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Experimental evidence of resistance anomalies in the high-mobility two-dimensional electron gas (2DEG)

formed in the GaAs/AlGaAs heterostructure, in the integer and fractional quantized Hall regime, is shown. The

data complement to a good approximation the semianalytic calculations used to describe the formation of integral

and fractional incompressible strips. The widths of current-carrying channels were calculated by incorporating

the screening properties of the 2DEG and the effect of a magnetic field in the perpendicular mode. The many-

body effects of the composite fermions are taken into consideration for the energy gap for the fractional states.

It is shown that incompressible strips at the edges for both integer and fractional filling factors coexist in their

evanescent phase for a particular range of magnetic fields, resulting in overshoot effects at the Hall resistance.

Specifically, anomalous Hall resistances were noticed for filling factors ν = 4
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effect is explained and discussed using the screening theory.
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I. INTRODUCTION

Since the discovery of the integer/fractional quantum Hall

effect (IQHE/FQHE) [1,2], the study of quantum states in the

two-dimensional electron gas (2DEG) systems has sparked

great interest, particularly utilizing its quantum-mechanical

properties for applications in quantum computing [3]. How-

ever, a universal theory has still not materialized to explain

the various anomalous phenomena that appear in experimental

studies such as the anomalous Hall resistance (overshoot-

ing) [4–6]. The resistance overshooting is the observance of

an anomalous increase in resistance at a plateau corresponding

to a specific filling factor ν observed within the transverse

resistance of the IQHE/FQHE. The importance of studying

this phenomenon is that it can clarify our understanding of

the formation of quantum states within these regimes. Over

the years there has been development of a theoretical ex-

planation of this phenomenon, with data eventually showing

great similarities between experimental and theoretical work

for IQHE. However, for FQHE, although theories predicted

overshooting in the fractional states, the phenomenon has not

been observed or studied extensively. In this paper we show

the observation of overshooting or anomalous Hall resistance
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University of Sheffield, Sheffield S10 2TN, United Kingdom.

in the FQHE regime and present a theoretical model based on

compressible/incompressible states. These states are areas of

different characteristics which appear within the system as a

consequence of the screening effect, with properties similar

to those of conducting and insulating regions. Within this

framework electron interaction effects, specifically Coulomb

interactions, are included, providing a close match between

theoretical and experimental work.

This paper has been arranged in the following manner: In

Sec. II the sample’s structure and geometry and the experi-

mental setup and methods are presented. Section III covers

the explanation of the anomalous resistance overshoot and the

various theories surrounding it. In Sec. IV, a discussion com-

paring theory and experimental results from other groups with

data collected from our sample is given. Section V concludes

our findings.

II. SAMPLE AND METHODS

In the present work we have utilized the

GaAs/Al0.33Ga0.67As heterostructure grown by molecular-

beam epitaxy. A 2DEG is formed at the interface of GaAs and

AlGaAs at a depth of around 100 nm from the surface of the

heterostructure. The electron carrier density was calculated

in the dark (light) to be n0 = 1.6 × 1011 cm−2 (4.45 × 1011

cm−2), and its mobility μe = 0.37 × 106 cm2/V (1.05 × 106

cm2/V s). A red light-emitting diode was used to illuminate

the experimental device. The heterostructure was converted

2469-9950/2020/102(11)/115306(9) 115306-1 ©2020 American Physical Society
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FIG. 1. Plot of conductance G in units of 2e2/h versus Vsg, with

the signature quantized conductance plateaus for a 1D system. The

insets are schematics of the device used in this paper. The upper inset

shows the Hall bar. The dark yellow rectangles are the Ohmic con-

tacts, and the bright yellow structures are the titanium/gold optical

gates. These are used to create contact with the split gates and top

gates, seen in a zoomed-in picture in the lower inset. The width of

the Hall bar is WH = 80 μm, and the length is LH = 1400 μm. The

split gates (shown in yellow) are 700 nm apart and have a width of

400 nm. The top gate (dark brown) is separated from the split gates

via PMMA.

