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Abstract

The complex coupled short pulse equation (ccSPE) describes the propagation of

ultra-short optical pulses in nonlinear birefringent fibers. The system admits a variety

of vector soliton solutions: fundamental solitons, fundamental breathers, composite

breathers (generic or non-generic), as well as so-called self-symmetric composite soli-

tons. In this work, we use the dressing method and the Darboux matrices correspond-

ing to the various types of solitons to investigate soliton interactions in the focusing

ccSPE. The study combines refactorization problems on generators of certain ratio-

nal loop groups, and long-time asymptotics of these generators, as well as the main

refactorization theorem for the dressing factors which leads to the Yang-Baxter prop-

erty for the refactorization map and the vector soliton interactions. Among the results

obtained in this paper, we derive explicit formulas for the polarization shift of funda-

mental solitons which are the analog of the well-known formulas for the interaction

of vector solitons in the Manakov system. Our study also reveals that upon interacting

with a fundamental breather, a fundamental soliton becomes a fundamental breather

and, conversely, that the interaction of two fundamental breathers generically yields

two fundamental breathers with a polarization shifts, but may also result into a funda-

mental soliton and a fundamental breather. Explicit formulas for the coefficients that

characterize the fundamental breathers, as well as for their polarization vectors are

obtained. The interactions of other types of solitons are also derived and discussed in

detail and illustrated with plots. New Yang-Baxter maps are obtained in the process.

1 Introduction

Mathematical models of nonlinear wave propagation can often be reduced to a class of

nonlinear partial differential equations known as integrable systems. One of the most

widely studied integrable systems is the nonlinear Schrödinger (NLS) equation, which in

the last 50 years has been shown to be a universal model for weakly dispersive nonlinear

wave trains, with physical applications ranging from deep water waves, plasma physics

and nonlinear optics, to magneto-static spin waves, low temperature physics and Bose-

Einstein condensation. On the other hand, the propagation of ultra-short optical pulses

∗Corresponding author: bprinari@buffalo.edu
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(width∼ 10−15s and much smaller than the carrier frequency) in nonlinear media is better

described by the so-called “complex short-pulse” equation (cSPE):

uxt = u +
σ

2
(|u|2ux)x , σ = ±1 (1)

where u = u(x, t) is a complex function representing the electric field associated to the

propagating optical pulse. The cSPE was introduced relatively recently in [1], and like

NLS, the sign of σ distinguishes the two dispersion regimes (σ = 1 corresponding to the

anomalous dispersion regime, or focusing cSPE, and σ = −1 to normal dispersion, or

defocusing cSPE). If one restricts u(x, t) to be a real function (representing, in this case,

the magnitude of the electric field), the above equation reduces to the (real) short-pulse

equation (SPE), which was originally introduced in the context of differential geometry

[2], and was later derived as a model for the propagation of ultra-short pulses in nonlinear

silica optics [3]. Equations of short-pulse type:

Qxτ = 4iQ − 2i(RQQx)x, Rxτ = 4iR − 2i(QRRx)x

were obtained in the earlier works [5, 6] through the negative Wadati-Konno-Ichikawa

flow [7–10]. These equations reduce to (1) for R = −σQ∗ but with a complex time

t = 4iτ.

A key feature of the SPE and the cSPE is that, in addition to standard smooth solitons,

both admit loop soliton solutions, which are not single-valued, and “cuspons”, and also

solutions that oscillate between single- and multi-valued states. For applications to bire-

fringent fibers, two orthogonally polarized modes have to be considered, and in analogy

to the Manakov system [4], which is the extension of the NLS equation to 2-components,

several generalizations of the SPE were proposed in the literature for the propagation of

polarized ultra-short pulse in anisotropic media. While there is a sizeable amount of liter-

ature on the SPE, on its two- and multi-component generalizations and discretization (see

[5–9, 12–32]), the study of the cSPE and of its vector version, the complex coupled SPE

(ccSPE) also introduced in [1], namely:

uxt = u +
σ

2
(||u||2ux)x , u = (u1, u2)

T , σ = ±1 , (2)

where u(x, t) is a two-component complex vector function and σ again distinguishes

between the focusing and defocusing equations, is obviously much more recent and less

extensive. Like NLS and the Manakov system, the defocusing cSPE and ccSPE only

admit dark solitons, i.e., solitons on a non-zero background. Soliton solutions for the

focusing cSPE equation have been constructed in [1, 33–37], and dark soliton solutions

of the defocusing cSPE have been obtained in [38, 39]. The inverse scattering transform

(IST) to solve the initial-value problem for the focusing cSPE equation was developed

in [40], and the long-time asymptotic behavior was analyzed in [41]. As to the focusing

ccSPE, several types of solutions were presented in [42–45], and the IST was developed

in [46].

The main goal of this work is to study interactions of vector solitons of the focusing

ccSPE. It is known [47, 48] that the interactions between solitons in the Manakov model,

or more generally vector NLS, give rise to maps on their polarization vectors which pro-

vide solutions of the set-theoretical Yang-Baxter equation [49]. In this context and also

in the context of discrete integrable systems, such maps are known as Yang-Baxter maps

[50]. They arise in a much larger variety of contexts, and we refer the interested reader to

[51] for an overview of various key areas where the set-theoretical Yang-Baxter equation

(and its companion, the set-theoretical reflection equation [47, 52]) can arise. From the
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point of view of soliton dynamics, such maps ensure that multicomponent soliton inter-

actions are elastic and that the scattering of a multisoliton solution factorizes consistently

into a succession of two-soliton interactions. This is a well-known key feature of scalar

solitons, but it is more intricate to derive in the multicomponent case. Nevertheless, the

interplay between multicomponent integrable equations and Yang-Baxter maps is well

documented and finds its roots in the refactorization properties appearing in the under-

lying dressing method [53]. This was used extensively e.g. in [47]. In this paper, we

investigate Yang-Baxter maps for the focusing ccSPE, and use them to unravel the nature

of the corresponding soliton interactions. An essential new feature compared to the vector

NLS case is the variety of possible one-soliton solution that the model admits: fundamen-

tal solitons, fundamental breathers, composite breathers (generic or non-generic), as well

as so-called self-symmetric solitons. In a first instance, by considering the interaction

of two fundamental solitons, we derive a formula analogous to Manakov’s result for the

polarization shift of interacting vector NLS solitons. This gives a first example of the

Yang-Baxter maps involved in ccSPE. To get the full picture, we take advantage of the

ideas illustrated above, and classify the possible dressing factors creating those various

types of solitons. We then derive the “master” Yang-Baxter map arising from the refactor-

ization of the most general elementary dressing factors. Combining this with a long-time

asymptotic analysis of all the possible two-soliton solutions yields the various maps on the

polarizations of the solitons. All of them enjoy the Yang-Baxter property, being derived

from the “master” Yang-Baxter map, but take on different explicit forms.

For the rest of this work, we restrict our attention to the focusing ccSPE (so we as-

sume σ = 1, and simply refer to Eq. (2) with σ = 1 as the ccSPE), and consider so-

lutions that are rapidly decaying as |x| → ∞. The structure of the paper is as follows.

In Sec. 2 we give a brief overview of the IST for the ccSPE as developed in [46], and

of its one-soliton solutions, which include fundamental solitons, fundamental breathers,

and composite breathers, depending on the rank and structure of the norming constant

associated to the soliton. We also discuss in detail the case of self-symmetric discrete

eigenvalues, and derive the explicit expression of a self-symmetric soliton. In Sec. 3 we

discuss the reductions of the ccSPE to the case of real solutions. In Sec. 4 we provide

the explicit expressions of the (matrix) transmission coefficients corresponding to a 1-

fundamental soliton solution, a 1-fundamental breather solution, and a 1-self-symmetric

soliton solution. In Sec. 5 we use Manakov’s method [4] to investigate the pairwise inter-

actions of two fundamental solitons, and also the interaction of self-symmetric solitons.

Sec. 6 reviews the main idea of the dressing method and the notion of dressing factors

(or Darboux-Bäcklund matrices), as well as the main refactorization theorem for such

dressing factors which leads to the Yang-Baxter property for the refactorization map. It

also contains the classification of the elementary dressing factors necessary to build the

three types of solitons in the ccSPE, as well as their various degenerations. Finally, the

long-time analysis of various two-soliton solutions leads to the derivation of the various

Yang-Baxter maps on the polarization vectors of the solitons. Our study reveals that upon

interacting with a fundamental breather, a fundamental soliton becomes a fundamental

breather and, conversely, that the interaction of two fundamental breathers generically

yields two fundamental breathers with a polarization shifts, but may also result into a

fundamental soliton and a fundamental breather. Explicit formulas for the coefficients

that characterize the fundamental breathers, as well as for their polarization vectors are

obtained. The interactions of other types of solitons are also discussed in detail and illus-

trated with plots. Finally, Appendices A-E provide more technical details regarding the

derivation of the explicit expression of the analytic scattering coefficients in various cases,

hodograph transformation and exact two-soliton solutions.
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2 Overview of the IST and one-soliton solutions

Below, we give a succinct overview of the IST for the ccSPE as developed in [46]. The

ccSPE (2) with σ = 1 possess the following Lax pair:

Φx = XΦ =

(
−ikI2 kUx

−kVx ikI2

)
Φ , (3a)

Φt = TΦ =

(
i

4k I2 −
i
2 kUV − i

2 U + 1
2 kUVUx

− i
2 V − 1

2 kVUVx − i
4k I2 +

i
2 kVU

)
Φ , (3b)

where the matrices U and V are given by

U =

(
−iu1 −iu2

iu∗
2 −iu∗

1

)
, V = U† , (4)

and In denotes the n × n identity matrix. In [46], the gauge transformation

Φ̂(x, t, k) = P†(x, t)Φ(x, t, k), (5)

with P chosen so that it diagonalizes the matrix iX/k, namely

P = p

(
I2 −α
α† I2

)
, p2 =

1 + q

2q
, q =

√
1 + ||ux||2, α =

iUx

1 + q
, (6a)

was used to control the behavior of the eigenfunctions at k = 0 and k = ∞. Indeed, with

such a choice for P, the gauge transformation (5) reduces the Lax pair (3) to

Φ̂x + QxΦ̂ = X̂Φ̂, Φ̂t + QtΦ̂ = T̂Φ̂, (7)

where

Qx = ikqΣ3 , Qt =

(
1

4ik
+

i

2
kq||u||2

)
Σ3 , Σ3 = diag(I2,−I2) , (8a)

X̂ =




1
2(1+q)

qx I2 −
1

2q(1+q)
UxVxx

i
2q Uxx −

iqx

2q(1+q)
Ux

i
2q Vxx −

iqx

2q(1+q)
Vx − 1

2(1+q)
qx I2 +

1
2q(1+q)

VxxUx


 , (8b)

T̂ =
i

4kq

(
(1 − q)I2 −iUx

iVx −(1 − q)I2

)
+ (8c)

+
p2

2

(
(αtα

† − αα†
t )− i(Uα† + αV) 2αt − iU + iαVα

−2α†
t − iV + iα†Uα† (α†

t α − α†αt) + i(α†U + Vα)

)
.

Eqs. (8a) can be integrated explicitly, giving Q(x, t) = iθ(x, t, k)Σ3 where

θ(x, t, k) = kξ(x, t)− t/4k , ξ(x, t) = x −

∞∫
x

(√
1 + ||uy||2 − 1

)
dy . (9)

Then, under the assumption U(x, t) → 0 sufficiently rapidly as x → ±∞, one can show

that X̂, T̂ → 0 in this limits and hence define the Jost eigenfunctions

Φ̂±(x, t, k) =
(
Φ̂±,1(x, t, k), Φ̂±,2(x, t, k)

)
∼ I4e−iθ(x,t,k)Σ3 , x → ±∞, (10)
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as simultaneous solutions of the Lax pair (7). It is convenient to consider modified eigen-

functions with constant asymptotic behavior

M±(x, t, k) = (M±,1(x, t, k), M±,2(x, t, k)) = Φ̂±(x, t, k)eiθ(x,t,k)Σ3 ∼ I4, x → ±∞,
(11)

and one can prove that the 4 × 2 columns M−,1, M+,2 are analytic for k ∈ C+ and con-

tinuous for k ∈ R, and the columns M+,1, M−,2 are analytic for k ∈ C− and continuous

for k ∈ R. Since Φ̂+ and Φ̂− are two fundamental solutions of the Lax pair for any

k ∈ R, one can define a 4 × 4 matrix S(k) (independent of x, t) such that

Φ̂−(x, t, k) = Φ̂+(x, t, k)S(k) , S(k) =

(
a(k) b̄(k)
b(k) ā(k)

)
, k ∈ R, (12)

whose 2 × 2 blocks are such that a(k) (respectively, ā(k)) is analytic in C+ (respectively,

in C−) and continuous for k ∈ R, while b(k), b̄(k) are in general only defined for k ∈ R.

Equation (12) for k ∈ R can be written as

M−,1(x, t, k)a−1(k) = M+,1(x, t, k) + M+,2(x, t, k)e2iθ(x,t,k)ρ(k) , (13a)

M−,2(x, t, k)ā−1(k) = M+,2(x, t, k) + M+,1(x, t, k)e−2iθ(x,t,k)ρ̄(k) , (13b)

where the functions M−,1(x, t, k)a−1(k) and M−,2(x, t, k)ā−1(k) are meromorphic in

the upper/lower half k-plane respectively, and

ρ(k) = b(k)a−1(k) , ρ̄(k) = b̄(k)ā−1(k) k ∈ R, (14)

are the (matrix) reflection coefficients.

For future reference, we note that one can also express the columns of Φ̂+ in terms of

the columns of Φ̂− as

Φ̂+(x, t, k) = Φ̂−(x, t, k)S−1(k) , S−1(k) =

(
c̄(k) d(k)
d̄(k) c(k)

)
, k ∈ R, (15)

where c, d, c̄, d̄ are 2 × 2 matrix functions of k, and (15) can be written in terms of the

analytic groups of columns of the modified eigenfunctions as

M+,1(x, t, k)c̄−1(k) = M−,1(x, t, k) + M−,2(x, t, k)e2iθ(x,t,k) r̄(k) , (16a)

M+,2(x, t, k)c−1(k) = M−,2(x, t, k) + M−,1(x, t, k)e−2iθ(x,t,k)r(k) , (16b)

where r(k) = d(k)c−1(k) and r̄(k) = d̄(k)c̄−1(k) are the (matrix) reflection coefficients

from the right defined for system (15). For future convenience, we refer to a(k), ā(k) as

the (inverses) of the “left” transmission coefficients, and to c(k), c̄(k) as the (inverses) of

the “right” transmission coefficients.

The Lax pair (3) admits two symmetries, k → k∗ and k → −k∗, which induce

corresponding symmetries in the scattering data. Specifically, the first symmetry implies

ρ̄(k) = −ρ†(k) , k ∈ R , det ā(k) = det a†(k∗) , k ∈ C
− , (17a)

and the second symmetry gives

a∗(−k∗) = σ2a(k)σ2 , k ∈ C
+ , ā∗(−k∗) = σ2 ā(k)σ2 , k ∈ C

− , (17b)

ρ∗(−k) = σ2ρ(k)σ2 , ρ̄∗(−k) = σ2ρ̄(k)σ2 , k ∈ R , (17c)
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where σ2 =

(
0 −i
i 0

)
is the second Pauli matrix (see [46] for details). The discrete

spectrum consists of the values of k ∈ C/R, for which the scattering problem admits

eigenfunctions in L2(R), and discrete eigenvalues appear in symmetric quartets:

Z = {kn,−k∗n,−kn, k∗n}
N
n=1, (18)

where, for each n, kn,−k∗n are the zeros of det a(k) and coincide with the values of

k ∈ C+ where Φ̂−,1 and Φ̂+,2 become linearly dependent, and −kn, k∗n are the zeros

of det ā(k), which coincide with the values of k ∈ C− where Φ̂+,1 and Φ̂−,2 become

linearly dependent. Moreover:

1. if rank a(kn) ≡ rank a(−k∗n) = 1 and rank ā(−kn) ≡ rank ā(k∗n) = 1, then

the zeros of det a(k) in C+ and the zeros of det ā(k) in C− are simple;

2. if a(kn) ≡ a(−k∗n) = 02×2 and ā(−kn) ≡ ā(k∗n) = 02×2, then the zeros of

det a(k) in C+ and the zeros of det ā(k) in C− are double.

In both cases, it is shown in [46] that the points kn,−k∗n (resp., k∗n,−kn) are simple poles

for the function M−,1a−1 (resp., M−,2 ā−1) in C+ (resp., C−), and one can define the

corresponding residues as follows

Resk=kn
[M−,1(x, t, k)a−1(k)] = e2i(knξ−t/4kn)M+,2(x, t, kn)Cn, (19a)

Resk=−k∗n [M−,1(x, t, k)a−1(k)] = e2i(−k∗nξ+t/4k∗n)M+,2(x, t,−k∗n)C̃n, (19b)

Resk=k∗n [M−,2(x, t, k)ā−1(k)] = e−2i(k∗nξ−t/4k∗n)M+,1(x, t, k∗n)C̄n, (19c)

Resk=−kn
[M−,2(x, t, k)ā−1(k)] = e−2i(−knξ+t/4kn)M+,1(x, t,−kn)

¯̃Cn, (19d)

where Cn is the 2 × 2 norming constant associated to the discrete eigenvalue kn, and

C̄n = −C†
n, C̃n = −σ2C∗

nσ2, ¯̃Cn = −σ2C̄∗
nσ2 . (20)

In the first case, i.e., when a(k), ā(k) evaluated at the discrete eigenvalues are rank-1

matrices, the norming constants are rank-one matrices themselves; in the second case,

the norming constants can be either full-rank or rank-one matrices. The above results

were established in [46], under the implicit assumption that the matrices a and ā have

equal ranks. In Appendix A, we prove that a(k) and ā(k) necessarily have the same rank

at each of the eigenvalues of a given quartet, namely rank a(kn) = rank a(−k∗n) =
rank ā(k∗n) = rank ā(−kn) for each n.

The starting point of the formulation of the inverse problem is equation (13), regarded

as the jump condition across the real k-axis between the eigenfunctions that are mero-

morphic in C+, and those that are meromorphic in C−. Specifically, one introduces the

sectionally meromorphic matrix function:

µ±(x(ξ, t), t, k) =

{(
M−,1(x(ξ, t), t, k)a−1(k) M+,2(x(ξ, t), t, k)

)
k ∈ C+

(
M+,1(x(ξ, t), t, k) M−,2(x(ξ, t), t, k)ā−1(k)

)
k ∈ C−

(21)

and then defines

µ̂±(ξ, t, k) = µ± (x(ξ, t), t, k) , µ̆±(ξ, t, k) = µ̂−1
∞ (ξ, t)µ̂±(ξ, t, k), (22)

where ˆ denotes functions in which the x-dependence has been replaced by a ξ-dependence,

and µ̂∞(ξ, t) = lim|k|→∞ µ̂±(ξ, t, k) (see [46] for details). Using Eqs. (22), (21), one

can write (13) as

µ̆+ = µ̆−[I4 − Ĵ], Ĵ = e−iθ̂Σ3 J(k)eiθ̂Σ3 , J(k) =

(
ρ̄(k)ρ(k) ρ̄(k)
−ρ(k) 02×2

)
, (23)
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where θ̂ = kξ − t/4k, for all k ∈ R, which, supplemented with the normalization condi-

tion

µ̆± = I4, k → ∞, (24)

defines a Riemann Hilbert problem (RHP) with poles across the real k-axis. The formal

solution of the RHP is then given by the system

µ̆(ξ, t, k) = I4 +

N

∑
n=1

Resk=kn
µ̆+(ξ, t, k)

k − kn

+

N

∑
n=1

Resk=−k∗n µ̆+(ξ, t, k)

k + k∗n
+

N

∑
n=1

Resk=k∗n µ̆−(ξ, t, k)

k − k∗n

+

N

∑
n=1

Resk=−kn
µ̆−(ξ, t, k)

k + kn
−

1

2πi

∫
R

µ̆−(ξ, t, ζ) Ĵ(ξ, t, ζ)

ζ − (k ± i0)
dζ, (25)

which is closed using the residue conditions

Resk=kn
µ̆+,1(ξ, t, k) = e2iθ̂(ξ,t,kn)µ̆+,2(ξ, t, kn)Cn, (26a)

Resk=−k∗n µ̆+,1(ξ, t, k) = e2iθ̂(ξ,t,−k∗n)µ̆+,2(ξ, t,−k∗n)C̃n, (26b)

Resk=k∗n µ̆−,2(ξ, t, k) = e−2iθ̂(ξ,t,k∗n)µ̆−,1(ξ, t, k∗n)C̄n, (26c)

Resk=−kn
µ̆−,2(ξ, t, k) = e−2iθ̂(ξ,t,−kn)µ̆−,1(ξ, t,−kn)

¯̃Cn , (26d)

for each n = 1, 2, ..., N.

The last step of the inverse problem amounts to reconstructing the solution of the

ccSPE from the solution µ̆± of the RHP. Specifically, as shown in [46], the reconstruction

formula is given by:

u(ξ, t) = lim
k→0

i

k

((
µ̆−1(ξ, t, 0)µ̆(ξ, t, k)

)
1,3

,
(

µ̆−1(ξ, t, 0)µ̆(ξ, t, k)
)

1,4

)T

, (27a)

x − ξ = lim
k→0

i

k

[(
µ̆−1(ξ, t, 0)µ̆(ξ, t, k)

)
1,1

− 1

]
, (27b)

where (27b) expresses the original variable x in terms of the travel-time parameter ξ.

Whenever x = x(ξ) in (27b) is monotonic, so that for each x there is a unique ξ such

that ξ = ξ(x), then (27a) and (27b) can be used to obtain the solution of the ccSPE in the

original physical variables, namely u(x, t).
Pure solitons can be obtained by setting ρ(k) = ρ̄(k) = 02×2, for all k ∈ R in

Eq. (25). In this case, the system reduces to the following linear algebraic system for the

eigenfunctions

µ̆(ξ, t, k) = I4 +

N

∑
n=1

Resk=kn
µ̆+(ξ, t, k)

k − kn

+

N

∑
n=1

Resk=−k∗n µ̆+(ξ, t, k)

k + k∗n
+

N

∑
n=1

Resk=k∗n µ̆−(ξ, t, k)

k − k∗n
+

N

∑
n=1

Resk=−kn
µ̆−(ξ, t, k)

k + kn
,

(28)
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with residue conditions given by (19), which can be solved analytically.

One-soliton solutions are obtained by setting N = 1 in the last relation, and solving

the corresponding system for the upper and lower blocks of the eigenfunctions. The differ-

ent types of one-soliton solutions that ccSPE admits depend on the choice of the norming

constant C1. Specifically, if k1 = η1 + iν1 ∈ C+ and C1 = (γγγ , 0) with γγγ = (α1, β1)
T ,

then the corresponding solution is a fundamental soliton, which is the natural vector gen-

eralization of scalar one-soliton solutions of the complex short-pulse equation. In this

case, the vector solution of the ccSPE is given by:

u(ξ, t) =
iν1

|k1|2
e−i(φ1(ξ,t)−2arg k1)sech[ζ1(ξ, t)− x0]

γγγ∗

||γγγ||
, (29a)

x = ξ +
2ν1

|k1|2
1

1 + e2(ζ1−x0)
, (29b)

where

ζ1(ξ, t) = 2ν1(ξ + t/4|k1|
2), φ1(ξ, t) = 2η1ξ − η1t/2|k1|

2, x0 = log
||γγγ||

2ν1
.

