
This is a repository copy of Goal Controller Synthesis for Self-Adaptive Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/198096/

Version: Accepted Version

Proceedings Paper:
Calinescu, Radu orcid.org/0000-0002-2678-9260 and Nunes Rodrigues, Genaína
(Accepted: 2023) Goal Controller Synthesis for Self-Adaptive Systems. In: FormaliSE
International Conference on Formal Methods in Software Engineering. IEEE (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Goal Controller Synthesis for Self-Adaptive Systems

Radu Calinescu

Department of Computer Science

University of York

York, UK

radu.calinescu@york.ac.uk

Genaı́na Nunes Rodrigues

Department of Computer Science

University of Brası́lia

Brası́lia, Brazil

genaina@unb.br

To change your mind is the best evidence you have one.

Desmond Ford

Abstract—Much like humans, a growing number of software-
controlled systems must cope with uncertainty and disruption
through self-adaptation. However, while humans achieve this feat
by changing both the means through which they pursue their
goals and—when unavoidable—the goals themselves, self-adaptive
systems are often only using the former adaptation mechanism.
In this ‘research ideas’ paper, we argue that exploiting the latter
mechanism is equally important, and we propose a new goal
modelling paradigm that supports reasoning about goal change,
and the use of probabilistic model checking tools to synthesise
goal-management control software for self-adaptive systems.

I. INTRODUCTION

Software-controlled systems ranging from hospital cleaning

robots [1] to infrastructure inspection drones [2] have the

potential to help humans with activities that are tedious, tiring

or dangerous. To achieve this potential, these systems need to

mitigate the uncertainty and disruption encountered in their

environments through self-adaptation [3], [4].

Two main adaptation mechanisms are available for self-

adaptive systems (SAS). First, they can change their configura-

tion. For instance, a robot may change the speed or force used

to perform a task, or the probability of retrying the task after a

failure. Second, they can modify their goals. As an example, a

robot unable to deep clean a hospital room due to obstacles or

time constraints may instead perform a UV disinfection. Both

adaptation mechanisms have been considered, e.g. Kramer and

Magee’s widely adopted SAS architecture [5] has separate

layers dedicated to configuration change management and goal

management. However, most research to date has focused on

the former layer, leaving the adaptation opportunities provided

by goal management underexplored and poorly supported by

existing modelling paradigms and adaptation methods.

This is a major limitation of current SAS, as indicated by

recent research into human goal management [6]–[9], which

shows that goal evolution is key to overcoming uncertainty and

disruption. To address this limitation, we identify desiderata

(i.e. high-level requirements) for a modelling paradigm to

support goal adaptation (Sect. II), we propose an extended

goal modelling (EDGE) notation that satisfies these desiderata

(Sect. III), and we introduce a method for the formal synthesis

of discrete-event controllers for the goal management layer of

SAS (Sect. IV). We illustrate the application of our EDGE goal

G2 G3

G4 G5 G6 G7 G8

or

G1

Fig. 1. Goal model comprising a root goal G1 that is achieved when subgoals
G2 and G3 are both achieved; G2 is achieved when at least one of G4 and G5
is achieved, and G3 is achieved only when G6, G7 and G8 are all achieved.

notation and controller synthesis method using a robotic SAS

adapted from [10], we compare our approach to related work

in Sect. V, and we summarise our future plans in Sect. VI.

II. DESIDERATA FOR SAS GOAL MODELLING

In goal-oriented requirements engineering (GORE) [11],

[12], system goals are partitioned into subgoals using AND

and OR decompositions. AND-decomposed goals (e.g., goal

G1 in Fig. 1) are achieved if and only if all their subgoals

are achieved, whereas OR-decomposed goals (e.g., goal G2

in Fig. 1) are achieved when one or more of their subgoals

are achieved. Although SAS goal modelling research [13]–

[22] has extended GORE with many useful features, these

extensions (which we overview in Sect. V) cannot fully

capture all aspects of a system’s goals that—according to

recent human goal management theories [6]–[9]—should be

considered when dynamically selecting the goals to be pursued

by a self-adaptive agent. As such, the full potential of SAS

goal management can only be achieved by further extending

existing goal modelling notations. To guide the development of

these extensions, we used the aforementioned theories [6]–[9]

to identify the following desiderata that they need to satisfy.

