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Abstract

Due to the complexity of process operation, industrial process data are often

nonlinear and nonstationary, high dimensional, and multivariate with complex

interactions between multiple outputs. To address all these issues, this pa-

per proposes a novel industrial predictive model that integrates deep feature

extraction and fast online adaptation, and can effectively deal with multiple

process outputs. Specifically, a multi-output gradient radial basis function net-

work (MGRBF) with excellent predictive capacity of nonstationary data is first

used to provide preliminary prediction of target outputs. This prior quality

information is combined with the original process input for deep feature learn-

ing and dimensional reduction. Through layer-wise feature extraction by the

stacked autoencoder (SAE), deep quality-enhanced features can be obtained,

which is further fed into a MGRBF tracker for online prediction. In order to

timely capture the fast-changing process characteristics, the first two modules,

namely, preliminary MGRBF predictor and SAE feature extractor are frozen

after training, while the structure and parameters of the MGRBF tracker are
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updated online in an efficient manner. Two industrial case studies demonstrate

that the proposed adaptive deep MGRBF network outperforms existing state-

of-the-art online modeling approaches as well as deep learning models, in terms

of both multi-output modeling accuracy and online computational complexity.

Keywords: Multivariate nonlinear and nonstationary industrial process,

multi-output gradient radial basis function network, stacked autoencoder,

quality-enhanced feature extraction, online adaptive tracking

1. Introduction

To meet stringent requirements on safety, efficiency, and sustainability in

modern process industry, process control and high-level decision making are

urgently needed. These needs rely on accurately modeling of industrial plants

from operational data, delivered by system identification and soft sensing [1].5

The former aims to provide process dynamics for controller design, while the

latter is to estimate key performance indicators based on easy-to-measure pro-

cess variables. However, due to the complexity of process operation, industrial

process data are usually nonlinear and nonstationary, high dimensional with

strong correlations, and multivariate with complex interactions among multi-10

ple outputs [2, 3, 4, 5, 6, 7]. Although numerous studies have been devoted

to address one or two of these issues, no research has addressed them all. For

example, traditional deep learning models can extract useful features from high

dimensional operation data, but it is difficult to adapt them online to track fast

time-varying process dynamics due to their complex deep architecture [8, 9, 10].15

This motivates our current work to develop an industrial predictive model that

has both fast online adaptation and deep feature learning capacity as well as

can effectively deal with multiple process outputs.

For nonlinear and nonstationary processes, multiple local model learning

strategy has been widely used in adaptive soft sensor modeling [11, 12, 13]. The20

core idea is to partition the overall modeling space into multiple subspaces, and

each subspace is considered to be stationary that can be coupled by a local
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linear model. The growing and pruning selective ensemble regression (GAP-

SER) grows local linear models online to automatically identify newly emerged

process patters and combines the most up-to-data local models to make online25

prediction as well as prunes the unwanted out-of-data local models to reduce the

online complexity [14, 15]. This GAP-SER is further extended to multi-output

modeling, in which it adopts a novel adaptive local learning strategy based on

multivariate statistic that enables growing and pruning multi-output local linear

models [16]. Since the multi-output GAP-SER can exploit the complex interac-30

tions between multiple outputs, it attains better prediction accuracy than using

multiple single-output GAP-SERs when modeling multivariate nonstationary

industrial processes [16]. A potential drawback of the GAP-SER methods is

that the size of the predictor changes from sample to sample, which makes it

hard to act as an identifier in real-time process control.35

As an alternative to the above methods, single nonlinear model learning that

attempts to capture global nonlinear data characteristics, has also attracted

considerable attention in processes modeling. One typical nonlinear model is

radial basis function (RBF) network. By formulating the RBF network training

as a subset selection problem, the well-known orthogonal least squares (OLS)40

is used to construct a parsimonious compact RBF model from the full model

[17, 18, 19, 20]. The RBF network can be easily extended to multi-output mod-

eling by adding multiple output neurons to the single-output network structure

[21]. To provide the RBF model with adaptive capacity, the recursive least

square (RLS) is usually employed to update the network weights online [22].45

However, this is insufficient for highly nonstationary processes, where the pro-

cess dynamics can change significantly and new process states may appear. In

order to capture the newly emerged process state, the fast tunable RBF (TRBF)

adjusts the model weights as well as RBF nodes online to adaptively modeling

nonstationary data [23]. This fast TRBF algorithm can be naturally extended to50

multivariate processes modeling using the multi-output RBF network structure.

An extension to RBF network, called gradient RBF (GRBF) network, was

proposed to deal with nonstationary time series [24]. This GRBF network
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trained by the OLS algorithm is better at predicting nonstationary time series

than the classic RBF network, because its hidden node can sense the gradient55

of time series rather than series itself [24]. By incorporating a highly efficient

tunable node mechanism, an adaptive GRBF (AGRBF) was proposed for on-

line time series prediction [25], which was further extended to online modeling

of time-varying industrial processes [26]. The results of [26] show that this

AGRBF is superior to the TRBF and GAP-SER, in terms of both online mod-60

eling accuracy and computational complexity. In order to deal with multivariate

data, a novel multi-output GRBF (MGRBF) network structure was designed

in [27], which is very different from the single-output GRBF network. Unlike

most existing neural networks that produce single response of its hidden node,

the MGRBF’s hidden node produces multiple responses to the node’s input,65

which correspond to multiple local predictors for different outputs. When equip-

ping with an online adaptive mechanism, this MGRBF tracker outperforms the

multi-output GAP-SER and multiple single-output AGRBFs for multivariate

nonstationary processes modeling [27].