If C1 is a 2× 2 rank-1 matrix with its columns being proportional to each other, say, C1 =
(µγγγ, κγγγ) for some multiplicative constants κ, µ ∈ C, the corresponding solution is a

fundamental breather, which is a superposition of two orthogonally polarized fundamental

solitons, with the same amplitude and velocity but different carrier frequencies. In this

case, the vector solution is given by:

u(ξ, t) =
iν1

|k1|2
√
|µ|2 + |κ|2

sech[ζ1(ξ, t)− x0]×

×

[
e−i(φ1(ξ,t)−2argk1)µ∗ γγγ∗

||γγγ||
+ ei(φ1(ξ,t)−2argk1)κ

(γγγ∗)⊥

||γγγ||

]
, (30a)

x = ξ +
2ν1

|k1|2
1

1 + e2(ζ1−x0)
, x0 = log

[
||γγγ||

√
|µ|2 + |κ|2

2ν1

]
, (30b)

γγγ⊥ = (−β∗
1, α∗1)

T is such that γγγ†γγγ⊥ = 0, and the quantities ζ1 and φ1 are the same

as in the fundamental soliton case. Notice that equation (30a) implies that a generic fun-

damental breather solution of the ccSPE is governed by the vector γγγ, which controls the

polarization vectors of the two orthogonally polarized solitons, and by the multiplicative

constants µ and κ. The fundamental breather in Eq. (30a) reduces to a fundamental soliton

by setting either κ = 0 and µ = 1, or κ = 1 and µ = 0. We point out that one between

the two constants κ and µ can always be scaled out, and in [46] µ = 1 was chosen with-

out loss of generality. However, for the purpose of investigating soliton interactions it is

convenient to keep both constants in.

Lastly, one can consider C1 to be a 2 × 2 full-rank matrix, and in this case the corre-

sponding solution is a composite breather, which still corresponds to a minimal set of dis-

crete eigenvalues, but is a more complicated superposition of fundamental solitons. The

explicit expression of a composite breather is more easily derived using Darboux trans-

formations, and is given in Sec. 6 (see also Sec. 2.1 for the reduction to self-symmetric

(composite) solitons).

Finally, one can show that whether the fundamental 1-soliton and fundamental 1-

breather solution are smooth solitons or not depends on the location of the discrete eigen-

value k1 = η1 + iν1 ∈ C+. Specifically, like in the scalar case:

1. if ν1 < |η1|, then the corresponding fundamental soliton and fundamental breather

solution has a smooth envelope as a function of x, t in both components;
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2. if ν1 > |η1|, then this leads to a loop in the envelope of each component of the

solution (fundamental loop solitons/breathers);

3. if ν1 = |η1|, then this leads to a cusp in the envelope of each component of the

solution (fundamental cuspon solitons/breathers).

Note that in the case of a generic composite breather, it was shown in [46] that the con-

dition ν1 < |η1| is not sufficient to guarantee smoothness of the solution in terms of x, t,
and to the best of our knowledge, a regularity condition, which will necessarily have to

involve the norming constant, is presently not known.

2.1 Self-symmetric discrete eigenvalues and associated one-soliton solutions

If an eigenvalue k j = iνj is purely imaginary, then −k∗j = k j and we refer to these

eigenvalues as self-symmetric eigenvalues. In this case, the quartet of eigenvalues reduces

to a pair k j, k∗j . The coalescence of the discrete eigenvalues k j and −k∗j and k∗j and −k j

induces a coalescence of the corresponding norming constants, namely, one needs to have:

Cj = C̃j, C̄j =
¯̃Cj. (31)

In addition, the symmetry relations (20) among the norming constants still hold in the case

of self-symmetric discrete eigenvalues, and combining them with (31) yields a constraint

on the entries of the norming constants associated to each self-symmetric eigenvalue,

namely:

Cj = −σ2C∗
j σ2 . (32)

One can easily verify that if Cj is a rank-1 matrix, then (32) implies Cj = 0 and hence

in the case of a self-symmetric eigenvalue the only nontrivial solutions are associated to

full-rank norming constants. Let Cj =

(
αj γj

β j δj

)
, where αj, β j, γj, δj ∈ C and det Cj =

αjδj − β jγj 6= 0. In this case, imposing the constraint (32), we obtain γj = β∗
j and

δj = −α∗j , which then gives

Cj =

(
αj β∗

j

β j −α∗j

)
, C̄j =

(
−α∗j −β∗

j

−β j αj

)
. (33)

In the case of self-symmetric eigenvalues, instead of subtracting two residues in each

half plane, we now subtract one residue from both sides of the jump condition (22) that

the matrix function µ̆ satisfies, and therefore this has an immediate consequence in the

formal solution of the RHP. For instance, for a pure self-symmetric 1-soliton solution

corresponding to a pair of eigenvalues k1, k∗1 on the imaginary axis and associated norming

constants C1, C̄1 as in (33), one can replace the definitions of the residues (19) and derive

the equations which hold for the upper and lower blocks of µ̆± in the analog of Eqs. (28)

evaluated at k1 and k∗1 respectively, i.e.,

µ̆
up
−,1(k

∗
1) = I2 +

e2iθ̂1

k∗1 − k1
µ̆

up
+,2(k1)C1, µ̆dn

−,1(k
∗
1) =

e2iθ̂1

k∗1 − k1
µ̆dn
+,2(k1)C1 , (34a)

µ̆
up
+,2(k1) =

e2iθ̂1

k1 − k∗1
µ̆

up
−,1(k

∗
1)C̄1, µ̆dn

+,2(k1) = I2 +
e2iθ̂1

k1 − k∗1
µ̆dn
−,1(k

∗
1)C̄1 , (34b)

where θ̂1 = k1ξ − t/4k1 ≡ i(ν1ξ + t/4ν1). Replacing the first half of (34b) into the

first half of (34a), and the second half of (34a) into the second half of (34b), we obtain the

9



following expressions for the upper/lower blocks of the eigenfunctions

µ̆
up
−,1(k

∗
1) =

(
I2 +

e4iθ̂1

(k∗1 − k1)2
C̄1C1

)−1

, (35a)

µ̆
up
+,2(k1) =

e2iθ̂1

k1 − k∗1

(
I2 +

e4iθ̂1

(k∗1 − k1)2
C̄1C1

)−1

C̄1 , (35b)

µ̆dn
+,2(k1) =

(
I2 +

e4iθ̂1

(k∗1 − k1)2
C1C̄1

)−1

, (35c)

µ̆dn
−,1(k

∗
1) =

e2iθ̂1

k∗1 − k1

(
I2 +

e4iθ̂1

(k∗1 − k1)2
C1C̄1

)−1

C1 . (35d)

Using the above eigenfunctions in the reconstruction formula (27), we obtain the expres-

sion of the self-symmetric soliton:

u(ξ, t) = −
1

k1
sech[ζ1(ξ, t)− x0]

γ∗γ∗γ∗

||γγγ||
, ζ1(ξ, t) = 2ν1(ξ + t/4ν2

1) , (36)

x = ξ +
2

ν2
1

1

1 + e2(ζ1−x0)
, γγγ =

(
αj

β j

)
, x0 = log

||γγγ||

2ν1
.

The special cases β = 0 (a diagonal, self-symmetric norming constant) and α = 0 (an

off-diagonal, self-symmetric norming constant) provide scalar solutions with u1 ≡ 0 and

u2 ≡ 0, respectively.

3 Real solutions of the ccSPE

The ccSP equation admits real solutions, and in this case the matrix potential U in (4)

satisfies the symmetry

U∗ = −U, V = −UT . (37)

This induces an additional symmetry on the Lax operators

X∗(x, t,−k∗) = X(x, t, k), T∗(x, t,−k∗) = T(x, t, k), (38)

and assuming uniqueness of solution of the equations of the Lax pair with prescribed

boundary conditions as x → ±∞, then the last symmetry implies

Φ∗
±(x, t,−k∗) = Φ±(x, t, k). (39)

Recall that Φ± and Φ̂± are related through the gauge transformation (5), and since P(x, t)
is unitary, one also has

Φ̂∗
±(x, t,−k∗) = Φ̂±(x, t, k). (40)

In turn, combining this last symmetry with the definition of the scattering matrix (12), we

obtain

S∗(−k∗) = S(k), (41)
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which implies additional symmetries on the scattering data and the reflection coefficients

a∗(−k∗) = a(k), ā∗(−k∗) = ā(k), (42a)

b∗(−k∗) = b(k), b̄∗(−k∗) = b̄(k), (42b)

ρ∗(−k∗) = ρ(k), ρ̄∗(−k∗) = ρ̄(k). (42c)

From (17), it then follows that for real solutions of the ccSPE

det a(k) = det a∗(−k∗), (43)

but the reduction to real solutions does not induce an additional symmetry for the zeros

of det a(k) and det ā(k). Hence, the discrete spectrum consists of either the quartet of

points {kn,−k∗n, k∗n,−kn}, where kn,−k∗n are the zeros of det a(k) on the UHP of C, and

k∗n,−kn are the zeros of det ā(k) on the LHP of C, or the pair of points {kn, k∗n}, when

the discrete eigenvalues are self-symmetric, i.e., purely imaginary. On the other hand, the

reduction to real solutions imposes additional symmetries on the norming constants. Let

us assume that kn,−k∗n are distinct simple zeros of det a(k) in C+, and therefore −kn, k∗n
are distinct simple zeros of det ā(k) in C−. Since the discrete eigenvalues in C+ coincide

with the values of k where the columns Φ̂−,1 and Φ̂+,2 become linearly dependent, we

then have

Φ̂−,1(kn)α(kn) = Φ̂+,2(kn)cn, Φ̂−,1(−k∗n)α(−k∗n) = Φ̂+,2(−k∗n)c̃n, (44)

where cn, c̃n are the corresponding proportionality constants, and α(k) is the cofactor

matrix of a(k). Then, combining relations (40), (42a) and (44), we get

c̃n = cn. (45)

Now, the function M−,1a−1 is meromorphic for k ∈ C+, with simple poles at the points

kn,−k∗n, and one can define its residues as in [46], and the norming constants are given

by

Cn =
cn

(det a)′ (kn)
, C̃n =

c̃n

(det a)′ (−k∗n)
. (46)

It is easy to check that

C̃n = −C∗
n, (47)

since (45) holds, and (43) implies (det a)′ (−k∗n) = −
[
(det a)′ (kn)

]∗
, where prime

denotes differentiation with respect to k. Similarly, considering M−,2 ā−1, which has

simple poles at the points k∗n,−kn ∈ C−, one can show that the associated norming

constants satisfy:

¯̃Cn = −C̄∗
n. (48)

When the zeros of det a(k) and det ā(k) are simple, it has been shown in [46] that the

norming constants are necessarily rank-one matrices, which implies that Cn has either

one column identically zero, or the two columns proportional to each other. Combining

(47) with the second of (20), one can conclude that no non-trivial norming constant exists

when one of the columns of Cn is identically zero. This implies that no real fundamental

soliton solutions exist. Now, if the norming constant Cn has proportional columns, i.e.,

Cn = (γγγ, κγγγ), where γγγ = (αn , βn)T with αn, βn, κ ∈ C, then one can prove that Eqs.
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(47) and (48) combined give a constraint for the multiplicative constant κ, i.e., Cn is non-

trivial iff κ = ±i. The fundamental breather solution is then given by (30) with µ = 1
and κ = ±i.

Let us now assume that kn,−k∗n are distinct double zeros of det a(k) in C+, and

therefore k∗n,−kn are distinct double zeros of det ā(k) in C−. It has been shown that they

can still be simple poles for the functions M−,1a−1 and M−,2 ā−1, and one can define

the corresponding residues and norming constants, using similar relations as in (46). The

symmetries (20) and (47) hold as well, and in this case the norming constants are either

rank-one or full-rank matrices. We already analyzed the cases when Cn is a rank-one

matrix, and therefore let us assume

Cn =

(
αn γn

βn δn

)
, αn, βn, γn, δn ∈ C, (49)

with det Cn 6= 0. Eqs. (47) and (48) combined give the following constraint for the

entries of Cn

δn = αn, γn = −βn, (50)

and therefore Cn takes the form

Cn =

(
αn −βn

βn αn

)
, αn, βn ∈ C. (51)

Finally, let us now consider the case of self-symmetric eigenvalues, i.e., an eigenvalue

pair {kn = iνn, k∗n = −iνn}. In this case, there are three symmetries for the norming

constants which need to be satisfied simultaneously

C̃n = −σ2C∗
nσ2, C̃n = −C∗

n, C̃n = Cn . (52)

One can show that no non-trivial norming constants exists when Cn is a rank-one matrix.

When Cn is full-rank, as in (49), imposing the symmetries (52) requires all entries of Cn

to be purely imaginary, i.e., Cn takes the form Cn = (γγγ,−γγγ⊥), where γγγ = (iαn, iβn),
with αn, βn ∈ R.

4 Pure soliton transmission coefficients

In order to use Manakov’s method to investigate the pairwise interactions of two vec-

tor solitons [4], one needs the explicit expressions of the (matrix) transmission coeffi-

cients corresponding to pure one-soliton solutions, namely the inverses of the matrices

a(k), ā(k), which correspond to the transmission coefficients from the left, and the in-

verses of the matrices c(k), c̄(k), which correspond to the transmission coefficients from

the right. Both left and right transmission coefficients corresponding to 1-fundamental

soliton, 1-fundamental breather and 1-self-symmetric soliton can be computed as limits

of suitable blocks of analytic eigenfunctions as ξ → +∞. We give below the results, the

calculations are somewhat involved, and the details are provided in App. C.

Transmission coefficients of a 1-fundamental soliton. In the case of one fundamental

solitons, the (inverses of the) left and right transmission coefficients are given by

aj(k) = diag

(
k∗j

k j

k − k j

k − k∗j
,

k j

k∗j

k + k∗j

k + k j

)
, (53a)
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c̄j(k) = diag

(
k j

k∗j

k − k∗j

k − k j
,

k∗j

k j

k + k j

k + k∗j

)
, (53b)

āj(k) = I2 +
k

k∗j

k∗j − k j

k − k j

CjC̄j

||γγγj||2
+

k

k j

k j − k∗j

k + k∗j

C̃j
¯̃Cj

||γγγj||2
, (53c)

cj(k) = I2 +
k

k j

k j − k∗j

k − k∗j

CjC̄j

||γγγj||2
+

k

k∗j

k∗j − k j

k + k j

C̃j
¯̃Cj

||γγγj||2
, (53d)

where the norming constants correspond to a fundamental soliton, and hence Cj has the

form Cj = (γγγj , 0), and the other ones are obtained from (20). Introducing the unit-norm

polarization vectors

pj =
γγγ∗

j

||γγγj||
, p̂j =

(γγγ∗
j )

⊥

||γγγj||
, (54)

we can rewrite Eqs. (53c)-(53d) as follows

āj(k, pj) = I2 −
k

k∗j

k∗j − k j

k − k j
p∗

j pT
j −

k

k j

k j − k∗j

k + k∗j
p̂∗

j p̂T
j , (55a)

cj(k, pj) = I2 −
k

k j

k j − k∗j

k − k∗j
p∗

j pT
j −

k

k∗j

k∗j − k j

k + k j
p̂∗

j p̂T
j , (55b)

which, using the property p∗
j pT

j + p̂∗
j p̂T

j = I2, can be simplified to

āj(k, pj) =
k∗j

k j

k + k j

k + k∗j


I2 +

k2
(

k2
j − (k∗j )

2
)

(k∗j )
2
(

k2 − k2
j

)p∗
j pT

j


 , (56a)

cj(k, pj) =
k j

k∗j

k + k∗j

k + k j


I2 +

k2
(
(k∗j )

2 − k2
j

)

k2
j

(
k2 − (k∗j )

2
)p∗

j pT
j


 . (56b)

Transmission coefficients of a 1-fundamental breather. In the case of one funda-

mental breather, the (inverses of the) left and right transmission coefficients are given

by Eqs. (B.32), where the norming constant corresponds to a fundamental breather, i.e.,

Cj = (µjγγγj , κj γγγj), for µj, κj ∈ C. Note that the products of the norming constants in

Eqs. (B.32) can be written as follows

C̄jCj = −||γγγj||
2δδδjδδδ

†
j , ¯̃CjC̃j = −||γγγj||

2δ̂̂δ̂δjδ̂̂δ̂δ
†
j , δδδj =

(
µ∗

j

κ∗j

)
, δ̂̂δ̂δj = δδδ⊥j , (57a)

CjC̄j = −||δδδj||
2γγγjγγγ

†
j , C̃j

¯̃Cj = −||δδδj||
2γ̂γγj

†γ̂γγj
†, γ̂γγj = γγγ⊥

j , (57b)

and therefore the transmission coefficients can be simplified into

aj(k, δδδj) = I2 −
k

k j

k j − k∗j

k − k∗j

δδδjδδδ
†
j

||δδδj||2
+

k

k∗j

k j − k∗j

k + k j

δ̂̂δ̂δjδ̂̂δ̂δ
†
j

||δδδj||2
, (58a)

c̄j(k, δδδj) = I2 −
k

k∗j

k∗j − k j

k − k j

δδδjδδδ
†
j

||δδδj||2
+

k

k j

k∗j − k j

k + k∗j

δ̂̂δ̂δjδ̂̂δ̂δ
†
j

||δδδj||2
, (58b)

13



cj(k, γγγj) = I2 −
k

k j

k j − k∗j

k − k∗j

γγγjγγγ
†
j

||γγγj||2
+

k

k∗j

k j − k∗j

k + k j

γ̂γγjγ̂γγj
†

||γγγj||2
, (58c)

āj(k, γγγj) = I2 −
k

k∗j

k∗j − k j

k − k j

γγγjγγγ
†
j

||γγγj||2
+

k

k j

k∗j − k j

k + k∗j

γ̂γγjγ̂γγj
†

||γγγj||2
. (58d)

Eqs. (58) can be further simplified to

aj(k, qj) =
k j

k∗j

k + k∗j

k + k j


I2 +

k2
(
(k∗j )

2 − k2
j

)

k2
j

(
k2 − (k∗j )

2
)q∗

j qT
j


 , (59a)

c̄j(k, qj) =
k∗j

k j

k + k j

k + k∗j


I2 +

k2
(

k2
j − (k∗j )

2
)

k2
j

(
k2 − k2

j

) q∗
j qT

j


 , (59b)

cj(k, pj) =
k j(k + k∗j )

k∗j (k + k j)


I2 +

k2
(
(k∗j )

2 − k2
j

)

k2
j

(
k2 − (k∗j )

2
)p∗

j pT
j


 , (59c)

āj(k, pj) =
k∗j (k + k j)

k j(k + k∗j )


I2 +

k2
(

k2
j − (k∗j )

2
)

(k∗j )
2
(

k2 − k2
j

)p∗
j pT

j


 , (59d)

where pj = γγγ∗
j /||γγγj|| and qj = δδδ∗j /||δδδj||, and we used once again the properties

p∗
j pT

j + p̂∗
j p̂T

j = I2 and q∗
j qT

j + q̂∗
j q̂T

j = I2, to eliminate γ̂γγj and δ̂δδj, respectively. The

above equations show that the expressions for āj and cj are exactly the same both for a

fundamental soliton and a fundamental breather solution. Also, note that if we set κj = 0,

then the expressions of the transmission coefficients aj and c̄j reduce to those which hold

for a fundamental soliton. Moreover, one can easily compute the determinants of aj and

āj, for either a fundamental soliton or a fundamental breather, and obtain the following

det aj(k) =
(k − k j)(k + k∗j )

(k + k j)(k − k∗j )
, det āj(k) =

(k − k∗j )(k + k j)

(k + k∗j )(k − k j)
, (60)

as expected. Also, using (60) is easy to verify the symmetry

det āj(k) =
(
det aj(k

∗)
)∗

, k ∈ C
− ∪ R, (61)

for both a fundamental soliton and a fundamental breather.

Transmission coefficients of a self-symmetric soliton. In the case of one self-symmetric

composite breather, i.e., when the discrete spectrum consists of a purely imaginary dis-

crete eigenvalue and the associated norming constant Cj is of the form Cj = (γγγj ,−γγγ⊥
j ),

with γγγj = (αj , β j)
T , and αj, β j ∈ C, the (inverse of the) left and right transmission

coefficients are given by:

aj(k) =
k j − k

k j + k
I2, āj(k) =

k∗j − k

k∗j + k
I2, cj(k) ≡ aj(k), c̄j(k) ≡ āj(k), (62)

which are all diagonal (in fact, proportional to the identity matrix) and independent of

the norming constant. Note also that their determinants have double zeros at the discrete

eigenvalues, as expected. Also, aj(k j) = cj(k j) = 0, and similarly for ā, c̄ at k∗j .
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5 Fundamental soliton interactions (Manakov’s method)

Let us consider a 2-soliton solution of the ccSPE which corresponds to a pair of discrete

eigenvalues k j = ηj + iνj and associated norming constants Cj for j = 1, 2. The problem

of interacting solutions can be investigated by looking at the asymptotic states of the so-

lution as t → ±∞. We assume that if the individual solitons travel at different velocities,

in the backward, i.e., as t → −∞, and forward, i.e., as t → +∞, long-time limits, a

2-solution breaks up into two individual solitons, i.e.

u(ξ, t) ∼ u±(ξ, t) = u±
1 (ξ, t) + u±

2 (ξ, t), t → ±∞, (63)

where u is the 2-soliton solution of the ccSPE, and u±
j are 1-soliton solutions. If the two

solitons are both fundamental solitons, we expect u±
j (ξ, t) = p±

j u±
j (ξ, t) where u±

j (ξ, t)

are 1-soliton solutions of the scalar cSPE, and the (constant) unit-norm vectors p±
j are the

asymptotic polarizations of the solitons (cf. (29)).

Without loss of generality, we choose the discrete eigenvalues k j such that soliton-1

moves faster than soliton-2, i.e., we assume |v1| > |v2| (recall that the soliton velocity

vj ≡ −1/4|k j|
2, for j = 1, 2, and so solitons always move to the left). For each j = 1, 2,

let S−
j be a 2× 2 complex matrix that, together with the discrete eigenvalue k j determines

u−
j as t → −∞, and let us denote the corresponding matrices as t → +∞ by S+

j . In

other words, S±
j play the role of the norming constant Cj in determining in the 2-soliton

solution the form of soliton j in the limits t → ±∞, according to Eqs. (29) and (30). To

investigate the result of the interaction, we trace the passage of the eigenfunctions through

the asymptotic states, following the method developed by Manakov in [4] (see also [55]).