into a Hall bar, as shown in Fig. 1. A pair of split gates

was fabricated through the standard lithographic methods

(photo- and electron-beam lithography) [7,8], insulated by

poly(methyl methacrylate) (PMMA) from the top gate. The

width of the top gate is the same as the split gates (drawn

smaller in Fig. 1 in order to make the design clearer). The

distance between the split gate and the Rxy contacts is 300

μm. The distance between the Rxx contacts is 1080 μm;

the distance between the split gates and the left Rxx Ohmic

is 230 μm, and the distance to the right Ohmic is 850

μm. The split gates and the top gate are used to create a

quasi-one-dimensional (1D) channel using the 2DEG [7,8].

The magnetotransport measurements were performed in a

dilution refrigerator at a base temperature of 10 mK, unless

stated otherwise.

The conductance as a function of voltage applied on the

split gates Vsg is shown in Fig. 1. This was used as the ref-

erence for Vsg applied in the measurements described in the

following sections. The longitudinal, Rxx, and transverse, Rxy,

resistances of the sample were measured using the standard

four-terminal method.

III. HALL RESISTANCE ANOMALY (OVERSHOOT)

The study of QH effect is of vital importance due to its

importance in metrology as a standard of resistance. Nonethe-

less, although the IQHE is explained satisfactorily, to some

extent, by the 1D Landauer-Büttiker formalism [9,10] of

edge states, it is limited in describing various experimental

phenomena that contradict it. One such phenomenon is the

resistance overshoot in the IQHE which has been extensively

studied, both experimentally and theoretically. Resistance

overshooting is the observation of nonmonotonic increase

of Hall resistance at the lower end of the magnetic field

of the quantized plateaus, forming at integer filling factors

which are defined by the number of occupied quantized (spin-

resolved) Landau levels (LLs) below the Fermi energy. Over

the years various explanations for this phenomenon have

been provided but have failed to provide strong evidence for

their validity. Some examples are the suggestion of nonideal

probes [10–12], the decoupling between the magnetic fields

of the two edge states associated with the topmost spin-split

LL [13], and the nonequilibrium population of electrons at

sample boundaries due to bulk properties causing scattering

between edge states together with spin-orbit interactions [14].

In contrast, the screening theory which takes into account

the Coulomb interactions between charged carriers seems to

illustrate this phenomenon within a framework which follows

closely the experimental observations and how it changes with

strong magnetic fields [15–19]. This was initially proposed

in a qualitative manner by Beenakker [20] and Chang [21]

considering the electron gas being divided into strips which

alternate between incompressible (IS) and compressible (CS)

states. However, Beenakker stated then that this would not

be the case for fractional states [20]. In strong contrast,

Chklovskii et al. [22] argued that these states can successfully

explain the IQHE. Today, however, it is understood that a

similar model can explain these states as well by taking into

consideration the composite fermion (CF) model.

The CS and IS are formed at magnetic fields for a spatially

constrained 2DEG, resulting in the Fermi energy alternating

between a position that overlaps with the LL and regions

where it lies between the consecutive energy levels, respec-

tively. The latter IS is comparable to an insulating region

which is formed at the plateaus of the quantum Hall resistance

corresponding to specific filling factor ν and separated by the

conducting, metal-like, CSs. From the screening theory the

overshooting is thought to be a consequence of the decaying

IS near the edges of the plateaus; that is, they become evanes-

cent and coexist with ISs from adjoining filling factors which

are also in the evanescent regime, leading to current leakage

and causing the overshoot effect.