The aforementioned adaptive models, particularly the MGRBF tracker, im-70

pose very low computational complexity to perform online model adaptation,

which meets the strict online computational constraint imposed by the system’s

sampling period. Hence, these approaches are efficient for online tracking ap-

plications. Despite the excellent adaptive capacity to nonstationary data, all

the aforementioned methods have difficulty in dealing with high dimensional-75

ity that is commonly encountered in big process data. A simple way to re-

duce data dimension is to employ latent variable models, such as partial least

square (PLS) that enables modeling data in the reduced-dimensional latent

space [28, 29, 30, 31]. However, such models with shallow structure may fail

to capture complex nonlinear features from process data. Another popular way80

is to use deep learning models, which has attracted growing attention recently

in industrial processes modeling [9, 10, 32, 33, 34, 35, 36, 37, 38]. Deep neu-

ral networks with multilevel feature layers can effectively learn the compressed

essential features from raw data and discover the intricate data patters. One
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typical deep model used in soft sensor modeling is the stacked autoencoder85

(SAE). By stacking multiple autoencoders (AEs), hierarchical features can be

successively learned from raw operational data, which are further used for the

process output prediction. Several variants have been proposed to incorporate

quality-relevant information into feature representation so as to improve the

prediction accuracy [35, 36, 37, 38]. Another commonly used deep model is90

recurrent neural networks, such as long short-term memory (LSTM), which are

good at extracting dynamic temporal information from time series data [39, 40].

These deep neural networks have deep nonlinear learning capability. Although

these deep learning models achieve great success for dealing with large-scale

big processes data, applying them in nonstationary industrial environments for95

real-time tracking remains largely understudied. This is because most deep

models have a huge network architecture, and it is computationally prohibitive

to optimize such large-size model structure online for timely tracking fast time-

varying processes dynamics. Therefore, during online operation, these existing

deep neural networks are fixed, and consequently their online prediction perfor-100

mance are significantly degraded. Additionally, most deep models are only used

for single-output modeling, and applications to multivariate industrial processes

have not been extensively investigated.

Motivated by the above background, this paper proposes a novel deep neu-

ral network for online modeling and identification of multi-output nonlinear and105

nonststaionary industrial processes, called the adaptive deep MGRBF network.

The proposed framework integrates deep feature learning and fast online adap-

tation naturally, and it can effectively deal with multiple process outputs. Our

novel contribution is three-fold:

1. In order to learn better and deeper features from high-dimensional indus-110

trial data, a quality-relevant feature extraction strategy is proposed by

integrating MGRBF predictor and SAE feature extractor. To be specific,

an MGRBF network is first employed to provide a preliminary prediction

of the target outputs. This prior quality information is combined with the
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original input data for feature learning. After layer-wise feature extrac-115

tion by the SAE, deep quality-enhanced features obtained are used for the

prediction of the process’s multi-outputs by an MGRBF tracker.

2. In order to timely capture the fast time-varying process characteristics, an

efficient online adaptation strategy is designed to tune the adaptive part

of the deep model. During the online operation, the first two modules120

are unchanged, and they collaborate to extract the quality-related deep

features, which are fed into the MGRBF tracker for online prediction and

adaptive modeling. When the current model structure becomes insuffi-

cient for modeling the changing process dynamics, the worst node of the

MGRBF tracker is replaced by a new node that automatically encodes the125

current process state.

3. Our proposed method is evaluated using two industrial case studies, soft

sensing for penicillin fermentation process and online identification of a

real-world industrial microwave heating process. Experimental results

demonstrate that our method outperforms many state-of-the-art online130

modeling approaches as well as deep learning models, in terms of both

multi-output prediction accuracy and online computational complexity.

2. Multi-output GRBF Network

The task of online modeling of multi-output nonlinear and time-varying in-

dustrial process is to build a predictive model ŷt=fsys

(
xt

)
∈ R

no to predict the135

multiple process outputs yt ∈ R
no given the input xt ∈ R

ni at every sampling

time t, where yt=
[
yt,1 · · · yt,no

]T
is the no-dimensional process output vector,

xt =
[
xt,1 · · ·xt,ni

]T
is the ni-dimensional system input vector, and xt may

contain past process outputs, past process inputs or both or even past process

output gradients depending on the model structure design [3, 20, 26].140

The MGRBF network can be adopted to perform this task. The structure

of the MGRBF network is shown in Fig. 1. The input vector xt is mapped onto

6
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Figure 1: Structure of the MGRBF network.

the MGRBF’s hidden layer. Observe that each MGRBF’s hidden node produces

the no local single-output predictors for the no process outputs, which is unlike

any existing neural network whose hidden node only produces single response.

Let M be the number of hidden nodes in the MGRBF network. The response

of ith local predictor in the jth hidden node to the input vector xt is given by

pj,i(xt) = exp

(
−∥xt − cj∥

2

2σ2

)
·
(
yt−1,i + δj,i

)
, (1)

for 1 ≤ i ≤ no and 1 ≤ j ≤ M , where σ is the width of Gaussian kernel, which

is set as the maximum Euclidean distance among the nodes [25], cj ∈R
ni is the

node center, and δj,i is a scalar associated with the ith local predictor of the jth

node. The term
(
yt−1,i + δj,i

)
can be interpreted as a local one-step prediction

of yt,i by the ith local predictor. Its physical interpretation is that if the input145

xt is similar to the jth center cj , the value of the jth Gaussian function is close

to 1 and all the local predictors
(
yt−1,i+δj,i

)
for 1≤ i≤no become fully active.