Assuming |t| is large enough so that the solitons are well-separated, we denote the centers

of the two solitons by xj. For the given choice of the soliton velocities, if t → −∞ then

x2 ≪ x1, and the order is reversed as t → +∞. In the following, we will assume that

both solitons are fundamental solitons. We then have the following: as t → −∞ and

starting from x ≪ x2, the eigenfunction Φ̂−,1(k j) has the form

Φ̂−,1(k j) ∼ e−ikjξ

(
I2

0

)
, x ≪ x2, (64)

for j = 1, 2, where ξ = ξ(x, t) is defined in (9). After passing through soliton-2 (the

leftmost soliton as t → −∞), since the corresponding state is a bound state for k = k2

but not for k = k1, then Φ̂−,1 evaluated at k = k1, is given by (64) multiplied by the

corresponding soliton transmission coefficient, while Φ̂−,1 evaluated at k = k2 behaves

like Φ̂−,1(k2) multiplied by S−
2 , because k2 is exactly the value where Φ̂−,1 and Φ̂+,2

become linearly dependent, cf. (19). We therefore obtain

Φ̂−,1(k1) ∼ e−ik1ξ

(
I2

0

)
a2(k1), x2 ≪ x ≪ x1, (65a)

Φ̂−,1(k2) ∼ eik2ξ

(
0
I2

)
S−

2 , x2 ≪ x ≪ x1, (65b)

where a2(k) is the scattering coefficient relative to soliton-2, and we have taken into ac-

count that for a fundamental soliton the coefficient only depends on the discrete eigenvalue

(cf (53a)). Upon passing through soliton-1, from (65a) we find

Φ̂−,1(k1) ∼ eik1ξ

(
0
I2

)
S−

1 a2(k1), x1 ≪ x, (66)
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since the corresponding state is a bound state for k = k1. Now, starting from x1 ≪ x
as t → −∞ and proceeding in a similar way, we find for the eigenfunction Φ̂+,2(k j) the

following asymptotic behaviors

Φ̂+,2(k j) ∼ eikjξ

(
0
I2

)
, x1 ≪ x, (67)

for j = 1, 2, and, upon passing through soliton-1, we get

Φ̂+,2(k2) ∼ eik2ξ

(
0
I2

)
c1(k2, S−

1 ), x2 ≪ x ≪ x1, (68)

where c1 is the scattering coefficient relative to soliton-1, and we have taken into account

that according to (53d) this coefficient depends not just on the discrete eigenvalue k1, but

also on the asymptotic polarization of soliton-1. Now recall from [46] that the eigenfunc-

tions Φ̂−,1 and Φ̂+,2 evaluated at a discrete eigenvalue k j are related as follows

Φ̂−,1(k j)α(k j) = Φ̂+,2(k j)Cj (det a)′ (k j), (69)

where a(k) is the 2-soliton scattering coefficient, and α(k j) is its cofactor matrix. In gen-

eral, the explicit expression of a(k) and hence of its cofactor α(k) for a 2-soliton solution

can be expected to depend in a nontrivial way on the scattering coefficients of the individ-

ual solitons. If we restrict ourselves to 2 fundamental solitons, however, Eq. (53a) shows

that the left transmission coefficient is independent of the norming constants/asymptotic

polarizations, and moreover it is diagonal. Consequently, one has

a(k) =
2

∏
j=1

diag

(
k∗j

k j

k − k j

k − k∗j
,

k j

k∗j

k + k∗j

k + k j

)
,

and therefore

α(k) =
2

∏
j=1

diag

(
k j

k∗j

k + k∗j

k + k j
,

k∗j

k j

k − k j

k − k∗j

)
. (70)

Now, comparing relations (66) and (67), and using Eq. (69) for j = 1, we find

S−
1 a2(k1)α(k1) = C1 (det a)′ (k1), (71)

while comparing relations (65b) and (68), and using Eq. (69) for j = 2, we obtain

S−
2 α(k2) = c1(k2, S−

1 )C2 (det a)′ (k2). (72)

We now follow a similar process for t → +∞, with the order of the soliton centers being

reversed. Therefore, as t → +∞ and starting from x ≪ x1 we have

Φ̂−,1(k j) ∼ e−ikjξ

(
I2

0

)
, x ≪ x1, (73a)

for j = 1, 2, and, after passing through soliton-1, we get

Φ̂−,1(k1) ∼ eik1ξ

(
0
I2

)
S+

1 , x1 ≪ x ≪ x2, (74)

while, upon passing soliton-2, we obtain

Φ̂−,1(k2) ∼ eik2ξ

(
0
I2

)
S+

2 a1(k2), x2 ≪ x. (75)

16



On the other hand, starting from x2 ≪ x, we get

Φ̂+,2(k j) ∼ eikjξ

(
0
I2

)
, x2 ≪ x, (76)

for j = 1, 2, and, after passing through soliton-2, we find

Φ̂+,2(k1) ∼ eik1ξ

(
0
I2

)
c2(k1, S+

2 ), x1 ≪ x ≪ x2. (77)

Comparing relations (74) and (77) and using Eq. (69) for j = 1, we find

S+
1 α(k1) = c2(k1, S+

2 )C1 (det a)′ (k1), (78)

while comparing relations (75) and (76) and using (69) for j = 2, we obtain

S+
2 a1(k2)α(k2) = C2 (det a)′ (k2). (79)

One can solve Eqs. (71), (72), (78) and (79) with respect to the norming constants Cj, and

derive the following expressions from the analysis as t → −∞:

C1 =
1

(det a)′ (k1)
S−

1 a2(k1)α(k1), (80a)

C2 =
1

(det a)′ (k2)
c−1

1 (k2, S−
1 )S−

2 α(k2), (80b)

while the asymptotics as t → +∞ yields:

C1 =
1

(det a)′ (k1)
c−1

2 (k1, S+
2 )S+

1 α(k1), (81a)

C2 =
1

(det a)′ (k2)
S+

2 a1(k2)α(k2). (81b)

Since the norming constants are time-independent, one must have

S−
1 a2(k1)α(k1) = c−1

2 (k1, S+
2 )S+

1 α(k1) , (82a)

S+
2 a1(k2)α(k2) = c−1

1 (k2, S−
1 )S−

2 α(k2) , (82b)

or equivalently

(
S−

1 a2(k1)− c−1
2 (k1, S+

2 )S+
1

)
α(k1) = 0, (83a)

(
S+

2 a1(k2)− c−1
1 (k2, S−

1 )S−
2

)
α(k2) = 0. (83b)

Recall that we are considering the interaction of two fundamental solitons, whose norming

constants Cj are rank-one matrices with one column identically zero, i.e., Cj has the form

Cj = (γγγj , 0), where γγγj = (αj , β j)
T , with αj, β j ∈ C. Moreover, the matrices S−

1 , S+
2

coincide with the norming constants, i.e., S−
1 ≡ C1 and S+

2 ≡ C2, which implies that

s−1 ≡ γγγ1, because soliton-1 is the “fast” soliton, and s+2 ≡ γγγ2, because soliton-2 is the

“slow” soliton.1 Here, and for the rest of the paper, s±2 denotes the first column vector

1Recall that the soliton velocities are negative, so “slow” and “fast” here are meant in absolute value.
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of the matrix S±
2 , and s±1 denotes the first column vector of the matrix S±

1 . From (70) it

follows that

α(k j) = ∏
j=1,2

diag

(
k j + k∗j

2k∗j
, 0

)
, (84)

which means that only the first column of each of the matrix identities (83) is specified.

In the fundamental soliton case, the second column of the matrices S−
1 , S+

2 is identically

zero, and assuming this remains valid for S+
1 , S−

2 , then (83) reduce to

S+
1 = c2(k1, S+

2 )S−
1 a2(k1), S−

2 = c1(k2, S−
1 )S+

2 a1(k2). (85)

Specifically, from (53a) it follows that

S−
2 =

k∗1
k1

k2 − k1

k2 − k∗1
c1(k2, S−

1 )S+
2 . (86)

On the other hand, the matrix c1(k2, S−
1 ) is a 2 × 2 full-rank matrix (cf. (53c)), and

therefore its product with S+
2 from the right results in a 2 × 2 matrix whose second col-

umn is identically zero. This is consistent with the assumption that soliton-2 remains a

fundamental soliton after the interaction, and Eq. (86) can be written in vector form as

s−2 =
k∗1
k1

k2 − k1

k2 − k∗1
c1(k2, S−

1 )s+2 . (87)

Similarly, under the assumption that S+
1 has the same structure as S−

1 (i.e., the one that

pertains to a fundamental soliton), (83a) is equivalent to the first of (85), and the latter can

be written in vector form as

s+1 =
k∗2
k2

k1 − k2

k1 − k∗2
c2(k1, S+

2 )s−1 , (88)

where the scalar factor is the (1, 1) entry of the matrix a2(k1). Considering the explicit

expression for the transmission coefficient cj, one can solve (87) for s−2 . Let us introduce

the unit-norm vectors

p±
j =

(s±j )
∗

||s±j ||
, j = 1, 2, (89)

where p−
1 = γγγ∗

1/||γγγ1|| and p+
2 = γγγ∗

2/||γγγ2||, and recall the expression (56b) for cj. It is

convenient to introduce the quantity

χ2 =
||s−2 ||

2

||γγγ2||2
=

1

||γγγ2||2
(
s−2
)†

s−2 , (90)

which according to (87) becomes

χ2 =

∣∣∣∣
k1 − k2

k1 − k∗2

∣∣∣∣
2 (

p+
2

)T
c†

1(k2, p−
1 )c1(k2, p−

1 )
(
p+

2

)∗
. (91)

Inserting equation (56b) into the last one, and observing that

(
p+

2

)T (
p−

1

)∗ (
p−

1

)T (
p+

2

)∗
=
∣∣∣p−

1 ·
(
p+

2

)∗∣∣∣
2

, (92)
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and the fact that p±
j are unit-norm vectors, we obtain that χ2 is explicitly given by

χ2 =

∣∣∣∣
(k1 − k2)(k1 + k∗2)

(k1 − k∗2)(k1 + k2)

∣∣∣∣
2
{

1 +
(k2

1 − (k∗1)
2)(k2

2 − (k∗2)
2)

|k1 − k∗2 |
2|k1 + k∗2 |

2

∣∣∣p−
1 ·
(
p+

2

)∗∣∣∣
2
}

, (93)

where · denotes the scalar product between vectors, namely the sum of the products of the

components. One can also check that the following holds for χ2,

χ2 =
||s+1 ||

2

||γγγ1||2
. (94)

Dividing relation (87) by ||s−2 || and relation (88) by ||s+1 ||, and using the definitions of χ

and p±
j , we find

p−
2 =

1

χ

(
k1

k∗1

k∗2 − k∗1
k∗2 − k1

) (
c1(k2, p−

1 )
)∗

p+
2 , (95a)

p+
1 =

1

χ

(
k2

k∗2

k∗1 − k∗2
k∗1 − k2

) (
c2(k1, p+

2 )
)∗

p−
1 . (95b)

Substituting the expression (56b) for j = 1 and k = k2 into Eq. (95a), and for j = 2 and

k = k1 into Eq. (95b), and using the relations

(
p−

1

)∗ (
p−

1

)T (
p+

2

)∗
=
(

p−
1 ·
(
p+

2

)∗) (
p−

1

)∗
, (96a)

(
p+

2

)∗ (
p+

2

)T (
p−

1

)∗
=
(

p+
2 ·
(
p−

1

)∗) (
p+

2

)∗
(96b)

respectively, we obtain the expressions of the polarization vector for soliton-1 and 2 after

the interaction

p+
1 =

1

χ

(k∗1 − k∗2)(k
∗
1 + k2)

(k∗1 − k2)(k∗1 + k∗2)

{
p−

1 +
(k∗1)

2
(
k2

2 − (k∗2)
2
)

(k∗2)
2
(
(k∗1)

2 − k2
2

)
((

p+
2

)∗
· p−

1

)
p+

2

}
, (97a)

p−
2 =

1

χ

(k∗2 − k∗1)(k
∗
2 + k1)

(k∗2 − k1)(k
∗
2 + k∗1)

{
p+

2 +
(k∗2)

2

(k∗1)
2

(
k2

1 − (k∗1)
2
)

(
(k∗2)

2 − k2
1

)
((

p−
1

)∗
· p+

2

)
p−

1

}
, (97b)

in terms of the initial polarization vectors. Eqs. (97) are the analog of the well-known

Manakov formulas for the coupled NLS equation, and show that interacting fundamental

solitons exhibit a polarization shift, i.e., a redistribution of energy between the compo-

nents, unless the initial soliton polarizations are either parallel or orthogonal (in which

case one can easily verify that the soliton polarization vectors remain the same, upon in-

teraction, up to an overall phase shift). Notice that Eqs. (97) are symmetric with respect

to interchanging indices 1 and 2, and limits t → ±∞, i.e., to obtain the expression for p+
1

we simply need to swap the indices 1 and 2 and the limits t → ±∞ in the corresponding

relation for p−
2 .

The above construction can be suitably modified to show that self-symmetric solitons

always interact in a trivial way (because all the corresponding transmission coefficients

are proportional to the identity, cf. (62)), and to characterize the interaction of a self-

symmetric soliton and a fundamental soliton. However, as we show in Fig. 1, fundamen-

tal solitons do not remain such in general upon interacting with a fundamental breather.

Therefore, Manakov’s method is not effective to deal with more complicated soliton in-

teractions, since, on one hand, one has to make an a priori assumption on the nature of the
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solitons after the interaction and, on the other hand, if all transmission coefficients depend

in a nontrivial way on the asymptotic polarizations of the solitons, there is no guarantee

one would be able to find a closed form solution. Instead, we will resort to a different

approach: we consider the Darboux matrices corresponding to the various types of soli-

tons, and study soliton interactions by combining refactorization problems on generators

of certain rational loop groups, and long-time asymptotics of these generators. As we will

show in Sec. 6, this allows us to completely characterize all types of soliton interactions,

without making any a priori assumption on the nature of the solitons after the interaction.

(a) (b) (c)

Figure 1: Examples of a fundamental soliton interacting with a fundamental breather. From left to

right, the three panels show the exact 2-soliton solution for three different examples. In the first

example, the initial polarization vectors of the fundamental soliton and of the fundamental breather

are chosen to be orthogonal to each other; in the second example they are chosen to be parallel;

and in the third example they are neither orthogonal nor parallel. Clearly, the initial fundamental

soliton does not maintain its structure upon interacting with the fundamental breather. Here, the

soliton parameters are: k1 = 1/2 + i/4, k2 = 1 + i/2, α1 = ei, β1 = 1, α2 = 1, β2 = −ei,

for the first example, k1 = 1/2 + i/4, k2 = 1 + i/2, α1 = ei, β1 = 1, α2 = e2i, β2 = ei, for

the second example, and k1 = 1/2 + i/4, k2 = 1 + i/2, α1 = ei/2, β1 = 1, α2 = ei, β2 = 4,

for the third example, κ1 = 0 and κ2 = 1 in all the examples, which denotes that soliton-1 is a

fundamental soliton and soliton-2 is a fundamental breather before the interaction.

6 Yang-Baxter maps and general soliton interactions

In this section, we study soliton interactions in the ccSPE from the point of view of refac-

torization problems for Bäcklund-Darboux matrices and Yang-Baxter (YB) maps. We

reproduce the results obtained previously with Manakov’s method, but also extend more

systematically the analysis to all possible two-soliton interactions in the models. This

is done by identifying and constructing the possible Bäcklund-Darboux matrices corre-

sponding to fundamental solitons, fundamental breathers, composite breathers and self-

symmetric solitons. With these elementary building blocks at our disposal, the description

of soliton interactions is best obtained by combining abstract results on refactorization

problems on generators of certain rational loop groups and long time-asymptotics of these

generators. The underlying procedure is the so-called dressing method, which goes back

to [53]. We review the main idea in the next section.

It turns out that the equivalent Lax pair description for the ccSPE introduced in [45]

is more convenient for the purposes of the beginning of this section. We first review it,

and then use it to derive some general results on dressing factors and Yang-Baxter maps.

Then, from Section 6.3 onwards, we translate the results back into our original spectral

parametrization and go on to derive the Yang-Baxter maps acting on the (polarization)

vectors characterizing the various types of solitons of the model.
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6.1 Review of Feng–Ling Lax pair formulation and dressing method

In [45], the authors consider the following Lax pair obtained from (3) by the hodograph

transformation (D.2) from the coordinates (x, t) to the coordinates (ξ, t) and with the

change of spectral parameter λ = 1/k:

{
Φξ(ξ, t, λ) = F (ξ, t, λ)Φ(ξ, t, λ) ,

Φt(ξ, t, λ) = V(ξ, t, λ)Φ(ξ, t, λ) ,
(98)

where2

F (ξ, t, λ) = −i
ρ(ξ, t)

λ
Σ3 −

1

λ
Σ3∂ξV0(ξ, t) , V(ξ, t, λ) =

i

4
λΣ3 +

i

2
V0(ξ, t) (99)

with

V0(ξ, t) =

(
0 U(ξ, t)

U†(ξ, t) 0

)
. (100)

The advantage of this formulation is that V(ξ, t, λ) has the same structure as that of the

well-known Lax matrix for a multicomponent nonlinear Schrödinger equation with 2 ×
2 matrix potential U(ξ, t). However, the structure of F (ξ, t, λ) shows that the ccSPE

corresponds to a negative flow in that hierarchy. The Lax pair possesses the familiar

symmetry

F †(ξ, t, λ∗) = −F (ξ, t, λ) , V†(ξ, t, λ∗) = −V(ξ, t, λ), (101)

but also, and crucially for the ccSPE, the additional symmetry

ΛF ∗(ξ, t,−λ∗)Λ−1 = F (ξ, t, λ) , Λ V∗(ξ, t,−λ∗)Λ−1 = V(ξ, t, λ), (102)

with

Λ = diag (iσ2 , iσ2) , σ2 =

(
0 −i
i 0

)
. (103)

The summary of the ideas and results of the dressing method as introduced in [53], adapted

to the present setting, are as follows. We also refer the reader to [54] for a nice review of

these ideas focused on multicomponent NLS systems which can be useful for some as-

pects of the present work. Starting from the potential V0 = 0, with the goal of construct-

ing pure soliton solutions, one considers two matrix-valued rational functions G±(ξ, t, λ)
which are analytic, respectively, in the upper and lower half-plane for each ξ, t, satisfy

G+G− = I for λ ∈ R, lim
λ→∞

G±(ξ, s; λ) = I, and are degenerate at a finite number

of prescribed values of λ in their respective domain of analyticity. The structure of their

degeneracies is determined by fixing degeneracy spaces corresponding to the norming

constants in the IST. An important result of [53] is the following. The (ξ, t) dependence

of those degeneracy spaces is controlled by a solution of (98) for V0, and the degeneracy

spaces uniquely fix certain projectors entering in the elementary factors contained in G±

(matrix Blaschke factors). Below we discuss these aspects in more details.

Since we consider V0 = 0, the degeneracy space of G+ at λj is of the form

ker G+(ξ, t, λj) = span
{

e
( i

4 λjt−
i

λj
ξ)Σ3

Wj

}
, (104)

2Note that the sign of V has been reversed with respect to [45] to account for the sign difference in the way

the ccSPE equation is written.
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where Wj is a rectangular matrix whose columns are constant linearly independent vectors

fixing the norming constants. As we will show below, the number of these vectors deter-

mines the rank of the corresponding projector. With V(ξ, t, λ) = i
4 λΣ3 +

i
2 V0(ξ, t) then,

in general, a new solution Ṽ(ξ, t, λ) = i
4 λΣ3 +

i
2 Ṽ0(ξ, t) is obtained by the formula3

Ṽ(ξ, t, λ) = (∂tG+(ξ, t, λ) + G+(ξ, t, λ)V(ξ, t, λ)) G+(ξ, t, λ)−1. (105)

The key for explicit formulae is to characterize G+. The generic result of [53] is that

G+ is a product of dressing factors (also known as matrix Blaschke factors or Bäcklund-

Darboux matrices) of the form

I +

(
λ − λ+

j

λ − λ−
j

− 1

)
Πj(ξ, t) , (106)

where Πj(ξ, t) are appropriate projectors. In the case where G+ is a product of N such

factors, j = 1, . . . , N, we have

G+(ξ, t, λ) = I −
1

λ

N

∑
j=1

(λ+
j − λ−

j )Πj(ξ, t) + O

(
1

λ2

)
. (107)

Inserting Eq. (107) in (105), recalling that

V(ξ, t, λ) =
i

4
λΣ3 +

i

2
V0(ξ, t), Ṽ(ξ, t, λ) =

i

4
λΣ3 +

i

2
Ṽ0(ξ, t), (108)

we obtain the following relation between the new solution and the old solution by com-

paring the constant terms in the expansion in 1/λ

Ṽ0(ξ, t) = V0(ξ, t)−
N

∑
j=1

λ+
j − λ−

j

2

[
Πj(ξ, t), Σ3

]
. (109)

In our case, recall that we take V0(ξ, t) = 0 as the trivial seed solution.

The exact details on the location of λ± and on the properties of the projector Πj

depend on the particular model under consideration. We will study this below in con-

junction with the two symmetries (101)-(102). The important message is that the order

in which these factors appear in G+ is irrelevant for the final result. This is the impor-

tant observation that gives rise to Yang-Baxter maps via refactorization problems for the

dressing factors. In the sequel, we will follow closely the methodology of [47] to com-

bine the refactorization problem with long-time asymptotics in order to derive explicitly

Yang-Baxter maps acting on the parameters (norming constants) characterizing the soli-

tons within a multisoliton solution.

6.2 Refactorization and elementary Bäcklund-Darboux matrices for the ccSPE

The previous discussion motivates the study of certain refactorization problems for matrix-

valued rational functions of the form

gα,β,Π(λ) = I +

(
λ − α

λ − β
− 1

)
Π, (110)

where Π is a projector and α 6= β are fixed complex numbers. The pointwise dependence

on (ξ, t) can be dropped at this stage to formulate the general results. It can be reinstated

3It is a standard result that one could equally use G−.
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later on when using these results within the dressing method thanks to the property (104)

of the degeneracy spaces.

The rigorous study of refactorization problems in conjunction with the dressing method

has been undertaken in detail e.g. in [56]. When forgetting about the pointwise depen-

dence on the independent variables which are present in the dressing methods, such results

form part of general structural properties of certain rational loop groups which were stud-

ied in detail more recently in [57]. The symmetry (101) implies that we can use directly

the results of Sec. 6 in [56]. In particular, symmetry (101) implies that dressing factors

must satisfy the symmetry g†
α,β,Π(ξ, t, λ∗) = g−1

α,β,Π(ξ, t, λ). Eq. (110) then implies the

constraints β = α∗ and Π† = Π, and therefore (110) becomes

gα,Π(λ) = I −
α − α∗

λ − α∗
Π , α ∈ C \ R , Π2 = Π† = Π . (111)

An elementary factor gα,Π is characterized by a complex number with nonzero imaginary

part and by an Hermitian projector Π which we call its data. We then have the following

result on the refactorization of two such factors (Sec. 6 of [56]).

Theorem 6.1 Let Π1, Π2 be two orthogonal projectors and α1, α2 ∈ C \ R be such that

α1 6= α2 and α1 6= α∗2 . The unique solution of the refactorization problem

(
I −

α2 − α∗2
λ − α∗2

Π2

)(
I −

α1 − α∗1
λ − α∗1

Π1

)
=

(
I −

α1 − α∗1
λ − α∗1

P1

)(
I −

α2 − α∗2
λ − α∗2

P2

)

(112)

is given by

Pj = φ−1Πjφ , j = 1, 2 , (113)

where

φ = (α∗1 − α2)I + (α1 − α∗1)Π1 + (α2 − α∗2)Π2 . (114)

Moreover Pj, j = 1, 2 are also orthogonal projectors.

Note that the rank of the projectors is preserved under refactorization. The most diffi-

cult part in this result is to establish that the matrix φ is always invertible. This result

shows that the refactorization problem induces a (parametric) map on pairs of orthogonal

projectors4

R12(α1, α2) : (Π1, Π2) 7→ (P2, P1). (115)

The next result implies that this map is a (parametric) Yang-Baxter (YB) map.