D1 Support for non-idempotent goal variants and their

operationalisation – A vital strength of human adaptation is

our ability to achieve high-level aims by dynamically selecting

from multiple variants of the goals that support the realisation

of these aims [9]. To reach a destination on time, we can

accomplish the goal of reaching the train station by walking,

cycling or taking the bus, and the goal of travelling to our

destination by taking a fast or a slow train. Which variant of

each goal we select depends on factors such as the weather,

how tired we are, and which train service is running on

time (operationalisation). Moreover, we dynamically readjust

our selection to mitigate disruptions such as traffic jams and

train cancellations. We argue that the SAS goal management

Fig. 2. EDGE notation (left) and goal model for a robotic SAS required to carry out maintenance of a patient room (right)

layer can only achieve its full potential by reasoning over

goal models in which such non-idempotent goal variants are

captured explicitly and dynamically selected whenever failure

or environment constraints render some of the goal variants

unachievable. In those cases, alternative non-idempotent goal

variants are dynamically pursued to deliver an equally accept-

able or degraded functionality, possibly with a different cost,

level of risk, etc. To represent such goal variants, one could

use the alternative node notation (|) from Dalpiaz et al. [23].

However, unlike [23], our desideratum does not require that

all alternative (non-idempotent) goal variants are achievable

when a goal controller is synthesised or used for the goal

management SAS layer.

D2 Support for goal properties – To select the goal variants

to pursue, humans consider the properties of the alternatives

they choose from. Expected reward (or utility) is one such

property widely confirmed by psychologists [6]–[8]. However,

many other properties may influence our selection of a goal

variant over another, including risk, cost and environmental

impact. We posit that goal models should support a similarly

sophisticated range of properties. This feature is essential to

enable goal controllers to select combinations of goal variants

that are both achievable and aligned with the SAS aims.

D3 Support for tracking goal status – As humans, (i) we

know that not all goals are achievable at all times; (ii) we are

aware which goals we are pursuing; (iii) we decide whether

to pursue a goal based on our perceived likelihood of being

able to achieve that goal; and (iv) we can ascertain whether a

goal has been achieved. We argue that these four key properties

need to be built-in goal properties, allowing goal controllers to

track and control the SAS progress with delivering its goals.

In our envisaged SAS goal management approach, the goal

likelihood will be provided by domain experts and/or learnt

from SAS logs, the achievable and achieved properties will be

tracked and updated by the change management SAS layer;

and the goal management layer will react to such updates by

appropriately adapting the pursued property of goals.

D4 Support for goal interdependencies – The goal variants

we pursue are rarely independent of each other. In the earlier

example, deciding to walk to the train station is likely to take

longer than cycling or taking the bus, and may mean that only

the fast train service can take us to our destination on time.

To allow the dynamic selection of compatible goal variants, a

goal modelling notation needs to support the specification of

these (and of more complex) types of goal interdependencies.

D5 Support for automating goal selection – A key human

trait is our ability to reason over (mental) goal models in

order to select which goal variants to pursue, and to revise

this selection when it becomes unfeasible, suboptimal or

otherwise undesirable. The human reasoning underpinning

these processes is still the subject of intense research [6],

[8], and thus unlikely to be fully elucidated and replicable

by SAS any time soon. Nevertheless, we advocate the use

of principled reasoning to automate the synthesis of the logic

implemented by goal controllers. This asks for techniques for

mapping extended goal models to a formal representation that

formal controller-synthesis methods can operate with.

III. EDGE NOTATION FOR SAS GOAL MANAGEMENT

To satisfy the desiderata from Section II, we propose a

(preliminary) extended goal modelling (EDGE) notation that

augments the established GORE notation [11], [12] with the

new features from Fig. 2. This figure depicts the EDGE goal

model for a SAS adapted from [10] and comprising a robot

whose top-level goal (G0) is to maintain a patient room in a

hospital by cleaning its floor in one of two ways (goal variants

G1a, G1b, cf. desideratum D1) and sterilizing the whole room

or just its bathroom (goal variants G6a, G6b). Cleaning the

floor thoroughly (goal variant G1a) requires moving some of

the room furniture (goal G2), vacuum cleaning (goal variants

G3a, G3b), wiping the floor (goal variants G4a, G4b), and

replacing the furniture in its initial position (goal G5).