The MGRBF network produces the model output vector as ŷt=
[
ŷt,1 · · · ŷt,no

]T

∈ R
no , which is the no linear combinations of the M hidden nodes’ responses.
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To be specific, the ith output is calculated as

ŷt,i =

M∑

j=1

pT
t,jθi,j , (2)

where pt,j =
[
pj,1(xt) · · · pj,no

(xt)
]T

∈ R
no is the response vector of the jth

node, and θi,j =
[
θi,j,1 · · · θi,j,no

]T
denotes the connection weights from the

jth hidden node’s response vector to the ith output node. More concisely, the

overall output vector produced by the no output nodes is given by

ŷt = ΘT
M̄×no

pM̄,t, (3)

where pM̄,t =
[
pT
t,1 · · ·p

T
t,M

]T
∈R

M̄ denotes the overall hidden layer’s response

vector with M̄ = noM , and ΘM̄×no
∈ R

M̄×no is the overall output layer’s

connection matrix.150

The training of the MGRBF network can be formulated as the problem

of selecting an M -term subset model {cj , δj}
M
j=1 from the full N -term model

{xt,dt}
N
t=1, where δj=

[
δj,1 · · · δj,no

]T
, N is the number of training samples, and

dt = yt − yt−1 is the process output gradient. Because of the unique geomet-

ric property of the MGRBF hidden node, that is, each node provides multiple155

responses to the node input, the existing subset selection techniques cannot

be directly applied to solve this problem. To address this difficulty, the work

[27] proposed a two-step training procedure. First, the appropriate centers are

selected from the training data set {xt;yt}
N
t=1 using the well-known OLS algo-

rithm [17, 18]. With the selected centers {cj =xtj}
M
j=1, their associated scalar160

vectors are then assigned to {δj = dtj}
M
j=1 to complete the MGRBF’s hidden

layer. The output weight matrix ΘM̄×no
of this constructed M -node MGRBF

network is finally solved by the regularized least square (LS) estimation. The

detailed MGRBF model construction procedure can be found in [27].

From this training procedure, an important physical property of the MGRBF165

hidden node can easily be inferred. Since in training, the jth hidden node’s

center is chosen as cj = xtj and its scalar vector is set to δj = ytj − ytj1, it
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is then obvious that the response of the jth hidden node to the input xtj is

exactly ytj . Furthermore, during the prediction operation, if the system input

xt is close to the jth hidden node’s center cj , the response of the jth hidden170

node will be close to yt, i.e., an accurate prediction of the process output yt.

Owing to the capability of multiple local predictions for its hidden nodes,

the MGRBF network is capable of modeling the multivariate nonstationary

data well. In particular, online adaptation of the MGRBF network imposes

very low computational complexity, and therefore it is highly efficient for online175

tracking applications [27]. In addition to nonstationary characteristics, indus-

trial process data are also massive and high dimensional. The shallow network

structure of MGRBF is less capable of capturing the complex dynamics from

high-dimensional massive data, compared with deep neural networks. In what

follows, we extend this shallow MGRBF network to a deep neural network, so180

as to provide it with deep feature learning and dimensional reduction capacity

for dealing with high-dimensional massive process data.

3. Proposed Deep MGRBF Network

A prominent feature of deep learning models is to learn hierarchical feature

representations from raw high-dimensional data. This is often achieved by stack-185

ing multilevel feature extraction layers, such as the SAE [8]. From an industrial

process modeling perspective, it is vital to learn quality-relevant features from

the raw process measurements with the guidance of quality data. Note that

in our industrial process modeling, the quality data are the current process

output measurement. This idea has attracted a lot of attention in both statisti-190

cal machine learning and deep learning methods for process data analytics and

modeling. For example, the PLS is such a counterpart of principle component

analysis for quality-related feature learning [28]. The works of [35, 36, 37, 38]

integrate quality information into the SAE to largely improve the predictive per-

formance of soft sensor modeling. However, all the these methods are unable to195

track the changing process dynamics in nonstationary industrial environments.

9
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Figure 2: Schematic diagram of adaptive deep MGRBF network.

3.1. Architecture of Deep MGRBF Network

To better adapt our model to industrial processes, we propose to integrate

MGRBF network with SAE to form a novel deep learning model with both

quality-related feature extraction and online adaptation capacity. Specifically,200

a MGRBF predictor is first employed to provide a preliminary prediction of the

target outputs. This prior quality information is combined with the original

input data to form a new input vector to the SAE. Through layer-wise fea-

ture extraction, the SAE extracts the reduced-dimension quality-related deep

features, which is then fed into a MGRBF tracker to adaptively track nonsta-205

tionary process dynamics. Therefore, this novel deep neural network consists

of three modules: a preliminary MGRBF predictor, a SAE feature extractor,

and an adaptive MGRBF tracker, which are connected in series as shown in

Fig. 2. After training, the parameters and structures of the first two mod-

ules are fixed, and during online operation we only adapt the third module,210

namely, the MGRBF tracker, online for tracking purpose. This ensures that

our model with very deep architecture costs very little online computation for

model adaptation. From the online learning perspective, it is computationally

too expensive to update the whole network structure, and the MGRBF tracker

itself is sufficient to handle the process drifts.215

With applications to nonlinear and nonstationary industrial process mod-

eling, therefore, our proposed adaptive deep MGRBF network operates in two

phases, namely, initial training and online adaptive modeling.

1. During initial training, we have a set of historical process input and output

measurements to form the training set. Given the training data, the three220
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modules of the deep MGRBF network are trained in sequence. First,

the preliminary MGRBF predictor is constructed. Then the SAE feature

extractor is trained. Finally, the adaptive MGRBF tracker is constructed.

2. During online adaptive modeling, the preliminary MGRBF predictor and

the SAE feature extractor are fixed and they are used to provide deep225

quality-related features, which are fed into the adaptive MGRBF tracker

to produce the final prediction of the process output. Then the weights

and structure of the adaptive MGRBF tracker are updated according to

the current process dynamics as measured by its prediction performance.

The following subsections detail these two phases of operations.230

3.2. Construction of Deep MGRBF Network

We now discuss how to construct the three modules of the proposed adaptive

deep MGRBF network during training.