Lemma 6.2 Let αj ∈ C \ R, j = 1, 2, 3 be as in Theorem 6.1, i.e., αi 6= αj and αi 6= α∗j ,

i 6= j. If

gα3,Π3
(λ) gα2,Π2

(λ) gα1,Π1
(λ) = gα3,P3

(λ) gα2,P2
(λ) gα1,P1

(λ) , (116)

Then Πj = Pj, j = 1, 2, 3.

Proof. The proof is the same as in Prop. 3.10 of [58].

As a consequence, we get the following result which goes back at least to [59].

4The attentive reader will notice that we have included the transposition (P1, P2) 7→ (P2, P1) in the definition

of R so that it satisfies the Yang-Baxter equation, see corollary below. Without this, R would satisfy the so-called

braided version of the Yang-Baxter equation.
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Corollary 6.3 The map R12(α1, α2) satisfies the Yang-Baxter equation

R12(α1, α2) R13(α1, α3) R23(α2, α3) = R23(α2, α3) R13(α1, α3) R12(α1, α2). (117)

The meaning of this equation and our notations are as follows. For instance, on the triplet

(Π1, Π2, Π3), the LHS of (117) acts as

R12(α1, α2) R13(α1, α3) R23(α2, α3) (Π1, Π2, Π3)

= R12(α1, α2) R13(α1, α3) (Π1, Π
(i)
3 , Π

(i)
2 )

= R12(α1, α2) (Π
(ii)
3 , Π

(i)
1 , Π

(i)
2 )

= (Π
(ii)
3 , Π

(ii)
2 , Π

(ii)
1 ) ≡ (P3, P2, P1) .

The YB equation means that the RHS of (117) produces exactly the same final result,

although the YB maps act in a different order and the intermediate projectors are not

equal:

R23(α2, α3) R13(α1, α3) R12(α1, α2) (Π1, Π2, Π3)

= R23(α2, α3) R13(α1, α3) (Π
(1)
2 , Π

(1)
1 , Π3)

= R23(α2, α3) (Π
(1)
2 , Π

(1)
3 , Π

(2)
1 )

= (Π
(2)
3 , Π

(2)
2 , Π

(2)
1 ) = (P3, P2, P1) .

In our case, the model also enjoys the additional symmetry (102), which has nontrivial

consequences on the structure of the elementary factors that can generate a rational loop

group element G(λ). For such a loop group element, the symmetry reads

G∗(−λ∗) = Λ G(λ)Λ−1 . (118)

The following two results show that the symmetry (118) requires to consider gα,Π(λ) with

specific data but also a product of two such elementary factors with specific data in order

to exhaust the possible generators of the known types of solitons in the ccSPE. Before we

proceed, note that because the ccSPE is described by 4 × 4 Lax pair, the projectors in the

elementary factors acts on C4. A nontrivial projector is therefore of rank 1, 2, 3. Due to

the relation

gα,Π(λ∗)† = gα,Π(λ)−1 =
λ − α∗

λ − α
gα,Π⊥(λ) , (119)

where Π⊥ = I − Π is the orthogonal complement projector of Π, we see that we can

work equally with Π or Π⊥. Obviously, when Π has rank 3, Π⊥ has rank 1 and vice-

versa, which shows that the rank 1 and rank 3 cases are equivalent. Hence, in the following

we will only consider the rank 1 and 2 cases.

Lemma 6.4 Let α ∈ C \ R. The elementary factor gα,Π(λ) satisfies the first symmetry

in (118) if and only if α = ia, a ∈ R, and

Π = Π1 + Λ Π∗
1 Λ−1 , (120)

where Π1 is a rank-1 projector. In that case, Π is a rank-2 projector.

Proof. If α and Π are as stated, it is straightforward to check that gα,Π(λ) satisfies

g∗α,Π(−λ∗) = Λgα,Π(λ)Λ−1. Conversely, suppose that g∗α,Π(−λ∗) = Λgα,Π(λ)Λ−1.

This yields (λ − α∗)Π∗ = (λ + α)Λ Π Λ−1, which in turn implies α = −α∗ and Π∗ =
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Λ Π Λ−1. Since Π is a Hermitian projector, we can write Π = U U†, where U is

the matrix whose columns vectors form an orthonormal basis of Im Π. In particular

U†U = Ir, where r is the rank of Π. We have

Π∗ = (Π∗)2 = Λ Π Λ−1 Π∗ = Λ U U† Λ−1 U∗ UT . (121)

If r = 1, then U = (u1) is a column vector and we have U† Λ−1 U∗ = 0. This is due to

the form of Λ which implies that for any vector v ∈ C4

v† Λ−1 v∗ = 0 = vT Λ−1 v . (122)

Hence Π = 0, which is a contradiction so this case is not possible. Suppose now r = 2
with U = (u1, u2). We have

Π = Λ U∗ M∗ U†, M ≡ U† Λ−1 U∗ = iα12σ2, α12 = u†
1Λ−1u∗

2 . (123)

Inserting into ΠU = U, yields

u2 = α∗12Λu∗
1 , u1 = −α∗12Λu∗

2 .

For consistency we must have |α12| = 1. Using the relation to eliminate u2 in the expres-

sion (123) for Π we find

Π = −α∗12Λu∗
2u†

1 + α∗12Λu∗
1u†

2 = u1u†
1 + Λu∗

1uT
1 Λ−1 = Π1 + Λ Π∗

1 Λ−1

where Π1 = u1u†
1 is a rank-1 projector. This completes the proof.

This shows that a single elementary factor always corresponds to a so-called self-

symmetric (purely imaginary) eigenvalue, and can only be built from a special rank-2
projector. In particular, it is not possible to create solitons for non self-symmetric zeros

with only one elementary factors because of the symmetry (118). For this, we need a

product of two elementary factors, which we study below.

Lemma 6.5 Let α1, α2 ∈ C \ R be such that α1 6= α2 and α1 6= α∗2 . If

T(λ) = gα1,Π1
(λ)gα2,Π2

(λ), (124)

satisfies (118), where gαj ,Πj
(λ) is as in (111), then either :

1. αj = −α∗j , j = 1, 2, and each elementary factor is of the self-symmetric type

classified in Lemma 6.4, or;

2. α2 = −α∗1 , and Π2 = Λ Π∗
1 Λ−1.

The proof of this lemma is given in Appendix C.

Several comments are in order.

Remark 6.6 For case 2. in Lemma 6.5, it is interesting to note that we can obtain the

case of self-symmetric solitons of Lemma 6.4 when the projector Π1 is of rank 1 and by

allowing α1 to be purely imaginary, even though this is not strictly allowed under the

assumptions on α1 and α2 in Lemma 6.5. Indeed, a direct calculation shows that T(λ)
then exactly reduces to gα1,Π with Π as in (120), of rank 2. Thus, we can use the factor

T(λ) described in Lemma 6.5 and recover the self-symmetric case as a limiting case if

desired, instead of treating it as a separate case. This means that T(λ) can be used to

deal with all possible cases of solitons in the model, allowing for the various possibilities
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for the rank of Π1 and for the nature of α1 (purely imaginary or not). From now on, we

will write the “elementary” factor in Lemma 6.5 as

Tα,Π(λ) ≡ gα,Π(λ)g−α∗ ,Π̃(λ) (125)

with the understanding that Π̃ is determined by Π according to Π̃ = Λ Π∗ Λ−1. As

before, α and Π will be called the data for Tα,Π(λ).

Remark 6.7 In the rank-1 case, the factor Tα,Π(λ) reproduces the Darboux matrix of

Theorem 1 in [45]. This can be checked by a direct calculation, observing that in the

rank-1 case, Π and Π̃ satisfy Π̃ Π = 0 = Π Π̃, so that

Tα,Π(λ) = gα,Π(λ)g−α∗ ,Π̃(λ)

= g−α∗ ,Π̃(λ)gα,Π(λ)

= I −

(
α − α∗

λ − α∗
− 1

)
Π −

(
α − α∗

λ − α∗
− 1

)
Λ Π∗ Λ−1. (126)

This factor produces generically the fundamental breather solution, as will be clear below.

As explained above, taking α to be pure imaginary produces the special case of a self-

symmetric eigenvalue solution. We will see below that choosing the degeneracy space of

Π to be generated by a special vector yields the case of a fundamental soliton as a special

case.

Remark 6.8 Property (C.17), which is easily checked for any Hermitian projector Π1,

ensures that the two factors in Tα,Π(λ) commute

Tα,Π(λ) = gα,Π(λ)g−α∗ ,Π̃(λ) = g−α∗ ,Π̃(λ)gα,Π(λ) . (127)

As a consequence, the YB map R(α1, α2) reduces to the identity map when α2 = −α∗1 and

when it acts on pairs on projectors (Π1, Π2) such that Π2 = Λ Π∗ Λ−1.

In view of our results and the previous remarks, for our model the refactorization

problem of Theorem 6.1 should now be posed in terms of the binary elementary factor

Tα,Π(λ):
Tα1,Π1

(λ) Tα2,Π2
(λ) = Tα2,P2

(λ) Tα1,P1
(λ) . (128)

All the possible subcases arising from specializing the data of Tα,Π(λ) will describe all the

possible interactions between the various types of solitons in the model. This is studied in

detail in the next section. For now, let us first note that the refactorization problem (128)

is well-defined in the sense that, if the LHS is a product of binary elementary factors of

type Tα,Π(λ), then the RHS is also such a product. In other words, when considering

Tα1,Π1
(λ) Tα2,Π2

(λ) as a product of 4 elementary factors of type gα,Π(λ)

Tα1,Π1
(λ) Tα2,Π2

(λ) = gα1,Π1
(λ) g−α∗1 ,Π̃1

(λ) gα2,Π2
(λ) g−α∗2 ,Π̃2

(λ), (129)

and refactorizing into

gα2,P2
(λ) g

−α∗2 ,P
′
2
(λ) gα1,P1

(λ) g
−α∗1 ,P

′
1
(λ), (130)

we have necessarily P
′

j = Λ P∗
j Λ−1 = P̃j, j = 1, 2. Thus, we can consistently interpret

the result as the product Tα2,P2
(k) Tα1,P1

(k). To see this, one uses again the symmetry

(118), a comparison of the poles on each side of the equality, Liouville theorem and

Lemma 6.5 to obtain the desired relation P
′

j = Λ P∗
j Λ−1.

26



The refactorization problem (128) yields a new parametric YB map which can be seen

as composite of the basic map R12(α1, α2), restricted to special data. Notice that each ba-

sic map R12(α1, α2) accounts for a single refactorization, and therefore the refactorization

problem (128) amounts to considering the following composition of four R-maps

R14(α1, α4) R24(α2, α4) R13(α1, α3) R23(α2, α3) (131)

acting on the quadruplet of projectors (Π1, Π2, Π3, Π4) with the restrictions that

Π2 = Π̃1 , Π4 = Π̃3 , α2 = −α∗1 , α4 = α∗3 .

With this in mind, it is convenient and suggestive to denote the first space as 1, the second

space as 1̃, the third space as 2 and the fourth space as 2̃. Thus, dropping the parameters

for conciseness, we write

R14 R24 R13 R23 (Π1, Π2, Π3, Π4) ≡ R12̃ R1̃2̃ R12 R1̃2 (Π1, Π̃1, Π2, Π̃2). (132)

Due to the above observation on the consistency of the refactorization for the binary ele-

mentary factors, the result of this operation is given by

R12̃ R1̃2̃ R12 R1̃2 (Π1, Π̃1, Π2, Π̃2) = (P2, P̃2, P1, P̃1) . (133)

As for Tα,Π(λ), Π̃j, j = 1, 2 (resp., P̃j, j = 1, 2) are completely determined by Πj,

j = 1, 2 (resp., Pj, j = 1, 2). Thus they are redundant and we can project the map onto

the first and third entries in the quadruplet to obtain a map acting on (Π1, Π2) to produce

(P2, P1):
S111222(α1, α2) : (Π1, Π2) 7→ (P2, P1) . (134)

Note that the indices are in bold to remember the difference between S and R. It is a

direct consequence of the YB equation for R that this map also satisfies the YB equation.

Indeed, in view of the definition of S111222(α1, α2) from (133), to show that the following

holds

S111222(α1, α2) S111333(α1, α3) S222333(α2, α3) = S222333(α2, α3) S111333(α1, α3) S111222(α1, α2), (135)

it is sufficient to show that

R12̃ R1̃2̃ R12 R1̃2 R13̃ R1̃3̃ R13 R1̃3 R23̃ R2̃3̃ R23 R2̃3

= R23̃ R2̃3̃ R23 R2̃3 R13̃ R1̃3̃ R13 R1̃3 R12̃ R1̃2̃ R12 R1̃2 , (136)

holds. Now, (136) can be seen to hold using the YB equation for R repeatedly for various

combinations of indices 1, 1̃, 2, 2̃, 3, 3̃ and remembering Remark 6.8 which tells us that

Rjj̃, j = 1, 2, 3 is the identity map.

The map S is the map underlying all the maps describing the interactions of solitons

derived in the next section. Its YB property ensures that these various maps consistently

extend to multisoliton solutions with more than 2 solitons. This is similar to what is ex-

plained in detail in [47], with the important difference that in the latter work one could

only have one type of solitons (vector NLS solitons of rank 1) whereas in the present

work, we have various types of solitons corresponding to the various allowed cases for T:

rank 1 or 2, self-symmetric zeros or not. Note that the rank-1 case degenerates further into

fundamental solitons and fundamental breathers, but we find that the rank-2 case also de-

generates into various subcases described below. Indeed, as we will explain in Sec. 6.3.2,

to construct a full-rank soliton solution, one needs to consider four 2 × 1 vectors, and
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whether two out of the four vectors are linearly independent or not produces various sub-

cases that need to be discussed separately. To our knowledge, this is the first time that YB

maps are presented in a multicomponent integrable system with such a variety of soliton

interactions. As we will see below, this gives rise to different explicit forms of the map S,

depending on the type of solitons which interact. Our results could perhaps give a realiza-

tion in the context of soliton interactions of the idea of entwining YB maps as discussed

for instance in [60–62]. However, this is beyond the scope of the present work.

6.3 Long-time asymptotic analysis and map on soliton data

To derive the induced YB map on the quantities controlling the solitons in a multisoliton

solution and interpret the soliton collisions from this point of view, we need to relate the

previous abstract results to objects appearing in the IST. This is the essence of the dressing

method as introduced in [53]. In view of our discussion in Sec. 6.1 and in particular

formula (104), all we need to do is to fix the matrices Wj corresponding to the eigenvalue

λj. For a solution corresponding to a projector of rank 1, this matrix is just a column

vector (4 × 1 matrix), and the rank-2 case corresponds to a 4 × 2 matrix (see Sec. 6.3.2

for details).

6.3.1 Rank-1 case: fundamental breathers and fundamental solitons

We first review the construction for N = 1 to derive the rank-1 one-soliton solution (either

fundamental soliton or fundamental breather), and fix notations of the relevant parameters.

Then, we will study the case N = 2 in view of the refactorization results of the previous

section, and deduce the map induced on the parameters characterizing each soliton.

Case N = 1. In this case, fix λ1 = a1 + ib1 with b1 < 0 (recall that λ1 = 1/k1 ≡
k∗1/|k1|

2, and k1 ∈ C+), and we have

G+(ξ, t; λ) = Tλ1,Π1
(λ) =

(
I −

λ1 − λ∗
1

λ − λ∗
1

Π1

)(
I −

λ1 − λ∗
1

λ + λ1
ΛΠ∗

1Λ−1

)

= I −
λ1 − λ∗

1

λ − λ∗
1

Π1 −
λ1 − λ∗

1

λ + λ1
ΛΠ∗

1Λ−1, (137)

where Π1, which now depends on (ξ, t) even though we did not show it explicitly for con-

ciseness, is determined by the condition ker G+(ξ, t; λ1) = span
{

e
( i

4 λ1t− i
λ1

ξ)Σ3
Φ1

}
.

Introducing the notations

Φ1(ξ, t) = e
( i

4 λ1t− i
λ1

ξ)Σ3 M1 = e
( i

4 λ1t− i
λ1

ξ)Σ3

(
δδδ1

γγγ1

)
δδδ1, γγγ1 ∈ C

2 , (138)

and recalling the definition of Π1(ξ, t) =
Φ1(ξ,t)Φ†

1(ξ,t)

Φ†
1(ξ,t)Φ1(ξ,t)

, this yields

Π1(ξ, t) =
1

D(ξ, t)


 e

b1
2v1

(ξ−v1t)
δδδ1δδδ†

1 e
ia1
2v1

(ξ+v1t)
δδδ1γγγ†

1

e
−

ia1
2v1

(ξ+v1t)
γγγ1δδδ†

1 e
−

b1
2v1

(ξ−v1t)
γγγ1γγγ†

1


 , (139)

where v1 = −
a2

1+b2
1

4 = − |λ1|
2

4 represents the velocity of the soliton envelope in the (ξ, t)

coordinates, and we have introduced D(ξ, t) = Φ†
1(ξ, t)Φ1(ξ, t). It is convenient to set

ν1 =
b1

4v1
, η1 = −

a1

4v1
. (140)
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Then,

D(ξ, t) = e2ν1(ξ−v1t)||δδδ1||
2 + e−2ν1(ξ−v1t)||γγγ1||

2

= 2||δδδ1||||γγγ1|| cosh [2ν1(ξ − v1t) + δ1 − γ1] , (141)

where eδ1 = ||δδδ1|| and eγ1 = ||γγγ1||. Note that the quantity D is real. Inserting in (109),

we find that

Ṽ0(ξ, t) =

(
02 U(ξ, t)

U(ξ, t)† 02

)
,

with the one-soliton solution

U(ξ, t) = 4iν1v1 sech [2ν1(ξ − v1t) + δ1 − γ1]×

×

(
e−2iη1(ξ+v1t) δδδ1

||δδδ1||

γγγ†
1

||γγγ1||
+ e2iη1(ξ+v1t)σ2

δδδ∗1
||δδδ1||

γγγT
1

||γγγ1||
σ2

)
. (142)

Noting that (iσ2v∗)†v = 0 and ||iσ2v∗|| = ||v|| for any v ∈ C2, it is then convenient to

introduce the shorthand notation iσ2v∗ = v⊥, and write:

U(ξ, t) = 4iν1v1 sech [2ν1(ξ − v1t) + δ1 − γ1]×

×

(
e−2iη1(ξ+v1t) δδδ1

||δδδ1||

γγγ†
1

||γγγ1||
+ e2iη1(ξ+v1t) δδδ⊥1

||δδδ1||

(γγγ⊥
1 )

†

||γγγ1||

)
. (143)

Thus, the two vectors γγγ1 and δδδ1 completely control the multicomponent structure of the

solution, and we refer to them as the polarization vectors of the one-soliton solution.

Recalling that

U =

(
−iu1 −iu2

iu∗
2 −iu∗

1

)
, (144)

one can easily extract the solution for the components uj, for j = 1, 2 and recover (30a).

However, doing so breaks the natural symmetric role played by the vectors γγγ1 and δδδ1

and makes the upcoming analysis of the YB map acting on the polarization vectors less

transparent. For this reason, we prefer to continue working with U and the vectors γγγ1 and

δδδ1.

At this point, having shown how to determine an explicit solutions from the structure

of the degeneracy space of G+ and having already introduced the parameters η1, ν1 in

(140), we will now revert to the spectral parameter k and the corresponding eigenvalue

k1:

k =
1

λ
, k1 = η1 + iν1 =

1

λ1
. (145)

Of course, all the general results on refactorization and YB maps are unchanged by this

redefinition. This allows us to compare more easily the forthcoming results with those

already obtained using Manakov’s method in Sec. 5 .

The polarization vectors also determine the phase shifts, and in particular the norms

of δδδ1 and γγγ1 control the position shift. The discrete eigenvalue k1 controls the velocity v1.

It is natural to denote this one-soliton solution as Usol (ξ, t; k1, γγγ1, δδδ1) to emphasize the

quantities controlling its properties (we may drop the (ξ, t) dependence for conciseness

when this does not lead to confusion).

Having identified the quantities determining one-soliton solutions of rank 1, we exam-

ine next the case of a two-soliton solutions built on rank-1 projectors, and investigate how

the refactorization problem on the projectors discussed above induces a scattering map on
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the polarization vectors. To this end, we analyze the asymptotic behavior of the projector

Π1(ξ, t) as |t| → ∞ along rays ξ − vt = C (C constant) for v < v1 and v > v1.

Case v < v1. In view of (139), and recalling that ν1 > 0, then the dominant term is

e−2ν1(v−v1)t as t → ∞, and we find that

Π1(ξ, t) ∼

(
0 0

0
γγγ1γγγ†

1

γγγ†
1γγγ1

)
+ O

(
e2ν1(v−v1)t

)
. (146)

On the other hand, as t → −∞, the dominant term is e2ν1(v−v1)t and we obtain

Π1(ξ, t) ∼

(
δδδ1δδδ†

1

δδδ†
1δδδ1

0

0 0

)
+ O

(
e−2ν1(v−v1)t

)
. (147)

As a consequence, denoting by πγ (resp., πδ) the 2-dimensional Hermitian projector
γγγ1γγγ†

1

γγγ†
1γγγ1

(resp.,
δδδ1δδδ†

1

δδδ†
1δδδ1

), we obtain

Tk1,Π1
(k) ∼ I4 −

k

k1

k∗1 − k1

k∗1 − k

(
0 0
0 πγ

)
−

k

k∗1

k∗1 − k1

k1 + k

(
0 0
0 σ2π∗

γσ2

)

+ O
(

e2ν1(v−v1)t
)

, t → ∞, (148)

and

Tk1,Π1
(k) ∼ I4 −

k

k1

k∗1 − k1

k∗1 − k

(
πδ 0
0 0

)
−

k

k∗1

k∗1 − k1

k1 + k

(
σ2π∗

δ σ2 0
0 0

)

+ O
(

e−2ν1(v−v1)t
)

, t → −∞. (149)

Case v > v1. In this case, the role of the dominant terms as t → ±∞ is swapped

compared to the previous case, so we immediately deduce

Tk1,Π1
(k) ∼ I4 −

k

k1

k∗1 − k1

k∗1 − k

(
πδ 0
0 0

)
−

k

k∗1

k∗1 − k1

k1 + k

(
σ2π∗

δ σ2 0
0 0

)

+ O
(

e−2ν1(v−v1)t
)

, t → ∞, (150)

and

Tk1,Π1
(k) ∼ I4 −

k

k1

k∗1 − k1

k∗1 − k

(
0 0
0 πγ

)
−

k

k∗1

k∗1 − k1

k1 + k

(
0 0
0 σ2π∗

γσ2

)

+ O
(

e2ν1(v−v1)t
)

, t → −∞. (151)

Case N = 2. Here, we have

G+(k) = Tk2,Π2
(k) Tk1,Π1

(k) = Tk1,P1
(k) Tk2,P2

(k), (152)

where we recall that, in the parametrization with the spectral parameter k = 1
λ ,

Tk1,Π1
(k) =

(
I4 −

k

k1

k∗1 − k1

k∗1 − k
Π1

)(
I4 −

k

k∗1

k∗1 − k1

k1 + k
ΛΠ∗

1Λ−1

)
, (153)
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and similarly for the other factors. The projectors (Π1, Π2) and (P1, P2) are related by

the map arising from the refactorization discussed previously. Now, (109) gives

(
02 U(ξ, t)

U(ξ, t)† 02

)
=

k∗1 − k1

2|k1|2

[
Π1 + Π̃1, Σ3

]
+

k∗2 − k2

2|k2|2

[
Π2 + Π̃2, Σ3

]
(154a)

=
k∗1 − k1

2|k1|2

[
P1 + P̃1, Σ3

]
+

k∗2 − k2

2|k2|2

[
P2 + P̃2, Σ3

]
, (154b)

when we take V0(ξ, t) = 0 as the trivial seed solution. The projectors are found from

conditions (104). Using the fact that [Πj, Λ Π∗
j Λ−1] = 0, these give

Im Π1 = span

{(
e−i(k1ξ−t/4k1)δδδ1

ei(k1ξ−t/4k1)γγγ1

)}
, (155)

Im Π2 = span

{
Tk1,Π1

(k2)

(
e−i(k2ξ−t/4k2)δδδ2

ei(k2ξ−t/4k2)γγγ2

)}
. (156)

Similarly, in view of (152), we find

Im P1 = span

{
Tk2,P2

(k1)

(
e−i(k1ξ−t/4k1)δδδ1

ei(k1ξ−t/4k1)γγγ1

)}
, (157)

Im P2 = span

{(
e−i(k2ξ−t/4k2)δδδ2

ei(k2ξ−t/4k2)γγγ2

)}
. (158)

We are now in a position to discuss the map on the solitons polarizations arising from

soliton interactions, following the arguments given in Sec. 2.4 of [47].

