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Abstract: Railway transport is an important transportation mode in China, UK and worldwide. It is 

expected to play an even more important role in transportation decarbonization in shifting more 

passenger trips and freight transportations to railway. It is strategically important to reduce the 

energy consumption and improve the overall energy efficiency of the railway systems. The 

introduction of automatic train operation (ATO) systems in electrified railway systems makes it 

possible to achieve energy consumption reduction while satisfying other railway operation criterions 

such as the need for passenger comfort, train punctuality and safety. Although energy saving of 

railway systems has attracted substantial interests in recent years, the ATO system are not 

environmentally-friendly as expected and there is a lack of a set of energy saving performance 

measures for railway system planning and operation. In this paper, the features of ATO systems are 

incorporated into the problem formulation, and a modified GSO algorithm with adaptive 

neighborhood range (namely the GSOANR algorithm) is proposed as the solver of the problem. The 

proposed method is applied to the trajectory planning of a 58km long route between Heishan North 

Station and Fuxin Station of the Beijing-Shenzhen Line in China, and the results confirm that the 

train operation trajectory generated by the GSOANR algorithm-based optimization method can 

reduce the electrical energy consumption by about 5.6% compared with the results generated by the 

standard GSO algorithms, confirming the efficacy of the proposed energy-saving measures and the 

effectiveness of the novel optimization method, and the referential significance for the study of the 

train trajectory optimization. 

Keywords: Train trajectory optimization; Energy-efficient train operation; Energy Saving Measures; 

Multi-objective optimization; Modified GSO algorithm 

  



1. Introduction 

The railway system is a large energy consumer in many countries and regions. For example, Network 
Rail is the single biggest electricity user in the UK, consuming over 4 TWh per year, accounting for over 
1% of the total national electricity demand, spending over £300 million on electricity with £250 million 
on the rail traction alone. Likewise, the railway consumes over 60 TWh electricity per year in China, 
around 60 TWh in Europe, and 5.8 TWh in Japan. In China, the high-speed rail (HSR) is the world’s 
longest with the total length reaching 37,900 kilometers by the end of 2020, which accounts for over 70% 
of the global HSR networks. The fast-growing pace of electrified railway systems and HSR has called 
for energy savings and efficiency improvement along with the transition to transportation 
decarbonization. Considering that the majority of energy consumption in railway comes from the traction, 
the operation mode optimization and energy storage of the trains becomes the key for energy reduction 
and efficiency improvement, and has been intensively researched in recent years [1-5]. 

The existing approaches for train trajectory optimization can be broadly categorized into two groups, 
the analytic methods and meta-heuristic methods. Albrecht et al. developed a formulation to model 
energy consumption for train control and demonstrated the existence of optimal control and switching 
points [6-7]. Bai et al. studied the real-time optimization problem of train operation and developed a 
fuzzy predictive control method to reduce the energy consumption of the train operation while meeting 
the speed limit [8]. Then Zhou et al. proposed a macro and micro computation framework of train 
operation diagrams and the optimal speed/acceleration curve, which was further tested to confirm the 
efficiency on the Beijing-Shanghai line [9]. Based on the research of the ATO control strategy, Liu et al. 
proposed a single-vehicle optimization model which can effectively optimize the train operation 
trajectory [10]. In 2019, Zhang et al. established an energy-efficient operation model to reduce the energy 
consumption based on the Q-learning algorithm [11]. On the basis of the former studies, some scholars 
have tried to combine the intelligent algorithms with the train ATO control strategy, bringing new ideas 
to solve the problem of energy-saving train operation optimization [12-14]. 

The analytic methods such as the dynamic programming and other approaches mentioned earlier 
suffer from issues such as complicated modeling, performance being dependent on the parameter settings 
of the model. While meta-heuristic approaches can adapt well to complex and nonlinear problems, and 
to use meta-heuristic approaches for the train operation optimization is becoming more and more popular.  

This paper is dedicated to solving the problem of optimizing energy-efficient train operations due 
to the development of ATO systems. A modified glowworm swarm optimization algorithm, namely 
GSOANR, is proposed and the effectiveness of the method is investigated through extensive simulation 
studies. The main contribution of this paper is the raise of the GSOANR algorithm and the definition of 
the working conditions of the train operation process. This paper is dedicated to make an attempt to solve 
the train operation trajectory optimization problem and to contribute to the development of energy-
efficient railway transport systems. 

2. Energy-efficient operation system method and basic optimization strategy 

2.1. Train operation process modelling and analysis 
Theoretically, there exist an infinite number of operating trajectories satisfying a given train operating 
time requirement, subject to the line conditions and speed limits, etc. It was reported that under the same 



conditions of line speed, gradient, and other related factors, the energy consumptions with different 
trajectories can differ by 30% [15]. The trajectories are generated by the optimization layer of the on-
board ATO system in form of the train operation curve, and the relevant on-board equipment is illustrated 
in Figure 1. 