3.2.1. Construction of Preliminary MGRBF Predictor

During training, a compact M -term MGRBF network is first constructed235

from the training set
{
xt;dt,yt

}Ntr

t=1
using the two-step training procedure [27],

where Ntr is the number of training samples. The trained MGRBF predictor

produces the preliminary prediction
{
ŷt

}Ntr

t=1
of the process outputs

{
yt

}Ntr

t=1
.

3.3. Construction of SAE

In order to obtain quality-related features, the SAE needs the target process

output vector yt as part of its input but this current process output is un-

available. The preliminary MGRBF predictor is used to provide a preliminary

process output prediction ŷt for the SAE as a substitute to this quality data.

Specifically, the preliminary prediction ŷt is combined with the original input

data to form a new input vector

x′
t =
[
ŷT
t xT

t

]T
∈ R

no+ni . (4)
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The new training set {x′
t}

Ntr

t=1 that contains important quality information is fed240

into the SAE so as to learn the corresponding quality-related features. The SAE

consists of the hierarchically stacked multiple AEs. Each AE is an unsupervised

self-learning network with encoder and decoder.

The input vector x′
t (4) is projected onto the first AE’s hidden layer φt =

[
φ1(x

′
t) · · ·φs(x

′
t)
]T

by the nonlinear mapping f as

φt = f
(
W1x

′
t + b1

)
(5)

where s is the size of hidden layer, W1 and b1 are the weight matrix and bias

vector, respectively, from the input layer to the hidden layer. The decoder

reconstructs the input vector x′
t by mapping φt onto the output layer as

x̃′
t = f̃

(
W̃1φt + b̃1

)
, (6)

where f̃ is the output layer’s nonlinear mapping, W̃1 and b̃1 are the connecting

weight matrix and bias vector, respectively, from the hidden layer to the output

layer. The AE aims to learn a mapping F (x′
t) = f̃

(
f(x′

t)
)
≈ x′

t that makes

the reconstruction error between x̃′
t and x′

t as small as possible. This can be

formulated as an optimization problem to minimize the following mean squared

reconstructed error

Junsup
(
W1, W̃1, b1, b̃1

)
=

1

2Ntr

Ntr∑

t=1

∥x̃′
t − x′

t∥
2
. (7)

This optimization can be solved by a gradient descend algorithm, yielding the

first AE’s hidden layer features φAE,1 as well as the encoder’s weights and bias245

{W1, b1}. After the first AE is trained, its hidden layer parameters {W1, b1}

are fixed, and the obtained hidden layer features φAE,1 serve as the input to the

second AE. Then, the second AE is trained to obtain its hidden layer parameters

{W2, b2} and the associated features φAE,2. In a progressive way, the whole SAE

is pre-trained layer by layer until the last (nth) AE is obtained.250
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After the above unsupervised pre-training, supervised fine-tuning is carried

out. A linear regression layer with no output neurons having the weight matrix

Wo and bias vector bo is added on the top of the SAE to produce the prediction

ỹt of the process output vector yt. The entire network is fine-tuned by the back

propagation with the training data {x′
t;yt}

Ntr

t=1 based on the cost function

Jsup
(
Wo, bo,Wi, bi, 1 ≤ i ≤ n

)
=

1

2Ntr

Ntr∑

t=1

∥ỹt−yt∥
2
, (8)

with the pre-trained SAE’s parameters used to initialize the hidden layers {Wi, bi}
n
i=1

of the supervised SAE. After the SAE is trained, the extracted quality-related

features {Φt}
Ntr

t=1 can be obtained from the last AE. Then, the regression output

layer is removed, and the last AE is connected to the MGRBF tracker.

3.3.1. Construction of MGRBF Tracker255

Given the training data
{
Φt;dt,yt

}Ntr

t=1
, where Φt is the extracted features

by the SAE, a compact M -term MGRBF model is constructed as the MGRBF

tracker using the two-step training procedure [27]. The trained MGRBF Tracker

produces the final prediction
{
ỹt

}Ntr

t=1
of the process outputs

{
yt

}Ntr

t=1
.

Remark 1. In traditional SAE, a simple linear regression layer is added on260

the top of the SAE for online prediction and adaptive modeling, in which the

output regression layer weights are either fixed or simply updated by the RLS al-

gorithm. Since the fixed SAE latent space is capable of extracting the compressed

nonlinear features from raw data, an adaptive linear regression layer using the

RLS algorithm is sufficient to track the slowly time-varying processes. How-265

ever, when the process exhibits severe nonstationarity and has multiple outputs,

a simple linear layer is unable to track the fast time-varying process dynamics

and modeling the coupling effects of multiple outputs well. Hence, we replace the

linear output layer with a stronger MGRBF tracker to deal with this problem.
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3.4. Online Tracking of Changing Process Dynamics270

After training, the parameters and structures of the MGRBF preliminary

predictor and the SAE feature extractor are fixed during online operation, while

the MGRBF tracker is adapted to track the fast time-varying dynamics between

the extracted features and the process outputs.

3.4.1. Online Prediction275

During online operation, the newly observed process input measurement vec-

tor xpt
at sampling time t is inputed into the preliminary MGRBF predictor

to obtain a preliminary prediction ŷpt
of the process output ypt

. This prelim-

inary prediction ŷpt
is combined with the raw input observation xpt

to form a

new input vector x′
pt

=
[
ŷT
pt

xT
pt

]
to the SAE. Through forward propagation280

from the first feature layer to the last one, the deep quality-related features are

extracted at the last layer as Φpt
, which is used as the input to the MGRBF

tracker for it to produce the final prediction ỹpt
of the process output ypt

.