Proposition 6.9 Suppose without loss of generality that k1 and k2 are such that v2 > v1.

Then, up to exponentially small terms, as t → ±∞ the two-soliton solution is the sum of

two one-soliton solutions

U(ξ, t) ∼ Usol
(
ξ, t; k1, γγγ±

1 , δδδ±1
)
+ Usol

(
ξ, t; k2, γγγ±

2 , δδδ±2
)

, (159)

where the relations between the “incoming” polarization vectors (γγγ−
j , δδδ−j ), j = 1, 2 and

the “outgoing” polarization vectors (γγγ+
j , δδδ+j ), j = 1, 2 are given by:

γγγ+
1 =

k2

k∗2

k1 + k∗2
k1 + k2

[
I2 +

k2
1

k2
2

(k∗2)
2 − k2

2

k2
1 − (k∗2)

2

γγγ+
2 (γγγ

+
2 )

†

(γγγ+
2 )

†γγγ+
2

]
γγγ−

1 , (160a)

γγγ−
2 =

k1

k∗1

k2 + k∗1
k2 + k1

[
I2 +

k2
2

k2
1

(k∗1)
2 − k2

1

k2
2 − (k∗1)

2

γγγ−
1 (γγγ

−
1 )

†

(γγγ−
1 )

†γγγ−
1

]
γγγ+

2 , (160b)

δδδ−1 =
k2

k∗2

k1 + k∗2
k1 + k2

[
I2 +

k2
1

k2
2

(k∗2)
2 − k2

2

k2
1 − (k∗2)

2

δδδ−2 (δδδ
−
2 )

†

(δδδ−2 )
†δδδ−2

]
δδδ+1 , (160c)

δδδ+2 =
k1

k∗1

k2 + k∗1
k2 + k1

[
I2 +

k2
2

k2
1

(k∗1)
2 − k2

1

k2
2 − (k∗1)

2

δδδ+1 (δδδ
+
1 )

†

(δδδ+1 )
†δδδ+1

]
δδδ−2 , (160d)

and the relations between these vectors and the “true” norming constants defining the

degeneracy spaces are

γγγ−
1 = γγγ1, γγγ+

2 = γγγ2, δδδ+1 = δδδ1, δδδ−2 = δδδ2. (161)

31



Proof. First, we study the behavior as t → ∞. The argument will be similar for t → −∞.

The idea is to use the collection of estimates (146)–(151) appropriately applied to Π1 and

Π2, or P1 and P2, recalling that v2 > v1. Let ξ = v1t + C and let us use (154b) for the

expression of the solution. As t → ∞, we find that P2 is block diagonal, hence so is P̃2

and therefore
(

02 U(ξ, t)
U(ξ, t)† 02

)
∼

k∗1 − k1

2|k1|2

[
P1 + P̃1, Σ3

]
, (162)

where now, using (148) applied to Tk2,P2
(k1) and writing accordingly

γγγ2γγγ†
2

γγγ†
2γγγ2

= πγ2 , in

view of (157) we get that Im P1 coincides with the span of

[
I4 −

k1

k2

k∗2 − k2

k∗2 − k1

(
0 0
0 πγ2

)
−

k1

k∗2

k∗2 − k2

k2 + k1

(
0 0
0 σ2π∗

γ2
σ2

)](
e−i(k1ξ−t/4k1)δδδ1

ei(k1ξ−t/4k1)γγγ1

)
,

i.e.

Im P1 ∼ span

{(
e−i(k1ξ−t/4k1)δδδ+1
ei(k1ξ−t/4k1)γγγ+

1

)}
.

In turn, this gives

γγγ+
1 =

[
I4 −

k1

k2

k∗2 − k2

k∗2 − k1
πγ2 −

k1

k∗2

k∗2 − k2

k2 + k1
σ2π∗

γ2
σ2

]
γγγ1, δδδ+1 = δδδ1. (163)

Therefore, along ξ = v1t+C and as t → ∞, U(ξ, t) behaves like Usol
(
ξ, t; k1, γγγ+

1 , δδδ+1
)

.
Now we analyze the solution along ξ = v2t + C as t → ∞, following the same reasoning

applied to (154a). Now Π1 becomes block diagonal so that it does not contribute to the

solution, which now behaves like

(
02 U(ξ, t)

U(ξ, t)† 02

)
∼

k∗2 − k2

2|k2|2

[
Π2 + Π̃2, Σ3

]
. (164)

Using (150) for Tk1,Π1
(k2) and (156), we get that Im Π2 coincides with the span of

[
I4 −

k2

k1

k∗1 − k1

k∗1 − k2

(
πδ1

0
0 0

)
−

k2

k∗1

k∗1 − k1

k1 + k2

(
σ2π∗

δ1
σ2 0

0 0

)](
e−i(k2ξ−t/4k2)δδδ2

ei(k2ξ−t/4k2)γγγ2

)
,

or equivalently

Im Π2 ∼ span

{(
e−i(k2ξ−t/4k2)δδδ+2
ei(k2ξ−t/4k2)γγγ+

2

)}
,

whence

γγγ+
2 = γγγ2, δδδ+2 =

[
I4 −

k2

k1

k∗1 − k1

k∗1 − k2
πδ1

−
k2

k∗1

k∗1 − k1

k1 + k2
σ2π∗

δ1
σ2

]
δδδ2, πδ1

=
δδδ1δδδ†

1

δδδ†
1δδδ1

.

Therefore, along ξ = v2t+C and as t → ∞, U(ξ, t) behaves like Usol
(
ξ, t; k1, γγγ+

2 , δδδ+2
)

.
This proves the claim (159) as t → ∞. The argument can be repeated as t → −∞, with

similar results. For brevity, we only provide the formulas for the asymptotic polarization

vectors:

γγγ−
1 = γγγ1, δδδ−1 =

[
I4 −

k1

k2

k∗2 − k2

k∗2 − k1
πδ2

−
k1

k∗2

k∗2 − k2

k2 + k1
σ2π∗

δ2
σ2

]
δδδ1, πδ2

=
δδδ2δδδ†

2

δδδ†
2δδδ2

,
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and

γγγ−
2 =

[
I4 −

k2

k1

k∗1 − k1

k∗1 − k2
πγ1

−
k2

k∗1

k∗1 − k1

k1 + k2
σ2π∗

γ1
σ2

]
γγγ2, δδδ−2 = δδδ2, πγ1

=
γγγ1γγγ†

1

γγγ†
1γγγ1

.

Summarizing our previous results, we have the following relations:

γγγ+
1 =

[
I4 −

k1

k2

k∗2 − k2

k∗2 − k1

γγγ+
2 (γγγ

+
2 )

†

(γγγ+
2 )

†γγγ+
2

−
k1

k∗2

k∗2 − k2

k2 + k1
σ2

(γγγ+
2 )

∗(γγγ+
2 )

T

(γγγ+
2 )

T(γγγ+
2 )

∗
σ2

]
γγγ−

1 , (165a)

γγγ−
2 =

[
I4 −

k2

k1

k∗1 − k1

k∗1 − k2

γγγ−
1 (γγγ

−
1 )

†

(γγγ−
1 )

†γγγ−
1

−
k2

k∗1

k∗1 − k1

k1 + k2
σ2

(γγγ−
1 )

∗(γγγ−
1 )

T

(γγγ−
1 )

T(γγγ−
1 )

∗
σ2

]
γγγ+

2 , (165b)

δδδ−1 =

[
I4 −

k1

k2

k∗2 − k2

k∗2 − k1

δδδ−2 (δδδ
−
2 )

†

(δδδ−2 )
†δδδ−2

−
k1

k∗2

k∗2 − k2

k2 + k1
σ2

(δδδ−2 )
∗(δδδ−2 )

T

(δδδ−2 )
T(δδδ−2 )

∗
σ2

]
δδδ+1 , (165c)

δδδ+2 =

[
I4 −

k2

k1

k∗1 − k1

k∗1 − k2

δδδ+1 (δδδ
+
1 )

†

(δδδ+1 )
†δδδ+1

−
k2

k∗1

k∗1 − k1

k1 + k2
σ2

(δδδ+1 )
∗(δδδ+1 )

T

(δδδ+1 )
T(δδδ+1 )

∗
σ2

]
δδδ−2 . (165d)

Using the property

σ2

(γγγ±
j )

∗(γγγ±
j )

T

(γγγ±
j )

T(γγγ±
j )

∗
σ2 = I2 −

γγγ±
j (γγγ

±
j )

†

(γγγ±
j )

†γγγ±
j

, σ2

(δδδ+j )
∗(δδδ±j )

T

(δδδ±j )
T(δδδ±j )

∗
σ2 = I2 −

δδδ±j (δδδ
±
j )

†

(δδδ±j )
†δδδ±j

, (166)

for j = 1, 2, one can reduce the last equations into (160), where we essentially express the

polarization vectors after the interaction in terms of parameters characterizing the initial

solitons. Notice that since soliton-1 is faster than soliton-2, then the states before/after

the interaction coincide with the limits t → ±∞, while for soliton-2 the state before the

interaction coincides with the limit t → +∞, and the state after the interaction coincides

with the limit t → −∞.

Remark 6.10 Note that one can easily rewrite eqs (160) more explicitly as a scattering

map (γγγ−
1 , δδδ−1 , γγγ−

2 , δδδ−2 ) 7→ (γγγ+
1 , δδδ+1 , γγγ+

2 , δδδ+2 ) (which is its intended meaning) but then

(160a) and (160d) become rather lengthy since one has to replace γγγ+
2 and δδδ+1 by their

expressions in terms of γγγ−
1 , δδδ−1 , γγγ−

2 , δδδ−2 obtained from (160b) and (160c). This is the

reason why we chose to write the map more compactly as in (160).

Self-symmetric case. Note that from our general results on the structure of the dressing

factors, the self-symmetric case is simply a limit of the above results when k1 and/or

k2 become purely imaginary. It is easy to see that for instance if k2 = −k∗2 then the

maps (160a) and (160c) become trivial in the sense that the polarization vectors after the

interaction are proportional to those before the interaction. If k1 remains generic then

(160b) and (160d) retains their matrix structure. If both zeros are self-symmetric then the

the map is trivial, again in the sense that only the norm of the vectors is changed upon

interaction, not their direction. This only produces a phase and position shift. This gives a

description of the interaction between a self-symmetric soliton and a fundamental breather

or between two self-symmetric solitons, respectively.

6.3.2 Rank-2 case: composite breathers

We present a formula for the one-soliton solution in the generic rank-2 case. Recall that

this means that the dressing factor is gk1,Π1
(k)gk2,Π2

(k) with k2 = −k∗1 and Π2 =
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Λ Π∗
1 Λ−1 where Π1 is a Hermitian projector of rank 2. Let φ1 and φ2 be a basis of

the image of Π1 (at t = ξ = 0) (we can choose them orthogonal wlog). Let

Φ1(ξ, t) = e−i(k1ξ−t/4k1)Σ3(φ1, φ2) , (167)

then, dropping again the (ξ, t) dependence for conciseness,

Π1 = Φ1(Φ
†
1Φ1)

−1Φ†
1 . (168)

It is convenient to write

φ1 =

(
δδδ1

γγγ1

)
, φ2 =

(
τττ1

ωωω1

)
, δδδ1, γγγ1, τττ1, ωωω1 ∈ C

2 , j = 1, 2 . (169)

Then one obtains

Φ†
1Φ1 =

(
F11 F12

F21 F22

)
, (170)

where

F11 = e2ν1(ξ+t/4|k1|
2)δδδ†

1δδδ1 + e−2ν1(ξ+t/4|k1|
2)γγγ†

1γγγ1, (171a)

F12 = e2ν1(ξ+t/4|k1|
2)δδδ†

1τττ1 + e−2ν1(ξ+t/4|k1|
2)γγγ†

1ωωω1, (171b)

F21 = e2ν1(ξ+t/4|k1|
2)τττ†

1δδδ1 + e−2ν1(ξ+t/4|k1|
2)ωωω†

1γγγ1, (171c)

F22 = e2ν1(ξ+t/4|k1|
2)τττ†

1τττ1 + e−2ν1(ξ+t/4|k1|
2)ωωω†

1ωωω1. (171d)

Then in particular

(Φ†
1Φ1)

−1 =
1

D(ξ, t)

(
F22 −F12

−F21 F11

)
, D(ξ, t) = det Φ†

1Φ1 . (172)

After long but straightforward calculations, we find

U(ξ, t) =
2iν1

|k1|2
1

D(ξ, t)

[
e−2iη1(ξ−t/4|k1|

2)
(
δδδ1 τττ1

) ( F ∗
22 −F ∗

21
−F ∗

12 F ∗
11

)(
γγγ†

1
ωωω†

1

)

+e2iη1(ξ−t/4|k1|
2)σ2

(
δδδ∗1 τττ∗

1

) ( F22 −F21

−F12 F11

)(
γγγT

1
ωωωT

1

)
σ2

]
. (173)

Note that F ∗
11 = F11, F ∗

22 = F22, and F ∗
12 = F21. Even though we could normalize the

four vectors δδδ1, γγγ1, τττ1, ωωω1 characterizing the structure of a composite breather solution, it

appears less natural to do so in the above expression than in the case of the fundamental

breather. Thus we keep them non-normalized, and denote the above one-soliton solution

as

Ucb(ξ, t; k1, δδδ1, γγγ1, τττ1, ωωω1) .

Two examples of such composite breathers are shown in Fig. 2.

Following the same reasoning as in the previous section, our next task is to determine

the asymptotic behavior of the projector Π1(ξ, t) as |t| → ∞ when ξ − vt = C for

v < v1 and v > v1. Again, the calculations based on the explicit form of Φ1(ξ, t) are

long but straightforward. Unlike the rank-1 case, they show an interesting phenomenon:

we need to distinguish several cases depending on whether δδδ1 and τττ1 are independent

vectors or not, and similarly for γγγ1 and ωωω1. We call the case where det(δδδ1, τττ1) 6= 0 and

det(γγγ1, ωωω1) 6= 0 the generic case. If either det(δδδ1, τττ1) = 0 or det(γγγ1, ωωω1) = 0, we will

talk about the non-generic case. As we show in Appendix E by computing the associated

transmission coefficients, in either of the above non-generic cases the composite breather

reduces to a fundamental breather. Moreover, one can see directly from (173) that the

case where both determinants are zero does not produce a soliton solution. Therefore, in

the following we will only consider generic composite breathers.
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(a) (b)

Figure 2: Contour plots for composite breather solutions. The panels show the magnitude of the

component u1(ξ, t) for two different examples. Here, the soliton parameters are: δδδ1 = (1 , 2)T ,

τττ1 = (2 , 1)T , γγγ1 = (10 , 2)T , ωωω1 = (2 , ei/2)T and k1 = 4/5 + i/5 for panel (a); δδδ1 = (1 , 1)T ,

τττ1 = (2 , 3)T , γγγ1 = (1 , 2)T , ωωω1 = (2 , 1)T and k1 = 1/2 + i/4 for panel (b).

Generic composite breather (det(δδδ1, τττ1) 6= 0 and det(γγγ1, ωωω1) 6= 0).

Case v < v1. Recalling that ν1 > 0, then the dominant term is e−2ν1(v−v1)t as t → ∞,

and introducing N = (γγγ1 ωωω1), we find

Π1(ξ, t) ∼

(
0 0
0 N (N †N )−1N †

)
+ O

(
e2ν1(v−v1)t

)
. (174)

Now since γγγ1, ωωω1 are assumed to be independent, the projector N (N †N )−1N † is of full

rank equal to 2 and hence is simply the identity matrix I2. Consequently, we find

Π1(ξ, t) ∼

(
0 0
0 I2

)
+ O

(
e2ν1(v−v1)t

)
. (175)

On the other hand, as t → −∞, the dominant term is e2ν1(v−v1)t and we obtain, since

δδδ1, τττ1 are independent,

Π1(ξ, t) ∼

(
I2 0
0 0

)
+ O

(
e−2ν1(v−v1)t

)
. (176)

As a consequence, we obtain

Tk1,Π1
(k) ∼

(
I2 02

02
k−k1
k−k∗1

k+k∗1
k+k1

I2

)
+ O

(
e2ν1(v−v1)t

)
, t → ∞, (177)

and

Tk1,Π1
(k) ∼

(
k−k1
k−k∗1

k+k∗1
k+k1

I2 02

02 I2

)
+ O

(
e−2ν1(v−v1)t

)
, t → −∞. (178)

Case v > v1. In this case, the role of the dominant terms as t → ±∞ is swapped com-

pared to the previous case so we immediately deduce

Tk1,Π1
(k) ∼

(
k−k1
k−k∗1

k+k∗1
k+k1

I2 02

02 I2

)
+ O

(
e−2ν1(v−v1)t

)
, t → ∞, (179)

and

Tk1,Π1
(k) ∼

(
I2 02

02
k−k1
k−k∗1

k+k∗1
k+k1

I2

)
+ O

(
e2ν1(v−v1)t

)
, t → −∞. (180)
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We are now in a position to derive the map induced on the vectors describing a two-

soliton solution made of composite breathers. We follow exactly the same reasoning as in

the rank-1 case, combining the above asymptotic results obtained on the projectors with

the refactorization properties that allow to express the solution in two equivalent ways.

Thus, one can show that, as t → ±∞,

U(ξ, t) ∼ Ucb(ξ, t; k1, δδδ±1 , γγγ±
1 , τττ±

1 , ωωω±
1 ) + Ucb(ξ, t; k2, δδδ±2 , γγγ±

2 , τττ±
2 , ωωω±

2 ), (181)

where the incoming/outgoing polarization vectors δδδ±j , γγγ±
j , τττ±

j , ωωω±
j , j = 1, 2 are related

via the following maps. Note that we make use of the same property already used in the

rank-1 case to simplify the expressions, namely for any two-dimensional projector π of

rank 1 we have

π + σ2 π∗ σ2 = I2 . (182)

As discussed above, we assume that both composite breathers are generic, i.e., det(δδδj, τττ j) 6=
0 and det(γγγj, ωωω j) 6= 0, j = 1, 2. We obtain the following relations between the incom-

ing/outgoing polarization vectors:

γγγ+
1 =

k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

γγγ−
1 , δδδ−1 =

k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

δδδ+1 ,

ωωω+
1 =

k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

ωωω−
1 , τττ−

1 =
k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

τττ+
1 ,

γγγ−
2 =

k2 − k1

k2 − k∗1

k2 + k∗1
k2 + k1

γγγ+
2 , δδδ+2 =

k2 − k1

k2 − k∗1

k2 + k∗1
k2 + k1

δδδ−2 ,

ωωω−
2 =

k2 − k1

k2 − k∗1

k2 + k∗1
k2 + k1

ωωω+
2 , τττ+

2 =
k2 − k1

k2 − k∗1

k2 + k∗1
k2 + k1

τττ−
2 ,

and the following relations between these vectors and the norming constants:

γγγ−
1 = γγγ1, δδδ+1 = δδδ1, ωωω−

1 = ωωω1, τττ+
1 = τττ1,

γγγ+
2 = γγγ2, δδδ−2 = δδδ2, ωωω+

2 = ωωω2, τττ−
2 = τττ2.

We see that this map is trivial in the sense that the vectors characterizing a generic com-

posite breather are only rescaled upon interaction, thus only contributing to a phase shift

and position shift. The internal structure of generic composite breathers is not affected by

interactions.

6.3.3 Mixed rank-1 and rank-2 case

We can also investigate the map on the soliton data in the case where one soliton corre-

sponds to a rank-1 projector and the other to a rank-2 projector. As a result, below we will

be able to discuss the interaction between a fundamental soliton or a fundamental breather

with a composite breather.

We already have established the required methodology, so we simply state the results.

Suppose that soliton 1, with associated eigenvalue k1, corresponds to a rank-1 projec-

tor characterized by δδδ1 and γγγ1, and that soliton 2, with associated eigenvalue k2, corre-

sponds to a rank-2 projector characterized by δδδ2, γγγ2, τττ2 ωωω2 with det(δδδ2, τττ2) 6= 0 and

det(γγγ2, ωωω2) 6= 0. As before, we assume without loss of generality that v2 > v1. As

t → ±∞,

U(ξ, t) ∼ Usol(ξ, t; k1, δδδ±1 , γγγ±
1 ) + Ucb(ξ, t; k2, δδδ±2 , γγγ±

2 , τττ±
2 , ωωω±

2 ), (185)
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with the following maps among the polarization vectors before/after the soliton interac-

tion:

γγγ+
1 =

k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

γγγ−
1 , δδδ−1 =

k1 − k2

k1 − k∗2

k1 + k∗2
k1 + k2

δδδ+1 , (186a)

γγγ−
2 =

k1

k∗1

k∗1 + k2

k1 + k2

[
I2 +

k2
2

k2
1

(k∗1)
2 − k2

1

k2
2 − (k∗1)

2

γγγ−
1 (γγγ

−
1 )

†

(γγγ−
1 )

†γγγ−
1

]
γγγ+

2 , (186b)

δδδ+2 =
k1

k∗1

k∗1 + k2

k1 + k2

[
I2 +

k2
2

k2
1

k2
1 − (k∗1)

2

(k∗1)
2 − k2

2

δδδ−1 (δδδ
−
1 )

†

(δδδ−1 )
†δδδ−1

]
δδδ−2 , (186c)

ωωω−
2 =

k1

k∗1

k∗1 + k2

k1 + k2

[
I2 +

k2
2

k2
1

(k∗1)
2 − k2

1

k2
2 − (k∗1)

2

γγγ−
1 (γγγ

−
1 )

†

(γγγ−
1 )

†γγγ−
1

]
ωωω+

2 , (186d)

τττ+
2 =

k1

k∗1

k∗1 + k2

k1 + k2

[
I2 +

k2
2

k2
1

k2
1 − (k∗1)

2

(k∗1)
2 − k2

2

δδδ−1 (δδδ
−
1 )

†

(δδδ−1 )
†δδδ−1

]
τττ−

2 , (186e)

while the relations between these and the norming constants are as follows

γγγ−
1 = γγγ1, δδδ+1 = δδδ1, γγγ+

2 = γγγ2, δδδ−2 = δδδ2, ωωω+
2 = ωωω2, τττ−

2 = τττ2. (187a)

Fig. 3 shows two examples of a fundamental soliton and a fundamental breather interact-

ing with a generic composite breather, showing that the fundamental soliton retains its

nature upon interacting with a generic composite breather.