The in-built goal properties (desideratum D3) are specified

in EDGE through using different graphical notation for goals

that were achieved (e.g., goal G2 in Fig. 2), for achievable

goals that are not pursued (G3b), for achievable goals that

are also pursued (G5) and for goals that are not achievable

(G4a), with the likelihood of leaf goals placed in brackets after

their goal IDs (0.9 for all such goals from Fig. 2). The values

of the “regular” goal properties (desideratum D2) are listed

domain
experts

EDGE
goal model

goal
controller

requirements

(2)
MDP

derivation

Controller
design-space

MDP

Goal
controller

(1)

(3)
MDP policy
synthesis

Fig. 3. EDGE goal controller synthesis: (1) the EDGE goal model and
controller requirements (comprising constraints and a measure to optimise)
are provided by domain experts; (2) an MDP that models the controller
design space is derived through automated model-to-model transformation;
and (3) the goal controller is synthesised through probabilistic model checking.

within the rectangular boxes included within each goal. Two

real-valued properties are specified for each of the goals from

our example: the utility and cost associated with achieving

that goal. For instance, performing a thorough cleaning of the

floor (goal G3a) is assigned a utility of 6 and a cost of 3;

achieving goal G1a brings an additional utility of 12 on top

the cumulated utilities of its sub-goals (because the maximal

set of floor cleaning sub-goals was achieved) and has zero

additional cost. We note that goal properties may also have

other types, e.g., they can be of boolean type (like three of

the built-in EDGE properties) or of categorical type.

Two goal interdependencies (desideratum D4) are shown in

Fig. 1. First, sterilizing the whole room (goal G6a) should

only be pursued if goal G1a is also pursued or was already

achieved. Second, replacing the furniture (goal G5) only

makes sense if the goal to move the furniture from its original

position (goal G2) is pursued or was achieved. We explain

how desideratum D5 is satisfied by EDGE in the next section.

IV. EDGE GOAL CONTROLLER SYNTHESIS

As shown in Fig. 3, EDGE goal models and goal controller

requirements provided by domain experts (step 1 in Fig. 3)

support the derivation of Markov decision processes or MDPs

(step 2) and the synthesis of optimal MDP policies that define

SAS goal controllers (step 3) guaranteed to: (i) satisfy a

set of constraints over the goal properties; (ii) optimize a

predefined measure over these properties. In the current EDGE

version, the entire goal controller synthesis process is carried

out at design time. As such, the way in which the synthesised

controller responds to runtime events such as goals becoming

unachievable, being achieved, etc. is decided beforehand.

The MDPs derived from EDGE goal models are specified

in the modelling language of the probabilistic model checker

PRISM [24], which models the behaviour of a system as the

parallel composition of a set of modules. The state of a module

is given by a set of finite-range local variables, and its state

transitions are defined by guarded commands that change these

variables, and have the form:

[action] guard −> e1 : update1 + . . .+ en : updaten;

where guard is a boolean expression over all model variables.

If guard evaluates to true, the expression ei, 1 ≤ i ≤ n, gives

the probability with which the updatei change of the module

/ / Gx pursued : 0 − not pursued , i>0 − pursued as v a r i a n t i
module Goa lCon t ro l l e r

G2 pursued : [0 . . 1] i n i t 0; / / G2 has one v a r i a n t
. . .
G6 pursued : [0 . . 2] i n i t 0; / / G6 has two v a r i a n t s
n : [0 . . 5] i n i t 0; / / l e a f goal counter

/ / Decide whether to pursue goal G2
[G2 skip] t & (n=0) & (G2 achieved | ! G2 achievable) −> 1 : (

G2 pursued ’ = 0) &(n ’= n+1) ;
[G2 pursue0] t & (n=0) & ! G2 achieved & G2 achievable −> 1 : (