The framework for this model was given a more quantita-

tive explanation of the effect of screening on the edge states

when a magnetic field is present by Chklovskii et al. [22]

for both integral and fractional states. The main point from

this model is that for overshooting to occur the ISs have to

enter the evanescent regime [23]. That is, their widths WIS

must satisfy the condition lB < WIS < λF . The length scales

defining this regime are the magnetic length lB and the Fermi

wavelength λF . The former is given by lB =
√

h̄/eB, with h̄
being the reduced Planck’s constant, e being the elementary

charge, and B being the magnetic field, and the latter is defined

as λF =
√

2π/n0, with n0 being the bulk electron density of

the 2DEG. If WIS is less than lB, then the ISs collapse; if WIS >

λF , then the ISs are well defined. However, within this frame-

work the calculations are performed in a non-self-consistent
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manner. Additionally, assumptions like the 2DEG being lo-

cated at the plane of z = 0 and the electrons being depleted

by in-plane metallic gates on the same plane and generally

having an oversimplified picture on the boundary conditions

lead to an unrealistic model with wide ISs [17,23].

Subsequent work from Lier and Gerhardts [24] and Siddiki

et al. [25] combat this by modifying the Chklovskii model

with self-consistent calculations and taking into account the

Hall bar geometry and chemical etching of the mesa struc-

tures, matching, to a great extent, the experimental work in

the regime of the IQHE. Examples of experimental work on

the IQHE can be found in the works of Sailer et al. [15]

and Kendirlik et al. [6], where Si/SiGe and GaAs/AlGaAs

heterostructures were used, respectively. Some varied results

on the temperature behavior of the resistance overshoot effect

have been noticed which can be explained by two types of

screening models, “the bulk” and “the edge” models [15]. Fur-

thermore, through the theoretical work by Salman et al. [17]

the model is extended to include fractional states. Experimen-

tally, the behavior of ISs for fractional states has been studied

before, but only in the context of magnetocapacitance [26] and

edge magneto-plasmon [27] measurements. Consequently, the

aim of this paper is to present this framework for fractional ISs

in the context of magnetoresistance measurements, specifi-

cally the effect on Hall resistance overshooting. A comparison

of the Hall resistance anomalies found not only in the IQH

regime but also in the FQH regime between the theory of

self-consistent calculations and experimental data obtained is

discussed in Sec. IV.

A. Electron density model

In order to calculate WIS , first, the depletion layer’s width

ld , i.e., the area between the edge of the mesa and the bound-

ary of the 2DEG, a compressible region, has to be calculated.

This is given by the empirical formula defined by Salman

et al. [23] as

ld =
π

n0a∗
B

(

d2deg−srf

dsample

)[

c3 −
ddnr−srf

c3a∗
B

e
(− de

10a∗
B

)
]

. (1)

From Eq. (1), a∗
B is the effective Bohr radius given by a∗

B =
h̄2ǫ

m∗
e e2 , with an effective mass m∗

e = 0.067 calculated using the

method described in Ref. [28] and a permittivity for GaAs

given by ǫ = ǫrǫ0 = 12.4ǫ0, with ǫ0 being the permittivity of

free space [17]. The constant c3 is referenced as ∼4.5 from

Salman et al. [23]. In addition d2deg−srf = 100 nm is the depth

of the 2DEG from the surface of the mesa, dsample = 500 μm

is the thickness of the wafer, ddnr−srf = 60 nm is the depth

at which the donors are located from the surface, and de =
130 nm is the depth by which the sample was chemically

etched in order to form the mesa for the Hall bar. For this

sample the depletion length was estimated as ld ≃ 20 nm.

Then by using the self-consistent calculations which take

into account the geometry of the Hall bar the electron density

distribution is estimated by [17]

nel (x) = n0(1 − e−(|x−|WH −ld ||)/t ), (2)

where x is the position along the width, WH = 80 μm, of

the Hall bar and t ≃ 10a∗
B is an empirical parameter which

specifies the slope of the electron density profile [17]. An

FIG. 2. Density profile of the sample shown as a plot of the

density ratio nel (x)/n0 versus x/WH . The solid lines are for the Hall

bar with WH = 80 μm, and the dashed ones are for WH = 0.5 μm.