(a) (b)

Figure 3: A fundamental soliton (left) and fundamental breather (right) interacting with a generic

composite breather. The panels show the magnitude of the first component of the vector solution.

Panel (a): interaction between a fundamental soliton and a generic composite breather. Panel (b):

interaction between a fundamental breather and a generic composite breather. Here, the soliton

parameters are: panel (a): γγγ1 = (1 , 1/2)T
, δδδ1 = (1 , 0)T

for soliton-1 being a fundamental soliton,

and δδδ2 = (1 , 1)T
, τττ2 = (1 , 2)T

, γγγ2 = (1, 2)T
, ωωω2 =

(
3, ei

)T
, for soliton-2 being a generic

composite breather. Panel (b): γγγ1 = (1 , 1/2)T
, δδδ1 = (1 , 1)T

for soliton-1 being a fundamental

breather, and δδδ2 = (1 , 2)T
, τττ2 = (2 , 1)T

, γγγ2 = (10, 2)T
, ωωω2 =

(
ei, 1

)T
for soliton-2 being

a generic composite breather. In both examples, the discrete eigenvalues have been chosen as:

k1 = 1/2 + i/4, k2 = 1 + i/2.

Finally, Fig. 4 shows some examples of mixed rank-1 and rank-2 soliton interactions,

as well as interactions between two rank-2 solitons, to illustrate the results we derived in

the current and the previous sections.
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(a) (b)

(c) (d)

Figure 4: Soliton interactions. All the panels show the magnitude of the first component of the

vector solution. Panel (a): interaction between a fundamental soliton and a self-symmetric soli-

ton. Panel (b): interaction between a fundamental breather and a self-symmetric soliton. Panel

(c): interaction between a self-symmetric soliton and a generic composite breather. Panel (d): in-

teraction between two generic composite breathers. Here, the soliton parameters are: panel (a):

γγγ1 = (1 , 1/2)T
, δδδ1 = (1 , 0)T

, δδδ2 = (1 , 1)T
, τττ2 = (1 , 1)T

, γγγ2 = (10, 2)T
, ωωω2 = (2,−10)T

and k1 = 1 + i/2, k2 = i/4. Panel (b): γγγ1 = (1 , 1/2)T
, δδδ1 = (1 , 1)T

, δδδ2 = (1 , 1)T
,

τττ2 = (1 , 1)T
, γγγ2 = (10, 2)T

, ωωω2 = (2,−10)T
and k1 = 1 + i/2, k2 = i/4. Panel (c):

δδδ1 = (1 , 1)T
, τττ1 = (1 , 1)T

, γγγ1 = (1, 2)T
, ωωω1 = (2,−1)T

, δδδ2 = (1 , 2)T
, τττ2 = (2 , 1)T

,

γγγ2 = (1, 2)T
, ωωω2 =

(
3, ei

)T
and k1 = i/2, k2 = 1+ i/2. Panel (d): δδδ1 = (1 , 2)T

, τττ1 = (2 , 3)T
,

γγγ1 = (10, 2)T
, ωωω1 = (2 ,−10)T

, δδδ2 = (1 , 3)T
, τττ2 = (2 , 3)T

, γγγ2 = (1, 2)T
, ωωω2 =

(
3 , ei

)T
and

k1 = 1/4 + i/5, k2 = 1 + i/2.

6.4 Discussion of soliton interactions using the Yang-Baxter maps

Thanks to the maps systematically derived above, the phenomenon observed in Fig. 1 can

now be explained. Looking at (160), we note that the map on the polarizations decouples:

the γγγ-type polarizations act on each other, and similarly for the δδδ-type polarizations. From

this point of view, the fundamental soliton sector is stable and the map reduces to a trivial

map where the polarizations are simply rescaled upon interaction. This is why two funda-

mental solitons remain fundamental solitons when interacting with each other. However,

in general a fundamental soliton interacting with a fundamental breather will become a

fundamental breather after the interaction. This is a very interesting phenomenon which,

to our knowledge, had never been identified before in studies on multicomponent soliton

collisions. We discuss this in more detail below.

Interaction of two fundamental breathers. A fundamental breather is obtained when

both components in δδδ are non-zero. To study the interaction between two fundamental

breathers, without loss of generality we can consider δδδ+1 ≡ δδδ1 = (1 , κ∗1)
T , and δδδ−2 ≡
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δδδ2 = (1 , κ∗2)
T , κj ∈ C, for j = 1, 2. The vectors γγγ−

1 ≡ γγγ1 and γγγ+
2 ≡ γγγ2 are chosen to

be arbitrary, and after inserting these into (160c)-(160d) we obtain

δδδ−1 = (d1 , e1)
T , δδδ+2 = (d2 , e2)

T , (188a)

d1 =
k2

k∗2

k1 + k∗2
k1 + k2

(
1 +

k2
1

k2
2

(
(k∗2)

2 − k2
2

) (
1 + κ∗1κ2

)
(
k2

1 − (k∗2)
2
)
(1 + |κ2|2)

)
, (188b)

e1 =
k2

k∗2

k1 + k∗2
k1 + k2

(
κ∗1 +

k2
1

k2
2

(
(k∗2)

2 − k2
2

) (
κ∗2 + κ∗1 |κ2|

2
)

(
k2

1 − (k∗2)
2
)
(1 + |κ2|2)

)
, (188c)

d2 =
k1

k∗1

k2 + k∗1
k2 + k1

(
1 +

k2
2

k2
1

(
(k∗1)

2 − k2
1

)
(1 + κ1κ∗2)(

k2
2 − (k∗1)

2
)
(1 + |κ1|2)

)
, (188d)

e2 =
k1

k∗1

k2 + k∗1
k2 + k1

(
κ∗2 +

k2
2

k2
1

(
(k∗1)

2 − k2
1

) (
κ∗1 + κ∗2 |κ1|

2
)

(
k2

2 − (k∗1)
2
)
(1 + |κ1|2)

)
. (188e)

To determine the total change in the first column of the norming constants of the solitons,

we need to multiply relations (160a) and (160b) by the scalars d1 and d2, respectively (cf.

(30a)). Therefore, we define

s+1 = d1
k2

k∗2

k1 + k∗2
k1 + k2

[
I2 +

k2
1

k2
2

(k∗2)
2 − k2

2

k2
1 − (k∗2)

2

γγγ2(γγγ2)
†

(γγγ2)
†γγγ2

]
γγγ1, (189a)

s−2 = d2
k1

k∗1

k2 + k∗1
k2 + k1

[
I2 +

k2
2

k2
1

(k∗1)
2 − k2

1

k2
2 − (k∗1)

2

γγγ1(γγγ1)
†

(γγγ1)
†γγγ1

]
γγγ2, (189b)

and introducing the following notations for the normalization constants

χ2
1 ≡

||s+1 ||
2

||γγγ1||2
, χ2

2 ≡
||s−2 ||

2

||γγγ2||2
, (190)

we find

χ2
1 = |d1|

2χ2, χ2
2 = |d2|

2χ2, (191a)

χ2 =

∣∣∣∣
k1 + k∗2
k1 + k2

∣∣∣∣
2
{

1 +

(
k2

1 − (k∗1)
2
) (

k2
2 − (k∗2)

2
)

|k1 − k∗2 |
2|k1 + k∗2 |

2

∣∣p−
1 · (p+

2 )
∗
∣∣2
}

, (191b)

where p−
1 = γγγ∗

1/||γγγ1|| and p+
2 = γγγ∗

2/||γγγ2|| are unit-norm polarization vectors. Further-

more, the polarization vectors after the interaction are given by:

p+
1 =

d∗1
χ1

k∗2
k2

k∗1 + k2

k∗1 + k∗2

{
p−

1 +
(k∗1)

2

(k∗2)
2

(
k2

2 − (k∗2)
2
)

(
(k∗1)

2 − k2
2

)
(
(p+

2 )
∗ · p−

1

)
p+

2

}
, (192a)

p−
2 =

d∗2
χ2

k∗1
k1

k∗2 + k1

k∗2 + k∗1

{
p+

2 +
(k∗2)

2

(k∗1)
2

(
k2

1 − (k∗1)
2
)

(
(k∗2)

2 − k2
1

)
(
(p−

1 )
∗ · p+

2

)
p−

1

}
, (192b)

in terms of parameters characterizing the initial fundamental breathers, where p+
1 =

(s+1 )
∗/||s+1 || and p−

2 = (s−2 )
∗/||s−2 ||.

Generically speaking, the quantities e1 and e2 in Eqs. (188) are nonzero, which im-

plies that the two-soliton solution is a superposition of two fundamental breathers which

retain their nature throughout their interaction. However, there exists a specific value of
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the multiplicative constant κ1, which involves the discrete eigenvalues and the second

multiplicative constant κ2, and which makes the quantity e1 identically zero

κ1 =
(k∗1)

2
(
(k∗2)

2 − k2
2

)
κ2

(k∗2)
2
(
(k∗1)

2 − k2
2

)
+ k2

2

(
(k∗1)

2 − (k∗2)
2
)
|κ2|2

. (193)

In this case, soliton-2 retains its nature, while soliton-1 becomes a fundamental soliton

after the interaction. Equivalently, there exists a specific value for the multiplicative con-

stant κ2 which makes the quantity e2 identically zero, its expression is given by simply

interchanging the indices 1 and 2 in relation (193), and in this case soliton-1 retains its

nature, and soliton-2 becomes a breather. Fig. 5 shows an example of interacting funda-

mental breathers when the multiplicative constant κ2 is arbitrarily assigned, but κ1 has

been computed via relation (193), and an example of interacting fundamental breathers

where both multiplicative constants are arbitrarily assigned.

(a) (b)

Figure 5: Fundamental breathers interacting with fundamental breathers. Panel (a): the multiplica-

tive constant κ2 is arbitrarily assigned, while κ1 is computed via relation (193). Clearly, the initial

fundamental breather with multiplicative constant κ2 retains its nature, but the initial fundamental

breather with multiplicative constant κ1 becomes a fundamental soliton after the interaction. Panel

(b): both multiplicative constants κ1 and κ2 have been arbitrarily assigned, and one can observe that

both initial fundamental breathers retain their nature upon interacting with each other. The panels

show the magnitude of the first component of the vector solution. Here, the soliton parameters

are: panel (a): γγγ1 = (1 , 1/2)T
, δδδ1 = (0.18 + 0.1i , 1)T

, γγγ2 =
(

1 , ei
)T

, δδδ2 = (1 , 1)T
, and

k1 = 1/2 + i/4, k2 = 1 + i/2. Panel (b): γγγ1 = (1 , 1/2)T
, δδδ1 = (1 , 1)T

, γγγ2 =
(

1 , ei
)T

,

δδδ2 = (1 , 1)T
, k1 = 1/2 + i/4, k2 = 1 + i/2.

Special cases. Next we show that interactions between two fundamental solitons, as

well as interactions between a fundamental soliton and a fundamental breather, are special

cases of interactions between two fundamental breathers. For two fundamental solitons,

one has to set κj = 0, for j = 1, 2, and therefore the initial vectors δδδj can be reduced to

δδδ1 = (1 , 0)T , and δδδ2 = (1 , 0)T . It is easy to check from Eqs. (188) that, if κ1 = κ2 = 0,

then e1 = e2 ≡ 0, which implies that the two fundamental solitons retain their nature

upon interacting with each other. Moreover, the scalars d1, d2 reduce to:

d1 =
k∗2
k2

k1 − k2

k1 − k∗2
, d2 =

k∗1
k1

k1 − k2

k∗1 − k2
, (194)

which gives |d1| = |d2|. Consequently, from Eqs. (191) it follows that the two normal-

ization constants coincide, namely, χ1 = χ2 = χ with χ given by (93), and Eqs. (192)

reduce to the expressions (97) we derived using Manakov’s method in Sec. 5. Note that

40



one could alternatively choose δδδ1 = (0 , 1)T and δδδ2 = (0 , 1)T , or δδδ1 = (1 , 0)T and

δδδ2 = (0 , 1)T and γγγ arbitrary, and we still obtain that the two fundamental solitons retain

their nature upon interacting with each other.

Without loss of generality, let us now consider soliton-1 to be a fundamental soliton

and soliton-2 to be a fundamental breather. We therefore set κ1 = 0 and let κ2 be arbitrary.

Then, δδδ1 = (1 , 0)T , δδδ2 = (1 , κ∗)T , κ ∈ C, and the vectors γγγ1 and γγγ2 are arbitrary. Using

Eqs. (188), it is easy to check that, if κ1 = 0, then the scalars e1, e2 are both nonzero and

reduce to:

e1 =
κ∗

1 + |κ|2
k2

1

|k2|2
(k∗2)

2 − k2
2

(k1 + k2)(k1 − k∗2)
, e2 = κ∗

k1

k∗1

k∗1 + k2

k1 + k2
, (195)

which shows that although the solution before the interaction is a superposition of a funda-

mental soliton and a fundamental breather, after the interaction it becomes a superposition

of two fundamental breathers, since necessarily e1 6= 0 and e2 6= 0. Moreover, the po-

larization vectors after the interaction are given by Eqs. (192), and the two normalization

constants are still given by Eqs. (191), but now with d1, d2:

d1 =
k2

k∗2

k1 + k∗2
k1 + k2

[
1 +

k2
1

k2
2

(k∗2)
2 − k2

2(
k2

1 − (k∗2)
2
)
(1 + |κ|2)

]
, d2 =

k∗1
k1

k1 − k2

k∗1 − k2
. (196)
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A On the ranks of the transmission coefficients a and ā

In this section, we show that the ranks of the matrices a and ā need necessarily to be

equal at each of the eigenvalues of a given quartet. To do that, we recall the 4 × 4 matrix

solutions

P(k) = (Φ−,1(k), Φ+,2(k)) , P̄(k) = (Φ+,1(k), Φ−,2(k)) , (A.1)

where the (x, t) dependence has been omitted for brevity, and the bilinear combinations

A(k) = P̄†(x, t, k∗)P(x, t, k), Ā(k) = P†(x, t, k∗)P̄(x, t, k), (A.2)

introduced in [46]. Using the analyticity properties of the Jost eigenfunctions, one can

easily show that the solution P and the bilinear combination A are analytic in C+, while

the matrix solution P̄ and the bilinear combination Ā are analytic in C−. Next, we discuss

in details the correspondence between the ranks of the matrix P and the linear combination

A (resp., P̄ and Ā), which will lead us to the goal of this section.

Let us assume kn to be a zero of det a(k) in C+. Then, due to the symmetries of the

ccSPE summarized in Sec. 2, k∗n is a zero of det ā(k) in C−. Therefore, it is meaningful

to discuss the ranks of the matrices P(kn) and P̄(k∗n). It is clear that rankP(kn) 6 3 and

rankP̄(k∗n) 6 3, since both matrices have zero determinant at the discrete eigenvalues. It
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is also clear that rankP(kn) and rankP̄(k∗n) cannot be zero, because the 4× 2 columns in

Φ−,1(kn) and in Φ+,2(kn) are linearly independent, and so are the columns in Φ+,1(k
∗
n)

and in Φ−,2(k
∗
n).

One can also prove that rankP(kn) and rankP̄(k∗n) cannot equal 1, by contradiction.

Let us assume that rankP(kn) = 1. Then the columns of Φ−,1(kn) must be linearly de-

pendent, as well as the columns of Φ+,2(kn). Let us denote these columns as Φ−,1(kn)
∣∣

j

and Φ+,2(kn)
∣∣

j
respectively, for j = 1, 2. The above implies that there exist constants

c1, c2 ∈ C not both zero, as well as constants c3, c4 ∈ C not both zero, such that

c1Φ−,1

∣∣
1
(x, t, kn) + c2Φ−,1

∣∣
2
(x, t, kn) = 02×1, (A.3a)

c3Φ+,2

∣∣
1
(x, t, kn) + c4Φ+,2

∣∣
2
(x, t, kn) = 02×1, (A.3b)

for all x ∈ R. Recall that the Jost eigenfunctions and the modified eigenfunctions are

related according to (11), and therefore the last relation becomes

c1M−,1

∣∣
1
(x, t, kn) + c2M−,1

∣∣
2
(x, t, kn) = 02×1, (A.4a)

c3M+,2

∣∣
1
(x, t, kn) + c4M+,2

∣∣
2
(x, t, kn) = 02×1, (A.4b)

for all x ∈ R. Moreover, recall that

M−,1(x, t, k) ∼

(
I2

0

)
, x → −∞, M+,2(x, t, k) ∼

(
0
I2

)
, x → +∞,

and both M−,1 and M+,2 are analytic in the upper half plane of C, which implies that

as x → ±∞, the columns of M−,1 and the columns of M+,2 are linearly independent.

Therefore, relation (A.4) does not hold, and (A.3) does not hold as a consequence, which

implies that the columns of Φ−,1 and Φ+,2 are linearly independent. This contradicts our

initial assumption that rankP(kn) = 1. One can use a similar argument to prove that

rankP̄(k∗n) cannot equal 1. The above analysis allows us to conclude that the ranks of the

matrices P(kn) and P̄(k∗n) can only equal 2 or 3.

For the matrices A(k) and Ā(k) in (A.2), as shown in [46] one has

A(k) = P̄†(x, t, k∗)P(x, t, k) =

(
a(k) 02

02 ā†(k∗)

)
, (A.5a)

Ā(k) = P†(x, t, k∗)P̄(x, t, k) =

(
a†(k∗) 02

02 ā(k)

)
, (A.5b)

and, consequently,

rankA(kn) = ranka(kn) + rankā†(k∗n), (A.6a)

rankĀ(kn) = ranka†(k∗n) + rankā(kn). (A.6b)

Proposition 1 Let kn be a zero of det a(k) in C+, k∗n is a zero of det ā(k) in C−. Then

one has rankP(x, t, kn) ≡ rankP̄(x, t, k∗n) = 2 if and only if a(kn) ≡ ā(k∗n) = 02 (i.e.,

rankA(kn) = 0). The same holds for the remaining points −k∗n and −kn in the discrete

spectrum.

Proof. Let us prove the first implication, i.e.,

rankP(x, t, kn) ≡ rankP̄(x, t, k∗n) = 2 ⇒ a(kn) ≡ ā(k∗n) = 02.
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Since rankP(x, t, kn) = 2, then there exist two linearly independent vectors eeej =
(
ηj,−ξ j

)T

in C4/{0}, such that P(kn)eeej = 04×1, for j = 1, 2. From the definition of A(kn), it fol-

lows that A(kn)eeej = P̄†(k∗n)P(kn)eeej = 04×1, which in turn gives

a(kn)ηj = 02×1, ā†(k∗n)ξ j = 02×1. (A.7)

If the vectors η1 and η2 are both linearly independent, then the first of Eqs. (A.7) implies

that the dimension of the kernel of a(kn) is 2, and therefore a(kn) = 02. If the vectors ξ1

and ξ2 are linearly independent, then the second of Eqs. (A.7) yields that the dimension

of the kernel of ā(k∗n) is 2, and therefore ā(k∗n) = 02, which proves the desired result.

Let us now assume that η1 and η2 are linearly independent and ξ1 and ξ2 are linearly

dependent. Then, there exists a complex valued constant β such that ξ2 = βξ1. From the

definition of P(kn), we get

Φ−,1(x, t, kn)η1 = Φ+,2(x, t, kn)ξ1, Φ−,1(x, t, kn)η2 = βΦ+,2(x, t, kn)ξ1,

which implies

Φ−,1(x, t, kn)η2 = Φ−,1(x, t, kn) (βη1) ⇔ Φ−,1(x, t, kn) (η2 − βη1) = 04×1,

and η2 = βη1, since the columns of Φ−,1(x, t, kn) are linearly independent. But the last

one implies that the vectors η1 and η2 are linearly dependent, which contradicts our initial

assumption. If the vectors η1 and η2 are linearly dependent, i.e. if there exists some α ∈ C

such that η2 = αη1, then similarly as before, we have two possibilities for the vectors ξ1

and ξ2. If ξ1 and ξ2 are linearly independent, as before that will lead to a contradiction.

Now, if both {η1, η2} and {ξ1, ξ2} are linearly dependent, then we can find two constants

α, β ∈ C such that η2 = αη1 and ξ2 = βξ1. In this case, we get

Φ−,1(x, t, kn)η1 = Φ+,2(x, t, kn)ξ1, αΦ−,1(x, t, kn)η1 = βΦ+,2(x, t, kn)ξ1,

which gives

Φ+,2(x, t, kn) (αξ1) = Φ+,2(x, t, kn) (βξ1) ⇔ Φ+,2(x, t, kn)(α − β)ξ1 = 04×1,

which in turn implies that α = β, since the columns of Φ+,2(x, t, kn) are linearly inde-

pendent. But if α = β, then the vectors eee1 = (η1,−ξ1)
T

and eee2 = (αη1,−βξ1)
T

are

linearly dependent, which contradicts our initial assumption.

Let us now prove the other implication, i.e., let us assume that a(kn) ≡ ā†(k∗n) = 02

and prove that rankP(kn) ≡ rankP̄(k∗n) = 2. If a(kn) ≡ ā†(k∗n) = 02, then both

matrices have rank equal to zero, and therefore from (A.6) it follows rankA(kn) = 0.

Using Sylvester’s inequality, we obtain

0 = rankA(kn) ≥ rankP(x, t, kn) + rankP̄†(x, t, k∗n)− 4. (A.8)

Since rankP(x, t, kn) and rankP̄†(x, t, k∗n) can be either 2 or 3, then for the last inequality

to hold, necessarily

rankP(x, t, kn) ≡ rankP̄†(x, t, k∗n) = 2.

�

Prop. 1 establishes a one-to-one correspondence between rankP(kn) and rankA(kn),
when rankA(kn) = 0. Here, we discuss the correspondence between the ranks of P(kn)
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and A(kn), when rankA(kn) is either 1 or 2, and as we will see, together with the pre-

vious results, this shows that the matrices a(kn) and ā(k∗n) need necessarily have equal

ranks. From Sylvester’s inequality, we get

rankA(kn) = rank
(

P̄†(k∗n)P(kn)
)
≥ rank(P̄†(k∗n)) + rank(P(kn))− 4.

Let us assume rankA(kn) = 2, which implies that both matrices a(kn) and ā(k∗n) have

rank equal to 1. We then have the following cases:

(1a) rankP(kn) ≡ rankP̄†(k∗n) = 2. In this case, from Sylvester’s inequality we get

2 ≥ 2 + 2 − 4 = 0, which is admissible. However, from Prop. 1 we have that

rankP(kn) = 2 implies rankA(kn) = 0, which contradicts the initial assumption.

(1b) rankP(kn) ≡ rankP̄†(k∗n) = 3. In this case, Sylvester’s inequality yields 2 ≥
3 + 3 − 4 = 2, which is admissible.

(1c) rankP(kn) = 2 and rankP̄†(k∗n) = 3. In this case, from Sylvester’s inequality

we get 2 ≥ 3 + 2 − 4 = 1, which is admissible. However, according to Prop. 1,

rankP(kn) = 2 implies rankA(kn) = 0, which contradicts the initial assumption.

Let us now assume rankA(kn) = 1, which implies that one of the matrices a(kn) and

ā(k∗n) has rank equal to 0 and the other one has rank equal to 1. We then have the following

cases:

(2a) rankP(kn) ≡ rankP̄†(k∗n) = 2. In this case, Sylvester’s inequality yields 1 ≥ 2+
2 − 4 = 0, which is admissible. However, Prop. 1 has rankP(kn) = 2 implying

rankA(kn) = 0, which contradicts the initial assumption.