 
 

Figure 1. Operating principle of the onboard ATO system in high-speed trains. 

The onboard ATO system introduced in electrified trains, in particular for high-speed trains can 
often be divided into two main layers[16]. As presented in the system optimization layer is mainly 
responsible for generating an operation trajectory, which should take the given line and operation 
constraints into consideration, and pass it to the control layer; the function of the control layer is mainly 
comparing the real-time speed of the train with the targeted speed received from the optimization layer, 
then the control unit outputs control commands in order to achieve the targeted traction operation. 
 In this way, optimizing the operation trajectory of the high-speed trains while meeting various 
constraints can achieve energy saving in the traction system. To optimize the train operation for energy-
saving, this section analyzes the train operation process at first. 

During the process of running, a train is powered by the traction system and its movement has to 
overcome a variety of resistances, hence requiring energy consumption. The kinetic equation of a train 
is composed of the longitudinal forces of the train [17-18], the combined force of the train varies by 
location, and can be described as six driving conditions. When the train stars to accelerate, the condition 
of the train is constant-torque traction mode (CTTM). Then the train runs on the constant-power traction 
mode (CPTM) and cruising mode (CRM) on the line. One upon the train stops applying the traction force, 
it will be in coasting mode (COM). Finally, the train will switch to electric braking mode (EBM) and 
stopping mode (SM) to stop at the station. There is an ideal train running speed trajectory showed in 
Figure 2. In practical operations, the train uses electric brakes to reduce the operating speed, and only 
air brake is only used for emergency brake and entering stations. Hence the stopping mode which uses 
pneumatic brake only appears at the end of the curve.  



 

Figure 2. Description of the running process.  

Summarily, in practical train operation, the adjustment of train operation trajectory usually follows 
the six operation modes. The movement of the train from the initial position to the target position 
therefore can be formulated as a series of traction control sequences, each being operated for a certain 
length of distance so that a complete set of train maneuvering strategies can be determined and optimized 
to achieve energy saving.  

2.2. Performance indicators for operating trajectory optimization 
Generating a train speed trajectory, which not only meets the energy-saving target but also satisfies all 
required constraints, is the most important purpose of the operation optimization. The train operation 
status can be affected by many factors including the line conditions, control signals, train characteristics, 
and the comfort requirements of the passengers while traveling, so it is necessary to define the train 
operation performance measures first, and then the corresponding energy consumption optimization 
model can be derived. 

Table 1. Symbols. 

Symbol Description 𝑇  The journey time 𝐴 Auxiliary energy efficiency parameter                                             𝐸 Energy consumption indicators 𝑓௧、𝑏 The traction force and the braking force, respectively 𝑀 Mass of the train 𝜇、𝜇 Electrical energy conversion efficiency in motoring mode and braking mode, respectively 𝑠、𝑠 The beginning and ending of the interval of the corresponding mode 𝑃௧ The ravel time index penalty function 𝑃௦ The stopping position index penalty function �̄� The average acceleration valve in time interval 𝑓௧(𝑣) Unit traction force 𝑤(𝑠) Unit resistance force 𝑏(𝑣) Unit braking force 𝑥(𝑛) The 𝑗th value of the 𝑖th individual firefly 

 
In order to facilitate the analysis of the train operation process, the following assumptions are made 



for the research questions: 
(1 The utilization of regenerative feedback energy is not considered; 
(2 The traction force and braking force of the train are continuous, and the train can run at a constant 

speed; 
(3 Since the emergency braking conditions are generally not used in the normal operation of the 

train, the train braking conditions in this paper are limited to the common braking conditions; 
(4 The energy consumption of the auxiliary systems, such as lighting, air conditioning and fans, is 

only related to the running time and has nothing to do with the operating conditions of the train. 
Energy consumption measure. The energy consumed by high-speed trains includes the traction 

energy and the non-traction energy which is caused by the air conditions and the lights on the train. The 
former consumption is equal to the integral of the traction force against the distance, and the later one is 
often proportional to the journey time 𝑇 with the auxiliary energy efficiency parameter 𝐴. The energy 
consumption indicators 𝐸 during the operation is shown in Equation (1) [19-21]. 