The inset shows a zoomed-in section of the density profile for the

WH = 80 μm Hall bar. For each WH the effect of a couple of

t-parameter values are also shown.

example of how the density profile varies with different Hall

bar widths and t-parameter values is shown in Fig. 2. The local

filling factor ν at both the integer and fractional ISs is specified

by

ν(xk, f ) = π l2
Bnel (xk, f ) = {k, f }, (3)

where k = 1, 2, 3, . . . , as it represents the integer values, and

f takes fractional values corresponding to the respective frac-

tional states [17]. Furthermore, by using Eqs. (2) and (3) the

expression for the central position of the ISs can be estab-

lished as

xk, f = |WH − ld | + t ln(1 − {k, f }/ν0) (4)

if the {k, f } < ν0 condition holds, with ν0 = π l2
Bn0 being the

bulk filling factor [17].

B. Finite wave functions and integer states’ widths

The analytical expression for calculating the IS widths with

integer ν is provided by [17,22]

ak =

√

2ǫ�E

π2e2dnel (x)/dx|x=xk

, (5)

where dnel (x)/dx|x=xk is the derivative of the density and �E
is the energy gap between the adjacent quantized levels. The

expression can be modified by taking into consideration the

Thomas-Fermi approximation (TFA) and the modified density

profile, as explained in Refs. [17,29], to give the equation

aTFA
k =

√

4αka∗
Bt

π (ν0 − k)
, (6)

where αk is a dimensionless strength parameter and gives the

ratio of �E between consecutive ν (different for odd and even

ν) by taking into account the Zeeman energy g∗μBB and the
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cyclotron energy h̄ωc, with ωc being the angular frequency of

the electrons [17,22]. The αk parameter is given as [23]

αk =
�Ek

h̄ωc
=

{

(g∗μBB)/h̄ωc, k = odd,

(h̄ωc − g∗μBB)/h̄ωc, k = even.
(7)

The effective Landé g∗ factor used in the calculations was

estimated as g∗ = 10.95 using the method described in

Refs. [30,31]. Additionally, μB is the Bohr magneton.

By using the TFA to calculate the widths of the ISs, it

should be noted that the finite widths of the wave functions are

neglected. Therefore, it is feasible for only slowly changing

potentials on the magnetic length scale. In contrast to this,

for the condition aTFA
k � lB the TFA is invalid. In order

to counterbalance this, Refs. [17,29,32] proposed the use of

the quasi-Hartree approximation (QHA), as finite widths of

the wave functions can be included through substitution of

the δ function TFA with Landau wave functions. By doing

this, however, the energy eigenvalues are still described as

in the TFA. The widths of the ISs, within the QHA, can be

approximated by [17,29,32]

aQHA
k =

(

1 −
lB

aTFA
k

)

aTFA
k . (8)

By comparing the widths calculated by the two different

approximations with the lB scale, three regimes can be iden-

tified. The first regime is under the condition that aTFA
k < lB

is satisfied and the cyclotron motion of the electron loses

its quantization; hence, the system exhibits classical Hall ef-

fect characteristics [17]. In contrast under the conditions of

aQHA
k > lB, the IS with ν = k becomes wider than the extent

of the wave, resulting in the bulk and the opposing sample

edges decoupling, and the IQHE is observed [17]. However,

this is valid only as long as ν0 < k. Last but not least,

under the circumstances that aTFA
k < lB < aQHA

k the IS

enters the evanescent phase [17]. As mentioned earlier, in this

situation the electrons are able to tunnel across the strip, with

the backscattering being enhanced. Consequently, the Hall

resistance displays a deviation from the quantized resistance

value, i.e., overshooting. This theoretical concept applies to

the fractional states as well, but with slight modifications,

which will be discussed in the following section.