G2 pursued ’ = 0) &(n ’= n+1) ;
[G2 pursue] t & (n=0) & ! G2 achieved & G2 achievable −> 1 : (

G2 pursued ’ = 1) &(n ’= n+1) ;
. . .
/ / Decide whether to pursue goal G6a|G6b
[G6 skip] t & (n=4) & (G6a achieved | G6b achieved | (! (

G6a achievable & G1a) & ! G6b achievable)) −> 1 : (G6 pursued ’ = 0)
&(n ’= n+1) ;

[G6 pursue0] t & (n=4) & ! (G6a achieved | G6b achieved) & ((
G6a achievable & G1a) | G6b achievable) −> 1 : (G6 pursued ’ = 0)
&(n ’= n+1) ;

[G6a pursue] t & (n=4) & ! (G6a achieved | G6b achieved) &
G6a achievable & G1a −> 1 : (G6 pursued ’ = 1) &(n ’= n+1) ;

[G6b pursue] t & (n=4) & ! (G6a achieved | G6b achieved) &
G6b achievable −> 1 : (G6 pursued ’ = 2) &(n ’= n+1) ;

/ / C o n t r o l l e r done : in form Turn module and rese t counter
[con t ro l l e r done] t & (n=5) −> 1 : (n ’ = 0) ;

endmodule

formula G1a = (G2 achieved | G2 pursued>0) & . . .
& (G5 achieved | G5 pursued>0) ;

module ChangeMgmt
G2 achievable : bool i n i t true ; G2 achieved : bool i n i t fa lse ;
. . .
G6a achievable : bool i n i t true ; G6a achieved : bool i n i t fa lse ;
G6b achievable : bool i n i t true ; G6b achieved : bool i n i t fa lse ;
s : [0 . . 6] i n i t 0; / / l e a f goal counter
f a i l : bool i n i t fa lse ;

/ / Outcome of pursuing goal G2
[] ! t & ! f a i l & s=0 & G2 pursued=0 −> 1 : (s ’= s+1) ;
[] ! t & ! f a i l & s=0 & G2 pursued>0 −> p2 : (G2 achieved ’= true) &(s ’= s

+1) + (1−p2) : (G2 achievable ’= fa lse) &(f a i l ’ = true) &(s ’= s+1) ;
. . .
/ / Outcome of pursuing goal G6a|G6b
[] ! t & ! f a i l & s=4 & G6 pursued=0 −> 1 : (s ’= s+1) ;
[] ! t & ! f a i l & s=4 & G6 pursued=1 −> p6a : (G6a achieved ’= true) &(s ’=

s+1) + (1−p6a) : (G6a achievable ’= fa lse) &(f a i l ’ = true) &(s ’= s+1) ;
[] ! t & ! f a i l & s=4 & G6 pursued=2 −> p6b : (G6b achieved ’= true) &(s ’=

s+1) + (1−p6b) : (G6b achievable ’= fa lse) &(f a i l ’ = true) &(s ’= s+1) ;
/ / Plan f a i l u r e : in form Turn module and rese t counter
[changeMgmt done] ! t & f a i l −> 1 : (f a i l ’ = fa lse) &(s ’ = 0) ;
/ / Plan success : move to end s ta te
[success] ! t & ! f a i l & s=5 −> (s ’= s+1) ;
[end] ! t & s=6 −> (s ’ = 6) ;

endmodule

module Turn
t : bool i n i t true ; / / t r ue = c o n t r o l l e r , f a l s e =changeMgmt

[con t ro l l e r done] true −> 1 : (t ’ = fa lse) ;
[changeMgmt done] true −> 1 : (t ’ = true) ;

endmodule

rewards ” u t i l i t y ”
[success] G0 achieved : 20;
[success] G1a achieved : 12;
. . .

endrewards

rewards ” cost ”
[success] G0 achieved : 0 ;
[success] G1a achieved : 0 ;
. . .

endrewards

Listing 1. MDP derived from the EDGE goal model in Fig. 2

variables occurs. When guard holds for multiple commands in

a module, one of these commands (and its associated action)

needs to be selected by a controller. This controller (also

termed an MDP policy) is defined by the action selected in

each MDP state where multiple actions are possible. Finally, if

multiple modules comprise commands with the same action,

they must synchronise when performing this action, i.e., they

must each perform one of these commands simultaneously.