𝐸 = 1𝜇 න 𝑀 ∙ 𝑔 ∙ 𝑓௧(𝑣)d𝑠௦௦బ + 𝐴 ∙ 𝑇3600 − 𝜇 න 𝑀 ∙ 𝑔 ∙ 𝑏(𝑣)d𝑠௦௦బ  (1) 

Travel time and stopping position measure. When the trains run according to a pre-assigned 
running plan in the practical applications, the travel time intervals and the stopping position on the 
stations are often pre-fixed. In calculating the speed trajectory, the travel time index penalty function 𝑃௧ 
is presented in Equation (2), and Equation (4) defines the stopping position index penalty function 𝑃௦, 
both of them are imposed to avoid unnecessary safety hazards. ∆𝑡 = ห∑ 𝑡ୀଵ − 𝑡ห  (2) 𝑃௧ = ൜ 1,     ∆𝑡 ≤ 𝜏 𝐴௧ ,   ∆𝑡 > 𝜏 (3) ∆𝑠 = ห∑ 𝑠ୀଵ − 𝑠ห  (4) 𝑃௦ = ൜ 1,     ∆𝑠 ≤ 𝜎 𝐴௦,   ∆𝑠 > 𝜎  (5) 

among them, the deviation value ∆𝑡 can be expressed as the absolute value of the difference between 

the driving time in the actual operation time ∑ 𝑡ୀଵ  and the planned time 𝑡 which is pre-fixed in the 

optimization layer of the ATO system, likewise, ∆𝑠 is the deviation value of driving distance of the 

actual operation ∑ 𝑠ୀଵ  from planned distance 𝑠. The biggest value is 120s of the travel time index 

and is 0.3m of the stopping position index. 
Comfort measure. For passengers, their expectation is a fast, safe and comfortable journey, while 

intense speed changes during the journey could cause discomfort to passengers. In this paper, except for 
the energy consumption measure which is the main purpose of the optimization, travel time and stopping 
position measure which is the basic requirement of the operation, the riding comfort of the passengers is 
also taken into consideration. The comfort measure can be expressed as the change rate of the 
acceleration value of the train as follows. 𝐺 = �̄�/∆𝑡 (6) 

where, �̄� presents the average acceleration valve in time interval ∆𝑡. 
      min 𝐽 = 𝑘ଵ ∑ 𝐸 + 𝑘ଶห𝑡 − ∑ 𝑡ୀଵ หୀଵ + 𝑘ଷห𝑠 − ∑ 𝑠ୀଵ ห + 𝑘ସ𝑚𝑎𝑥{𝐺} 



𝑠. 𝑡. ⎩⎪⎨
⎪⎧𝑣 = d𝑠/d𝑡,𝑚 ⋅ d𝑣/d𝑡 = 𝑓௧(𝑣) − 𝑤(𝑠) − 𝑏(𝑣),0 ≤ 𝑠 ≤ 𝑠, 𝑖 = 1,2, ⋯ , 𝑛  𝑠ଵ = 0,𝑣(𝑠) = 𝑣(𝑠) = 0, 𝑣(𝑠) ≤ 𝑣௫ ,𝑡(𝑠) = 0, 𝑡(𝑠) ≤ 𝑡, 0 ≤ 𝑡(𝑠) ≤ 𝑡. (7) 

 The objective function 𝑚𝑖𝑛 𝐽  is composed of the energy consumption measure, travel time 
measure, stopping position measure and conform measure, and the importance of each measure is 
determined by the weight 𝑘. The dynamics equation of the train is composed of the unit traction 𝑓௧(𝑣), 
unit resistance 𝑤(𝑠) and unit braking force 𝑏(𝑣) of the train. Along the journey, the train starts at position 𝑠 and stops at position 𝑠, hence the velocity of the train at the position 𝑠 and 𝑠 should be 0. 𝑣௫  
is the speed limit of subsection 𝑠, for a traveling train, the speed of the train at position 𝑠 should 
always below the speed limitation 𝑣௫   and the time consumption should not exceed the planned 
running time 𝑡. 

2.3. Train operation trajectory optimization 
The train operation trajectory optimization problem is actually a maneuvering scheme optimization 
problem of a train whose departure point is 𝑠 and the destination is 𝑠, subjected to the requirement on 
punctuality, energy saving, and comfort, etc. There are 4 changeover points in Figure 3 during the 
process where a train can switch to any driving condition, and the expected costs 𝑄  of the interval is 
determined by driving condition, initial velocity and initial location. The evaluation of the resultant 
trajectory is determined by the performance measure model, and the optimal operation scheme includes 
the sequence of transition points {𝑠} = [𝑠ଵ, 𝑠ଶ ⋯ , 𝑠ସ]  where the driving conditions changed and the 
sequence of driving conditions {𝑢} = [𝑢, 𝑢ଵ, ⋯ , 𝑢ସ]. 

 
Figure 3. Basic policy of the schematic diagram. 