Specifically, the quality-related feature Φpt
at sample t serves as the input

to the MGRBF tracker, whose hidden layer response vector pM̄,pt
is calculated

by (1). Then the MGRBF tracker produces the prediction according to (3) as

ỹpt
=ΘT

M̄×no,t−1
pM̄,pt

, (9)

where ΘM̄×no,t−1 is the weight matrix obtained at sampling time t − 1, ỹpt
is

the final prediction of the process output vector ypt
.285

3.4.2. Online Adaptation

After performing the online prediction, the structure and parameters of the

MGRBF tracker is updated according to its prediction performance. To be

specific, when the measurement of the true process output vector ypt
becomes

available, we measure the entire deep MGRBF network’s prediction performance

by the normalized prediction output error as

ẽpt
= ∥ypt

− ỹpt
∥
2/

∥ypt
∥
2
. (10)
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Based on this metric, we update the MGRBF tracker according to the following

criterion





if ẽpt
< ε : weight adaptation only,

if ẽpt
≥ ε : tunable node adaptation,

(11)

where ε is a pre-set threshold, which determines the frequency of node replace-

ment. The two adaptation modes are elaborated below.

Weight Adaptation Only : When ẽpt
< ε, the process varies slowly and the

current model structure is still sufficient to capture the underlying dynamics.

Hence, we simply update the weight matrix of the MGRBF tracker using the

RLS algorithm





gt = Γt−1pM̄,pt

(
γ + pT

M̄,pt
Γt−1pM̄,pt

)−1
,

Γt =
(
Γt−1 − gtp

T
M̄,pt

Γt−1

)
γ−1,

ΘM̄×no,t
= ΘM̄×no,t−1 + gte

T
pt
,

(12)

where ept
= ypt

− ỹpt
is the prediction error, gt ∈ R

M̄ is the Kalman gain

vector, 0.9≤γ<1 is the forgetting factor, and Γt∈R
M̄×M̄ is the inverse of the290

covariance matrix which is usually initialized to Γ0=ϑIM̄ with ϑ being a large

positive constant and IM̄ being the M̄ × M̄ identity matrix.

Tunable Node Adaptation: When ẽpt
≥ ε, the MGRBF tracker performs

poorly and the RLS weight adaptation itself is insufficient for tracking fast time-

varying process characteristics. Thus the current model structure is updated. To

be specific, the worst node with the least contribution to the overall performance

is replaced with a new one. The contribution of a node is measured by its sum

of squared weighted local predictor response, which is defined by

contrij =

no∑

i=1

(
pT
t,jθ

t−1
i,j

)2
, 1 ≤ j ≤ M, (13)

where pt,j is the jth hidden node’s response vector to the input Φpt
, and θt−1

i,j is

the connection weight vector from the jth hidden node to the ith output node,

15



obtained at t− 1. We find the node with the smallest contri

m =arg min
1≤j≤M

contrij , (14)

and replace it by a new node, whose center cm and scalars δm can be determined

by exploiting the geometric property of MGRBF hidden node. Specifically, we

set cm=Φpt
and δm=ypt

− ypt−1 to ensure that the new replacement node m295

encodes the newest feature state and is a perfect local multi-output predictor of

ypt
. Since the set of centers contain a new one, the Gaussian width σ is updated

based on the new maximum Euclidean distance among the centers.

After the new node is determined, the weight matrix of the updated MGRBF

tracker is recalculated by the regularized LS method based on the q latest data

points {Φpt−i;ypt−i}
q−1
i=0 as

ΘM̄×no,t
=
(
PT

q×M̄,t
Pq×M̄,t+λIM̄

)−1
PT

q×M̄,t
Yq×no,t, (15)

where λ is a very small positive regularization parameter, Yq×no,t=
[
ypt

ypt−1 · · ·

ypt−q+1

]T
, and Pq×M̄,t =

[
pM̄,pt

pM̄,pt−1 · · ·pM̄,pt−q+1]
T. The number of the

latest data q trades off estimation accuracy and tracking performance. To guar-

antee a smooth transition from tunable node adaptation to weight adaptation

only, the inverse covariance matrix in the RLS algorithm is reinitialized to

Γt =
(
PT

q×M̄,t
Pq×M̄,t + λIM̄

)−1
. (16)

Note that in order to track fast time-varying characteristics, q should be very

small and typically we have q ≪ M̄ . Therefore, the regularization is necessary.300

Remark 2. Adapting the proposed deep MGRBF network online is achieved by

adapting its MGRBF tracker online as given in Subsection 3.4.2. In the weight

adaptation only, the computational complexity comes from the RLS algorithm

(12), which is on the order of O
(
M̄2
)
, while in the tunable node adaptation, the

computational complexity is dominated by the regularized LS estimator (15),305
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which is on the order of O
(
M̄3
)
. Therefore, the complexity per sample of the

proposed adaptive deep MGRBF network is no more than O
(
M̄3
)
. This is clearly

affordable since M̄ = noM is typically small, where no is the number of the

process outputs and M is the number of hidden nodes in the MGRBF tracker.

It can also be inferred that the real online computational complexity of the310

proposed adaptive deep MGRBF network is less than that of the very efficient

shallow adaptive MGRBF network of [27]. This can be explained as follows.

Online adaptation operation of the adaptive MGRBF network [27] involves a

MGRBF network of M hidden nodes (assuming the same as the MGRBF tracker

in the deep MGRBF network) with the input xpt
, while online adaptation oper-315

ation of the proposed deep MGRBF network involves a MGRBF network of M

hidden nodes with the input Φpt
. Owing to the excellent nonlinear dimensional

reduction capability of the SAE, the dimension of the feature vector Φpt
is much

smaller than the dimension of the original input vector xpt
. Based on this fact,

it is not difficult to draw the above conclusion. We will confirm this analysis320

with the industrial applications of the next section.

Remark 3. As with all the known sample-by-sample adaptive strategies or mod-

els, given the process input xpt
at each sampling instance pt, our adaptive deep

MGRBF network first produces the prediction ỹpt
of the process output ypt

.