As shown in Listing 1, which depicts the MDP obtained

GOAL MANAGEMENT LAYER

CHANGE MANAGEMENT LAYER

G3a G3b G4a G4b G5

G6bG1a G1b

G2

G6a
 G1

 G2

G0(A)

G3a G3b G4a G4b G5

G6bG1a G1b

G2

G6a
 G1

 G2

G0(B)

G3a G3b G4a G4b G5

G6bG1a G1b

G2

G6a
 G1

 G2

G0(C)

G3a G3b G4a G4b G5

G6bG1a G1b

G2

G6a
 G1

 G2

G0(D)

MANAGED SYSTEM / COMPONENT CONTROL

...

sensors effectors

Fig. 4. Possible evolution of the EDGE goal model for the maintenance of a patient room: with all the goals initially achievable (A), the goal controller
makes its initial goal selection (B), the change management layer issues an update to announce that goals G2 and G3a were achieved but G4a is unachievable
(C), forcing the goal manager to select goal variant G4b as an alternative (D). Note that the evolving EDGE model is shown solely for explainability purposes
– as the discrete-event goal controller responds automatically to events from the change management layer, the SAS does not need to store and update the
EDGE goal model at runtime, although doing so can be useful for inclusion in a dashboard that shows the current status of the SAS to a human operator.

from the goal model in Fig. 2, EDGE-derived MDPs comprise

three modules. First, the selection of the goals to be pursued

by the SAS is modelled by a GoalController module.

Second, the updates provided by the change management SAS

layer are modelled by a ChangeMgmt module. Third, an

auxiliary module Turn gives alternative “turns” to:

• the GoalController, for (i) selecting the initial set

of goals to be pursued, and (ii) revising these goals after

each goal property update by the ChangeMgmt module;

• the ChangeMgmt module, for updating the built-in goal

properties achievable and achieved (and any regular goals

properties that change and that the controller’s decisions

depend on) as required.

Every time when the module GoalController has a turn

(i.e., when t = true), it examines each leaf goal from the

EDGE model. If a goal is not achievable or was already

achieved, the controller decides to not pursue it (actions

G2_skip and G6_skip in Listing 1). Otherwise, the con-

troller has the option to (still) not pursue the goal, or to pursue

it in any available variant whose dependencies on other goals

(if any, e.g., see how action G6a_pursue depends on formula

G1a in Listing 1) are satisfied. The controller synthesis

problem is to ensure that the right option is selected at each

step where multiple options are available. After examining all

leaf goals, the controller uses the action controller_done

to notify the Turn module that its selection of goals (i.e., the

plan) to be pursued by the SAS is complete.

The module ChangeMgmt models the way in which the

SAS change management layer reports any goal variant found

to be unachievable to the SAS goal management layer. To that

end, ChangeMgmt encodes the outcome of pursuing each

leaf goal variant from the plan in turn, starting with G2. If

the goal is not pursued (i.e., if G2_pursued=0), the module

moves to the next goal (s’=s+1); otherwise, the goal will

either be achieved with probability p2 (specified as 0.9 in

the EDGE goal model), or found to be unachievable with

probability 1−p2. In the latter scenario, the failure is recorded

TABLE I
COMPARISON TO RELATED GOAL MANAGEMENT NOTATIONS

Desiderata

Goal modelling notation D1 D2 D3 D4 D5

AwReq [13], [14] ❍ ◗ ● ❍

GODA-MDP [15], [16] ❍ ● ◗ ◗

FLAGS [17] ❍ ❍ ◗

RELAX [18], [19] ◗ ◗ ●

RESPIRE [20], [21] ◗ ◗ ❍

TROPOS4AS [22] ❍ ◗ ●

EDGE ● ● ● ● ●

●=supported; ◗ = partly supported; ❍ = minimally considered

(fail’=true) and the action changeMgmt_done is trig-

gered to notify the Turn module that goal controller must

be invoked for the selection of an alternative plan. When no

failures occur during the execution of the current plan, the

success action and then the final end action are reached.