 In Figure 3, each changeover point 𝑠 is corresponding to a driving condition 𝑢, having an impact 

on the operation of the next operation stage and the overall operational performance. The driving 

condition started at changeover point 𝑠ଵ determines the speed and location of the train at changeover 

point 𝑠ଶ. Constrained by the speed limitation and the speed trajectory of the train, the expected cost 

transferring from one stage to another can be defined as follows, where, 𝑢 is the driving condition in 

the [𝑠 ,   𝑠ାଵ] interval, 𝑎௨ presents the acceleration under driving condition 𝑢. 
ቐ 𝑣 = 0, 𝑣ଵ = ඥ2𝑎௨ ∙ 𝑆ଵ𝑣ାଵ = ට2𝑎௨ ∙ (𝑆ାଵ − 𝑆) + 𝑣ଶ (8) 

Suppose the train adopts the operation condition 𝑢ଵ at changeover point 𝑠ଵ, then it continues to 
travel to the changeover point 𝑠ଶ, the expected cost achieved during the interval is defined as 𝑄ଵ, which 



is calculated according to Equation (7). The lower the expected cost, the better the resultant solution is, 
and the state transition at stage 𝑖 can be described as follows. 𝑠(𝑢 , 𝑄)  ⟶   𝑠ାଵ(𝑢ାଵ, 𝑄ାଵ), 𝑢ାଵ ∈ [CTTM, CPTM, CRM, COM, EBM, SM] (9) 

To facilitate energy-saving, the train often applies the maximum traction force at the 𝐶𝑇𝑇𝑀 phase 
like [𝑠, 𝑠ଵ] and the appropriate braking force in the 𝑆𝑀 phase like [𝑠ିଵ, 𝑠], in this way the train can 
reduce the energy consumption, meanwhile adding the coasting condition before the stopping and 
braking phase can effectively increase the passenger’s comfort [22-23].  

In summary, the Optimization framework of train operation curve can be illustrated as follows. 

 

Figure 4. Optimization framework of train operation curve. 

3. Optimization methodology based on GSOANR algorithm 

Table 2. Symbols of the algorithms. 

Symbol Description 𝑙 Initial luciferin value 𝑙(𝑡) The luciferin value of individual 𝑖 at time 𝑡 𝜂 Luciferin decay constant (0 < 𝜂 < 1) 𝑄(𝑥(𝑡 + 1)) The fitness value of individual 𝑖 at time 𝑡 + 1 𝛾 Luciferin enhancement constant 𝑝(𝑡) Probability of individual 𝑖 moves towards an individual 𝑗 𝑟ௗ (𝑡 + 1) The neighborhood range of individual 𝑖 at time 𝑡 + 1 𝑛௧ The parameter related to control the number of neighbors                                            𝑁(𝑡) The number of the neighborhood individuals at time 𝑡 𝑛 Number of iterations 𝜑(𝑛) The adaptive neighborhood range parameter at 𝑛th generation 𝑀𝑎𝑥𝐺𝑒𝑛 The max generation times 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑛) The diversity of the swarm 𝑁 Population size of the swarm 𝐷 The dimensionality of the problem 𝑥(𝑛) The 𝑗th value of the 𝑖th individual firefly 

As one of the typical multi-objective optimization problems, the energy consumption reduction problem 
of trains can also be solved by the intelligence algorithms efficiently. The standard GSO algorithm 
possesses avoidance of being trapped in local optimum and has fewer parameters which makes it easy to 
apply to the problems [24]. The traditional intelligent optimization algorithms such as genetic algorithm 



encounter bottlenecks in the train speed trajectory optimization problem, hence this paper proposes a 
modified GSO algorithm, namely GSOANR (GSO algorithm with adaptive neighborhood range), to 
improve the convergence rate and solution precision. 

3.1. Standard GSO Algorithm 
In standard GSO algorithm, individual fireflies, which contain equal quantity of luciferin 𝑙 initially, 
rely on mutual attractions to move around and finally find the solution after iterations. Each iteration is 
composed of a luciferin update phase and a movement phase which is under the transition rule [24- 26]. 

Luciferin Update Phase. During the iterations, the luciferin updates of the individuals depend on 
the fitness value of the individual at the current position and the former luminescence value. The luciferin 
update rule can be given by Equation (10). 𝑙(𝑡 + 1) = (1 − 𝜂)𝑙(𝑡) + 𝛾𝑄(𝑥(𝑡 + 1)) (10) 

Movement Phase. In GSO algorithm, the individual firefly with a larger fitness value has a greater 
attraction to the other individuals around, and the further away the distance the lower the brightness. The 
set of neighbors of individual 𝑖 at time 𝑡 can be calculated as follows: 𝑁(𝑡) = {𝑗: ฮ𝑥(𝑡) − 𝑥(𝑡)ฮ < 𝑟ௗ (𝑡); 𝑙(𝑡) < 𝑙(𝑡)} (11) 