Later, after the arrival of the true process output measurement ypt
, the adap-325

tation of the deep MGRBF network takes place. This implies that the acqui-

sition of the process output measurement must be timely in order to take the

full advantage of this sample-by-sample adaptation strategy. For some indus-

trial processes, however, acquisition of the process output measurement can be

seriously delayed. In such scenarios, all the known sample-by-sample adaptive330

models, including our adaptive deep MGRBF network, will be unable to per-

form adaptation timely after the main prediction operation at each sampling

instance. Without timely adaptation to track the time-varying characteristics of

the underlying process, prediction performance will degrade considerably during

the online operation course of the process.335
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An alternative adaptation paradigm that does not rely on supervised learn-

ing strategy is called for nonlinear and nonstationary industrial processes with

delayed process output measurement. Specifically, it is highly desirable to in-

vestigate whether some kind of unsupervised model adaptation is possible based

only on the process input data. Presently, we do not know how to achieve this340

extremely challenging adaptive strategy. Clearly it is beyond the scope of this

paper and much research is warranted to investigate this potential direction.

4. Industrial Applications

Two industrial case studies, soft sensing for penicillin fermentation process

and online identification of a real-world industrial microwave heating process,345

are carried out to verify the effectiveness of our adaptive deep MGRBF network.

Three metrics, the mean square error (MSE), the determinant of the error co-

variance log(det(Cov(E))) [21] and the coefficient of determination (R2), are

utilized to evaluate each output and multi-output modeling performance. Since

each output has an R2 value, the averaged R2 over all the outputs is used to350

evaluate the multi-output modeling performance. The online computation com-

plexity is quantified by the averaged computation time per sample (ACTpS).

The proposed method is compared with the state-of-the-art multi-output

modeling approaches, including the PLS [28], the multi-output RBF network

[21], the multi-output GRBF network of Section 2, the multi-output TRBF355

network, which is a multi-output extension to [23], the multi-output AGRBF

network [27], and the multi-output GAP-SER algorithm [16]. In addition, two

deep learning models, the SAE [35, 36, 37, 38] and the LSTM [39, 40], are also

used for comparison. Note that the original SAE is a nonadaptive model. To

provide it with some adaptability, we adapt the weights of its output regression360

layer online using the RLS algorithm. This adaptive SAE, denoted as SAERLS,

is used as the third deep learning model benchmark. The PLS, RBF network and

GRBF network are fixed during online operation. All the benchmark methods

are multi-output modeling methods.
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For all the adaptive models, the forgetting factor of the RLS algorithm is365

set to γ = 0.98. The regularization parameter is set to λ= 0.001. For all the

deep learning models, the learning rate and the number of training epochs are

set empirically to 0.01 and 200, respectively. Other hyperparameters are chosen

carefully and empirically, as detailed in the two case studies.

4.1. Soft Sensing for Penicillin Fermentation Process370

The penicillin fermentation process is an industrial biochemical fed-batch

process, which has been widely adopted for performance assessment of adaptive

soft sensors [12, 13]. During different stages of fermentation, there are hyphae

growth, reproduction, aging, synthesis, and hydrolysis of penicillin, making the

process nonlinear and nonstationary. For our soft sensor modeling, the penicillin375

concentration, biomass concentration and substrate concentration are selected

as the process outputs, while the other 10 process variables are used as the

process inputs. The detailed process data description can be found in [13]. In

our experiments, four batches of process data were generated using the PenSim

tool [41] with different operating conditions. Each batch is composed of 400380

samples, and the entire dataset has 1600 samples. The first two batches are used

for initial training, and the rest two batches are for online adaptive modeling.

The structures of all the models are carefully chosen by trial and error.

Specifically, the number of latent variables for PLS is set to 4 to attain its best

performance. The size of the RBF, GRBF, TRBF and AGRBF networks are385

all set to 10, as suggested in [27]. For our method, we set the sizes of the two

MGRBF predictors both to 10, while its SAE unit contains three layers having

the numbers of neurons {8, 6, 4}, respectively. We set the node replacement

threshold ε = 0.1 and the bandwidth q = 1 for the MGRBF tracker. For the

TRBF and AGRBF benchmarks, the node replacement thresholds are chosen390

to be 0.1 and 0.01, respectively. For the GAP-SER, we set the window size

W =150, bandwidth q=20 and threshold ξ=0.9 to best trade off the prediction

accuracy and online complexity [15, 16]. The number of hidden nodes for the

LSTM is set to 128, which is obtained by a grid-search, while the structures of
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Table 1: Test performance comparison of various methods for soft sensing of penicillin fer-
mentation process.

Methods Model type
MSE (dB)

log(det(Cov(E))) (dB) averaged R2 ACTpS (ms)
y1 y2 y3

PLS Fixed -20.4131 -32.7461 -18.2955 -8.8180 0.9292 NA
RBF Fixed -24.6497 -14.3837 -19.7832 -7.0354 0.8360 NA
TRBF Adaptive -28.6030 -36.7634 -35.1201 -11.1485 0.9943 0.0780
GRBF Fixed -37.4990 -29.1443 -30.2648 -11.0040 0.9927 NA
AGRBF Adaptive -39.8615 -37.9934 -35.2746 -12.2161 0.9983 0.0296

GAP-SER Adaptive -28.7491 -81.2151 -30.7240 -15.3111 0.9936 4.3732
LSTM Fixed -29.3219±3.0994 -27.2901±2.7164 -22.2428±1.8730 -9.3079±0.2651 0.9696±0.0169 NA
SAE Fixed -28.2688±9.0967 -28.0394±5.6297 -21.6508±5.8354 -9.4044±1.3017 0.9296±0.0812 NA
SAERLS Adaptive -28.0778±11.4203 -32.3667±7.6443 -30.4218±7.4376 -10.6432±1.4741 0.9359±0.1174 0.0036

Proposed Adaptive -46.9541±3.5820 -49.9950±4.6632 -53.0888±7.7268 -17.1598±0.8739 0.9998±0.0002 0.0221

the SAE and adaptive SAE are identical to the SAE unit in our method.395

The test performance attained by 10 models are compared in Table 1. Be-

cause all the deep models, the LSTM, the SAE, the SAERLS and the SAE unit

in our proposed method, involve random initialization of network weights, we

run 10 independent experiments, and report their means and standard devi-

ations of modeling accuracy and computation time. It can be seen that the400

adaptive models TRBF, AGRBF and SAERLS outperform their nonadaptive

versions RBF, GRBF and SAE, which indicates that the process is time-varying.