MDP rewards are used to assign the utility and cost values

from Fig. 2 to the MDP states in which goal variants are

achieved, and Fig. 4 depicts a possible evolution of the EDGE

goal model for this SAS under a goal controller obtained by

asking the model checker PRISM to synthesise an MDP policy

that maximises the utility of the SAS without exceeding a cost

of 25 (in this experiment, we set p2 = · · · = p6a = p6b = 0.9
as in Fig. 2, and PRISM generated the MDP policy in 17.9s

on a MacBook laptop with 2GHz Intel i5 processor and 32GB

of memory). The complete MDP model and the other artifacts

from this case study are provided in our GitHub repository [25]

to allow the reproducibility of these results.

V. RELATED WORK

While no existing goal modelling notation satisfies all the

desiderata from Sect. II, several approaches provide at least

partial support for some of them (Table I).

RELAX [18] supports the specification of environmental

uncertainty in requirements, its AutoRELAX extension [19]

automates the generation of RELAX goal models and defines

fuzzy logic function boundaries for goal satisfaction criteria,

FLAGS [17] uses “adaptive goals” to define countermeasures

that must be performed if one or more goals are not achieved,

and Tropos4AS [22] supports the modelling of goal types

with their associated satisfaction conditions. Each of these

approaches fulfils to a limited extent desiderata D1, D2 and

D3, but cannot synthesise SAS controllers for operationaliz-

ing more complex goal selection. The GODA-MDP frame-

work [26] can model the probabilities of achieving the goals

of a system, and has been used [15], [16] to develop SAS

with control-theoretic/AI hybrid control loops. However, it

only partially fulfills D1 and does not support D4 and D5,

as it lacks constructs for the specification of non-idempotent

goal variants and complex goal dependencies, and it produces

SAS controllers that lack a separate goal management layer.

AwReqs [13], [14] can model the success or failure degree

for requirements (in line with desideratum D1) and enables

controller synthesis (D5), but cannot handle complex goal

properties and dependencies. Finally, RESPIRE [20], [21] sup-

ports the specification of context/context-dependent goal prop-

erties, reasoning about changing environmental conditions, and

the adaptation of goal models to these conditions. However,

RESPIRE can neither model non-idempotent goal variants nor

synthesise goal controllers, which are key desiderata for the

goal modelling paradigm we propose in this paper.

VI. CONCLUSION

We used insights from human goal-management studies to

identify desiderata for SAS goal management, introducing a

goal modelling notation and a formal goal controller synthesis

method that satisfy these desiderata. In future work, we plan

to automate the MDP derivation step of our goal controller

synthesis (Fig. 3), and to build on our recent research on

multi-objective optimisation for probabilistic models [27]–

[29] in order to support the synthesis of goal controllers

that provide optimal trade-offs between multiple optimisation

objectives. Additionally, we aim to extend our EDGE notation

and controller synthesis with support for runtime changes to

the goal likelihood and the EDGE model structure (enabling

their use for SAS whose goal variants evolve over time), and

for “continuous” goals, i.e., goals that a SAS must achieve

over a period of time (e.g., maintaining the throughput of a

server or the navigation speed of a robot within given limits).

Finally, we plan to evaluate EDGE thoroughly using multiple

case studies drawn from the repository of software engineering

for SAS exemplars at [30] and from our recent work on goal-

oriented approaches to SAS engineering [31]–[33].

ACKNOWLEDGEMENTS

This work has received funding from the UKRI project

EP/V026747/1 ‘Trustworthy Autonomous Systems Node in

Resilience’, and the Assuring Autonomy International Pro-

gramme. Genaı́na Rodrigues was also funded by the CNPq

Call 04/2021 process 313215/2021-9.

REFERENCES

[1] A. Khan and Y. Anwar, “Robots in healthcare: A survey,” in Science

and Information Conference. Springer, 2019, pp. 280–292.
[2] D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection

systems,” Journal of Infrastructure Systems, vol. 23, no. 3, p. 04017004,
2017.