(2b) rankP(kn) ≡ rankP̄†(k∗n) = 3. In this case, from Sylvester’s inequality we get

1 ≥ 3 + 3 − 4 = 2, which is not admissible.

(2c) rankP(kn) = 2 and rankP̄†(k∗n) = 3 (or vice-versa). In either case, Sylvester’s

inequality gives 1 ≥ 3 + 2 − 4 = 1, which is admissible. However, Prop. 1 gives

rankP(kn) = 2 implies rankA(kn) = 0, which contradicts the initial assumption.

In conclusion, there is no admissible correspondence between the ranks of the matrices

P(kn) and A(kn) when rankA(kn) = 1, i.e., when a(kn) and ā(k∗n) have unequal ranks.

Therefore, the matrices a(kn) and ā(k∗n) need necessarily have equal ranks. Similar argu-

ments would give the result for the other two discrete eigenvalues in each quartet.

B Derivation of one-soliton transmission coefficients

In the following, we derive the expression of the transmission coefficients for 1-fundamental

soliton, 1-fundamental breather, and 1-self-symmetric soliton.

B.1 Transmission coefficients for a 1-fundamental soliton solution

We start by considering a 1-fundamental soliton solution. Assuming that the potential

decays rapidly enough so that Eqs. (13) and (16) can be extended slightly above or below

the real k-axis, one can use these equations to reconstruct the left and right transmission

coefficients as limits of suitable blocks of the modified eigenfunctions, namely

a(k) = lim
x→+∞

M
up
−,1(x, t, k) , ā(k) = lim

x→+∞
Mdn

−,2(x, t, k) , (B.1a)
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c̄(k) = lim
x→−∞

M
up
+,1(x, t, k) , c(k) = lim

x→−∞
Mdn

+,2(x, t, k) . (B.1b)

From the definition of the sectionally meromorphic matrix function µ± in (21), one has

c̄(k) = lim
x→−∞

µ
up
−,1(x, t, k), c(k) = lim

x→−∞
µdn
+,2(x, t, k), (B.2)

where superscripts up and dn denote the upper/lower 2 × 2 blocks of the corresponding

matrices. In Sec. 2, we also introduced the sectionally meromorphic matrix function

µ̃±(x, t, k) = µ−1
∞ (x, t)µ±(x, t, k), (B.3)

where µ∞ = lim|k|→∞ µ±(x, t, k), such that µ̃± is normalized, as k → ∞, and using a

similar notation for the upper/lower blocks of the functions µ∞ and µ̃±, we obtain

µ
up
−,1(x, t, k) = µ

up
∞,1(x, t) µ̃

up
−,1(x, t, k) + µ

up
∞,2(x, t) µ̃dn

−,1(x, t, k) , (B.4a)

µdn
+,2(x, t, k) = µdn

∞,1(x, t) µ̃
up
+,2(x, t, k) + µdn

∞,2(x, t) µ̃dn
+,2(x, t, k), (B.4b)

which, together with (B.2), yield

c̄(k) = lim
x→−∞

{
µ

up
∞,1(x, t) µ̃

up
−,1(x, t, k) + µ

up
∞,2(x, t) µ̃dn

−,1(x, t, k)
}

, (B.5a)

c(k) = lim
x→−∞

{
µdn

∞,1(x, t) µ̃
up
+,2(x, t, k) + µdn

∞,2(x, t) µ̃dn
+,2(x, t, k)

}
, (B.5b)

or equivalently

c̄(k) = lim
ξ→−∞

{
µ̂

up
∞,1(ξ, t) µ̆

up
−,1(ξ, t, k) + µ̂

up
∞,2(ξ, t) µ̆dn

−,1(ξ, t, k)
}

, (B.6a)

c(k) = lim
ξ→−∞

{
µ̂dn

∞,1(ξ, t) µ̆
up
+,2(ξ, t, k) + µ̂dn

∞,2(ξ, t) µ̆dn
+,2(ξ, t, k)

}
, (B.6b)

where the x-dependence has been replaced by the ξ-dependence. The upper/lower blocks

of µ̆−,1 and µ̆+,2 are obtained by solving the linear system (28) and are given by:

µ̆
up
−,1(ξ, t, k) = I2 +

e2iθ̂1

k − k1
µ̆

up
+,2(ξ, t, k1)C1 +

e−2iθ̂∗1

k + k∗1
µ̆

up
+,2(ξ, t,−k∗1)C̃1, (B.7a)

µ̆dn
−,1(ξ, t, k) =

e2iθ̂1

k − k1
µ̆dn
+,2(ξ, t, k1)C1 +

e−2iθ̂∗1

k + k∗1
µ̆dn
+,2(ξ, t,−k∗1)C̃1, (B.7b)

µ̆
up
+,2(ξ, t, k) =

e−2iθ̂∗1

k − k∗1
µ̆

up
−,1(ξ, t, k∗1)C̄1 +

e2iθ̂1

k + k1
µ̆

up
−,1(ξ, t,−k1)

¯̃C1, (B.7c)

µ̆dn
+,2(ξ, t, k) = I2 +

e−2iθ̂∗1

k − k∗1
µ̆dn
−,1(ξ, t, k∗1)C̄1 +

e2iθ̂1

k + k1
µ̆dn
−,1(ξ, t,−k1)

¯̃C1, (B.7d)

where the eigenfunctions which appear in Eqs. (B.7) are given by the following expres-

sions for a 1-fundamental soliton:

µ̆
up
−,1(ξ, t, k∗1) =

1

∆

[
I2 −

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k∗1(k1 − k∗1)
2

||γγγ1||
2diag(0 , 1)

]
, (B.8a)

µ̆
up
−,1(ξ, t,−k1) =

1

∆

[
I2 −

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k1(k1 − k∗1)
2

||γγγ1||
2diag(1 , 0)

]
, (B.8b)
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µ̆dn
−,1(ξ, t, k∗1) =

1

∆

[
e2iθ̂1

k∗1 − k1
C1 +

e−2iθ̂∗1

2k∗1
C̃1

]
, (B.8c)

µ̆dn
−,1(ξ, t,−k1) =

1

∆

[
e−2iθ̂∗1

k∗1 − k1
C̃1 −

e2iθ̂1

2k1
C1

]
, (B.8d)

and

µ̆
up
+,2(ξ, t, k1) =

1

∆

[
e−2iθ̂∗1

k1 − k∗1
C̄1 +

e2iθ̂1

2k1

¯̃C1

]
, (B.9a)

µ̆
up
+,2(ξ, t,−k∗1) =

1

∆

[
e2iθ̂1

k1 − k∗1

¯̃C1 −
e−2iθ̂∗1

2k∗1
C̄1

]
, (B.9b)

µ̆dn
+,2(ξ, t, k1) =

1

∆

[
I2 +

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k1(k1 − k∗1)
2

C̃1
¯̃C1

]
, (B.9c)

µ̆dn
+,2(ξ, t,−k∗1) =

1

∆

[
I2 +

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k∗1(k1 − k∗1)
2

C1C̄1

]
, (B.9d)

where

θ̂1 = θ̂(k1), θ̂∗1 = θ̂(k∗1), θ̂(k) = kξ − t/4k, ∆ = 1 −
e2i(θ̂1−θ̂∗1 )

(k1 − k∗1)
2
||γγγ1||

2,

and the (ξ, t) dependence in θ̂ has been omitted for brevity. Let us first focus in Eq. (B.6b),

and compute the limits of the upper/lower blocks of µ̆+,2(ξ, t, k) as ξ → −∞. Inserting

Eqs. (B.8) into (B.7c)-(B.7d) we obtain

µ̆
up
+,2(ξ, t, k) =

1

∆

{
e−2iθ̂∗1

k − k∗1
C̄1 +

e2iθ̂1

k + k1

¯̃C1

}
, (B.10a)

µ̆dn
+,2(ξ, t, k) = I2 +

1

∆

e2i(θ̂1−θ̂∗1 )

(k∗1 − k1)

{
1

k − k∗1
C1C̄1 +

1

k + k1
C̃1

¯̃C1

}
, (B.10b)

where we have taken into account that

diag(1 , 0) ¯̃C1 = 02, diag(0 , 1)C̄1 = 02, C1
¯̃C1 = 02, C̃1C̄1 = 02,

on account of the form of C1 in the 1-fundamental soliton case, and of the symme-

tries (20). Since the scattering coefficients are time-independent, we can set t = 0 in

Eqs. (B.10) and compute the limits of both sides as ξ → −∞, which yields

lim
ξ→−∞

µ̆
up
+,2(ξ, 0, k) = 02, (B.11a)

lim
ξ→−∞

µ̆dn
+,2(ξ, 0, k) = I2 +

k1 − k∗1
k − k∗1

C1C̄1

||γγγ1||2
+

k1 − k∗1
k + k1

C̃1
¯̃C1

||γγγ1||2
, (B.11b)

assuming that νj > 0, for j = 1, 2. Combining Eqs. (B.11) with (B.6b), we find

c(k) =

(
lim

ξ→−∞
µ̂dn

∞,2(ξ, t)

)(
I2 +

k1 − k∗1
k − k∗1

C1C̄1

||γγγ1||2
+

k1 − k∗1
k + k1

C̃1
¯̃C1

||γγγ1||2

)
. (B.12)
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As to the remaining blocks, i.e., relations (B.9) and (B.7a)-(B.7b), one can then check that

lim
ξ→−∞

µ̆dn
−,1(ξ, 0, k) = 02, (B.13a)

lim
ξ→−∞

µ̆
up
−,1(ξ, 0, k) = I2 −

k1 − k∗1
k − k1

C̄1C1

||γγγ1||2
−

k1 − k∗1
k + k∗1

¯̃C1C̃1

||γγγ1||2
, (B.13b)

and therefore

c̄(k) =

(
lim

ξ→−∞
µ̂

up
∞,1(ξ, t)

)(
I2 −

k1 − k∗1
k − k1

C̄1C1

||γγγ1||2
−

k1 − k∗1
k + k∗1

¯̃C1C̃1

||γγγ1||2

)
. (B.14)

One can prove that the left and right scattering coefficients are related by the following

symmetries:

a(k) = c̄†(k∗), ā(k) = c†(k∗), (B.15)

and therefore

a(k) =

(
I2 +

k1 − k∗1
k − k∗1

C̄1C1

||γγγ1||2
+

k1 − k∗1
k + k1

¯̃C1C̃1

||γγγ1||2

)(
lim

ξ→−∞
µ̂

up
∞,1(ξ, t)

)†

, (B.16a)

ā(k) =

(
I2 −

k1 − k∗1
k − k1

C1C̄1

||γγγ1||2
−

k1 − k∗1
k + k∗1

C̃1
¯̃C1

||γγγ1||2

)(
lim

ξ→−∞
µ̂dn

∞,2(ξ, t)

)†

. (B.16b)

Moreover, one can check that C̄1C1 = −||γγγ1||
2diag(1 , 0) and ¯̃C1C̃1 = −||γγγ1||

2diag(0 , 1),
and therefore Eqs. (B.16) can be simplified to

a(k) =

(
I2 − diag

(
k1 − k∗1
k − k∗1

,
k1 − k∗1
k + k1

))(
lim

ξ→−∞
µ̂

up
∞,1(ξ)

)†

, (B.17a)

c̄(k) =

(
lim

ξ→−∞
µ̂

up
∞,1(ξ)

)(
I2 + diag

(
k1 − k∗1
k − k1

,
k1 − k∗1
k + k∗1

))
. (B.17b)

To complete the derivation of the transmission coefficients for a 1-fundamental soliton, it

remains to compute the limits of the quantities µ̂
up
∞,1(ξ) and µ̂dn

∞,2(ξ) as ξ → −∞; let us

denote

B =

(
lim

ξ→−∞
µ̂

up
∞,1(ξ)

)†

, D =

(
lim

ξ→−∞
µ̂dn

∞,2(ξ)

)†

. (B.18)

This can be done using the asymptotics of a(k) and ā(k), as k → 0, which recall from

[46], are given by

a(k) = (1 + ikγ̃) I2 + O(k2), ā(k) = (1 − ikγ̃) I2 + O(k2), (B.19a)

γ̃ =

∞∫
−∞

(√
1 + ||ux||2 − 1

)
dx. (B.19b)

Moreover, from (B.17a) one can easily compute the asymptotic expansion of a(k) as

k → 0:

a(k) =

(
I2 + diag

(
k1 − k∗1

k∗1
,

k∗1 − k1

k1

))
B + k diag

(
k1 − k∗1
(k∗1)

2
,

k1 − k∗1
k2

1

)
B + O(k2),

(B.20)
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and equating the same orders of k in Eqs. (B.20) and (B.19a), we obtain

B = diag

(
k∗1
k1

,
k1

k∗1

)
, B = iγ̃diag

(
(k∗1)

2

k1 − k∗1
,

k2
1

k1 − k∗1

)
, (B.21)

where the first part of this relation gives the matrix B explicitly. Furthermore, equating

the two expressions of B in (B.21), we get the following two relations entry-wise

k1 − k∗1
(k∗1)

2
= iγ̃

(
k1

k∗1

)
,

k1 − k∗1
k2

1

= iγ̃

(
k∗1
k1

)
, (B.22)

which we can both solve independently, and obtain the same result for the quantity γ̃

iγ̃ =
k1 − k∗1
|k1|2

≡
2i Im k1

|k1|2
. (B.23)

Finally, inserting the expression for B into Eqs. (B.17), we obtain the expressions for a(k)
and c̄(k) for a 1-fundamental soliton

a(k) = diag

(
k∗1
k1

k − k1

k − k∗1
,

k1

k∗1

k + k∗1
k + k1

)
, (B.24a)

c̄(k) = diag

(
k1

k∗1

k − k∗1
k − k1

,
k∗1
k1

k + k1

k + k∗1

)
, (B.24b)

as functions of k and of the discrete eigenvalue k1, which are independent of the entries

of the norming constant. Similarly, we use equation (B.16b) to compute the asymptotic

behavior of ā(k) as k → 0, which in turn we compare with its asymptotics given in

(B.19a). This yields the explicit expression of matrix D which we use together with

(B.16b) to obtain:

ā(k) =

(
I2 −

k1 − k∗1
k − k1

C1C̄1

||γγγ1||2
−

k1 − k∗1
k + k∗1

C̃1
¯̃C1

||γγγ1||2

)
× (B.25a)

×

(
I2 +

k1 − k∗1
k1

C1C̄1

||γγγ1||2
−

k1 − k∗1
k∗1

C̃1
¯̃C1

||γγγ1||2

)−1

,

c(k) =

(
I2 +

k1 − k∗1
k1

C1C̄1

||γγγ1||2
−

k1 − k∗1
k∗1

C̃1
¯̃C1

||γγγ1||2

)−1

× (B.25b)

×

(
I2 +

k1 − k∗1
k − k∗1

C1C̄1

||γγγ1||2
+

k1 − k∗1
k + k1

C̃1
¯̃C1

||γγγ1||2

)
.

Notice that the expressions of ā and c are more complicated than those of a and c̄; the

transmission coefficients ā and c depend both on the discrete eigenvalues and on the en-

tries of the norming constants. Summarizing, for a 1-fundamental soliton solution with

discrete eigenvalue k1 and associated norming constant C1, we find its transmission co-

efficients given by (B.24) and (B.25). Moreover, one can explicitly compute the inverse

matrices which appear in Eqs. (B.25) and simplify the expressions of āj(k) and cj(k) into

(53).
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B.2 Transmission coefficients for a 1-fundamental breather solution

Below, we derive the transmission coefficients for a 1-fundamental breather solution. The

procedure is similar, but in this case the norming constant C1 takes the form C1 =
(µ1γγγ1 , κ1 γγγ1), for µ1, κ1 ∈ C, and the other ones are obtained from (20). Recall that

the transmission coefficients c and c̄ are given by (B.6), and the upper/lower blocks of

µ̆−,1 and µ̆+,2 are as in Eqs. (B.7), where the eigenfunctions which appear in Eqs. (B.7)

are given by the following expressions for a 1-fundamental breather:

µ̆
up
−,1(ξ, t, k∗1) =

1

∆̃

[
I2 −

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k∗1(k1 − k∗1)
2

||γγγ1||
2H1

2,2

]
, (B.26a)

µ̆
up
−,1(ξ, t,−k1) =

1

∆̃

[
I2 −

(k1 + k∗1)e
2i(θ̂1−θ̂∗1 )

2k1(k1 − k∗1)
2

||γγγ1||
2H1

1,1

]
, (B.26b)

µ̆dn
−,1(ξ, t, k∗1) =

1

∆̃

[
e2iθ̂1

k∗1 − k1
C1 +

e−2iθ̂∗1

2k∗1
C̃1 −

e2i(θ̂1−2θ̂∗1 )

2k∗1(k1 − k∗1)
2
||γγγ1||

2C̃1H1
2,2 (B.26c)

×

(
I2 −

1

∆̃

(
I2 −

e2i(θ̂1−θ̂∗1 )

(k1 − k∗1)
2
||γγγ1||

2H1
2,2

))]
,

µ̆dn
−,1(ξ, t,−k1) =

1

∆̃

[
e−2iθ̂∗1

k∗1 − k1
C̃1 −

e2iθ̂1

2k1
C1 +

e2i(2θ̂1−θ̂∗1 )

2k1(k1 − k∗1)
2
||γγγ1||

2C1H1
1,1 (B.26d)

×

(
I2 −

1

∆̃

(
I2 −

e2i(θ̂1−θ̂∗1 )

(k1 − k∗1)
2
||γγγ1||

2H1
1,1

))]
,

and

µ̆
up
+,2(ξ, t, k1) =

1

∆̃

[
e−2iθ̂∗1

k1 − k∗1
C̄1 +

e2iθ̂1

2k1

¯̃C1

]
, (B.27a)

µ̆
up
+,2(ξ, t,−k∗1) =

1

∆̃

[
e2iθ̂1

k1 − k∗1

¯̃C1 −
e−2iθ̂∗1

2k∗1
C̄1

]
, (B.27b)

µ̆dn
+,2(ξ, t, k1) = I2 −

e2i(θ̂1−θ̂∗1 )

∆̃(k1 − k∗1)

[
1

k1 − k∗1
C1C̄1 +

1

2k1
C̃1

¯̃C1

]
, (B.27c)

µ̆dn
+,2(ξ, t,−k∗1) = I2 +

e2i(θ̂1−θ̂∗1 )

∆̃(k1 − k∗1)

[
1

2k∗1
C1C̄1 −

1

k1 − k∗1
C̃1

¯̃C1

]
, (B.27d)

where we have introduced the notations

H1
1,1 =

(
|µ1|

2 κ1µ∗
1

κ∗1 µ1 |κ1|
2

)
, H1

2,2 =

(
|κ1|

2 −κ1µ∗
1

−κ∗1 µ1 |µ1|
2

)
, (B.28a)

∆̃ = 1 −
e2i(θ̂1−θ̂∗1 )

(k1 − k∗1)
2
(|µ1|

2 + |κ1|
2)||γγγ1||

2. (B.28b)

Taking the appropriate limits as stated in Eqs. (B.6), setting t = 0 because the scattering

coefficients are time-independent, and using the symmetry (B.15), we can determine the

following expressions for the transmission coefficients

a(k) =

(
I2 +

k1 − k∗1
k − k∗1

C̄1C1

(|µ1|2 + |κ1|2) ||γγγ1||2
+

k1 − k∗1
k + k1

¯̃C1C̃1

(|µ1|2 + |κ1|2) ||γγγ1||2

)
A†,

(B.29a)
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c̄(k) = A

(
I2 +

k∗1 − k1

k − k1

C̄1C1

(|µ1|2 + |κ1|2) ||γγγ1||2
+

k∗1 − k1

k + k∗1

¯̃C1C̃1

(|µ1|2 + |κ1|2) ||γγγ1||2

)
,

(B.29b)

c(k) = D

(
I2 +

k1 − k∗1
k − k∗1

C1C̄1

(|µ1|2 + |κ1|2) ||γγγ1||2
+

k1 − k∗1
k + k1

C̃1
¯̃C1(

|µ1|2 + |κ2
1

)
||γγγ1||2

)
,

(B.29c)

ā(k) =

(
I2 +

k∗1 − k1

k − k1

C1C̄1

(|µ1|2 + |κ1|2) ||γγγ1||2
+

k∗1 − k1

k + k∗1

C̃1
¯̃C1

(|µ1|2 + |κ1|2) ||γγγ1||2

)
D†,

(B.29d)

where by A and D we denote the 2 × 2 constant matrices

A = lim
ξ→−∞

µ̆
up
∞,1(ξ), D = lim

ξ→−∞
µ̆dn

∞,2(ξ). (B.30)

Again, computing the asymptotics of a(k) and ā(k) as k → 0 in the last equations and

equating same orders of k with the asymptotic behavior (B.19) one can compute the ma-

trices A and D explicitly

A = I2 −
k1 − k∗1

k1

H1
1,1

|µ1|2 + |κ1|2
+

k1 − k∗1
k∗1

H1
2,2

|µ1|2 + |κ1|2
, (B.31a)

D = I2 +
k∗1 − k1

k∗1

C1C̄1

(|µ1|2 + |κ1|2) ||γγγ1||2
−

k∗1 − k1

k1

C̃1
¯̃C1

(|µ1|2 + |κ1|2) ||γγγ1||2
, (B.31b)

and inserting these expressions into Eqs. (B.29), we obtain the transmission coefficients

for a 1-fundamental breather solution:

aj(k) = I2 +
k

k j

k j − k∗j

k − k∗j

C̄jCj(
|µj|2 + |κj|2

)
||γγγj||2

−
k

k∗j

k j − k∗j

k + k j

¯̃CjC̃j(
|µj|2 + |κj|2

)
||γγγj||2

,

(B.32a)

c̄j(k) = I2 +
k

k∗j

k∗j − k j

k − k j

C̄jCj(
|µj|2 + |κj|2

)
||γγγj||2

−
k

k j

k∗j − k j

k + k∗j

¯̃CjC̃j(
|µj|2 + |κj|2

)
||γγγj||2

,

(B.32b)

cj(k) = I2 +
k

k j

k j − k∗j

k − k∗j

CjC̄j(
|µj|2 + |κj|2

)
||γγγj||2

−
k

k∗j

k j − k∗j

k + k j

C̃j
¯̃Cj(

|µj|2 + |κj|2
)
||γγγj||2

,

(B.32c)

āj(k) = I2 +
k

k∗j

k∗j − k j

k − k j

CjC̄j(
|µj|2 + |κj|2

)
||γγγj||2

−
k

k j

k∗j − k j

k + k∗j

C̃j
¯̃Cj(

|µj|2 + |κj|2
)
||γγγj||2

,

(B.32d)

as functions of k, in terms of the discrete eigenvalue and the associated norming constant.