The three deep learning models, the LSTM, SAE and SAERLS, are inferior to

the shallow GRBF network, because the GRBF has better predictive capac-

ity for nonstationary data, while these deep models lack such capacity. Our405

method achieves the best online modeling accuracy, as evidenced by the small-

est log(det(Cov(E))) and average R2. The GAP-SER attains the second-best

performance as measured by log(det(Cov(E))) and it achieves the highest pre-

diction accuracy of y2. However, it is computationally expensive and imposes

the largest ACTpS. The AGRBF with no feature extraction capacity attains410

the third best prediction accuracy, but its prediction performance is 5 dB worst

than our method as measured by log(det(Cov(E))). Notably our adaptive

deep MGRBF with deep architecture imposes a lower ACTpS than the shal-

low AGRBF network, which demonstrates its high efficiency (See Remark 2).

Define the error covariance at test sample t as

Cov(Et) =
1

t− 1

t∑

i=1

(
ei − ē

)(
ei − ē

)T
, (17)
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Figure 3: Comparison of test log(det(Cov(Et))) learning curves of various models for soft
sensing of penicillin fermentation process.
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Figure 4: Box plots of the averaged multi-output prediction errors for penicillin fermentation
process by 7 methods.

where ei = yi − ỹi is the prediction error at test sample i and ē denotes the415

sample average of the prediction errors. The online log(det(Cov(Et))) learning

curves for various models are presented in Fig. 3. As can be seen that although

the GAP-SER attains smaller log(det(Cov(E))) than our method at the begin-

ning of online operation, its performance degrades significantly at 1200 sam-

ples. This is due to the change of the process batch. By contrast, our method420

is immune to this change. Fig. 4 further shows the box plots of the averaged
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multi-output prediction errors by the 7 models (the nonadaptive RBF, GRBF

and SAE models are omitted for clear comparison). As can be seen that the

GAP-SER and our proposed method have the tightest error distribution around

zero among the 7 methods.425
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Figure 5: The effect of process output measurement noise on achievable test error covariance
performance of GAP-SER, AGRBF and proposed method for penicillin fermentation process.

Next, we investigate the effect of the process output measurement noise on

the online prediction performance for the three best approaches (GAP-SER,

AGRBF and proposed method), which is shown in Fig. 5. As expected, the

achievable online prediction performance degrade as the signal-to-noise ratio

(SNR) decreases. From Fig. 5, it can be seen that our deep adaptive MGRBF430

network method attains the better performance than the other two adaptive

methods in most cases. The results of Fig. 5 also suggest that adaptive GRBF

based methods (the proposed method and AGRBF) generally outperforms the

GAP-SER in noisy nonstationary environments.

4.2. Online Identification of Microwave Heating Process435

Microwave heating process (MHP) is a complex nonlinear and nonstationry

thermal process [42]. Unlike conventional heating method, the energy transfor-

mation in high-frequency electric field brings instantaneous temperature rise of
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Figure 6: An real-world industrial-scale microwave heating system.

heated materials. Despite its advantageous heating efficiency, overheating and

thermal runaway often occur in MHP and lead to destructive results. In order440

to detect thermal runaway in advance and maintain heating safety, real-time

temperature estimation is essential for MHP [43, 44].

A industrial-scale microwave heating system has established in the previous

work [45], which is shown in Fig. 6. The system consists of five microwave

power sources with each microwave source having a maximal power of 3 kW

(total 15 kW). Microwave energy is transmitted through the waveguide, fed into

the cavity to heat material. The material is transported through cavity by the

conveyor belt, whose speed can be adjusted. Three fiber optical sensors (FOSs),

denoted as FOS1 to FOS3, are placed at three different locations to record

multiple-points of temperature online. During real-time process operation, the

control center receives the measured temperatures from FOSs, and sends control

commends, including five microwave powers upi
(t), 1≤ i≤ 5 and the conveyor

speed v(t). The control inputs to the MHP are given by

ut =
[
up1

(t) up2
(t) up3

(t) up4
(t) up5

(t) v(t)
]T

. (18)

Each FOS measures the temperature at its location, which is the MHP’s output
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yi(t), 1≤ i≤ 3. Because of near instantaneous response of MHP, the process’s

temperatures yt=
[
y1(t) y2(t) y3(t)]

T can be adequately modeled as

yt = fsys(xt; t), (19)

where fsys(·; t) represents the unknown nonlinear time-varying system mapping

with the input vector given by

xt =
[
yT
t−1 uT

t−1

]T
∈ R

9. (20)

3,500 process data have been collected from this MHP. The process data is

first normalized before predictive modeling. We use the first 1000 samples for

training, and the rest 2,500 samples for online adaptive modeling.445

Again, the structures and heperparameters of all the models are chosen em-

pirically. For our method, the size of the SAE unite is {7, 5, 3}. The threshold

and bandwidth for the adaptive MGRBF tracker are set to 0.001 and 2, respec-

tively. The AGRBF and TRBF have the same node replacement threshold. The

latent variables for the PLS is set to 4. The parameters for the GAP-SER are450

set to W = 110, q = 30, and ξ = 0.9. The SAE and adaptive SAE have the

same structure of {7, 5, 3}, while the LSTM has 64 hidden nodes.