[3] Y. Brun, G. D. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Engineering Self-
Adaptive Systems through Feedback Loops,” in Software engineering

for self-adaptive systems. Springer, 2009, pp. 48–70.
[4] D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary

Software Engineering Perspective. John Wiley & Sons, 2020.
[5] J. Kramer and J. Magee, “Self-managed systems: An Architectural

Challenge,” in Future of Software Engineering (FOSE’07). IEEE, 2007,
pp. 259–268.

[6] F. Cushman and A. Morris, “Habitual Control of Goal Selection
in Humans,” Proceedings of the National Academy of Sciences,
vol. 112, no. 45, pp. 13 817–13 822, 2015. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.1506367112

[7] Q. J. M. Huys, N. Eshel, E. O’Nions, L. Sheridan, P. Dayan, and
J. P. Roiser, “Bonsai Trees in Your Head: How the Pavlovian System
Sculpts Goal-Directed Choices by Pruning Decision Trees,” PLOS

Computational Biology, vol. 8, no. 3, pp. 1–13, 03 2012. [Online].
Available: https://doi.org/10.1371/journal.pcbi.1002410

[8] Q. J. M. Huys, N. Lally, P. Faulkner, N. Eshel, E. Seifritz, S. J.
Gershman, P. Dayan, and J. P. Roiser, “Interplay of Approximate
Planning Strategies,” Proceedings of the National Academy of

Sciences, vol. 112, no. 10, pp. 3098–3103, 2015. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.1414219112

[9] A. Dezfouli and B. W. Balleine, “Actions, Action Sequences
and Habits: Evidence That Goal-Directed and Habitual Action
Control Are Hierarchically Organized,” PLOS Computational Biology,
vol. 9, no. 12, pp. 1–14, 12 2013. [Online]. Available: https:
//doi.org/10.1371/journal.pcbi.1003364

[10] M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione,
S. Garcı́a, R. Caldas, T. J. von Oertzen, M. Wimmer, L. Berardinelli
et al., “RoboMAX: Robotic Mission Adaptation eXemplars,” in 2021

International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS). IEEE, 2021, pp. 245–251.
[11] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided

tour,” in Proceedings Fifth IEEE International Symposium on Require-

ments Engineering, 2001, pp. 249–262.
[12] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Rea-

soning with goal models,” in International Conference on Conceptual

Modeling. Springer, 2002, pp. 167–181.
[13] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos,

“Awareness Requirements for Adaptive Systems,” in 2011 ICSE

Symposium on Software Engineering for Adaptive and Self-Managing

Systems, SEAMS 2011, Waikiki, Honolulu , HI, USA, May 23-24, 2011,
H. Giese and B. H. C. Cheng, Eds. ACM, 2011, pp. 60–69. [Online].
Available: https://doi.org/10.1145/1988008.1988018

[14] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “Requirements-
Driven Qualitative Adaptation,” in On the Move to Meaningful Internet

Systems: OTM 2012, R. Meersman, H. Panetto, T. Dillon, S. Rinderle-
Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and
I. F. Cruz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 342–361.

[15] R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, and
P. Pelliccione, “A Hybrid Approach Combining Control Theory and AI
for Engineering Self-Adaptive Systems,” in SEAMS ’20: IEEE/ACM

15th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, Seoul, Republic of Korea, 29 June - 3 July,

2020, S. Honiden, E. D. Nitto, and R. Calinescu, Eds. ACM, 2020,
pp. 9–19. [Online]. Available: https://doi.org/10.1145/3387939.3391595

[16] A. Rodrigues, R. D. Caldas, G. N. Rodrigues, T. Vogel, and
P. Pelliccione, “A Learning Approach to Enhance Assurances for Real-
Time Self-Adaptive Systems,” in Proceedings of the 13th International

Conference on Software Engineering for Adaptive and Self-Managing

Systems, ser. SEAMS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 206–216. [Online]. Available:
https://doi.org/10.1145/3194133.3194147

[17] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for Requirements-
Driven Adaptation,” in RE 2010, 18th IEEE International Requirements

Engineering Conference, Sydney, New South Wales, Australia, September

27 - October 1, 2010. IEEE Computer Society, 2010, pp. 125–134.
[Online]. Available: https://doi.org/10.1109/RE.2010.25