C. Fractional states’ widths

For the fractional states the CF picture by Jain [33] is used

for this study. The filling factors ν of electrons and CFs are

linked by the equation [17]

ν =
ν∗

2pν∗ ∓ 1
, (9)

where ν∗ stands for the filling factor of the CFs and p is an

integer determining the order of the fractional state [17,33].

The energy gap expression for the fractional ν is given by [34]

� f = c f
e2

ǫlB
, (10)

where c f is a coefficient determined by the corresponding

filling factor. The value of c f ranges between 0.06 and 0.11 for

the fractional states 1/3 and 2/3 [34]. For simplicity the value

for the fractional state calculations performed within this pa-

per is taken as c f = 0.11 and set as p = 1. Note that from the

literature the difference in size of the energy gaps calculated

using the various values of c f within the aforementioned range

is negligible in our calculations, so it does not influence the

results discussed later [17]. By substituting Eqs. (2) and (10)

in Eq. (5), one obtains

aTFA
f =

√

4lBc f t

π (ν0 − f )
, (11)

which provides WIS for fractional states.

Chklovskii et al. [22] proposed that regimes similar to the

ones mentioned earlier for the integral states occur by com-

paring WIS of fractional states with the lB scale. On the other

hand, in Ref. [17], it was recommended that the comparison

should occur with the cyclotron radius rc f of the CFs instead

of lB. The rc f for the CFs can be estimated by

rc f = lB
√

2(2pν∗ + 2p + 1). (12)

This was based on later theories by Chklovskii [35] on the

formation of fractional edge states using the CF theory. If this

method of comparison is used, then a normalized cyclotron

radius rc = Rc/
√

2 = lB

√

2n−1
2

, where n is the LL index, for

the integer states should be used as well for a more sustain-

able comparison between integer and fractional states. Hence,

identically to the previous section, the evanescent ISs for frac-

tional states exist within the regime of aTFA
f < rc f < aQHA

f ,

where aQHA
f is the equivalent of aQHA

k but for fractional states

and calculated using Eq. (8) by substituting aTFA
k with aTFA

f .

This aspect on which length scale should be used for the

comparison will be discussed in more detail in relation to the

data presented in a later section.

D. Current and ISs

For the regime where the ISs are well established the cur-

rent flows entirely within them. However, when the ISs break

down, the current flows increasingly in the bulk of the system.

The Hall resistance is given by the equation

ρν
xy =

VHall

I0

=
h

e2ν
, (13)

which is derived in detail in Refs. [15,17], with I0 being the

current flowing along the Hall bar. From the equation it can be

seen that as the IS breaks down, the current density decreases,

and thus, the Hall resistance must drop. Nonetheless, when

more than one IS is in the evanescent phase, then the current

density increases locally, leading to an increase in the Hall

resistance as the local filling factor ν(x) also increases [17].

Therefore, for the case in which multiple evanescent ISs co-

exist, the Hall resistance is modified to

ρν
xy =

h

e2

( 1

ν1

(I1) +
1

ν2

(I2)
)

, (14)

where ν1 and ν2 are consecutive filling factors corresponding

to an IS with ν2 having a higher ν value, i.e., it is observed at

a lower magnetic field than ν1. Finally, the currents I1 and I2

correspond to the respective ν.
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FIG. 3. (a) Plot of Rxy as a function of B. The horizontal dashed

lines indicate the level at which the corresponding ν, labeled, are

supposed to be observed. (b) Rxx as a function of B. The positions of

the corresponding ν are indicated by the vertical dashed lines on the

curve. The double-sided arrows indicate the location of the magnetic

fields and the corresponding overshooting regions.

IV. RESULTS AND DISCUSSION

The plateaus which correspond to integer and fractional

filling factors are observed in the Rxy data, as shown in

Fig. 3(a). However, overshoot anomalies are noticed for the

fractional states 4/3, 3/2, 5/3, 8/3, 10/3, and 7/2 and the

integer ν = 3. As seen from Fig. 3(a), the plateaus for the

fractional states 4/3, 3/2, 5/3, 8/3 are well above the dashed

lines which correspond to these filling factors. For fractional

states at 10/3 and 7/2, although no distinct plateaus are seen

in Rxy, there are striking minima which seem to occur in

the Rxx measurement corresponding to these fractional states.