Where, ฮ𝑥(𝑡) − 𝑥(𝑡)ฮ  represents the Euclidean norm of the difference between 𝑥(𝑡)  and 𝑥(𝑡) ; 𝑟ௗ (𝑡) is the variable neighborhood range associated with individual 𝑖 at time 𝑡. For each individual 𝑖, 
the probability of moving toward a neighbor 𝑗 ∈ 𝑁(𝑡) is given by: 𝑝(𝑡) = 𝑙(𝑡) − 𝑙(𝑡)∑ (𝑙(𝑡) − 𝑙(𝑡))∈ே(௧)  (12) 

If the individual 𝑖  moves towards an individual 𝑗  with probability 𝑝(𝑡)  given by Equation 
(14), then the movements can be described as follows, among them 𝑠(> 0) is the step size. 𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑠( 𝑥(𝑡) − 𝑥(𝑡)ฮ𝑥(𝑡) − 𝑥(𝑡)ฮ) (13) 

Transition rule. In move phase, the set of neighbors is corresponding with the variable 
neighborhood range 𝑟ௗ (𝑡). The initial neighborhood range of each individual at the beginning is 𝑟, the 
rule of updating the neighborhood range of each individual is given as follows. 𝑟ௗ (𝑡 + 1) = min {𝑟 , max {0, 𝑟ௗ (𝑡) + 𝜑(𝑛௧ − |𝑁(𝑡)|)}} (14) 

where, 𝜑 is a constant parameter and 𝑛௧ is used to limit the number of the neighbors. Eventually more 
fireflies will move towards the firefly with a larger fitness value. 

3.2. GSOANR algorithm 

The GSOANR algorithm adopts the definition of the adaptive neighborhood range inspired by the 
concept of the diversity of the swarm [27]. According to the working phase and transition rule of the 
standard GSO algorithm, individuals with lower brightness are attracted to individuals with higher 
brightness and thus move towards them, the equation for neighborhood range update under the effect of 
attraction is given in Equation (14), among them 𝜑 is a constant parameter.  

In the proposed GSOANR algorithm, 𝜑  is replaced with the diversity of the swarm 𝜑(𝑛)  as 
follows. 



𝜑(𝑛) = 1/exp (2𝑛/𝑀𝑎𝑥𝐺𝑒𝑛) ∗ 1/𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑛) (15) 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑛) = ଵே ∑ ට∑ ൫𝑥(𝑛) − 𝑥ఫ(𝑛)തതതതതതത൯ଶୀଵேୀଵ   (16) 

among them, 𝑀𝑎𝑥𝐺𝑒𝑛 is the max generation number, 𝑁 and 𝐷 represent the population size of the 

swarm and the dimensionality of the problem, respectively. 

The adaptive neighborhood range parameter 𝜑  is composed of two parts: the exponentially 

decreasing parameter 1/exp (2𝑛/𝑀𝑎𝑥𝐺𝑒𝑛) and diversity parameter 1/𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑛) . The 

exponentially decreasing parameter decreases from 1 to 0 as the population iteration proceeds. The 

diversity parameter is responsible for adjusting the neighborhood range according to the diversity. When 

the value of the population diversity is low, it implies that the algorithm may have fallen into the local 

optimum. When the population diversity is high, it means that the algorithm has a strong global 

exploitation ability, meanwhile it is helpful for avoiding the algorithm to miss the optimal value. 

To compare the performance of the GSOANR algorithm with standard GSO algorithm, this paper 

used 4 benchmark functions as listed in Table 3, among them 𝑓ଵ and 𝑓ଶ are single-mode functions and 

the others are multi-mode functions [28-29]. 

Table 3. Test functions. 

 Name Function Search range Global optimum 

𝑓ଵ Sphere 𝑓ଵ(𝑥) =  𝑥ୀଵ  [-100,100] 0 

𝑓ଶ Rosenbrock 𝑓ଶ(𝑥) =  [100൫𝑥ାଵ − 𝑥ଶ൯ଶ + ൫1 − 𝑥ଶ൯ଶ]ୀଵ  [-30,30] 0 

𝑓ଷ Schwefel 2.26 𝑓ଷ(𝑥) =  −𝑥𝑠𝑖𝑛ඥ|𝑥|ୀଵ  [-500,500] -418.98*D 

𝑓ସ Rastrigin 𝑓ସ(𝑥) =  (𝑥ଶ − 10𝑐𝑜𝑠2𝜋𝑥 + 10)ୀଵ  [-5.12,5.12] 0 

Table 4. Comparison results of 2 algorithms on benchmark test functions. 