[18] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel, “Re-
lax: Incorporating Uncertainty into the Specification of Self-Adaptive
Systems,” in 2009 17th IEEE International Requirements Engineering

Conference. IEEE, 2009, pp. 79–88.
[19] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “AutoRELAX:

Automatically RELAXing a Goal Model to Address Uncertainty,”
Empir. Softw. Eng., vol. 19, no. 5, pp. 1466–1501, 2014. [Online].
Available: https://doi.org/10.1007/s10664-014-9305-0

[20] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, “Adapting
Requirements Models to Varying Environments,” in Proceedings

of the ACM/IEEE 42nd International Conference on Software

Engineering, ser. ICSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 50–61. [Online]. Available:
https://doi.org/10.1145/3377811.3380927

[21] D. Alrajeh, P. Benjamin, and S. Uchitel, “Adaptation2: Adapting speci-
fication learners in assured adaptive systems,” in 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE),
2021, pp. 1347–1352.

[22] M. Morandini, L. Penserini, A. Perini, and A. Marchetto,
“Engineering Requirements for Adaptive Systems,” Requir. Eng.,
vol. 22, no. 1, pp. 77–103, 2017. [Online]. Available:
https://doi.org/10.1007/s00766-015-0236-0

[23] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos, “Runtime
goal models: Keynote,” in IEEE Seventh International Conference on

Research Challenges in Information Science (RCIS)., May 2013, pp.
1–11.

[24] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of Probabilistic Real-time Systems,” in CAV’11, ser. LNCS, vol. 6806,
2011, pp. 585–591.

[25] “EDGE GitHub repository,” 2023. [Online]. Available: https:
//anonymous.4open.science/r/Formalise23-05F8

[26] D. F. Mendonça, G. N. Rodrigues, R. Ali, V. Alves, and L. Baresi,
“GODA: A Goal-Oriented Requirements Engineering Framework for
Runtime Dependability Analysis,” Inf. Softw. Technol., vol. 80, pp.
245–264, 2016. [Online]. Available: https://doi.org/10.1016/j.infsof.
2016.09.005

[27] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Designing robust software systems through parametric markov
chain synthesis,” in 2017 IEEE International Conference on Software

Architecture (ICSA). IEEE, 2017, pp. 131–140.
[28] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-

bilistic models for quality-of-service software engineering,” Automated

Software Engineering, vol. 25, pp. 785–831, 2018.
[29] S. Gerasimou, J. Cámara, R. Calinescu, N. Alasmari, F. Alhwikem, and

X. Fang, “Evolutionary-Guided Synthesis of Verified Pareto-Optimal
MDP Policies,” in 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 2021, pp. 842–853.
[30] “Software Engineering for Self-Adaptive Systems Exemplar Repository,”

2022. [Online]. Available: https://www.hpi.uni-potsdam.de/giese/public/
selfadapt/exemplars/

[31] F. P. Guimarães, G. N. Rodrigues, R. Ali, and D. M. Batista,
“Planning runtime software adaptation through pragmatic goal model,”
Data Knowl. Eng., vol. 109, pp. 25–40, 2017. [Online]. Available:
https://doi.org/10.1016/j.datak.2017.03.003

[32] G. F. Solano, R. D. Caldas, G. N. Rodrigues, T. Vogel, and P. Pelliccione,
“Taming uncertainty in the assurance process of self-adaptive systems: a
goal-oriented approach,” in 2019 IEEE/ACM 14th International Sympo-

sium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS). IEEE, 2019, pp. 89–99.
[33] G. S. Rodrigues, F. P. Guimarães, G. N. Rodrigues, A. Knauss, J. P. C.

de Araújo, H. Andrade, and R. Ali, “GoalD: A goal-driven deployment
framework for dynamic and heterogeneous computing environments,”
Information and software technology, vol. 111, pp. 159–176, 2019.

	Introduction
	Desiderata for SAS Goal Modelling
	EDGE Notation for SAS Goal Management
	EDGE Goal Controller Synthesis
	Related Work
	Conclusion
	References