The reason for the plateaus, corresponding to these fractional

states, not being observed is attributed to the fact that there is

a large overshooting effect which seems to occur between the

B range of 2.8 and 3.1 T, which encapsulates these fractional

states as well as the integer ν = 3 state. An important obser-

vation is that the B positions of the minima observed in the

Rxx measurement match the B positions where the maximum

width of the ISs is located by using the Eqs. (6) and (8) for the

integer ISs and the equivalent ones for the fractional states, as

seen in Figs. 3 and 4.

In Fig. 4 the crescents indicate how the ISs for the various

ν change in width as B increases. The red crescents represent

WIS of the odd-integer ν, the blue ones show the even-integer

ν, and the green ones show the fractional ν. Note that at the

lower B the ISs are much narrower and are the evanescent

regions of the ISs. WIS for the integer states decreases for

ν values at smaller B. This is also why the plateaus of the

corresponding ν decrease in width. Additionally, notice how

the ISs in green intercept the various integer ν ISs, which is

why the overshooting effect is noticed.

Similarly, in Fig. 5, the evolution of the widths of the ISs

can be seen for the odd-integer ν in red, even integers in blue,

and the fractional states in green. The solid lines represent the

evolution of WIS as calculated using the TFA, and the dashed

lines represent the ones using QHA. The dashed black line is

λF , the solid black line is rc f , and the dash-dotted pink line

is łB. By analyzing the data it can be seen that for the regime

lB < aTFA
k , aQHA

k < λF , i.e., the evanescent regime of the ISs,

there are significant overshoot effects occurring. Also notice

how for ν = 3, 10/3, and 7/2, where the overshooting effect

is more pronounced, there is a larger overlap of evanescent

regions, which explains why the plateaus are more difficult

to distinguish in Rxy as opposed to other ν. The relatively

large overshoot noticed for ν = 3 is in agreement with mea-

surements stated by Kendirlik et al. [6]. Furthermore, note

that our data seem to be in contrast to a suggestion that rc f

should be considered the minimum length scale in defining the

evanescent regime, as opposed to lB. This is illustrated in the

example of ν = 5/3, where if rc f were considered, it would

suggest from our calculations in Fig. 5 that no overshooting

should occur as there are no other ISs overlapping the evanes-

cent region of the IS of ν = 5/3. However, we can see from

Fig. 3(b) that this is clearly not true and is more compatible

with the definition of the evanescent regime being defined by

lB as this seems to indicate an overlapping of the evanescent

ISs of multiple ν, e.g., ν = 1, 4/3, 3/2, and 5/3.

Additionally, by varying the temperature of the sample the

evolution of the plateaus was examined (see Fig. 6). The tem-

perature was varied from base temperature (BT) to 2 K. As can

be seen in Fig. 6, by increasing the temperature the overshoot-

ing is suppressed, with the weak plateaus for ν = 4/3 and

3/2 vanishing almost instantly with increasing temperature

and finally leading to a steeper change in Rxy between the

ν = 1 and ν = 2 plateaus. However, the 5/3 fractional state

seems to persist for higher temperatures. Initially, it seems

that it flattens out at 500 mK and drops in resistance value

but still retains an enhanced Hall resistance compared to what

is expected theoretically. Around 800 mK it seems to drop

down to a value that matches the dashed black line, marking

the expected value, and eventually smears out by 2 K. Also

note how the right-hand side of the ν = 2 plateau also drops

down to match the expected value for this filling factor in the

upper inset of Fig. 6.