Function Algorithm Best value Worst value Mean value Standard deviation 

𝑓ଵ 
GSOANR 9.17E-02 1.33E+02 1.09E+01 2.36E+01 

GSO 2.30E-01 1.64E+02 2.12E+01 3.89E+01 𝑓ଶ 
GSOANR 4.67E-07 1.97E-01 2.75E-02 4.36E-02 

GSO 7.38E-07 2.30E-01 3.27E-02 5.45E-02 𝑓ଷ 
GSOANR -4.19E+02 -3.00E+02 -3.99E+02 3.14E+01 

GSO -4.19E+02 -3.00E+02 -3.97E+02 3.58E+01 𝑓ସ 
GSOANR 4.91E-02 2.07E+01 6.37E+00 4.52E+00 

GSO 7.12E-01 2.18E+01 6.44E+00 5.53E+00 

Table 4 shows the optimization results of the GSO algorithm and the GSOANR algorithm. It is 
evident that the average value and standard deviation of the results produced by the GSOANR algorithm 
are better than the results obtained from the GSO algorithm in optimizing all functions. 



3.3. Implementation procedure 
Design of individuals in the population. To solve the train operation trajectory optimization problem, 
each individual firefly 𝑥  should represent a feasible train operation strategy, which consists of the 
driving condition sequence {𝑢} and the corresponding changeover points {𝑠}, hence defining 𝑥 ={𝑢 , 𝑠} as the individual firefly, and the population initialization needs to satisfy Equation (7). 

Fitness function. Each individual firefly relies on its brightness to attract the other individuals to 
shift their positions during the process of searching for better solutions. The fitness function which is 
related to the brightness is defined as the inverse of the cost function defined in Equation (17). 𝑄 = 1𝐽 = 1𝑘ଵ ∑ 𝐸 + 𝑘ଶห𝑡 − ∑ 𝑡ୀଵ หୀଵ + 𝑘ଷห𝑠 − ∑ 𝑠ୀଵ ห + 𝑘ସ𝑚𝑎𝑥{𝐺} (17) 

Update of operation sequence. As mentioned earlier, each individual firefly in GSO algorithm 
represents an operation trajectory, which can be descripted as a sequence of operating conditions and 
transition points, i.e., 𝑥 = {𝑢, 𝑠} , where {𝑢}  denotes the union of operating conditions in the 
operation sequence and S denotes the union of the transition points. The update of individual fireflies 
includes the update of the operating condition sequence, i.e., 𝑥(𝑛 + 1) = {𝑢 (𝑛), 𝑠  (𝑛)}  or {𝑢  (𝑛), 𝑠(𝑛)}, and the selection is based on the fitness value of the two solutions.  

In general, the key steps of the algorithm for optimizing the driving strategies are as follows. 

Algorithm 1. Optimization method based on GSOANR algorithm 
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Randomly initialize 𝑁 fireflies according to Equation (7) as the initial population; 

Calculate the fitness value of each individual firefly 𝑥 according to Equation (17); 

t=0; 

while (t< MaxGen) do 

 Update the neighborhood range parameter 𝜑 according to Equation (15); 

 for i=1: n (all n fireflies) do  

  for j=1: n (all n fireflies) do 

   if 𝑄൫𝑥൯ > 𝑄(𝑥) then 

    Calculate the probability of moving according to Equation (12); 

    Move individual 𝑥 towards 𝑥  according to Equation (13); 

    Calculate the fitness value of the new solution 𝑥 according to Equation (17);  

  end 

 end 

 end 

 t=t+1; 

end 

The parameters in GSOANR algorithm that need to be pre-set include the fluorophore volatilization 
coefficients and the initial population size. According to Huang et al., Kaipa & Ghose, Kim K and other 
related tests [31-33], the key parameters in the GSOANR and the GSO algorithm are set as listed in Table 
5, the population size is set to 30, and the maximum number of iterations is 200. 

Table 5. Setting of key parameters in the GSOANR and the GSO algorithm. 

Parameter Description Parameter Value 𝜂 Decay constant of fluorescein 0.40 



𝛾 Fluorescein growth coefficient of the GSO algorithm 0.60 𝛽 The variation coefficient of perceptual radius of the GSO algorithm 0.08 𝑙 Luciferin value at the beginning 5 

The index coefficient 𝑘 presents the importance of each index in the algorithm, and the value of 𝑘 can be determined by the practical requirements and can be adjusted flexibly under different scenarios.  
The simulation results of the driving strategies obtained by different methods with different values of 𝑘 
are showed in Figure 5. Each of the three sets of results corresponds to one of the three typical strategies 
mentioned in Section 2 respectively. 