The test performance comparison of various models are summarized in Ta-

ble 2, and the online log(det(Cov(Et))) learning curves are compared in Fig. 7.

In terms of prediction performance, our proposed deep model attains the best455

accuracy, and the AGRBF is the closed second, while the GAP-SER achieves

the third best performance. In terms of online computational complexity, our

Table 2: Test performance comparison of various methods for online identification of mi-
crowave heating process.

Methods Model type
MSE (dB)

log(det(Cov(E))) (dB) averaged R2 ACTpS (ms)
y1 y2 y3

PLS Fixed -36.3661 -30.5462 -31.2921 -11.8121 0.8592 NA
RBF Fixed -28.6941 -29.9555 -33.7634 -10.8746 0.7978 NA
TRBF Adaptive -42.0098 -41.9637 -43.0211 -12.9293 0.9871 0.0434

GRBF Fixed -39.9221 -39.7723 -33.1966 -12.2785 0.9529 NA
AGRBF Adaptive -45.9210 -46.0491 -46.4951 -13.8801 0.9947 0.0501
GAP-SER Adaptive -46.5108 -46.2364 -42.2596 -13.5019 0.9926 1.8770
LSTM Fixed -25.4328±4.3065 -25.6605±3.1740 -24.2661±3.3113 -9.0478±0.5745 0.1200±0.6496 NA
SAE Fixed -28.4760±7.3149 -27.8770±5.6352 -27.6597±6.2336 -10.7618±1.1757 0.2633±0.9046 NA
SAERLS Adaptive -31.5634±5.4558 -33.0014±4.1909 -32.6310±3.1645 -10.8150±1.0406 0.8278±0.1077 0.0035

Proposed Adaptive -46.1024±0.4867 -46.7387±0.3587 -46.8103±0.4730 -13.9698±0.0737 0.9952±0.0005 0.0284
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Figure 8: Box plots of the averaged multi-output prediction errors for microwave heating
process by 7 methods.

method imposes a smaller ACTpS than the AGRBF, while the GAP-SER

consumes the highest ACTpS. The three deep models, the LSTM, SAE and

SAERLS, perform poorly, and even the PLS achieves a smaller prediction error460

than them. The box plots of average multi-output prediction errors by the 7

models are shown in Fig. 8. It can be seen that the proposed method, AGRBF
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and GAP-SER attain the best performance among the 7 models, since their

prediction errors are more densely distributed around 0.

4.3. Discussion465

The experimental results of these two industrial case studies clear demon-

strate that our proposed multi-output adaptive deep GRBF network has signif-

icant advantages over the existing state-of-the-art online modeling approaches

as well as traditional deep learning models, in terms of both multi-output pre-

diction accuracy and online computational complexity. Specifically, our deep470

model consistently achieves the highest prediction accuracy, while imposing a

very small ACTpS, lower even than the shallow adaptive models.

Remark 4. The proposed adaptive deep MGRBF network and all the bench-

mark modeling methods used in the above two industrial case studies are purely

data-driven, and no knowledge of the underlying process is required in modeling.475

In the terminology of learning, this type of data-driven learning is referred to

as black-box modeling. A fundamental principle in data modeling is to incor-

porate available a priori information regarding the underlying data generating

mechanism into the data modeling process, which is known as grey-box model-

ing in the terminology of learning. Grey-box modeling capable of incorporating480

prior knowledge typically outperforms black-box modeling [46, 47, 48]. There is

a scope of investigating how to incorporate prior knowledge of the underlying

process into the adaptive deep MGRBF network. Since prior knowledge is pro-

cess specific, such a grey-box modeling is also specific to the particular process

to be modeled. However, there exist some general grey-box modeling approach485

for data modeling by the RBF network [46, 47], which may also be helpful for

developing grey-box modeling using the GRBF network.

In real-time process operation optimization and control applications, without

an up-to-data and accurate surrogate model, there is a high risk that an indus-

trial plant is operated in a suboptimal manner due to plant-model mismatch490

and unknown uncertainties [49, 50, 51]. The chief advantage of our proposed
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adaptive deep MGRBF network is that it provides high prediction accuracy and

fast adaptation capability as well as low online computational complexity, which

makes it particularly desirable for real-time optimization/control of nonlinear

and time-varying processes. Specifically similar to [52], the unknown multi-495

variate high-dimensional nonlinear model of the underlying industrial plant can

be approximated by the proposed deep MGRBF network. During real-time

optimization/control, when the process operation varies dramatically, our pro-

posed online adaptation rule enables effective tracking of the changing process

characteristics, thereby reducing the plant-model mismatch.500

5. Conclusions

This paper has proposed a novel adaptive deep MGRBF network for on-

line modeling and identification of multivariate nonlinear and nonstationary

industrial processes. Specifically, a MGRBF network is first utilized to pro-

vide a preliminary prediction of the target outputs, which is combined with the505

original input data to define the attribute input vector to a SAE. Deep quality-

enhanced features are than extracted progressively by the SAE, to provide the

inputs to a MGRBF tracker for online prediction and adaptive modeling of the

process output. The proposed framework has integrated the feature learning

capability of the SAE with the adaptive capability of the MGRBF network, and510

it can perform model adaptation very efficiently for real-time tracking of fast

time-varying process dynamics. Applications to two industrial processes have

demonstrated the superiority of our proposed method over the existing state-

of-the-art online adaptive models and deep learning models, in terms of both

multi-output prediction accuracy and online computational complexity.515

Owing to the excellent adaptive modeling and dimensional reduction capac-

ity of the proposed deep MGRBF network, it can serve as a powerful func-

tion approximator for deep reinforcement learning in industrial process control.

Through real-time interaction with the industrial plant, online measurement

data can be used to update the proposed network to learn the value function520
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and control policy. This is an important application of the proposed method in

process control, where the plant-model mismatch due to time-varying process

characteristics needs to be considered, and it will be our future study.
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