 3
, = 0.50, = 1, = 1). 

Scenario g *i Z1 Z2 Z3 µZ1 µZ2 µZ3 Solution

base 0.75 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
1 0.45 0.25 -32.30 68.05 24.85 0.90 0.20 0.08 S1, S2, S3
2 0.55 1.00 -24.20 42.80 17.30 0.68 0.49 0.36 S2, S5
3 0.85 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
4 0.95 1.00 -21.10 43.80 16.60 0.59 0.48 0.39 S1, S3
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After implementing risk mitigation strategies, new weights of risks 
(i.e., normalized AMRW) are obtained, and risks are ranked as follows: 
R1 (lack of skilled personnel) ( = 0.41311 ), R2 (sub-standard leader-
ship) ( = 0.22372 ), R3 (failure in IT systems) ( = 0.19763 ), R5 (poor 
customer relationships) ( = 0.08835 ), and R4 (insufficient capacity) 
( = 0.07724 ). The findings from solving the GMOBLP show that con-
tinuous training and development (S1) and vulnerability analysis of IT 
systems (S3) are the most effective risk mitigation strategies. The 
mathematical model is able to obtain the optimal total implementation 
time and cost of risk mitigation strategies. It indicates that by im-
plementing S1 and S3 mitigation strategies, which comprise the best 
Pareto-optimal solution, the total implementation cost of risk mitiga-
tion strategies is estimated to be 4,380,000 TK within a timescale of 
approximately 16 months and 18 days.

In previous research, Zhao et al. [106] confirmed the importance of 
a lack of skilled workers when it comes to data sharing and use of IT in 
the context of AFSCs. Ali et al. [4] likewise identified this problem as 
the most critical risk—as did we in the present study (i.e., lack of skilled 
personnel: R1). Our findings suggest that continuous training and de-
velopment (S1) can be particularly effective in dealing with this risk. 
Unskilled personnel may cause extensive wastage in the production 
process, with Papargyropoulou et al. [70] having confirmed that skilled 

personnel are critical in minimizing food wastage. This risk can be 
addressed by continuous training within the company or by outsourcing 
the required training to educational institutes.

Sub-standard leadership (R2) was ranked as the second most critical 
risk. Again, prior studies confirm the importance of this risk, indicating 
that poor leadership can be the cause of huge food wastage [70,73]. 
Similarly, Akhtar et al. [2] identified theoretical links between leader-
ship practices and sustainability in AFSCs (dairy, meat, fruits, and ve-
getables). Moreover, Akhtar et al. [3] indicated that data-driven and 
adaptive leadership in comparison with traditional leadership practices 
(i.e., participative and directive leadership styles) is an essential tool for 
managing modern AFSCs.

Failure in IT systems (R3) was the third critical risk within AFSCs 
identified in our study, in line with previous findings. Thus, Williams, 
Wikström, and Löfgren [98] indicated that failure in IT systems may 
result in excessive food production, causing significant spoilage. Vul-
nerability analysis of IT systems (S3) can be used to manage this risk 
[4]. More generally, it is crucial to understand the key role played by IT 
and information and communication technology (ICT) in today’s com-
plex AFSCs. This role needs to be considered for purposes of policy 
making and future investment, since IT and ICT can help firms gain a 
competitive advantage by ensuring the smooth, safe, and resilient flow 

Fig. 8. Sensitivity analysis of (a) risk reduction (b) implementation cost and (c) implementation time for different target levels of risks (g *
i

). 
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of information. The reliable flow of information is of special importance 
in emerging economies like Bangladesh. Cash [20] noted that the 
agriculture sector has become increasingly information-dependent, 
necessitating a broad range of technical information for appropriate 
decision-making in this sector. However, large-scale information 
asymmetry exists in nearly all levels of AFSCs in developing countries, 
resulting in food waste throughout the chain [5]. New information 
technologies, such as precision agriculture or global positioning systems 
integrated with affordable sensors and computerized technologies, 
would equip AFSC managers, particularly in developing countries, with 
the tools needed to monitor yields and be more efficient in production 
planning [36,53,80,82].

Insufficient capacity (R4) was the fourth critical risk identified in 
our study. This risk in the area of manufacturing production capacity 
can potentially lead to food wastage as well [4]. Food processing in-
cludes numerous operations such as drying, sieving, mixing, and 
cooking, to name just a few. These operations are all connected to the 
production capacity of a firm [87]. Therefore, a risk mitigation strategy 
(i.e., S4: capacity planning) was proposed to facilitate a smoother 
production system. By keeping the capacity high, this strategy can re-
duce the potential for food spoilage [70].