In group 1, 𝑘ଵ = 0.1, 𝑘ଶ = 0.6, 𝑘ଷ = 0.2, 𝑘ସ = 0.1 ; in group 2, 𝑘ଵ = 0.35， 𝑘ଶ = 0.35， 𝑘ଷ = 0.2， 𝑘ସ = 0.1; and in group 2, 𝑘ଵ = 0.6, 𝑘ଶ = 0.1, 𝑘ଷ = 0.2, 𝑘ସ = 0.1. Compared with the group 1 and group 2, 
the group 3 which is corresponding to the integrated optimization strategy has a stable performance in 
terms of fitness values, meanwhile the consumption of the time and energy are also acceptable. To 
balance the importance of energy consumption and travel time while taking the other indexes into 
consideration, the weighting 𝑘ଵ  for the energy performance measure is set as 0.35, for the time 
performance measure the weighting 𝑘ଶ is also set to be 0.35, for the stopping position performance 
measure 𝑘ଷ is 0.20, and the comfort measure weighting 𝑘ସ is 0.10. 

 
(a) (b) (c) 

Figure 5. The process of iteration with different values of 𝑘. (a) the energy consumption of iterations with different 

values of 𝑘, (b) the time consumptions of iterations with different values of 𝑘, (c) the optimum value of iterations 

with different values of 𝑘. 
4. Simulation and analysis 

To confirm the efficacy of the proposed optimization method, this section executes two cases in which 
the major difference is the optimization method for generating the operation trajectory while the other 
parameters like the type of the train and the line parameters are all the same. Case 1 compares the 
traditional GSO algorithm with the GSOANR algorithm for train trajectory optimization. And case 2 
compares the GSOANR based train trajectory optimization with an existing optimization method which 
is based on Q-learning algorithm. 

4.1. Case 1 
This case adopts the CR400BF type high-speed train which is composed of 4 trailers cars and 4 motor 
cars and uses a real line data between Heishan North Station and Fuxin Station for simulation. The real 
line in simulation is chosen from Beijing-Shenzhen Line referencing from the paper of [11]. Table 6 gives 
some details of the line and the train.  



Table 6. The parameters of the line and the train. 

Parameter Description Parameter Value 𝑠 Length of the line 58 km 𝑡 Planned travel time 23 min 𝑣௫ Speed limitation for the whole road 288 km/h 𝑀 The mass of the train 913 t 𝑤(𝑣) Basic resistance of the train 0.399 + 0.0013 · 𝑣 + 0.000109 · 𝑣ଶ  𝑁/𝑘𝑁  𝑓௧(𝑣) Train motoring characteristics ൜267 − 0.243 ⋅ 𝑣  𝑘𝑁  (0 ≤ 𝑣 < 160 𝑘𝑚/ℎ)0.0021𝑣ଶ − 1.7308 ⋅ 𝑣 +  446.75 𝑘𝑁   (𝑣 ≥ 160 𝑘𝑚/ℎ) 𝑏(𝑣) Train braking characteristics 

⎩⎨
⎧280 · 𝑣/10                            𝑘𝑁               (0 ≤ 𝑣＜10 𝑘𝑚/ℎ)−0.2241𝑣 +  281.74        𝑘𝑁          (10 ≤ 𝑣＜200 𝑘𝑚/ℎ)0.0017𝑣ଶ  −  1.5602𝑣 +  475.38  𝑘𝑁   (𝑣 ≥ 200 𝑘𝑚/ℎ)  

The operation trajectory generated by the traditional GSO algorithm is analyzed first. In the 
algorithm, the population size is 30, the maximum number of iterations is 200, the decay constant of 
fluorescein is set to 0.40, the fluorescein growth coefficient and the variation coefficient of perceptual 
radius are set to 0.60 and 0.08 respectively. The program randomly generated 30 train operation 
trajectories, and each firefly corresponds to one trajectory which changes its location based on the 
comparison of the fitness valve to the individuals in the range. After iterations most of the fireflies 
converge to the optimal one.  

 
Figure 6. Distribution of each individual in different iterations of the standard GSO algorithm. 

Figure 6 shows the solutions of the 10th, 50th, 100th, 150th, 180th and 200th generations, from 
which we can observe that when the evolution starts, fireflies closer to each other are more easily to 
gather around, at this stage, the distance between individuals has a bigger influence, that is the reason of 
the clusters of individual fireflies as the red circle noted. Finally, the energy consumption sums up to 
765.023 kWh and the running time is 1371 s. 



  
Figure 7. Distribution of each individual in different iterations of the GSOANR algorithm. 

Then the optimization method based on the GSOANR algorithm is used to generate the optimal 
trajectory, whose solutions of the 10th, 50th, 100th, 150th, 180th and 200th generations are shown in 
Figure 7. In the whole iteration process, the individuals of each generation aim at searching the optimal 
trajectory which has the lowest fitness value. There are two distinctive features: one is that the energy 
consumption of the entire population ranges from 700 to 900 kWh, where fireflies with too little energy 
consumption generally appear to stop too early and their stopping position indexes are large, resulting 
low fitness values; On the other hand, fireflies with too much energy consumption also have low fitness 
values due to long running time. 