B.3 Transmission coefficients for a 1-self-symmetric soliton solution

Below, we derive the transmission coefficients for a 1-self-symmetric soliton solution, i.e.,

a composite breather with self-symmetric (i.e., purely imaginary) discrete eigenvalues.
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Recall that the transmission coefficients c and c̄ are given by Eqs. (B.6) and using Eqs. (35)

for the eigenfunctions of a self-symmetric soliton, we then obtain:

µ̆
up
+,2(ξ, t, k) =

e−2iθ∗1

k − k∗1

(
I2 +

e4iθ1

(k∗1 − k1)2
C̄1C1

)−1

C̄1, (B.33a)

µ̆dn
+,2(ξ, t, k) = I2 +

e2i(θ1−θ∗1 )

(k − k∗1)(k
∗
1 − k1)

(
I2 +

e4iθ1

(k∗1 − k1)2
C1C̄1

)−1

C1C̄1, (B.33b)

where taking their limits as ξ → −∞, and setting t = 0, we get

lim
ξ→−∞

µ̆
up
+,2(ξ, k) = 02, lim

ξ→−∞
µ̆dn
+,2(ξ, k) =

(
k − k1

k − k∗1

)
I2, (B.34a)

assuming again that νj > 0, for j = 1, 2. Using Eqs. (B.6) and the symmetries (B.15), we

obtain the following expressions for the transmission coefficients:

c(k) =
k − k1

k − k∗1

(
lim

ξ→−∞
µ̂dn

∞,2(ξ)

)
, c̄(k) =

k − k∗1
k − k1

(
lim

ξ→−∞
µ̂

up
∞,1(ξ)

)
, (B.35a)

a(k) =
k − k1

k − k∗1

(
lim

ξ→−∞
µ̂

up
∞,1(ξ)

)†

, ā(k) =
k − k∗1
k − k1

(
lim

ξ→−∞
µ̂dn

∞,2(ξ)

)†

. (B.35b)

In addition, one can use the asymptotic behavior of a(k), ā(k) as k → 0, and as done in

the previous cases obtain

lim
ξ→−∞

µ̂
up
∞,1(ξ) = −I2, lim

ξ→−∞
µ̂dn

∞,2(ξ) = −I2, (B.36)

by which Eqs. (B.35) yield:

c(k) =
k1 − k

k1 + k
I2, c̄(k) =

(
k∗1 − k

k∗1 + k

)
I2, a(k) ≡ c(k), ā(k) ≡ c̄(k). (B.37)

C Proof of Lemma 6.5

Lemma 6.5. Proof. Spelling out the condition (118) gives

(
I −

α1 − α∗1
λ + α1

Π∗
1

)(
I −

α2 − α∗2
λ + α2

Π∗
2

)
=

(
I −

α1 − α∗1
λ − α∗1

ΛΠ1Λ−1

)(
I −

α2 − α∗2
λ − α∗2

ΛΠ2Λ−1

)
. (C.1)

The poles on the LHS and RHS must coincide so we must have {−α1,−α2} = {α∗1 , α∗2}.

Suppose −α1 = α∗1 (and thus −α2 = α∗2); then we have from the last relation

(
I −

α1 − α∗1
λ − α∗1

Π∗
1

)(
I −

α2 − α∗2
λ − α∗2

Π∗
2

)
=

(
I −

α1 − α∗1
λ − α∗1

ΛΠ1Λ−1

)(
I −

α2 − α∗2
λ − α∗2

ΛΠ2Λ−1

)
, (C.2)

which is rearranged into

(
I +

α1 − α∗1
λ − α1

ΛΠ1Λ−1

)(
I −

α1 − α∗1
λ − α∗1

Π∗
1

)
=
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(
I −

α2 − α∗2
λ − α∗2

ΛΠ2Λ−1

)(
I +

α2 − α∗2
λ − α2

Π∗
2

)
. (C.3)

The LHS has no pole at α2 and α∗2 , while the RHS has no pole at α1 and α∗1 . In view of our

assumption on α1 and α2, this means that the common rational function of λ represented

by this equality is an entire function on C with limit I4 at infinity. By Liouville theorem,

the function is the identity matrix, and for this to hold we find

Π∗
j = ΛΠjΛ

−1 , j = 1, 2 , (C.4)

and each elementary factor falls into the realm of Lemma 6.4. This is case 1.

Suppose now that α2 = −α∗1 . Hence, the condition (118) now reads

(
I −

α1 − α∗1
λ + α1

Π∗
1

)(
I −

α1 − α∗1
λ − α∗1

Π∗
2

)
=

(
I −

α1 − α∗1
λ − α∗1

ΛΠ1Λ−1

)(
I −

α1 − α∗1
λ + α1

ΛΠ2Λ−1

)
. (C.5)

This takes the form of a special case of the refactorization Theorem 6.1, so we have

Λ Π1 Λ−1 = φ−1 Π∗
2 φ , Λ Π2 Λ−1 = φ−1 Π∗

1 φ (C.6)

with

φ = 2α∗1 I + (α1 − α∗1)(Π
∗
1 + Π∗

2) . (C.7)

This shows that Π1 and Π2 necessarily have the same rank and that Π∗
1 + Π∗

2 commutes

with φ, and therefore

Π∗
1 + Π∗

2 = φ−1 (Π∗
1 + Π∗

2) φ = Λ (Π1 + Π2)Λ−1 . (C.8)

Let us set

Γ = Π∗
1 − Λ Π2 Λ−1 = Λ Π1 Λ−1 − Π∗

2 . (C.9)

Then Γ = Γ†, and therefore Γ is diagonalizable, with real eigenvalues, by a unitary matrix

M:

Γ = M D M† , D = diag(d1, d2, d3, d4) , dj ∈ R , j = 1, . . . , 4 .

Since Tr Γ = rank Π1 − rank Π2 = 0, we get

d1 + d2 + d3 + d4 = 0 .

Note that Γ = Λ Γ∗ Λ−1, and since M is unitary, we get

M D M† = Λ M∗ D MT Λ−1 ⇔ M† Λ M∗ D = D M† Λ M∗ . (C.10)

Let now A = M† Λ M∗. A is an antisymmetric matrix which commutes with D. It is

also unitary, so its determinant has modulus equal to 1. This yields the conditions

(di − dj)Aij = 0 , i < j , |A12 A34 − A13 A24 + A23 A14|
2 = 1 . (C.11)

This means that at least two dj must be equal as otherwise A = 0, which is a contradiction.

Suppose all dj are equal so Γ = dI4, d ∈ R. Note that

Γ = Π∗
1 − I4 + I4 − Λ Π2 Λ−1 (C.12)
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so

−Γ2 =
(

I4 − Π∗
1 − (I4 − Λ Π2 Λ−1)

)
(Π∗

1 − Λ Π2 Λ−1)

= −(I4 − Π∗
1)Λ Π2 Λ−1 − (I4 − Λ Π2 Λ−1)Π∗

1

= −(I4 − Λ Π2 Λ−1 − Γ)Λ Π2 Λ−1 − (I4 − Λ Π2 Λ−1)(Γ + Λ Π2 Λ−1)

= Γ Λ Π2 Λ−1 + Λ Π2 Λ−1 Γ − Γ . (C.13)

If Γ = dI4, since Π2 is neither the identity nor 0, we must have d = 0, and therefore

Π∗
1 = Λ Π2 Λ−1 , Π∗

2 = Λ Π1 Λ−1 . (C.14)

Suppose now without loss of generality that d1 = d2 = d3 and d4 6= dj, j =
1, 2, 3. This is in contradiction with (C.11), which requires A14 = A24 = A34 = 0
but |A12 A34 − A13 A24 + A23 A14|

2 = 1. Similarly, we cannot have wlog d1 = d2 and

d3 6= dj, j = 1, 2, 4 and d4 6= dj, j = 1, 2, 3. Hence, it remains the possibility d1 = d2

and d3 = d4. Because of the zero trace of Γ, this means that Γ = dM Σ3 M†, d ∈ R.

It also means that only A12 and A34 can be nonzero in the matrix A, hence M must be a

unitary matrix such that

M† Λ M∗ =




0 A12 0 0
−A12 0 0 0

0 0 0 A34

0 0 −A34 0


 .

Denoting Π̌2 = M† Λ Π2 Λ−1 M, we can use (C.13) again to deduce

d(Σ3 − dI4 − Σ3Π̌2 − Π̌2Σ3) = 0 . (C.15)

If d = 0, we are back to the case (C.14). Otherwise d 6= 0 and Γ = dMΣ3M† is

invertible. We show next that this leads to a contradiction so that this case is rejected. We

can write T(λ) given in (124) as a sum of partial fractions

T(λ) = I +
R1

λ − α∗1
+

R2

λ − α∗2
,

where the residues are given by

R1 = −(α1 − α∗1)Π1

(
I −

α2 − α∗2
α∗1 − α∗2

Π2

)
, R2 = −(α2 − α∗2)

(
I −

α1 − α∗1
α∗2 − α∗1

Π1

)
Π2 .

Now recall that we are in the case α2 = −α∗1 and that we are imposing the symmetry

(118) on T(λ). Hence we must have R∗
2 = −Λ R1 Λ−1 which yields explicitly

(
I −

α1 − α∗1
α1 + α∗1

Π∗
1

)
Π∗

2 = Λ Π1 Λ−1Λ

(
I −

α1 − α∗1
α1 + α∗1

Π2

)
Λ−1 . (C.16)

Note that α1 + α∗1 6= 0 in the present case α2 = −α∗1 , since we assume in general that

α2 6= α1. Since we are considering the case where Π∗
2 = Λ Π1 Λ−1 − Γ, recalling that

Λ Γ∗ Λ−1 = Γ and noting that

[
Π∗

1 , Λ Π1 Λ−1
]
= 0 , (C.17)
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we obtain the condition

α1 − α∗1
α1 + α∗1

(
Π∗

1 − Λ Π1 Λ−1
)

Γ = Γ .

Since Γ is supposed to be invertible, this yields

α1 − α∗1
α1 + α∗1

(
Π∗

1 − Λ Π1 Λ−1
)
= I ,

which is a contradiction since the LHS has zero trace while the RHS obviously does not.

D Hodograph transformation and exact two soliton solution of the ccSPE

The ccSPE (2) admits an equivalent form written in conservation law:

(
ρ−1

)
t
−

1

2

(
||uuu||2ρ−1

)
x
= 0, ρ−1 =

√
1 + ||uuux||2, (D.1)

which is satisfied provided that the components uj and their conjugates satisfy Eq. (2).

We can now define a hodograph transformation

dξ = ρ−1dx +
ρ−1

2
||uuu||2dt, (D.2)

which converts the initial variables (x, t) to (ξ, t). Recall that the travel-time parameter ξ
is defined by

ξ =

x∫
0

√
1 + ||uuuy||2dy −

∞∫
0

(√
1 + ||uuuy||2 − 1

)
dy, (D.3)

which implies

dξ =
∂ξ

∂x
dx +

∂ξ

∂t
dt, (D.4)

where

∂ξ/∂x =
∂

∂x

x∫
0

√
1 + ||uuuy||2dy =

√
1 + ||uuux||2 ≡ ρ−1,

∂ξ/∂t =
∂

∂t

x∫
0

√
1 + ||uuuy||2dy =

x∫
0

∂tρ
−1dy =

1

2

x∫
0

∂y

(
||uuu||2ρ−1

)
dy ≡

ρ−1

2
||uuu||2,

which coincides with (D.2). Moreover, the hodograph transformation converts the Lax

pair (3) into the following one for Ψ(ξ, t) = Φ(x, t):

Ψξ = R(ξ, t; k)Ψ, R(ξ, t; k) = −ikρ(ξ, t)Σ3 + kΣ3V0,ξ , (D.6a)
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Ψt = S(ξ, t; k)Ψ, S(ξ, t; k) =
i

4k
Σ3 −

i

2
V0, (D.6b)

where

Σ3 = diag(1, 1,−1,−1), V0 =

(
02×2 U

V 02×2

)
, U =

(
−iu1 −iu2

iu∗
2 −iu∗

1

)
, V = U†.

The compatibility condition Ψξt = Ψtξ , gives a two-component coupled complex equa-

tion

uj,ξt = ρuj, ρ = 1 −
1

2

∫
||u||2ξ dt, for j = 1, 2. (D.7)

Conversely, one can define the inverse hodograph transformation

dx = ρdξ +
ρ

2
||u||2dt, (D.8)

which converts the Lax pair (D.6) and Eq. (D.7) into the Lax pair (3) and the ccSPE (2),

respectively. Therefore, the ccSPE equation (2) is equivalent to equation (D.7) through

the hodograph transformation (D.2), provided that ρ > 0.

Next, we provide a formula for exact 2-soliton solutions, which we used to verify

numerically some of the results in this paper. The formula can be obtained as a special

case of the ones derived in [45] using Bäcklund-Darboux transformations, but has been

adapted to the notations of this work and to some differences in the variables used in [45]

compared to this work. First of all, we introduce the eigenfunctions Φ1 and Φ2, given by

Φj =




µ∗
j e−iθj

κ∗j e−iθj

αje
iθj

γje
iθj


 , θj = ξk j − t/4k j, j = 1, 2, (D.9)

where k j, are the two discrete eigenvalues, (αj, β j)
T is the non-zero column of the norming

constant Cj, and µj, κj are the two multiplicative constants, such that the two columns of

Cj are proportional to each other. Specifically, the norming constant Cj associated to the

discrete eigenvalue k j, for which Φj is given by (D.9), is assumed to be a rank-one matrix

of the form Cj = (µjγγγj, κjγγγj), where γγγj = (αj, β j)
T , for j = 1, 2. We then define the

4 × 4 matrix Y as follows

Y = [Φ1, ΛΦ∗
1 , Φ2, ΛΦ∗

2 ] ≡

[
Y1
Y2

]
, (D.10)

where we introduced the matrix Λ = diag(iσ2, iσ2). Next, we denote by M2 the 4 × 4
matrix

M2 =

(
M11 M12

M21 M22

)
, (D.11)

where Mij are the 2 × 2 blocks defined as

M11 =

(
|k1|

2

k∗1 − k1
Φ†

1Φ1

)
I2, M22 =

(
|k2|

2

k∗2 − k2
Φ†

2Φ2

)
I2, (D.12a)

M12 =




k2k∗1
k∗1−k2

Φ†
1Φ2

k∗1k∗2
−k∗1−k∗2

Φ†
1ΛΦ∗

2

−k1k2
k1+k2

ΦT
1 ΛΦ2

k1k∗2
−k1+k∗2

ΦT
1 Φ∗

2


 , (D.12b)
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M21 =




k1k∗2
k∗2−k1

Φ†
2Φ1

k∗1k∗2
−k∗1−k∗2

Φ†
2ΛΦ∗

1

−k1k2
k1+k2

ΦT
2 ΛΦ1

k∗1k2

−k2+k∗1
ΦT

2 Φ∗
1


 . (D.12c)

The exact two soliton solution of the ccSPE is then given by

Q[2] = Y2M−1
2 Y†

1 , Q[2] =

(
q1 q2

q∗2 −q∗1

)
. (D.13)

Note here that the vector solution u of the ccSPE (2), and the vector solution q of the

ccSPE in [45], namely

qxt + q −
1

2
(||q||2qx)x = 0, q = (q1, q2)

T , (D.14)

are connected via the relation u1 = −iq∗1 and u2 = −iq2, for the two Lax pairs to match,

provided that k = 1/λ holds for the discrete eigenvalues of the two systems. Therefore,

one can recover the exact 2-soliton solution of (2) using equation (D.13), modulo the

change of dependent and independent variables given above. Moreover, in the case of the

2-soliton solution the quantity ρ takes the form

ρ = 1 − lnξt (det M2) , (D.15)

which after we equate with the expression of ρ in relation (D.7) yields

||u||2 = 2 lntt (det M2) . (D.16)

E Computation of the transmission coefficients from the Darboux matrices

It is instructive to derive the scattering coefficients of the soliton solutions created from

the zero solution by the dressing factor/Darboux matrix Tk1,Π1
(k). It is a standard result

of the dressing method that the scattering matrix S(k) defined in (12), is given in this case

by

S(k) = lim
ξ→+∞

Tk1,Π1
(k)

(
lim

ξ→−∞
Tk1,Π1

(k)

)−1

, (E.1)

where the limits can be calculated at t = 0 (recall that the (ξ, t) dependence of Tk1,Π1
(k)

enters through Π1(ξ, t).) Thus, all we need to evaluate are the following limits

lim
ξ→±∞

Π1(ξ, 0) . (E.2)

Let us focus on the case of a generic and a non-generic composite breather. Recall that in

those cases,

Π1(ξ, 0) = Φ1(ξ)(Φ
†
1(ξ)Φ1(ξ))

−1Φ†
1(ξ) , (E.3)

where

Φ1(ξ) = e−ik1ξΣ3(φ1, φ2) , (E.4a)

φ1 =

(
δδδ1

γγγ1

)
, φ2 =

(
τττ1

ωωω1

)
, δδδ1, γγγ1, τττ1, ωωω1 ∈ C

2 , j = 1, 2 , (E.4b)

and for a generic composite breather, we assume that det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) 6=
0, while for a non generic composite breather, we can either assume det(δδδ1 , τττ1) = 0 and

det(γγγ1 , ωωω1) 6= 0, or det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) = 0. Direct calculations give the

following estimates for each case.
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1. Case det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) 6= 0 (generic composite breather):

Π1 ∼

(
I2 02

02 02

)
, ξ → +∞, Π1 ∼

(
02 02

02 I2

)
, ξ → −∞, (E.5)

and therefore

Tk1,Π1
(k) ∼

(
k−k1
k−k∗1

k+k∗1
k+k1

I2 02

02 I2

)
, ξ → +∞, (E.6a)

Tk1,Π1
(k) ∼

(
I2 02

02
k−k1
k−k∗1

k+k∗1
k+k1

I2

)
, ξ → −∞. (E.6b)

2. Case det(δδδ1 , τττ1) = 0 and det(γγγ1 , ωωω1) 6= 0 (non generic composite breather):

Π1 ∼

(
πδδδ1

02

02 πωωωα

)
, ξ → +∞, Π1 ∼

(
02 02

02 I2

)
, ξ → −∞, (E.7a)

πδδδ1
=

δδδ1δδδ†
1

δδδ†
1δδδ1

, πωωωα =
ωωωαωωω†

α

ωωω†
αωωωα

, ωωωα = ωωω1 − αγγγ1, (E.7b)

and therefore

Tk1,Π1
(k) ∼

(
T

up
k1,Π1

(k) 02

02 Tdn
k1,Π1

(k)

)
, ξ → +∞ (E.8a)

Tk1,Π1
(k) ∼

(
I2 02

02
k−k1
k−k∗1

k+k∗1
k+k1

I2

)
, ξ → −∞, (E.8b)

where we introduced the notations up and dn for the upper/lower diagonal blocks

of the Darboux matrix, and

T
up
k1,Π1

(k) =

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
πδδδ1

)(
I2 −

k

k∗1

k∗1 − k1

k1 + k
σ2π∗

δδδ1
σ2

)
, (E.9a)

Tdn
k1,Π1

(k) =

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
πωωωα

)(
I2 −

k

k∗1

k∗1 − k1

k1 + k
σ2π∗

ωωωα
σ2

)
. (E.9b)

3. Case det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) = 0 (non-generic composite breather):

Π1 ∼

(
I2 02

02 02

)
, ξ → +∞, Π1 ∼

(
πτττα 02

02 πγγγ1

)
, ξ → −∞, (E.10a)

πτττα =
τττατττ†

α

τττ†
ατττα

, τττα = τττ1 − αδδδ1, πγγγ1
=

γγγ1γγγ†
1

γγγ†
1γγγ1

, (E.10b)

and therefore

Tk1,Π1
(k) ∼

(
k−k1
k−k∗1

k+k∗1
k+k1

I2 02

02 I2

)
, ξ → +∞, (E.11a)

Tk1,Π1
(k) ∼

(
T

up
k1,Π1

(k) 02

02 Tdn
k1,Π1

(k)

)
, ξ → −∞, (E.11b)
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where here

T
up
k1,Π1

(k) =

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
πτττα

)(
I2 −

k

k∗1

k∗1 − k1

k1 + k
σ2π∗

τττα
σ2

)
, (E.12a)

Tdn
k1,Π1

(k) =

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
πγγγ1

)(
I2 −

k

k∗1

k∗1 − k1

k1 + k
σ2π∗

γγγ1
σ2

)
. (E.12b)

Now, using the above estimates and Eq. (E.1), we can compute the scattering coefficients

a(k) and ā(k) (note that consistently with pure soliton solutions, we find b(k) = 0 =
b̄(k)). To simplify the expressions, we use identities such as

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
π

)−1

=

(
I2 −

k

k∗1

k∗1 − k1

k − k1
π

)
(E.13)

=
k1

k∗1

k − k∗1
k − k1

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
σ2π∗σ2

)
, (E.14)

valid for any rank-1 two-dimensional projector π (recall that σ2π∗σ2 = I2 − π).

1. Case det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) 6= 0 (generic composite breather):

a(k) =
k − k1

k − k∗1

k + k∗1
k + k1

I2, ā(k) =
k − k∗1
k − k1

k + k1

k + k∗1
I2, (E.15)

which implies that the points k = k1 ,−k∗1, are double zeros for the determinant

of a(k) on the upper half plane, but still simple poles for the RHP, because a(k)
becomes the identical zero matrix when evaluated at these points (resp., similar

statement holds for the points k = −k1 , k∗1 and the transmission coefficient ā(k)).

2. Case det(δδδ1 , τττ1) = 0 and det(γγγ1 , ωωω1) 6= 0 (non-generic composite breather):

a(k) =

(
I2 −

k

k1

k∗1 − k1

k∗1 − k
πδδδ1

)(
I2 −

k

k∗1

k∗1 − k1

k1 + k
σ2π∗

δδδ1
σ2

)
, (E.16a)

ā(k) =

(
I2 +

k

k1

k∗1 − k1

k + k∗1
πωωωα

)(
I2 −

k

k∗1

k∗1 − k1

k − k1
σ2π∗

ωωωα
σ2

)
, (E.16b)

and in this case one can show that

det a(k) =
k − k1

k − k∗1

k + k∗1
k + k1

, det ā(k) =
k + k1

k + k∗1

k − k∗1
k − k1

, (E.17)

which implies that the determinant of a(k) has simple zeros at the points k1 ,−k∗1
on the upper half plane, and that a(k) is nonzero when evaluated at these points

(resp., the determinant of ā(k) has simple zeros at the points −k1 , k∗1 on the lower

half plane, and ā(k) is nonzero when evaluated at these points).

3. Case det(δδδ1 , τττ1) 6= 0 and det(γγγ1 , ωωω1) = 0 (non-generic composite breather):

a(k) =

(
I2 −

k

k∗1

k∗1 − k1

k1 + k
πτττα

)(
I2 −

k

k1

k∗1 − k1

k∗1 − k
σ2π∗

τττα
σ2

)
, (E.18a)

ā(k) =

(
I2 −

k

k∗1

k∗1 − k1

k − k1
πγγγ1

)(
I2 +

k

k1

k∗1 − k1

k + k∗1
σ2π∗

γγγ1
σ2

)
, (E.18b)

which again gives us

det a(k) =
k − k1

k − k∗1

k + k∗1
k + k1

, det ā(k) =
k + k1

k + k∗1

k − k∗1
k − k1

, (E.19)

and we reach the same conclusion as before for the zeros of det a(k) and det ā(k).
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The above computations show that in both cases the transmission coefficients of a non-

generic composite breather lead to rank-1 norming constants (see Sec. 2), and hence when

either det(δδδ1 , τττ1) = 0 or det(γγγ1 , ωωω1) = 0, a non generic composite breather reduces

to a fundamental breather. The above calculations show this spectrally and one can also

see this at the level of the solution. For instance, when τττ1 = αδδδ1, (173) reduces to (141)
with the role of γγγ1 for the fundamental breather now played by the combination ωωω1 − αγγγ1
where ωωω1, γγγ1 are the vectors characterizing the (non generic) composite breather.
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