Similarly, the plateau corresponding to ν = 3 seems to

flatten out as the temperature is increased to 2 K (see the lower

inset in Fig. 6). Also, in contrast to the 5/3 state, the enhanced

resistance seems to increase with increasing temperature with

115306-5



E. PERATICOS et al. PHYSICAL REVIEW B 102, 115306 (2020)

FIG. 4. Plot of R as a function of B. The crescents represent the evolution of WIS for the integral and fractional states. The red ones are for

odd-integer states, the blue ones are for even integers, and the green ones are for fractional states. The dashed magenta lines correspond to the

expected resistance values for each filling factor.

the plateau moving through the 8/3 state and evolving to a

flat region at approximately the 7/3 fractional state. This tem-

perature dependence of ν = 3 is in agreement with a previous

FIG. 5. Plot of WIS versus B by using the TFA (solid red, blue,

and green lines) and by using the QHA (dashed red, blue, and green

lines). Red is for odd-integer ν, blue is for even ones, and green is for

fractional states. The dashed black line is λF . The solid black line is

rc f , and the dash-dotted pink line is lB.

study by Kendirlik et al. [6]. This may be attributed to the

fact that the IS for ν = 3 is much narrower than the ν = 2

IS, which does match our theoretical calculations (see Fig. 4),

with aTFA
3 being 2.4 times smaller than aTFA

2 and aQHA
3 being

3.5 times smaller than aQHA
2 . It is suggested that as a result at

the lower B end of the ν = 3 plateau the bulk strip is narrower

than the edge strip of the ν = 2 IS. This, as a result, leads

to the overshoot being enhanced as the temperature increases

as the ν = 3 IS breaks down at higher temperatures and the

ν = 2 IS overpowers it. Moreover, in further compliance with

Ref. [6], the overshoot effect is seen only at the low field end

of the odd-integer ν. This is explained as being a consequence

of the alternating gap size between the integer states being

�Eeven ≫ �Eodd [6].

Further studies were done by leaving the temperature con-

stant at the BT and varying the current across the Hall bar.

Similar to the temperature dependence result, the overshoot

effect diminishes as the plateaus flatten out by increasing the

current from 10 to 4550 nA. However, the overshoot effect

corresponding to the fractional states ν = 10/3 and 7/2 and

the integer state ν = 3 does not increase in resistance value

as the current is increased but rather drops down towards

the expected resistance value corresponding to ν = 3, i.e.,

RK/ν, where RK is the von Klitzing constant equal to RK =
h/e2. Although this might be in contrast to the temperature

measurements, it is once again in agreement with the mea-

surements from Kendirlik et al. [6]. Initially, for the ν = 5/3

state the plateau flattens out completely and drops to its 3RK/5
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FIG. 6. Plot of Rxy versus B at varying temperatures. The upper and lower insets show zoomed-in sections of the graph. The red arrows

show the evolution of the ν = 5/3 and 3 plateaus, respectively. The dashed black lines are the expected values for ν, as labeled.

resistance value by a current value of 640 nA but still persists

for higher current values, but its resistance value keeps drop-

ping. In addition the 4/3 fractional state plateau persists up

to a current of 100 nA. This can be seen in Fig. 7, where the

dashed black lines indicate the evolution for some of the filling

factor plateaus which exhibit overshooting behavior. For the

ν = 3 state the maximum current, i.e., 4550 nA, had to be

applied in order for the plateau to become completely flat.

However, it should be noted that above the applied current of

FIG. 7. Plot of Rxy versus B for different sample currents. The

dashed black lines show the evolution of the stated ν.

640 nA, although the plateaus are flatter, their corresponding

resistance falls below the defined RK/ν value for the plateaus

corresponding to filling factors values ν < 3. This could be

due to the higher currents breaking down the IS.