Figure 8 illustrates the optimal trajectories generated by the standard GSO algorithm and the 
GSOANR algorithm, and the comparison data of the optimal solutions are listed in Table 7. The most 
significant difference between the standard algorithm and the improved algorithm is the definition of the 
neighborhood range parameter. It’s not hard to find that, while GSOANR algorithm has greater search 
capabilities hence the individuals can search better trajectory, and the train runs at constant traction mode 
on short-distance tracks and switches to the cruising mode when the speed is reaching the limit on straight 
long-distance tracks. The energy consumption of the improved algorithm is 722.449 kWh and reduces 
by 5.6% than that of the standard algorithm. According to the analysis and comparison of two 
optimization method, the trajectory generated by the standard GSO algorithm is a desirable operation 
trajectory in practice, while the GSOANR algorithm is further more compliant with energy efficiency. 



  

Figure 8. The optimal trajectories by the standard GSO algorithm and the GSOANR algorithm. 

Table 7. The comparison data of the optimal solutions by GSO and GSOANR algorithms.  

Optimization methods Energy consumption (kWh) Planned running time (s) Running time (s) 

GSO Algorithm 765.023 1370 1371 

GSOANR Algorithm 722.449 1370 1372 

4.2. Case 2 
In this case, the comparison with the optimization method based on the GSOANR algorithm and the Q-
learning algorithm [11] is made. These two methods are different in the ways of algorithm improvement 
and trajectory coding.  

In [11], the railway line between Heishan North Station and Fuxin Station is simulated. The 
operation distance is 58 km and the planned travel time is 23 min. As the final simulation results show, 
the energy consumption of the Q-learning Algorithm which is trained for 6 × 10 times is 886.261 kWh, 
and the energy consumption of which is trained for 1 × 10 times is 922.367 kWh. The increase in the 
number of training sessions resulted in a further improvement in train punctuality, with a reduction in 
running time of 8 s, but an increase in energy consumption of only 4%. 

To make a comparison of these two different methods, the operation trajectory should be optimized 
under the same conditions of both the train and the line, Figure 9 shows the optimal trajectories generated 
by those two different methods, respectively. It’s noted that these trajectories are similar at the beginning, 
and the trajectory generated by the GSOANR algorithm is more prefer to use coasting mode when 
approaching stations, which can reduce the energy consumption because the traction power is zero under 
the coasting mode. Besides, the energy feedback of the braking mode also reduces the consumption of 
the energy. The comparison data are also given in Table 8. As the result shows, the energy consumption 
of the GSOANR algorithm is 722.449 kWh, reduces by 19.5%. Hence, the energy efficiency of the 
GSOANR algorithm based optimization method is confirmed again.   
  



Table 8. The comparison data of the optimal solutions by different approaches.  

Optimization methods Energy consumption (kWh) Planned running time (s) Running time (s) 

Q-learning Algorithm (1*10^7) 922.367 1370 1369 

Q-learning Algorithm (6*10^6) 886.261 1370 1377 

GSOANR Algorithm 722.449 1370 1372 

 
Figure 9. The optimal trajectories by algorithms. (a) Q-learning algorithm and the GSOANR algorithm, (b) the 

standard GSO algorithm and the GSOANR algorithm. 

5. Discussion and conclusion 

As traditional diesel trains are expected to be replaced by hybrid and fully electrified trains in the next 
decades [33], the electricity demand of the railway sector will increase dramatically, which will 
inevitably impose great pressure on future power grids largely running on renewable energies. Hence it 
is important to reduce the electricity demand by optimizing the train trajectory. However, the train 
trajectory optimization needs to consider multiple criterions and constraints, and the ATO system is not 
mature enough for energy-saving compared with the experienced drivers. Hence it is challenging to 
formulate and solve the optimization problem.  

The main contributions of this paper include:1) developed a multi-objective optimization 
framework for operation trajectory optimization of the train by considering the new features of ATO 
systems introduced in electrified and high-speed trains; 2) proposing six quantitative energy-saving 
performance measures and leading to the establishment of the multi-objective optimization model; 3) a 
modified GSO algorithm namely GSOANR is used to search for the optimal operation trajectory. The 
proposed method has been verified trajectory planning for a 58km long route between the Stations of the 
Beijing-Shenzhen Passenger Line in China, and has achieved about 19.5% and about 5.6% energy 
reduction than the Q-learning algorithm and the standard GSO algorithm respectively, which proves that 
the method of this paper is informative for the study of train trajectory optimization. 
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