Finally, the fifth risk (i.e., R5: poor customer relationships) mainly 
concerns producers’ ability to fulfill customers’ taste preferences. This 
risk, too, can impact food wastage because consumption is directly 
related to food wastage while also being linked to good customer re-
lationships [4]. The link between poor relationships between customers 
and producers, on the one hand, and post-harvest food losses and waste, 
on the other hand, was discussed in Hodges, Buzby, and Bennett [41]. 
In response to this risk, the researchers [4] proposed a big data-enabled 
customer relationship management strategy (S5); however, our findings 
pointed to other risk mitigation strategies, including continuous 
training and development (S1) and vulnerability analysis of IT systems 
(S3). Nonetheless, the use of Industry 4.0 technologies such as block-
chain, the Internet of Things, and big data in agri-food supply chains in 
developing economies in dealing with risks and sustainability issues is 
gaining traction [1,57,63,85,100]. Furthermore, the concept of green 
premium (i.e., the higher price that consumers are willing to incur for 

green products) can be considered to explore customer satisfaction and 
managing relationships with customers to encourage a more sustainable 
consumption via certification [8,23].

7.3. Limitations

This research carries a few limitations. The first limitation is the 
primary data collected in this study are prone to be biased due to the 
nature of subjective judgments when humans are involved in the de-
cision-making process. This can be improved by utilizing secondary 
data as well and implementing advanced artificial intelligence algo-
rithms in future. Second, our focus in this study was on the robust 
mitigation strategies for risks (i.e., high probability, low consequence 
risks) as opposed to resilient mitigation strategies suitable for disrup-
tion risks such as COVID-19 pandemic (i.e., low probability, high 
consequence risks) which can be dealt with in future. Finally, the ten 
case companies are used as a backdrop in our research to verify the 
applicability of our proposed mathematical model within the agri-food 
processing sector of food supply chains in Bangladesh. Unlike the pro-
posed mathematical model that is versatile and can be applied in other 
similar problems, the results of our study cannot be generalized to other 
AFSCs in other countries or sectors. Nonetheless, the proposed mathe-
matical model has been proved to have significant merits, suggesting 
that it can be applied in AFSC settings in other countries as well as in 
different contexts involving similar decision-making problems.

8. Conclusions

Supply chains are comprised of sophisticated networks of upstream 
and downstream partners seeking collectively to enhance competitive 
advantage and add value. Rapid and continuing global population 
growth has created a massive demand for food while also increasing 
food wastage in the food supply chain. Thus, as articulated in our 
problem statement, “there is a paramount need to research the critical risks 
of AFSCs and advance proactive risk mitigation practices by suitable 
mathematical models particularly in developing countries to improve the 
robustness of this important SC and have an impact on the economy”. In this 

Fig. 9. Order of risks and obtained optimal mitigation strategies. 
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study, we dealt with robust strategies concerning proactive risk miti-
gation measures which are suitable for business-as-usual risks (i.e., high 
probability, low consequence risks). As discussed in the Introduction, 
what we defined robust strategies in SCs based on the one defined by 
Behzadi et al. [14] where they recognized robust strategies as proactive 
risk mitigation measures which are suitable for business-as-usual risks 
(i.e., high probability, low consequence risks). We answered the re-
search question, “How can a reliable and yet easy-to-use mathematical 
model be defined to effectively analyze supply chain risk impacts and miti-
gation strategies in the agri-food processing sector in Bangladesh?”. We 
proposed a context-specific (i.e., a developing economy), sector-specific 
(i.e., the agri-food processing sector), mathematical model-oriented 
(i.e., the M-RMM model and mathematical programming optimization), 
and multi-product (i.e., fresh and non-perishable) model in Bangladeshi 
AFSCs. The proposed M-RMM was integrated with the GMOBLP model 
to obtain the optimal risk mitigation strategies in relation to the three 
objective functions of risk, cost, and time minimization. We also pro-
vided an empirical generalization in the context of AFSC in Bangladesh 
by comparing the findings.

The study analyzed the five risk mitigation strategies in the 
Bangladeshi agri-food processing sector proposed by Ali et al. [4], in-
cluding continuous training and development (S1), leadership training 
(S2), vulnerability analysis of IT systems (S3), capacity planning (S4), 
and big data-enabled CRM (S5). These strategies were proposed to deal 
with five risks in the agri-food processing sector, including lack of 
skilled personnel (R1), sub-standard leadership (R2), failure in IT sys-
tems (R3), insufficient capacity (R4), and poor customer relationships 
(R5) (see Table 7). Results indicate that continuous training and de-
velopment (S1) and vulnerability analysis of IT systems (S3) are the 
most suitable risk mitigation strategies for the specific context and 
sector in Bangladesh. The sensitivity analyses also confirmed the re-
liability of the obtained results. In future research, researchers may 
suggest an alternative design of experiments based on fractional fac-
torial analysis to evaluate the sensitivity of final solution by just ana-
lyzing the impact of only more influential parameters instead of ana-
lyzing all parameters’ impact on the sensitivity of final result to save 
cost and time of performing full analysis. It would be also interesting to 
investigate AFSC risks and mitigation strategies based on various agri- 
food products in a few sectors by applying mathematical frameworks 
and then compare findings. Researchers can also include sustainability 
matrix as a new dimension to be included in the RMM. It is worthwhile 
to apply the model to other SC contexts in other economies as well by 
applying resilient mitigation strategies to deal with disruption risks 
such as COVID-19 pandemic risk. Ultimately, researchers can take ad-
vantage of mixed primary and secondary data in future and reduce the 
results’ dependence on subjective evaluations to strengthen the model’s 
reliability and robustness.
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