One could suggest that this change in the behavior of the

plateaus by increasing the current is due to an increase in

the bulk current density j = I/WH [15]. However, this is in

contrast to the follow-up data presented in Fig. 8. Here the

current was fixed at 10 nA, and the temperature was held

0 1 2 3 4 5 6 7 8
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FIG. 8. Plot of Rxy versus B for different Vsg applied on the split

gates.
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at BT, but the size of the channel was altered by depleting

the electrons under the application of Vsg, resulting in an

increase in current density. From Fig. 8 it can be seen that

by increasing Vsg the overshooting is enhanced for all the

integer and fractional states mentioned earlier and even seems

to create an overshooting effect for the ν = 5 state. Therefore,

thinking that the average bulk current density j has an effect

on the overshoot effect would be rather naive. Consequently,

the current I is the only decisive parameter on the evolution of

the overshooting. This is compatible with the work by Sailer

et al. [15], with the only difference being that the constrictions

were achieved lithographically as opposed to the electrostatic

methods in our case. Rather, the fact that the overshoot effect

increases by decreasing the channel size indicates that the

anomalous increase in the Hall resistance is not related to the

bulk of the 2DEG [15].

The data fit well with the idea of the screening theory;

that is, as the electrons leak out of an IS within the evanes-

cent regime, the electron gas will be heated up locally. The

electrons will then scatter in the nearby compressible region

at the low-B end of a Hall plateau. The first IS to be af-

fected will be the outer one as the overshoot is destroyed

with increasing sample current. Nevertheless, the inner IS is

less affected, leading to a preserved Hall plateau. Second,

another consequence of the increased currents through the

sample is the tilting of the potential landscape [36] in the out-

of-linear-response regime. Both evanescent ISs at one edge

boundary become wider at the expense of both ISs at the edge

boundary on the other side. For a certain current amplitude,

the narrowest outer IS breaks down, resulting in a breakdown

of the overshoot [15].

The channel’s size dependence on the overshoot can be

explained as a consequence of the current starting to leak out

of the inner IS at the lower magnetic end of the plateaus, and

it redistributes to the adjacent resistance minimum [15]. As

the channel is further constricted, less current flows in the

bulk. Therefore, more current is confined within the adjacent

IS which is in an evanescent state and is at a local resistance

minimum. The result is that the overshoot amplitude increases

due to the redistribution of the current between the evanescent

IS and the bulk [15].

Also by using Eq. (14) and comparing the areas overlap-

ping within the evanescent regime the amount of overshooting

can be estimated to a good approximation. For example, for

ν = 5/3 the overshoot is measured as ∼17 390 k�. By calcu-

lating the areas of the overlapping currents for ν = 5/3, that

is, taking into account the overlapped areas of ν = 1, ν = 4/3,

ν = 3/2, and ν = 5/3, from Fig. 5 and assuming the sum

of the areas enclosed for each IS is proportional to the total

current in the system, one can estimate the overshooting for

ν = 5/3 as ∼17 600 k�. The discrepancy is small enough to

be considered a good match between the two values.

Further studies could lead to a better understanding of

harnessing and manipulating the powers of the QHE for future

technologies, like quantum computers and metrology. The

incompressible nature of the edge states is an ideal candi-

date to implement semiconductor logic gates for flying-qubit

quantum computing architectures due to their large coherence

length [37]. Additionally, fractional states, e.g., the 5/2 state,

are thought to lead to topologically protected non-Abelian

states used for quantum computing [38], and the Landau

quantization was shown to be of importance in storing energy

due to high magnetocapacitance at both integer and fractional

states due to the energy gap forming [39].

V. CONCLUSIONS

We have shown the presence of an anomalous increase in

the Hall resistance (overshoot) for both integral and fractional

states. The self-consistent screening theory calculations for

the incompressible and compressible states for both these

types of states are in good agreement with the data pre-

sented in this paper. The calculations took into account both

the dimensions of the Hall bar and the fact that the device

was etched. The various observations with the evolution of

the overshooting by changing the parameters of tempera-

ture, sample current, and channel constriction via electrostatic

methods are all well understood with regards to the screening

theory.
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